General Synthesis of P-Stereogenic Compounds: The Menthyl Phosphinate Approach.

Olivier Berger and Jean-Luc Montchamp*
Department of Chemistry, Box 298860, Texas Christian University, Fort Worth, Texas 76129
List of contents: Page
General Chemistry S2
Reagents and solvents S2
${ }^{31}$ P NMR Yield Measurements S2
Procedures and spectral data S2
References S31
Spectra S32

General Chemistry:

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 300 or $400-\mathrm{MHz}$ spectrometer. Chemical shift for ${ }^{1} \mathrm{H}$ NMR spectra (in parts per million) relative to internal tetramethylsilane ($\mathrm{Me}_{4} \mathrm{Si}, \delta=0.00 \mathrm{ppm}$) with CDCl_{3}. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 75.5 or 101 MHz . Chemical shifts for ${ }^{13} \mathrm{C}$ NMR spectra are reported (in parts per million) relative to $\mathrm{CDCl}_{3}(\delta=77.0 \mathrm{ppm}) .{ }^{31} \mathrm{P}$ NMR spectra were recorded at 121.5 or 162 MHz , and chemical shifts reported (in parts per million) relative to external 85% phosphoric acid ($\delta=0.0 \mathrm{ppm}$). TLC plates were visualized by UV or immersion in permanganate potassium (3 g KMnO4, $20 \mathrm{~g} \mathrm{K2CO3}, 5 \mathrm{~mL} 5 \% \mathrm{NaOHaq}$ and 300 mL of water) followed by heating.

Reagent and solvents:

All starting materials were purchased from commercial sources and used as received. The solvents were distilled under N_{2} and dried according to standard procedures (THF from Na / benzophenone ketyl; DMF from $\mathrm{MgSO}_{4} ; \mathrm{CH}_{3} \mathrm{CN}$, toluene and dichloromethane from CaH_{2}).

31P NMR Yield Measurements:

The NMR yields are determined by integration of all the resonances in the ${ }^{31} \mathrm{P}$ spectra, an approach which is valid if no phosphorus-containing gas (i.e. PH_{3}) evolves, or if the precipitate in a heterogeneous mixture does not contain phosphorus. The yields determined by NMR are generally accurate within $\sim 10 \%$ of the value indicated, and are reproducible.

(R_{p})-Menthyl (hydroxymethyl)-H-phosphinate 2:1

Paraformaldehyde ($9.91 \mathrm{~g}, 330 \mathrm{mmol}, 1.1$ equiv) and hypophosphorous acid ($39.6 \mathrm{~g}, 300 \mathrm{mmol}, 1$ equiv, 50% w.t. in water) were introduced in a round bottom flask and the reaction mixture was stirred for 24 h at $75^{\circ} \mathrm{C}$. The reaction mixture was cooled down to rt and the oil obtained was diluted in toluene (300 mL). L-menthol ($46.9 \mathrm{~g}, 300 \mathrm{mmol}, 1$ equiv) was added and the reaction mixture was stirred for 24 h at reflux under N_{2} in a flask equipped with a Dean-Stark trap. The solvent was then removed under vacuum and the residue obtained was dissolved in a mixture of diethyl ether/hexane ($50 \mathrm{~mL}: 200 \mathrm{~mL}$) and the flask was placed in the fridge for $4 \mathrm{~h}\left(2^{\circ} \mathrm{C}\right)$. The solid obtained was filtered and solubilized in diethyl ether (200 mL) and placed in the fridge $\left(2^{\circ} \mathrm{C}\right)$ for 3 h to afford the product as white needles ($6.54 \mathrm{~g}, 10 \%,>99 \%$ de). $\mathrm{Mp}=101-102^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=34.9$ (dm, J $=542 \mathrm{~Hz}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.16(\mathrm{dm}, J=542 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.82-4.00(\mathrm{~m}$, 2 H), 2.14-2.24 (m, 1H), 1.98-2.11 (m, 1H), 2.04 (dquint., $J=2.4$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.62-1.73 (m, 2H), $1.34-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.76-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=79.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{POC}}=8.3 \mathrm{~Hz}\right), 59.7\left(\mathrm{~d}, J_{\mathrm{PC}}=111 \mathrm{~Hz}\right), 48.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{POCC}}=5.5\right.$ Hz), 43.3, 33.8, 31.5, 25.6, 22.9, 21.8, 20.8, 15.7; HRMS (ESI+) m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{P}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 257.1385, found 257.1423; $[\alpha]_{\mathrm{D}}{ }^{22}=-61.4^{\circ}$ (chloroform).

(S_{p})-Menthyl (hydroxymethyl)phenylphosphinate 3:1

To a solution of phenylphosphinic acid ($42.6 \mathrm{~g}, 300 \mathrm{mmol}, 1$ equiv) in toluene (300 mL) was added Lmenthol ($46.9 \mathrm{~g}, 300 \mathrm{mmol}, 1$ equiv). The reaction mixture was stirred at reflux for 24 h under N_{2} in a
flask equipped with a Dean-stark trap. After cooling down the reaction to rt, paraformaldehyde (9.01 $\mathrm{g}, 300 \mathrm{mmol}, 1$ equiv) was added and the reaction mixture was stirred at reflux for 24 h under N_{2}. The solvent was then removed under vacuum and the crude obtained was recrystallized at rt in diethyl ether (200 mL) to afford the product as colorless crystals ($24.2 \mathrm{~g}, 26 \%, 97 \% \mathrm{de}$). $\mathrm{Mp}=138-$ $139{ }^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=37.2(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.77-7.87(\mathrm{~m}, 2 \mathrm{H})$, 7.52-7.60 (m, 1H), 7.42-7.51 (m, 2H), 4.29-4.43 (m, 2H), 3.93-4.10 (m, 2 H), 2.26 (dquint., $J=2.6$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.47(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.74-1.13$ $(\mathrm{m}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=132.3\left(\mathrm{~d}, J_{\mathrm{PCCCC}}\right.$ $=2.8 \mathrm{~Hz}), 131.7\left(\mathrm{~d}, J_{\mathrm{PCCC}}=9.9 \mathrm{~Hz}, 2 \mathrm{C}\right), 130.6\left(\mathrm{~d}, J_{\mathrm{PC}}=123 \mathrm{~Hz}\right), 128.3\left(\mathrm{~d}, J_{\mathrm{PCC}}=12.1 \mathrm{~Hz}, 2 \mathrm{C}\right), 77.1\left(\mathrm{~d}, J_{\mathrm{POC}}\right.$ $=8.3 \mathrm{~Hz}), 60.2\left(\mathrm{~d}, J_{\mathrm{PC}}=117 \mathrm{~Hz}\right), 48.7\left(\mathrm{~d}, J_{\mathrm{PoCC}}=6.1 \mathrm{~Hz}\right), 43.2,34.0,31.4,25.5,22.8,21.9,21.1,15.7$; HRMS (EI+) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$311.1776, found 311.1766; $[\alpha]_{\mathrm{D}}{ }^{22}=-46.7^{\circ}$ (chloroform).

(R_{p})-Menthyl cinnamyl(hydroxymethyl)phosphinate 4:1

To a solution of cinnamylphosphinic acid ($9.11 \mathrm{~g}, 50 \mathrm{mmol}, 1$ equiv) in toluene (100 mL) was added L-menthol ($7.81 \mathrm{~g}, 50 \mathrm{mmol}, 1$ equiv). The reaction mixture was stirred at reflux for 24 h under N_{2} in a flask equipped with a Dean-Stark trap. After cooling down the reaction to rt, paraformaldehyde (1.5 $\mathrm{g}, 50 \mathrm{mmol}, 1$ equiv) was added and the reaction mixture was stirred at reflux for 24 h under N_{2}. The solvent was then removed under vacuum and the crude obtained was recrystallized at rt in a mixture ethyl acetate/diethyl ether ($30 \mathrm{~mL}: 150 \mathrm{~mL}$) to afford the product as a white solid ($5.6 \mathrm{~g}, 32 \%,>99 \%$ de). $\mathrm{Mp}=145-146^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=48.8(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.19-$ $7.39(\mathrm{~m}, 5 \mathrm{H}), 6.55(\mathrm{dd}, J=4.7$ and $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.12-6.27(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.34(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H})$, $3.64(\mathrm{~s}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=7.6$ and $17.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.54(\mathrm{~m}$, $2 \mathrm{H}), 1.15(\mathrm{q}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.74-1.07(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.77$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=136.8\left(\mathrm{~d}, J_{\mathrm{PCCCC}}=3.3 \mathrm{~Hz}\right), 135.0\left(\mathrm{~d}, J_{\mathrm{PCC}}=12.2 \mathrm{~Hz}\right)$, $128.5(2 \mathrm{C}), 127.5,126.2\left(\mathrm{~d}, J_{\mathrm{PCCCCC}}=1.7 \mathrm{~Hz}, 2 \mathrm{C}\right), 118.4\left(\mathrm{~d}, J_{\mathrm{PCCC}}=10.5 \mathrm{~Hz}\right), 76.7$ (d, $\left.J_{\mathrm{POC}}=8.3 \mathrm{~Hz}\right), 59.5$ $\left(\mathrm{d}, J_{\mathrm{PC}}=106 \mathrm{~Hz}\right), 48.6\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.6 \mathrm{~Hz}, 2 \mathrm{C}\right), 43.5,34.0,31.6\left(\mathrm{~d}, J_{\mathrm{PC}}=87.3 \mathrm{~Hz}\right), 31.5,25.5,22.7,22.1$, 21.0, 15.5; HRMS (EI+) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{P}\left([\mathrm{M}]^{+}\right) 350.2011$, found 350.2012; $[\alpha]_{\mathrm{D}}{ }^{24}=-51.6^{\circ}$ (chloroform).

(R_{p})-Menthyl (hydroxymethyl)phenylphosphinate 3:1

In a round bottom flask was introduced $\left(R_{p}\right)-2\left(117 \mathrm{mg}, 0.5 \mathrm{mmol}, 1\right.$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 0.01$ $\mathrm{mmol}, 2.0 \mathrm{~mol} \%$), xantphos ($6.4 \mathrm{mg}, 0.011 \mathrm{mmol}, 2.2 \mathrm{~mol} \%$), a mixture of DMF and $1,2-$ dimethoxyethane (2.25 mL : 0.25 mL), DIPEA ($0.11 \mathrm{~mL}, 0.65 \mathrm{mmol}, 1.3$ equiv) and bromobenzene ($0.05 \mathrm{~mL}, 0.5 \mathrm{mmol}, 1$ equiv). The reaction mixture was stirred under a flow of N_{2} for 10 minutes and then heated at $115^{\circ} \mathrm{C}$ for 24 hours before cooling down to rt . The solvent was then removed under vacuum and the resulting residue was dissolved in ethyl acetate and washed with a saturated aqueous solution of NaHCO_{3} and brine. The organic layer was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (hexane/ethyl acetate $5: 5$ to $3: 7$) to afford the product as a white solid ($106 \mathrm{mg}, 68 \%$, de $=95 \%$). Mp
$=103-105^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=37.4(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.80-7.91(\mathrm{~m}$, $2 \mathrm{H}), ~ 7.45-7.62(\mathrm{~m}, 3 \mathrm{H}), 4.09-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.02-4.08(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.39(\mathrm{~m}, 1 \mathrm{H})$, $1.90-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.50(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.76-1.02(\mathrm{~m}, 2 \mathrm{H}), 0.47(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=132.3\left(\mathrm{~d}, J_{\mathrm{PCCCC}}=2.7\right.$ $\mathrm{Hz}), 131.8\left(\mathrm{~d}, J_{\mathrm{PCCC}}=9.9 \mathrm{~Hz}, 2 \mathrm{C}\right), 129.4\left(\mathrm{~d}, J_{\mathrm{PC}}=124 \mathrm{~Hz}\right), 128.4\left(\mathrm{~d}, J_{\mathrm{PCC}}=12.1 \mathrm{~Hz}, 2 \mathrm{C}\right), 77.4\left(\mathrm{~d}, J_{\mathrm{POC}}=8.3\right.$ $\mathrm{Hz}), 60.4\left(\mathrm{~d}, J_{\mathrm{PC}}=115 \mathrm{~Hz}\right), 48.6\left(\mathrm{~d}, J_{\mathrm{POCC}}=6.0 \mathrm{~Hz}\right), 43.6,34.0,31.5,25.4,22.6,22.0,21.0,15.2 ;$ HRMS (EI+) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 311.1776$, found 311.1773; $[\alpha]_{\mathrm{D}}{ }^{22}=-37.9^{\circ}$ (chloroform).

(R_{p})-Menthyl (hydroxymethyl)-1-naphtylphosphinate 5:1

In a round bottom flask was introduced $\left(R_{p}\right)-2\left(117 \mathrm{mg}, 0.5 \mathrm{mmol}, 1\right.$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 0.01$ $\mathrm{mmol}, 2.0 \mathrm{~mol} \%$), xantphos $(6.4 \mathrm{mg}, 0.011 \mathrm{mmol}, 2.2 \mathrm{~mol} \%)$, a mixture of DMF and $1,2-$ dimethoxyethane ($2.25 \mathrm{~mL}: 0.25 \mathrm{~mL}$), DIPEA ($0.11 \mathrm{~mL}, 0.65 \mathrm{mmol}, 1.3$ equiv) and 1bromonaphthalene ($0.06 \mathrm{~mL}, 0.5 \mathrm{mmol}, 1$ equiv). The reaction mixture was stirred under a flow of N_{2} for 10 minutes and then heated at $115^{\circ} \mathrm{C}$ for 24 hours before cooling down to rt . The solvent was then removed under vacuum and the resulting residue was dissolved in ethyl acetate and washed with a saturated aqueous solution of NaHCO_{3} and brine. The organic layer was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (hexane/ethyl acetate $5: 5$ to $0: 10$) to afford the product as a white solid ($152 \mathrm{mg}, 84 \%, 94 \% \mathrm{de}$). Mp $=102-103{ }^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=38.6(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.54-8.60(\mathrm{~m}$, $1 \mathrm{H}), 8.20-8.30(\mathrm{~m}, 1 \mathrm{H}), 8.03-8.10(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.64(\mathrm{~m}, 3 \mathrm{H}), 4.29-4.43(\mathrm{~m}, 1 \mathrm{H})$, 4.08-4.27 (m, 2H), 2.35-2.44 (m, 1H), 1.88-2.00 (m, 1H), 1.59-1.74 (m, 3H), 1.35-1.54 (m, 3H), $0.96(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.84-1.04(\mathrm{~m}, 2 \mathrm{H}), 0.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.44(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=134.3\left(\mathrm{~d}, J_{\mathrm{PCCC}}=7.7 \mathrm{~Hz}\right), 133.6\left(\mathrm{~d}, J_{\mathrm{PCCC}}=9.4 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, J_{\mathrm{PCCCC}}=2.7 \mathrm{~Hz}\right), 133.0\left(\mathrm{~d}, J_{\mathrm{PCC}}=\right.$ $11.6 \mathrm{~Hz}), 129.0,127.3,126.2,126.2\left(\mathrm{~d}, J_{\mathrm{PCCC}}=3.3 \mathrm{~Hz}\right), 126.1\left(\mathrm{~d}, J_{\mathrm{PC}}=121 \mathrm{~Hz}\right), 124.7\left(\mathrm{~d}, J_{\mathrm{PCC}}=13.8 \mathrm{~Hz}\right)$, $78.0\left(\mathrm{~d}, J_{\mathrm{POC}}=8.3 \mathrm{~Hz}\right), 61.8\left(\mathrm{~d}, J_{\mathrm{PC}}=111 \mathrm{~Hz}\right), 48.7\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.0 \mathrm{~Hz}\right), 43.6,34.0,31.7,25.4,22.7,22.1$, 20.9, 15.2; HRMS (EI+) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{P}\left([\mathrm{M}]^{+}\right) 360.1854$, found 360.1860; $[\alpha]_{\mathrm{D}^{22}}=-52.3^{\circ}$ (chloroform).

(R_{p})-Menthyl (hydroxymethyl)p-anisylphosphinate 6:1

In a round bottom flask was introduced $\left(R_{p}\right)-2\left(117 \mathrm{mg}, 0.5 \mathrm{mmol}, 1\right.$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 0.01$ $\mathrm{mmol}, 2.0 \mathrm{~mol} \%$), xantphos ($6.4 \mathrm{mg}, 0.011 \mathrm{mmol}, 2.2 \mathrm{~mol} \%$), a mixture of DMF and $1,2-$ dimethoxyethane ($2.25 \mathrm{~mL}: 0.25 \mathrm{~mL}$), DIPEA ($0.11 \mathrm{~mL}, 0.65 \mathrm{mmol}, 1.3$ equiv) and 4-bromoanisole ($0.06 \mathrm{~mL}, 0.5 \mathrm{mmol}, 1$ equiv). The reaction mixture was stirred under a flow of N_{2} for 10 minutes and then heated at $115^{\circ} \mathrm{C}$ for 24 hours before cooling down to rt . The solvent was then removed under vacuum and the resulting residue was dissolved in ethyl acetate and washed with a saturated aqueous solution of NaHCO_{3} and brine. The organic layer was dried over MgSO_{4}, filtered and
concentrated under vacuum. The crude obtained was purified by column chromatography (hexane/ethyl acetate $5: 5$ to $0: 10$) to afford the product as a white solid ($90 \mathrm{mg}, 53 \%, 81 \% \mathrm{de}$). $\mathrm{Mp}=$ $110-112^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=37.8(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.74-7.84(\mathrm{~m}, 2 \mathrm{H})$, 6.96-7.03 (m, 2H), 4.05-4.18 (m, 1H), 3.96-4.05 (m, 2H), 3.87 ($\mathrm{s}, 3 \mathrm{H}$), 2.60-2.71 (m, 1H), 2.29-2.39 (m, 1 H), 2.01 (dquint., $J=2.6$ and $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.48(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.76-1.02(\mathrm{~m}, 2 \mathrm{H}), 0.51(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $162.8\left(\mathrm{~d}, J_{\mathrm{PCCCC}}=2.8 \mathrm{~Hz}\right), 133.7\left(\mathrm{~d}, J_{\mathrm{PCCC}}=11.1 \mathrm{~Hz}, 2 \mathrm{C}\right), 120.5\left(\mathrm{~d}, J_{\mathrm{PC}}=131 \mathrm{~Hz}\right), 114.0\left(\mathrm{~d}, J_{\mathrm{PCC}}=13.2 \mathrm{~Hz}\right.$, 2C), $77.2\left(\mathrm{~d}, J_{\mathrm{POC}}=7.7 \mathrm{~Hz}\right), 60.5\left(\mathrm{~d}, J_{\mathrm{PC}}=117 \mathrm{~Hz}\right), 55.3,48.7\left(\mathrm{~d}, J_{\mathrm{POCC}}=6.0 \mathrm{~Hz}\right), 43.6,34.0,31.5,25.4$, 22.7, 22.0, 21.0, 15.3; HRMS (EI+) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{P}\left([\mathrm{M}]^{+}\right) 340.1803$, found 340.1801; $[\alpha]_{\mathrm{D}}{ }^{24}=$ -68.3° (chloroform).

(R_{p})-Menthyl cinnamyl(hydroxymethyl)phosphinate 4:1

To a solution of $\left(R_{p}\right)-2(468 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv, $>99 \%$ de) in tert-amyl alcohol (10 mL) was added $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ ($18.3 \mathrm{mg}, 0.02 \mathrm{mmol}, 1 \mathrm{~mol} \%$), xantphos ($23.2 \mathrm{mg}, 0.04 \mathrm{mmol}, 2 \mathrm{~mol} \%$) and cinnamyl alcohol ($0.26 \mathrm{~mL}, 2 \mathrm{mmol}, 1$ equiv). The reaction mixture was stirred at reflux for 20 h under N_{2} in a flask equipped with a Dean-Stark trap. After cooling down the reaction to rt, the solvent was removed under vacuum and the residue obtained was purified by column chromatography (dichloromethane/acetone 100:0 to $90: 10$) to afford the product as a white solid ($681 \mathrm{mg}, 97 \%$, > 99% de $) . \mathrm{Mp}=145-146^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=48.8(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 7.19-7.39 (m, 5H), 6.55 (dd, $J=4.7$ and $15.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.12-6.27 (m, 1H), 4.20-4.34 (m, 1H), 3.87 (s, $2 \mathrm{H}), 3.64(\mathrm{~s}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=7.6$ and $17.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.54$ $(\mathrm{m}, 2 \mathrm{H}), 1.15(\mathrm{q}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.74-1.07(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, 0.77 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=136.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCCCC}}=3.3 \mathrm{~Hz}\right), 135.0\left(\mathrm{~d}, J_{\mathrm{PCC}}=12.2\right.$ Hz), 128.5 (2C), 127.5, 126.2 (d, $J_{\text {PCCCCC }}=1.7 \mathrm{~Hz}, 2 C$), 118.4 (d, $J_{\text {PCCC }}=10.5 \mathrm{~Hz}$), 76.7 (d, $J_{\text {POC }}=8.3 \mathrm{~Hz}$), $59.5\left(\mathrm{~d}, J_{\mathrm{PC}}=106 \mathrm{~Hz}\right), 48.6\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.6 \mathrm{~Hz}, 2 \mathrm{C}\right), 43.5,34.0,31.6\left(\mathrm{~d}, J_{\mathrm{PC}}=87.3 \mathrm{~Hz}\right), 31.5,25.5,22.7$, 22.1, 21.0, 15.5; HRMS (EI+) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{P}\left([\mathrm{M}]^{+}\right) 350.2011$, found $350.2012 ;[\alpha]_{\mathrm{D}}{ }^{24}=-51.6^{\circ}$ (chloroform).

$\left(R_{p}\right)$-Menthyl (acetoxymethyl)phenylphosphinate 3a: ${ }^{2}$

To a solution of $\left(R_{p}\right)-2$ ($703 \mathrm{mg}, 3 \mathrm{mmol}, 1$ equiv, $>99 \% \mathrm{de}$) in dichloromethane (15 mL) at $0^{\circ} \mathrm{C}$ under N_{2} was added pyridine ($0.30 \mathrm{~mL}, 3.75 \mathrm{mmol}, 1.25$ equiv) and acetic anhydride ($0.34 \mathrm{~mL}, 3.6 \mathrm{mmol}$, 1.2 equiv). The ice-bath was removed and the reaction mixture was stirred for 16 h at rt . The solvent was removed under vacuum and the residue obtained was solubilized in ethyl acetate. The organic layer was washed with NaHCO_{3} and brine, dried over MgSO_{4}, filtered and concentrated under vacuum to afford the product as a white solid ($829 \mathrm{mg}, 100 \%, 94 \%$ de). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=26.8(\mathrm{dm}, J=567 \mathrm{~Hz}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.14(\mathrm{dt}, J=1.8$ and $567 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.21(\mathrm{~m}$, $2 \mathrm{H}), 3.94-4.05(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.20-$ $1.36(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{q}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.79-0.92(\mathrm{~m}, 1 \mathrm{H}), 0.60-0.79(\mathrm{~m}, 1 \mathrm{H}), 0.76(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.75(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.63(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{Pcoc}}=6.5 \mathrm{~Hz}\right)$,
$79.6\left(\mathrm{~d}, J_{\mathrm{POC}}=7.8 \mathrm{~Hz}\right), 60.0\left(\mathrm{~d}, J_{\mathrm{PC}}=113 \mathrm{~Hz}\right), 48.4\left(\mathrm{~d}, J_{\mathrm{POCC}}=6.1 \mathrm{~Hz}\right), 43.2,33.6,31.4,25.5,22.8,21.7$, 20.7, 20.1, 15.6.

To a suspension of $\mathrm{Mn}(\mathrm{OAc})_{2}$ ($8.7 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$), MnO_{2} ($261 \mathrm{mg}, 3 \mathrm{mmol}, 3$ equiv.), sodium acetate ($246 \mathrm{mg}, 3 \mathrm{mmol}, 3$ equiv.) and benzene ($1.8 \mathrm{~mL}, 20 \mathrm{mmol}, 20$ equiv.) in acetic acid (2.5 mL) at $70^{\circ} \mathrm{C}$ under N_{2} was added a solution of (R_{p}) -7 ($276 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv, $94 \% \mathrm{de}$) in acetic acid (2.5 mL) over 2 hours via a syringe pump. The reaction mixture was then stirred for an additional 2 h at $70^{\circ} \mathrm{C}$ under N_{2}. Ethyl acetate ($\sim 30 \mathrm{~mL}$) and an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} 0.2 \mathrm{M}$ saturated with $\mathrm{NaHCO}_{3}(\sim 40 \mathrm{~mL})$ were added. The biphasic suspension was stirred vigorously for 5 minutes, filtered through celite and the two layers were separated. The organic layer was washed with an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} 0.2 \mathrm{M}$ saturated with $\mathrm{NaHCO}_{3}(\sim 40 \mathrm{~mL})$, a saturated aqueous solution of $\mathrm{NaHCO}_{3}(\sim 40 \mathrm{~mL})$ and brine ($\sim 40 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 98:2 to 94:6) to afford the product as a yellow oil (183 mg, 52\%, de $=94 \%$). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 31.8 (s, 97\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.45(\mathrm{~m}, 2 \mathrm{H})$, $4.41(\mathrm{dm}, J=43.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.07-4.17(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.51-$ $1.60(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{q}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.69-0.92(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, 0.77 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.44(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCOC}}=8.3 \mathrm{~Hz}\right.$), $132.7\left(\mathrm{~d}, J_{\mathrm{PCCCC}}=2.5 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{PCCC}}=9.9 \mathrm{~Hz}, 2 \mathrm{C}\right), 129.2\left(\mathrm{~d}, J_{\mathrm{PC}}=131 \mathrm{~Hz}\right), 128.4\left(\mathrm{~d}, J_{\mathrm{PCC}}=13.0 \mathrm{~Hz}\right.$, 2C), $77.8\left(\mathrm{~d}, J_{\mathrm{POC}}=7.5 \mathrm{~Hz}\right), 60.6\left(\mathrm{~d}, J_{\mathrm{PC}}=120 \mathrm{~Hz}\right), 48.6\left(\mathrm{~d}, J_{\mathrm{POCC}}=6.3 \mathrm{~Hz}\right), 43.5,33.9,31.5,25.4,22.7$, 21.9, 21.0, 20.4, 15.3; HRMS (CI+, methane) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 353.1882$, found $353.1873 ;[\alpha]_{\mathrm{D}}{ }^{27}=-78.2^{0}$ (chloroform).

(R_{p})-Menthyl (hydroxylmethyl)phenylphosphinate 3b: ${ }^{1}$

To a solution of $\left(R_{p}\right)-3 a(150 \mathrm{mg}, 0.43 \mathrm{mmol}, 1$ equiv) in methanol (2 mL) was added potassium carbonate ($6 \mathrm{mg}, 0.043 \mathrm{mmol}, 0.1$ equiv.) and the mixture was stirred for 20 h at rt . The solvent was removed under vacuum and then the residue was solubilized in EtOAc (20 mL). Water (20 mL) and NaHSO_{4} were added until the pH was around 1 . The aqueous layer was saturated with NaCl and the 2 layers were separated. The organic layer was washed with saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine (20 mL), dried over MgSO_{4}, filtered and concentrated under vacuum to afford the product as a white solid ($123 \mathrm{mg}, 92 \%, 94 \% \mathrm{de}$). $\mathrm{Mp}=103-105^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR ($121.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=37.4(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.80-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.62(\mathrm{~m}, 3 \mathrm{H}), 4.09-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.02-4.08(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.87$ $(\mathrm{m}, 1 \mathrm{H}), 2.29-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.90-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.50(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.76-1.02(\mathrm{~m}, 2 \mathrm{H}), 0.47(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.)^{2}\right): \delta=$ $132.4,131.8\left(\mathrm{~d}, J_{\mathrm{PCCC}}=9.7 \mathrm{~Hz}, 2 \mathrm{C}\right), 129.4\left(\mathrm{~d}, J_{\mathrm{PC}}=124 \mathrm{~Hz}\right), 128.4\left(\mathrm{~d}, J_{\mathrm{PCC}}=12.4 \mathrm{~Hz}, 2 \mathrm{C}\right), 77.5\left(\mathrm{~d}, J_{\mathrm{POC}}=\right.$ $7.3 \mathrm{~Hz}), 60.4\left(\mathrm{~d}, J_{\mathrm{PC}}=115 \mathrm{~Hz}\right), 48.7\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.7 \mathrm{~Hz}\right), 43.6,34.0,31.6,25.4,22.7,22.0,21.0,15.3 ;[\alpha]_{\mathrm{D}}{ }^{27}$ $=-69.0^{0}$ (chloroform).

(R_{p})-Menthyl (hydroxylmethyl)phenylphosphinate 3b:1

To a suspension of $\mathrm{Mn}(\mathrm{OAc})_{2}$ ($313 \mathrm{mg}, 1.81 \mathrm{mmol}, 5 \mathrm{~mol} \%$), MnO_{2} ($9.45 \mathrm{~g}, 108.6 \mathrm{mmol}, 3$ equiv.), sodium acetate ($8.91 \mathrm{~g}, 108.6 \mathrm{mmol}, 3$ equiv.) and benzene ($32.4 \mathrm{~mL}, 362 \mathrm{mmol}, 10$ equiv.) in acetic acid $(90 \mathrm{~mL})$ at $70^{\circ} \mathrm{C}$ under N_{2} was added a solution of $\left(S_{p}\right) /\left(R_{p}\right)-7(10 \mathrm{~g}, 36.2 \mathrm{mmol}, 1$ equiv, ratio $54: 46)$ in acetic acid (90 mL) over 2 hours via a syringe pump. The reaction mixture was then stirred for an additional 2 hours at $70^{\circ} \mathrm{C}$ under N_{2}. Ethyl acetate ($\sim 250 \mathrm{~mL}$) and an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} 0.2 \mathrm{M}$ saturated with $\mathrm{NaHCO}_{3}(\sim 250 \mathrm{~mL})$ were added. The suspension was stirred vigorously for 5 minutes, filtered through celite and the two layers were separated. The organic layer was washed with an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} 0.2 \mathrm{M}$ saturated with NaHCO_{3} ($\sim 250 \mathrm{~mL}$), a saturated aqueous solution of $\mathrm{NaHCO}_{3}(\sim 250 \mathrm{~mL})$ and brine ($\sim 250 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated under vacuum to afford the product as a yellow oil ($9.91 \mathrm{~g}, 78 \%$). ${ }^{31} \mathrm{P}$ NMR (162 MHz , CDCl_{3}): $\delta=32.0$ (s, 54\%), 31.9 ($\mathrm{s}, 46 \%$).
To a solution of $\left(S_{p}\right) /\left(R_{p}\right)-3 a(8.42 \mathrm{~g}, 24 \mathrm{mmol}, 1$ equiv, ratio $54: 46$) in methanol (50 mL) was added potassium carbonate ($330 \mathrm{mg}, 2.4 \mathrm{mmol}, 0.1$ equiv.) and the mixture was stirred for 20 h at rt . The solvent was removed under vacuum and then the residue was solubilized in EtOAc (100 mL). Water $(100 \mathrm{~mL})$ and NaHSO_{4} were added until the pH was around 1 . The aqueous layer was saturated with NaCl and the 2 layers were separated. The organic layer was washed with saturated $\mathrm{NaHCO}_{3}(100$ mL) and brine (100 mL), dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was precipitated in hexane to afford the product as a white solid ($1.82 \mathrm{~g}, 24 \%, 95 \% \mathrm{de}$). Mp $=103-105^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR (121.47 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=37.4(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.80-7.91(\mathrm{~m}$, $2 \mathrm{H}), 7.45-7.62(\mathrm{~m}, 3 \mathrm{H}), 4.09-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.02-4.08(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.39(\mathrm{~m}, 1 \mathrm{H})$, $1.90-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.50(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.76-1.02(\mathrm{~m}, 2 \mathrm{H}), 0.47(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=132.4,131.8\left(\mathrm{~d}, J_{\mathrm{PCCC}}=\right.$ $9.7 \mathrm{~Hz}, 2 \mathrm{C}), 129.4\left(\mathrm{~d}, J_{\mathrm{PC}}=124 \mathrm{~Hz}\right), 128.4\left(\mathrm{~d}, J_{\mathrm{PCC}}=12.4 \mathrm{~Hz}, 2 \mathrm{C}\right), 77.5\left(\mathrm{~d}, J_{\mathrm{POC}}=7.3 \mathrm{~Hz}\right), 60.4\left(\mathrm{~d}, J_{\mathrm{PC}}=115\right.$ $\mathrm{Hz}), 48.7\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.7 \mathrm{~Hz}\right), 43.6,34.0,31.6,25.4,22.7,22.0,21.0,15.3 ;[\alpha]_{\mathrm{D}}{ }^{27}=-69.0^{0}$ (chloroform).

(R_{p})-menthyl (acetoxymethyl) mesitylphosphinate 8a: ${ }^{2}$

To a solution of $\left(R_{p}\right)-2$ ($703 \mathrm{mg}, 3 \mathrm{mmol}, 1$ equiv, $>99 \% \mathrm{de}$) in dichloromethane (15 mL) at $0^{\circ} \mathrm{C}$ under N_{2} was added pyridine ($0.30 \mathrm{~mL}, 3.75 \mathrm{mmol}, 1.25$ equiv) and acetic anhydride ($0.34 \mathrm{~mL}, 3.6 \mathrm{mmol}$, 1.2 equiv). The ice-bath was removed and the reaction mixture was stirred for 16 h at rt . The solvent was removed under vacuum and the residue obtained was solubilized in ethyl acetate. The organic layer was washed with NaHCO_{3} and brine, dried over MgSO_{4}, filtered and concentrated under vacuum to afford the product as a white solid ($829 \mathrm{mg}, 100 \%, 94 \%$ de). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=26.8(\mathrm{dm}, J=567 \mathrm{~Hz}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.14(\mathrm{dt}, J=1.8$ and $567 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.21(\mathrm{~m}$, $2 \mathrm{H}), 3.94-4.05(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.20-$ $1.36(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{q}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.79-0.92(\mathrm{~m}, 1 \mathrm{H}), 0.60-0.79(\mathrm{~m}, 1 \mathrm{H}), 0.76(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.75(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.63(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCOC}}=6.5 \mathrm{~Hz}\right)$, $79.6\left(\mathrm{~d}, J_{\mathrm{POC}}=7.8 \mathrm{~Hz}\right), 60.0\left(\mathrm{~d}, J_{\mathrm{PC}}=113 \mathrm{~Hz}\right), 48.4\left(\mathrm{~d}, J_{\mathrm{POCC}}=6.1 \mathrm{~Hz}\right), 43.2,33.6,31.4,25.5,22.8,21.7$, 20.7, 20.1, 15.6.

To a suspension of $\mathrm{Mn}(\mathrm{OAc})_{2}$ ($26 \mathrm{mg}, 0.15 \mathrm{mmol}, 5 \mathrm{~mol} \%$), MnO_{2} ($783 \mathrm{mg}, 9 \mathrm{mmol}, 3$ equiv.), sodium acetate ($738 \mathrm{mg}, 9 \mathrm{mmol}, 3$ equiv.) and mesitylene ($2.1 \mathrm{~mL}, 15 \mathrm{mmol}, 5$ equiv.) in acetic acid (7.5 mL) at $70^{\circ} \mathrm{C}$ under N_{2} was added a solution of $\left(R_{p}\right)-7(828 \mathrm{mg}, 3 \mathrm{mmol}, 1$ equiv, 94% de) in acetic acid (7.5 mL) over 2 h via a syringe pump. The reaction mixture was then stirred for an additional 2 h at $70^{\circ} \mathrm{C}$ under N_{2}. Ethyl acetate ($\sim 50 \mathrm{~mL}$) and an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} 0.2 \mathrm{M}$ saturated with NaHCO_{3} ($\sim 50 \mathrm{~mL}$) were added. The suspension was stirred vigorously for 10 minutes, filtered through celite and the two layers were separated. The organic layer was washed with an aqueous solution of
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} 0.2 \mathrm{M}$ saturated with $\mathrm{NaHCO}_{3}(\sim 50 \mathrm{~mL})$, a saturated aqueous solution of $\mathrm{NaHCO}_{3}(\sim 50 \mathrm{~mL})$ and brine ($\sim 50 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 100:0 to 95:5) to afford the product as a colorless oil ($876 \mathrm{mg}, 79 \%, 94 \%$ de). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=36.0(\mathrm{~s}, 3 \%), 35.7$ (s, 97\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.80(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.31-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.40(\mathrm{~m}, 2 \mathrm{H})$, $2.54(\mathrm{~s}, 6 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.06-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.82$ (dquint., $J=1.8$ and $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-$ $1.64(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $0.94(\mathrm{dq}, J=2.6$ and $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.74-0.89(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.59(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.8\left(\mathrm{~d}, J_{\mathrm{PCOC}}=7.7 \mathrm{~Hz}\right), 143.3\left(\mathrm{~d}, J_{\mathrm{PCC}}=11.6\right.$ $\mathrm{Hz}, 2 \mathrm{C}), 141.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCCCC}}=2.8 \mathrm{~Hz}\right), 130.7\left(\mathrm{~d}, J_{\mathrm{PCCC}}=13.5 \mathrm{~Hz}, 2 \mathrm{C}\right), 123.3\left(\mathrm{~d}, J_{\mathrm{PC}}=131 \mathrm{~Hz}\right), 76.8\left(\mathrm{~d}, J_{\mathrm{POC}}=\right.$ $7.6 \mathrm{~Hz}), 62.4\left(\mathrm{~d}, J_{\mathrm{PC}}=110 \mathrm{~Hz}\right), 48.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{POCC}}=4.7 \mathrm{~Hz}\right), 43.6,34.0,31.6,25.7,23.3\left(\mathrm{~d}, J_{\mathrm{PCCC}}=2.3 \mathrm{~Hz}, 2 \mathrm{C}\right)$, 22.8, 22.0, 20.9 (2C), 20.3, 15.4; HRMS (EI+) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{P}$ ([M] ${ }^{+}$) 394.2273, found 394.2274 .

(R_{p})-Menthyl (hydroxymethyl)mesitylphosphinate 8b:

To a solution of (R_{p})-8a ($876 \mathrm{mg}, 2.22 \mathrm{mmol}, 1$ equiv, $94 \% \mathrm{de}$) in methanol (10 mL) was added potassium carbonate ($31 \mathrm{mg}, 0.22 \mathrm{mmol}, 0.1$ equiv.) and the mixture was stirred for 20 h at rt . The solvent was removed under vacuum and then the residue was solubilized in ethyl actate. Water and NaHSO_{4} were added until the pH was around 1 . The aqueous layer was saturated with NaCl and the 2 layers were separated. The organic layer was washed with saturated NaHCO_{3} and brine, dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 100:0 to $90: 10$) to afford the product as a colorless oil ($741 \mathrm{mg}, 95 \%, 94 \% \mathrm{de}$). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=42.3(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.82$ $(\mathrm{s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 4.34-4.47(\mathrm{~m}, 1 \mathrm{H}), 3.90-4.07(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 6 \mathrm{H}), 2.25-2.33(\mathrm{~m}, 1 \mathrm{H})$, $2.21(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.71-1.04(\mathrm{~m}$, $2 \mathrm{H}), 0.92(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.62(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=143.3\left(\mathrm{~d}, J_{\mathrm{PCC}}=11.2 \mathrm{~Hz}, 2 \mathrm{C}\right), 141.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCCCC}}=2.5 \mathrm{~Hz}\right), 130.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCCC}}=12.7 \mathrm{~Hz}, 2 \mathrm{C}\right), 123.5$ $\left(\mathrm{d}, J_{\mathrm{PC}}=122 \mathrm{~Hz}\right), 76.7\left(\mathrm{~d}, J_{\mathrm{POC}}=7.8 \mathrm{~Hz}\right), 62.4\left(\mathrm{~d}, J_{\mathrm{PC}}=107 \mathrm{~Hz}\right), 48.8\left(\mathrm{~d}, J_{\mathrm{POCC}}=4.4 \mathrm{~Hz}\right), 43.6,34.2,31.7$, $25.7,23.4\left(\mathrm{~d}, J_{\mathrm{PCCC}}=1.8 \mathrm{~Hz}, 2 \mathrm{C}\right), 22.9,22.2,21.0,21.0,15.4 ; \mathrm{HRMS}(\mathrm{EI}+) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{P}$ $\left([\mathrm{M}]^{+}\right) 352.2167$, found $352.2164 ;[\alpha]_{\mathrm{D}}{ }^{25}=-21.1^{0}$ (chloroform).

$\left(R_{p}\right) /\left(S_{p}\right)$ Menthyl (hydroxylmethyl)mesitylphosphinate 8b:

To a suspension of $\mathrm{Mn}(\mathrm{OAc})_{2}$ ($467 \mathrm{mg}, 2.7 \mathrm{mmol}, 5 \mathrm{~mol} \%$), MnO_{2} ($13.92 \mathrm{~g}, 160 \mathrm{mmol}, 3$ equiv.), sodium acetate ($13.12 \mathrm{~g}, 160 \mathrm{mmol}, 3$ equiv.) and mesitylene ($37 \mathrm{~mL}, 266 \mathrm{mmol}, 5$ equiv.) in acetic acid (90 mL) at $70^{\circ} \mathrm{C}$ under N_{2} was added a solution of $\left(S_{p}\right) /\left(R_{p}\right)-7(14.7 \mathrm{~g}, 53.2 \mathrm{mmol}, 1$ equiv, ratio
$54: 46$) in acetic acid (90 mL) over 2 hours via a syringe pump. The reaction mixture was then stirred for an additional 2 h at $70^{\circ} \mathrm{C}$ under N_{2}. Ethyl acetate ($\sim 250 \mathrm{~mL}$) and an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ 0.2 M saturated with $\mathrm{NaHCO}_{3}(\sim 250 \mathrm{~mL})$ were added. The suspension was stirred vigorously for 5 minutes, filtered through celite and the two layers were separated. The organic layer was washed with an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} 0.2 \mathrm{M}$ saturated with $\mathrm{NaHCO}_{3}(\sim 250 \mathrm{~mL}$), a saturated aqueous solution of $\mathrm{NaHCO}_{3}\left(\sim 250 \mathrm{~mL}\right.$) and brine ($\sim 250 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated under vacuum.
The crude obtained was solubilized in methanol (100 mL) and potassium carbonate ($733 \mathrm{mg}, 5.3$ $\mathrm{mmol}, 0.1$ equiv.) was added and the mixture was stirred for 20 h at rt . The solvent was removed under vacuum and then the residue was solubilized in EtOAc (150 mL). Water (150 mL) and NaHSO_{4} were added until the pH was around 1 . The aqueous layer was saturated with NaCl and the 2 layers were separated. The organic layer was washed with saturated $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ and brine (150 mL), dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was precipitated in hexane to afford the product as a white solid ($11.3 \mathrm{~g}, 60 \%$ on 3 steps). ${ }^{31} \mathrm{P}$ NMR ($121.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=41.5(50 \%, \mathrm{~s}), 41.0(50 \%, \mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.92(\mathrm{~s}, 2 \mathrm{H}), 4.32-4.49(\mathrm{~m}, 1 \mathrm{H}), 3.77-$ $4.12(\mathrm{~m}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.34(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.22-$ $1.54(\mathrm{~m}, 3 \mathrm{H}), 0.76-1.13(\mathrm{~m}, 9.5 \mathrm{H}), 0.64(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1.5 \mathrm{H})$.

$\left(R_{p}\right) /\left(S_{p}\right)$ Menthyl-[4-(acetamido)phenyl](hydroxylmethyl)phosphinate 9b:

To a suspension of $\mathrm{Mn}(\mathrm{OAc})_{2}$ ($385 \mathrm{mg}, 2.23 \mathrm{mmol}, 5 \mathrm{~mol} \%$), MnO_{2} ($11.62 \mathrm{~g}, 133.5 \mathrm{mmol}, 3$ equiv.), sodium acetate ($10.95 \mathrm{~g}, 133.5 \mathrm{mmol}, 3$ equiv.) and acetanilide ($30.1 \mathrm{~g}, 222.6 \mathrm{mmol}, 5$ equiv.) in acetic acid (90 mL) at $70^{\circ} \mathrm{C}$ under N_{2} was added a solution of $\left(S_{p}\right) /\left(R_{p}\right)-7(12.3 \mathrm{~g}, 44.5 \mathrm{mmol}, 1$ equiv $)$ in acetic acid (90 mL) over 2 hours via a syringe pump. The reaction mixture was then stirred for an additional 2 h at $70^{\circ} \mathrm{C}$ under N_{2}. Ethyl acetate ($\sim 200 \mathrm{~mL}$) and an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} 0.2 \mathrm{M}$ saturated with $\mathrm{NaHCO}_{3}(\sim 200 \mathrm{~mL})$ were added. The suspension was stirred vigorously for 5 minutes, filtered through celite and the two layers were separated. The organic layer was washed with an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} 0.2 \mathrm{M}$ saturated with $\mathrm{NaHCO}_{3}(\sim 200 \mathrm{~mL})$, a saturated aqueous solution of $\mathrm{NaHCO}_{3}\left(\sim 200 \mathrm{~mL}\right.$) and brine ($\sim 200 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated under vacuum.
The crude obtained was solubilized in methanol (100 mL) and potassium carbonate ($622 \mathrm{mg}, 4.5$ mmol, 0.1 equiv.) was added and the mixture was stirred for 20 h at rt . The solvent was removed under vacuum and then the residue was solubilized in EtOAc (150 mL). Water (150 mL) and NaHSO_{4} were added until the pH was around 1 . The aqueous layer was saturated with NaCl and the 2 layers were separated. The organic layer was washed with saturated $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ and brine (150 mL), dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was precipitated in hexane to afford the product as a white solid ($6.0 \mathrm{~g}, 37 \%$ on 3 steps). ${ }^{31} \mathrm{P}$ NMR ($121.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $37.8(48 \%, \mathrm{~s}), 37.2(52 \%, \mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.44(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.26$ (m, 2H), 4.16-4.33 (m, 1.5H), 3.95-4.12 (m, 1.5H), 2.11-2.24 (m, 1H), $2.15(\mathrm{~s}, 3 \mathrm{H}), 1.93-2.05(\mathrm{~m}, 1 \mathrm{H})$, 1.75-1.83 (m, 1H), 1.58-1.72 (m, 2H), 1.22-1.44 (m, 2H), 0.95-1.08 (m, 1H), $0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1.5 \mathrm{H})$, 0.93 (d, $J=6.4 \mathrm{~Hz}, 1.5 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1.5 \mathrm{H}), 0.85(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1.5 \mathrm{H}), 0.80(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1.5 \mathrm{H})$, $0.55(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1.5 \mathrm{H})$.

(R_{p})-Menthyl (hydroxymethyl)methylphosphinate 10:1

To a solution of $\left(R_{p}\right)-2(234 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv, $98 \% \mathrm{de})$ in dichloromethane $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and under N_{2} was added bis(trimethylsilyl)acetamide ($0.49 \mathrm{~mL}, 2 \mathrm{mmol}, 2$ equiv) followed by iodomethane ($0.062 \mathrm{~mL}, 1 \mathrm{mmol}, 1$ equiv). The ice-bath was removed and the reaction mixture was then stirred for 20 h at rt . Methanol was added ($0.08 \mathrm{~mL}, 2 \mathrm{mmol}, 2$ equiv) and the reaction mixture was concentrated under vacuum. The residue obtained was dissolved in ethyl acetate and the organic layer was washed with a saturated aqueous solution of NaHCO_{3} and brine, dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 10:0 to 7:3) to afford the product as a white solid ($188 \mathrm{mg}, 76 \%,>99 \%$ de). $\mathrm{Mp}=82-83^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=51.9$ (s); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.15-4.28$ $(\mathrm{m}, 1 \mathrm{H}), 3.73-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.07-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.06$ (dquint., $J=2.3$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.62-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.40-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{q}, J=11.1 \mathrm{~Hz}$, $1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.78-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, C D C l_{3}$): $\delta=76.2\left(\mathrm{~d}, J_{\text {PoC }}=7.8 \mathrm{~Hz}\right), 60.6\left(\mathrm{~d}, J_{\mathrm{PC}}=111 \mathrm{~Hz}\right), 48.4\left(\mathrm{~d}, J_{\mathrm{PoCC}}=5.5 \mathrm{~Hz}\right), 43.4$, $33.9,31.4,25.6,22.7,21.9,20.9,15.6,11.8\left(\mathrm{~d}, \mathrm{Jpc}_{\mathrm{p}}=91.2 \mathrm{~Hz}\right.$); HRMS (EI+) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{P}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 249.1620$, found 249.1621; $[\alpha]_{\mathrm{D}} 22=-60.6^{\circ}$ (chloroform).

(R_{p})-Menthyl allyl(hydroxymethyl)phosphinate 11:1

To a solution of $\left(R_{p}\right)-2(117 \mathrm{mg}, 0.5 \mathrm{mmol}, 1$ equiv, $98 \% \mathrm{de})$ in dichloromethane (5 mL) at $0^{\circ} \mathrm{C}$ and under N_{2} was added bis(trimethylsilyl)acetamide ($0.25 \mathrm{~mL}, 1 \mathrm{mmol}, 2$ equiv) followed by allyl bromide ($0.09 \mathrm{~mL}, 1 \mathrm{mmol}, 2$ equiv). The ice-bath was removed and the reaction mixture was stirred for 36 h at rt. Methanol was added ($0.04 \mathrm{~mL}, 1 \mathrm{mmol}, 2$ equiv) and the reaction mixture was then concentrated under vacuum. The residue obtained was dissolved in ethyl acetate and the organic layer was washed with a saturated aqueous solution of NaHCO_{3} and brine, dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 100:0 to 96:4) to afford the product as white solid ($88 \mathrm{mg}, 64 \%, 95 \% \mathrm{de}$). $\mathrm{Mp}=69-71^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=48.4(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.74-5.93(\mathrm{~m}$, $1 \mathrm{H})$, 5.19-5.32 (m, 2H), 4.18-4.32 (m, 1H), 3.81-3.89 (m, 2H), 3.53-3.64 (m, 1H), 2.64-2.77 (m, 2H), 2.06-2.18 (m, 2H), 1.61-1.72 (m, 2H), 1.40-1.54 (m, 1H), 1.24-1.39 (m, 1H), $1.15(\mathrm{q}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.78-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.81(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $127.2\left(\mathrm{~d}, J_{\text {Pccc }}=9.4 \mathrm{~Hz}\right), 120.3\left(\mathrm{~d}, J_{\text {Pcc }}=12.7 \mathrm{~Hz}\right), 76.7\left(\mathrm{~d}, J_{\mathrm{poc}}=8.3 \mathrm{~Hz}\right), 59.1\left(\mathrm{~d}, J_{\mathrm{pc}}=107 \mathrm{~Hz}\right), 48.5(\mathrm{~d}$, $J_{\text {pocc }}=5.5 \mathrm{~Hz}$), 43.4, 34.0, 32.4 (d, $J_{\text {pc }}=86.8 \mathrm{~Hz}$), 31.5, 25.5, 22.7, 22.0, 21.0, 15.6; HRMS (EI+) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{P}\left([\mathrm{M}]^{+}\right) 274.1698$, found 274.1694; [$\left.\alpha\right]_{D^{24}}=-71.3^{\circ}$ (chloroform).

(R_{p})-Menthyl benzyl(hydroxymethyl)phosphinate 12:

To a solution of $\left(R_{p}\right)-2(1.17 \mathrm{~g}, 5 \mathrm{mmol}, 1$ equiv, $98 \% \mathrm{de})$ in dichloromethane (50 mL) was added at $0^{\circ} \mathrm{C}$ and under N_{2} bis(trimethylsilyl)acetamide ($2.45 \mathrm{~mL}, 10 \mathrm{mmol}, 2$ equiv) followed by benzylbromide ($1.2 \mathrm{~mL}, 10 \mathrm{mmol}, 2$ equiv). The ice bath was removed and the reaction mixture was stirred for 12 h at rt . Methanol was then added ($0.40 \mathrm{~mL}, 10 \mathrm{mmol}, 2$ equiv) and the mixture was concentrated under vacuum. The residue obtained was dissolved in ethyl acetate and the organic layer was washed with a saturated aqueous solution of NaHCO_{3} and brine, dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 98:2 to 90:10) to afford the product as a white solid ($1.353 \mathrm{~g}, 84 \%,>99 \%$ de). $\mathrm{Mp}=133-134^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=47.1(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.22-$ $7.36(\mathrm{~m}, 5 \mathrm{H}), 4.35(\mathrm{dt}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.02-$ $2.09(\mathrm{~m}, 1 \mathrm{H}), 1.85$ (dquint., $J=2.5$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.33(\mathrm{~m}$, $1 \mathrm{H}), 1.12(\mathrm{q}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{dq}, J=3.0$ and $12.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.76-0.93(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.83(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.67(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=131.3\left(\mathrm{~d}, J_{\mathrm{PCC}}=7.9\right.$ $\mathrm{Hz}), 130.0\left(\mathrm{~d}, J_{\mathrm{PCCC}}=5.6 \mathrm{~Hz}, 2 \mathrm{C}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{PCCCC}}=2.6 \mathrm{~Hz}, 2 \mathrm{C}\right), 126.7\left(\mathrm{~d}, J_{\mathrm{PCCCCC}}=3.1 \mathrm{~Hz}\right), 76.6\left(\mathrm{~d}, J_{\mathrm{POC}}=\right.$ $7.9 \mathrm{~Hz}), 59.2\left(\mathrm{~d}, J_{\mathrm{PC}}=106 \mathrm{~Hz}\right), 48.6\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.3 \mathrm{~Hz}\right), 43.4,34.1\left(\mathrm{~d}, J_{\mathrm{PC}}=86.2 \mathrm{~Hz}\right), 34.0,31.5,25.3,22.7$, 22.1, 21.1, 15.4; HRMS (EI+) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{P}\left([\mathrm{M}]^{+}\right) 324.1854$, found 324.1852; $[\alpha]_{\mathrm{D}}{ }^{24}=-27.9^{\circ}$ (chloroform).

(R_{p})-Menthyl (hydroxymethyl)triphenylmethylphosphinate 13:

To a solution of $\left(R_{p}\right)$-2 ($468 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv, $96 \% \mathrm{de}$) in dichloromethane (10 mL) was added at $0^{\circ} \mathrm{C}$ under N_{2} bis(trimethylsilyl)acetamide ($1.0 \mathrm{~mL}, 4 \mathrm{mmol}, 2$ equiv) followed by bromotriphenylmethane $(1.29 \mathrm{~g}, 4 \mathrm{mmol}, 2$ equiv). The ice bath was removed and the reaction mixture was stirred for 12 h at rt . Methanol was then added ($0.16 \mathrm{~mL}, 4 \mathrm{mmol}, 2$ equiv) and the mixture was concentrated under vacuum. The residue obtained was dissolved in ethyl acetate and the organic layer was washed with a saturated aqueous solution of NaHCO_{3} and brine, dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone $100: 0$ to $95: 5$) to afford the product as a white solid ($465 \mathrm{mg}, 49 \%, 95 \% \mathrm{de}$). $\mathrm{Mp}=157-158^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=47.7$ (s); ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.43-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.22-7.35(\mathrm{~m}, 9 \mathrm{H}), 4.27-4.47(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.55(\mathrm{~m}$, $1 \mathrm{H}), 2.18-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.03-1.19(\mathrm{~m}, 2 \mathrm{H}), 0.76-1.01(\mathrm{~m}, 2 \mathrm{H})$, $0.90(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.68(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.64(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 141.3 (s, 3C), 130.9 (d, $\left.J_{\mathrm{PCCC}}=4.5 \mathrm{~Hz}, 6 \mathrm{C}\right), 128.0(\mathrm{~s}, 6 \mathrm{C}), 127.0(\mathrm{~s}, 3 \mathrm{C}), 78.4\left(\mathrm{~d}, J_{\mathrm{POC}}=9.1 \mathrm{~Hz}\right), 63.3\left(\mathrm{~d}, J_{\mathrm{PC}}\right.$ $=83.5 \mathrm{~Hz}), 60.6\left(\mathrm{~d}, J_{\mathrm{PC}}=92.9 \mathrm{~Hz}\right), 49.1\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.3 \mathrm{~Hz}\right), 42.5,34.0,31.6,24.5,22.7,22.2,21.3,15.8$; HRMS (EI+) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{P}\left([\mathrm{M}]^{+}\right) 476.2480$, found 476.2470; $[\alpha]_{\mathrm{D}}{ }^{25}=-9.9^{\circ}$ (chloroform).

(R_{p})-Menthyl (hydroxymethyl)methylphosphinate 10:1

To a solution of $\left(R_{p}\right)-2$ (234 mg , $1 \mathrm{mmol}, 1$ equiv, $98 \% \mathrm{de}$) in tetrahydrofuran (5 mL) at $-78^{\circ} \mathrm{C}$ and under N_{2} was added a solution of LiHMDS 1.0 M in tetrahydrofuran ($2.0 \mathrm{~mL}, 2 \mathrm{mmol}, 2$ equiv). After 15 minutes of stirring, iodomethane ($0.062 \mathrm{~mL}, 1 \mathrm{mmol}, 1$ equiv) was added at $-78^{\circ} \mathrm{C}$ and then the reaction mixture was allowed to warm-up to room temperature over 1 hour. The mixture was then stirred for an additional 1 hour at rt. A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the two
layers were separated. The aqueous layer was extracted twice with dichloromethane. The combined organic layer was washed with brine, dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 10:0 to 7:3) to afford the product as a white solid ($202 \mathrm{mg}, 81 \%,>99 \%$ de). $\mathrm{Mp}=82-83^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR (162 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=51.9(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.15-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.07-3.16$ $(\mathrm{m}, 1 \mathrm{H}), 2.08-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.06$ (dquint., $J=2.3$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~d}, J=13.7$ $\mathrm{Hz}, 3 \mathrm{H}), 1.40-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{q}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.78-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=76.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PoC}}\right.$ $=7.8 \mathrm{~Hz}), 60.6\left(\mathrm{~d}, J_{\mathrm{PC}}=111 \mathrm{~Hz}\right), 48.4\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.5 \mathrm{~Hz}\right), 43.4,33.9,31.4,25.6,22.7,21.9,20.9,15.6$, $11.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=91.2 \mathrm{~Hz}\right)$; HRMS (EI+) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$249.1620, found 249.1621; $[\alpha]_{D^{22}}=-60.6^{0}$ (chloroform).

(R_{p})-Menthyl hydroxymethyl(N-methylphthalimide)phenylphosphinate 14:

To a solution of $\left(S_{p}\right) /\left(R_{p}\right)$-2 ($4.69 \mathrm{~g}, 20 \mathrm{mmol}, 1.0$ equiv, ratio $55: 45$) and N -(bromomethyl)phtalimide ($4.8 \mathrm{~g}, 20 \mathrm{mmol}, 1.0$ equiv) in toluene was added at rt under N_{2} hexamethyldisilazane ($10.4 \mathrm{~mL}, 50$ $\mathrm{mmol}, 2.5$ equiv) and trimethylsilyl chloride ($6.35 \mathrm{~mL}, 50 \mathrm{mmol}, 2.5$ equiv). The reaction mixture was stirred for 16 hours at reflux under N_{2}. Methanol ($2.02 \mathrm{~mL}, 50 \mathrm{mmol}, 2.5$ equiv) was added and the mixture was concentrated under vacuum. The residue was dissolved in ethyl acetate and the organic layer was washed with NaHCO_{3} and brine, dried over MgSO_{4}, filtered and concentrated under vacuum. The residue obtained was purified by crystallization in a mixture of dichloromethane/diethyl ether ($20 \mathrm{~mL}: 200 \mathrm{~mL}$) to afford the product as a white solid ($2.06 \mathrm{~g}, 26 \%$, $>99 \%$ de $) . \mathrm{Mp}=161-162^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=41.1(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 7.88-7.93 (m, 2H), 7.75-7.81 (m, 2H), 4.30-4.40 (m, 1H), 4.11-4.25 (m, 2H), 3.96 (d, J=3.5 Hz, 2H), $3.43(1 \mathrm{H}), 2.25-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.00$ (dquint., $J=2.6$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.56(\mathrm{~m}$, $1 \mathrm{H}), 1.31-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{q}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.81-1.07(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.8(2 \mathrm{C}), 134.5$ (2C), 131.8 (2C), $123.8(2 \mathrm{C}), 78.5\left(\mathrm{~d}, J_{\mathrm{POC}}=8.1 \mathrm{~Hz}\right), 59.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=105 \mathrm{~Hz}\right), 48.5\left(\mathrm{~d}, J_{\mathrm{POCC}}=6.0 \mathrm{~Hz}\right), 43.6,34.8\left(\mathrm{~d}, J_{\mathrm{PC}}=98.0\right.$ $\mathrm{Hz}), 33.9,31.6,25.6,22.8,21.9,20.9,15.5$; HRMS (EI+) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 394.1783$, found 394.1777; $[\alpha]_{\mathrm{D}} 25=-24.5^{\circ}$ (chloroform).

(R_{p})-Menthyl (acetoxymethyl)octylphosphinate 15:3

To a solution of $\left(R_{p}\right)$-2 ($703 \mathrm{mg}, 3 \mathrm{mmol}, 1$ equiv, $>99 \% \mathrm{de}$) in dichloromethane (15 mL) at $0^{\circ} \mathrm{C}$ under N_{2} was added pyridine ($0.30 \mathrm{~mL}, 3.75 \mathrm{mmol}, 1.25$ equiv) and acetic anhydride ($0.34 \mathrm{~mL}, 3.6 \mathrm{mmol}$, 1.2 equiv). The ice-bath was removed and the reaction mixture was stirred for 16 h at rt . The solvent was removed under vacuum and the residue obtained was solubilized in ethyl acetate. The organic layer was washed with NaHCO_{3} and brine, dried over MgSO_{4}, filtered and concentrated under vacuum to afford the product as a white solid ($829 \mathrm{mg}, 100 \%, 95 \%$ de). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=26.8(\mathrm{dm}, J=567 \mathrm{~Hz}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.14(\mathrm{dt}, J=1.8$ and $567 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.21(\mathrm{~m}$, $2 \mathrm{H}), 3.94-4.05(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.20-$
$1.36(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{q}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.79-0.92(\mathrm{~m}, 1 \mathrm{H}), 0.60-0.79(\mathrm{~m}, 1 \mathrm{H}), 0.76(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.75(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.63(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.0\left(\mathrm{~d}, J_{\mathrm{PCOC}}=6.5 \mathrm{~Hz}\right)$, $79.6\left(\mathrm{~d}, J_{\mathrm{POC}}=7.8 \mathrm{~Hz}\right), 60.0\left(\mathrm{~d}, J_{\mathrm{PC}}=113 \mathrm{~Hz}\right), 48.4\left(\mathrm{~d}, J_{\mathrm{POCC}}=6.1 \mathrm{~Hz}\right), 43.2,33.6,31.4,25.5,22.8,21.7$, 20.7, 20.1, 15.6.

To a solution of $\left(R_{p}\right)-7$ ($553 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv) in DMSO (5 mL) was added 1 -octene ($0.31 \mathrm{~mL}, 2$ mmol, 1 equiv) and $\mathrm{Mn}(\mathrm{OAc})_{2}$ ($17 \mathrm{mg}, 0.1 \mathrm{mmol}, 5 \mathrm{~mol} \%$). The reaction mixture was stirred for 16 h at $100^{\circ} \mathrm{C}$ under air. Ethyl acetate and an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ at 0.5 M were added and the two layers were stirred for 10 minutes and then separated. The organic layer was washed with brine, dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (hexane/ethyl acetate $8: 2$ to $7: 3$) to afford the product as a white solid (424 $\mathrm{mg}, 55 \%, 94 \%$ de $) . \mathrm{Mp}=57-59^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=46.3(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.97-4.12(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.59(1 \mathrm{H}), 1.32-1.47(\mathrm{~m}, 3 \mathrm{H}), 0.98-1.28(\mathrm{~m}, 9 \mathrm{H}), 0.91(\mathrm{q}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.71-0.84(\mathrm{~m}, 1 \mathrm{H}), 0.54-0.72(\mathrm{~m}, 1 \mathrm{H}), 0.68(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.68(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $0.64(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.46 MHz, CDCl $)_{3}$: $\delta=169.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCOC}}=7.9\right.$ $\mathrm{Hz}), 76.2\left(\mathrm{~d}, J_{\mathrm{POC}}=7.7 \mathrm{~Hz}\right), 59.6\left(\mathrm{~d}, J_{\mathrm{PC}}=106 \mathrm{~Hz}\right), 48.4\left(\mathrm{~d}, J_{\mathrm{POCC}}=6.0 \mathrm{~Hz}\right), 43.1,33.8,31.6,31.3,30.5(\mathrm{~d}$, $\left.J_{\mathrm{PCC}}=15.5 \mathrm{~Hz}\right), 28.8,28.7,27.2\left(\mathrm{~d}, J_{\mathrm{PC}}=95.9 \mathrm{~Hz}\right), 25.4,22.6,22.4,21.8,20.9\left(\mathrm{~d}, J_{\mathrm{PCCC}}=4.2 \mathrm{~Hz}\right), 20.8$, 20.3, 15.4, 13.8; HRMS (EI+) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 389.2821$, found 389.2812; $[\alpha]_{\mathrm{D}}=-$ 34.6°.

(R_{p})-Menthyl phenyl-H-phosphinate 1:1

To a solution of N-chlorosuccinimide ($4.0 \mathrm{~g}, 30 \mathrm{mmol}$, 3 equiv) in dichloromethane (150 mL) at $-78^{\circ} \mathrm{C}$ and under N_{2} was added dropwise a solution of dimethyl sulfide ($2.2 \mathrm{~mL}, 30 \mathrm{mmol}, 3$ equiv) in dichloromethane (10 mL). After 30 minutes at $-78^{\circ} \mathrm{C}$, a solution of (S_{p})-3 ($3.1 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv, $>99 \% \mathrm{de}$) in dichloromethane (30 mL) was added over 20 minutes. After 1 h at $-78^{\circ} \mathrm{C}$, triethylamine ($7 \mathrm{~mL}, 50 \mathrm{mmol}, 5$ equiv) was added over 15 minutes and the reaction was stirred for 30 minutes at $78^{\circ} \mathrm{C}$. After warming up the reaction to rt , water was added and the two layers were separated. The aqueous layer was extracted with dichloromethane (X2). The combined organic layer was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (hexane/ethyl acetate 9:1 to 8:2) to afford the product as a colorless oil (2.58 g , $92 \%,>99 \%$ de $).{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.7(\mathrm{dm}, J=553 \mathrm{~Hz}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 7.73-7.84 (m, 2H), 7.66 (d, J = $553 \mathrm{~Hz}, 1 \mathrm{H}), ~ 7.46-7.64(\mathrm{~m}, 3 \mathrm{H}), 4.22-4.36(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.27(\mathrm{~m}, 2 \mathrm{H})$, $1.62-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{q}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.78-1.13(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 3 H), $0.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;[\alpha]_{\mathrm{D}}{ }^{23}=-35.5^{\circ}$ (chloroform, literature with 90% de: -21.0° in benzene).

$\left(R_{p}\right)$-Menthyl phenyl-H-phosphinate 1:1

To a solution of N-chlorosuccinimide ($12.95 \mathrm{~g}, 97 \mathrm{mmol}, 3$ equiv) in dichloromethane (400 mL) at $78^{\circ} \mathrm{C}$ and under N_{2} was added dropwise a solution of 1-(methylthio)dodecane ($21 \mathrm{~g}, 97 \mathrm{mmol}, 3$ equiv) in dichloromethane (30 mL). After 30 minutes at $-78^{\circ} \mathrm{C}$, a solution of (S_{p})-3 ($10 \mathrm{~g}, 32 \mathrm{mmol}, 1$ equiv, $>99 \% \mathrm{de}$) in dichloromethane (70 mL) was added over 20 minutes. After 1 h at $-78^{\circ} \mathrm{C}$, triethylamine ($22.5 \mathrm{~mL}, 161 \mathrm{mmol}, 5$ equiv) was added over 15 minutes and the reaction was stirred for 30 minutes at $-78^{\circ} \mathrm{C}$. After warming up the reaction to rt , water was added and the two layers were separated. The aqueous layer was extracted with dichloromethane (X2). The combined organic
layer was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (hexane/ethyl acetate $9: 1$ to $7: 3$) to afford the product as a colorless oil ($5.8 \mathrm{~g}, 65 \%,>99 \%$ de). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.7\left(\mathrm{dm}, J=553 \mathrm{~Hz}\right.$); ${ }^{1 \mathrm{H}}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.73-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=553 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.64(\mathrm{~m}, 3 \mathrm{H}), 4.22-4.36(\mathrm{~m}$, $1 \mathrm{H})$, 2.14-2.27 (m, 2H), 1.62-1.75 (m, 2H), 1.38-1.54 (m, 2 H$), 1.24(\mathrm{q}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.78-1.13(\mathrm{~m}$, $2 \mathrm{H}), 0.96(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;[\alpha]_{\mathrm{D}}{ }^{23}=-35.5^{\circ}$ (chloroform, literature with 90% de: -21.0° in benzene).

$\left(S_{p}\right)$-Menthyl phenyl-H-phosphinate1:1

To a solution of N-chlorosuccinimide ($110 \mathrm{mg}, 0.82 \mathrm{mmol}, 1.5$ equiv) in dichloromethane (5 mL) at $78^{\circ} \mathrm{C}$ and under N_{2} was added dropwise a solution of dimethyl sulfide ($0.06 \mathrm{~mL}, 0.82 \mathrm{mmol}, 1.5$ equiv) in dichloromethane (1 mL). After 10 minutes at $-78^{\circ} \mathrm{C}$, a solution of (R_{p})-Menthyl (hydroxymethyl)phenylphosphinate ($170 \mathrm{mg}, 0.55 \mathrm{mmol}$, 1 equiv, $>99 \%$ de) in dichloromethane (2 mL) was added over 20 minutes. After 1 h at $-78^{\circ} \mathrm{C}$, triethylamine ($0.38 \mathrm{~mL}, 2.74 \mathrm{mmol}, 5$ equiv) was added over 15 minutes and the reaction was allowed to warm up to rt . After 1 h at rt , water was added and the two layers were separated. The aqueous layer was extracted with dichloromethane (X2). The combined organic layer was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (hexane/ethyl acetate 6:4) to afford the product as a colorless oil ($125 \mathrm{mg}, 81 \%,>99 \%$ de). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=22.4$ (d, $J=557$ Hz); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.67-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=557 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.62(\mathrm{~m}, 3 \mathrm{H})$, 4.18-4.32 (m, 1H), 2.25-2.35 (m, 1H), 2.02-2.16 (m, 1H), 1.62-1.75 (m, 2H), 1.22-1.58 (m, 3H), 0.80$1.14(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.67(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;[\alpha]_{\mathrm{D}}{ }^{23}=-77.4^{\circ}$ (chloroform, literature with 70% de: -89.6° in benzene).

(S_{p})-Menthyl methyl-H-phosphinate 16: ${ }^{1}$

To a solution of N-chlorosuccinimide ($470 \mathrm{mg}, 3.5 \mathrm{mmol}, 3$ equiv) in dichloromethane (35 mL) at $78^{\circ} \mathrm{C}$ and under N_{2} was added dropwise a solution of dimethyl sulfide ($0.26 \mathrm{~mL}, 3.5 \mathrm{mmol}, 3$ equiv) in dichloromethane (3 mL). After 10 minutes at $-78^{\circ} \mathrm{C}$, a solution of $\left(R_{p}\right)-10(290 \mathrm{mg}, 1.17 \mathrm{mmol}, 1$ equiv, $>99 \% \mathrm{de}$) in dichloromethane (5 mL) was added over 20 minutes. After 1 h at $-78^{\circ} \mathrm{C}$, triethylamine ($0.81 \mathrm{~mL}, 5.84 \mathrm{mmol}, 5$ equiv) was added over 15 minutes and the reaction was stirred for 30 minutes at $-78^{\circ} \mathrm{C}$. After warming up the reaction to rt, water was added and the two layers were separated. The aqueous layer was extracted with dichloromethane (X2). The combined organic layer was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (hexane/ethyl acetate $8: 2$ to $4: 6$) to afford the product as a colorless oil ($134 \mathrm{mg}, 61 \%, 96 \%$ de). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.5(\mathrm{dm}, \mathrm{J}=537 \mathrm{~Hz}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.33(\mathrm{~d}, J=537 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.29(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~d}, J$ $=15.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{q}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.78-1.10(\mathrm{~m}, 2 \mathrm{H})$, $0.83(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=76.8\left(\mathrm{~d}, J_{\mathrm{PoC}}=7.2 \mathrm{~Hz}\right), 48.4\left(\mathrm{~d}, J_{\mathrm{pocc}}=6.1 \mathrm{~Hz}\right)$, $41.8,34.0,31.4,29.6,25.7,23.1,22.0,20.8,15.9,15.3\left(\mathrm{~d}, J_{\mathrm{PC}}=95.6 \mathrm{~Hz}\right) ;[\alpha]_{\mathrm{D}^{23}}=-92.2^{\circ}$ (chloroform, literature: -96.6 ${ }^{\circ}$ in benzene).

(S_{p})-Menthyl-1-naphtyl-H-phosphinate 17:1

To a solution of N-chlorosuccinimide ($100 \mathrm{mg}, 0.75 \mathrm{mmol}, 3$ equiv) in dichloromethane (15 mL) at $78^{\circ} \mathrm{C}$ and under N_{2} was added dropwise a solution of dimethyl sulfide ($0.055 \mathrm{~mL}, 0.75 \mathrm{mmol}, 3$ equiv) in dichloromethane (2 mL). After 10 minutes at $-78^{\circ} \mathrm{C}$, a solution of $\left(R_{p}\right)-5(90 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv, $94 \% \mathrm{de}$) in dichloromethane (2 mL) was added over 20 minutes. After 1 h at $-78^{\circ} \mathrm{C}$, triethylamine ($0.38 \mathrm{~mL}, 2.74 \mathrm{mmol}, 5$ equiv) was added over 15 minutes and the reaction was stirred for 30 minutes at $-78^{\circ} \mathrm{C}$. After warming up the reaction to rt , water was added and the two layers were separated. The aqueous layer was extracted with dichloromethane (X2). The combined organic layer was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (hexane/ethyl acetate $9: 1$ to $7: 3$) to afford the product as a colorless oil (72 $\mathrm{mg}, 87 \%, 94 \% \mathrm{de}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=23.3(\mathrm{dm}, \mathrm{J}=557 \mathrm{~Hz}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=8.45-8.51(\mathrm{~m}, 1 \mathrm{H}), 7.99-8.10(\mathrm{~m}, 2 \mathrm{H}), 8.05(\mathrm{~d}, J=557 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.67(\mathrm{~m}, 3 \mathrm{H})$, 4.31-4.44 (m, 1H), 2.34-2.44 (m, 1H), 2.05 (dquint., $J=2.6$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.61-1.74 (m, 2H), 1.24$1.56(\mathrm{~m}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.75-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.61(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=133.6\left(\mathrm{~d}, J_{\mathrm{PCCCC}}=2.8 \mathrm{~Hz}\right), 133.4\left(\mathrm{~d}, J_{\mathrm{PCC}}=10.5 \mathrm{~Hz}\right), 132.5\left(\mathrm{~d}, J_{\mathrm{PCCC}}=\right.$ $10.0 \mathrm{~Hz}), 131.7\left(\mathrm{~d}, J_{\mathrm{PCCC}}=14.4 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{\mathrm{PCCCC}}=1.7 \mathrm{~Hz}\right), 127.5,126.7\left(\mathrm{~d}, J_{\mathrm{PC}}=132 \mathrm{~Hz}\right), 126.7,125.2$ $\left(\mathrm{d}, J_{\mathrm{PCCC}}=7.2 \mathrm{~Hz}\right), 124.6\left(\mathrm{~d}, J_{\mathrm{PCC}}=16.6 \mathrm{~Hz}\right), 77.8\left(\mathrm{~d}, J_{\mathrm{POC}}=7.1 \mathrm{~Hz}\right), 48.5\left(\mathrm{~d}, J_{\mathrm{POCC}}=6.7 \mathrm{~Hz}\right), 43.5,42.2(\mathrm{~d}$, $J_{\mathrm{POCC}}=1.1 \mathrm{~Hz}$), 34.0, 31.6, 25.3, 22.8, 22.0, 20.8, 15.4; $[\alpha]_{\mathrm{D}}{ }^{23}=-74.0^{\circ}$ (chloroform).

(S_{p})-Menthyl cinnamyl-H-phosphinate 18: ${ }^{1}$

To a solution of N-chlorosuccinimide ($200 \mathrm{mg}, 1.5 \mathrm{mmol}, 3$ equiv) in dichloromethane (20 mL) at $78^{\circ} \mathrm{C}$ and under N_{2} was added dropwise a solution of dimethyl sulfide ($0.11 \mathrm{~mL}, 1.5 \mathrm{mmol}, 3$ equiv) in dichloromethane (3 mL). After 10 minutes at $-78^{\circ} \mathrm{C}$, a solution of $\left(R_{p}\right)-4(175 \mathrm{mg}, 0.5 \mathrm{mmol}, 1$ equiv, $>99 \% \mathrm{de}$) in dichloromethane (3 mL) was added over 20 minutes. After 1 h at $-78^{\circ} \mathrm{C}$, triethylamine ($0.35 \mathrm{~mL}, 2.5 \mathrm{mmol}, 5$ equiv) was added over 15 minutes and the reaction was stirred for 30 minutes at $-78^{\circ} \mathrm{C}$. After warming up to rt , water was added and the two layers were separated. The aqueous layer was then extracted with dichloromethane (X2). The combined organic layer was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (hexane/ethyl acetate $9: 1$ to $7: 3$) to afford the product as a colorless oil (132 mg , 82%, > 99\% de). ${ }^{31} \mathrm{P}$ NMR ($121.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.9(\mathrm{dm}, J=539 \mathrm{~Hz}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.20-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~d}, J=539 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=5.9$ and $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.05-6.20(\mathrm{~m}, 1 \mathrm{H})$, 4.37-4.63 (m, 1H), 2.80 (dd, $J=7.6$ and $18.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.06-2.24 (m, 2H), 1.62-1.73 (m, 2H), 1.34-1.55 $(\mathrm{m}, 2 \mathrm{H}), 1.15(\mathrm{q}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.75-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=136.8\left(\mathrm{~d}, J_{\text {PCCCC }}=3.3 \mathrm{~Hz}\right), 135.8\left(\mathrm{~d}, J_{\text {PCC }}=14.4\right.$ $\mathrm{Hz}), 128.6(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{C}), 127.8,126.2\left(\mathrm{~d}, J_{\mathrm{PCCCCC}}=2.3 \mathrm{~Hz}, 2 \mathrm{C}\right), 117.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCCC}}=10.0 \mathrm{~Hz}\right), 77.3\left(\mathrm{~d}, J_{\mathrm{POC}}\right.$ $=7.8 \mathrm{~Hz}), 48.4\left(\mathrm{~d}, J_{\mathrm{POCC}}=6.1 \mathrm{~Hz}\right), 41.8,34.3\left(\mathrm{~d}, J_{\mathrm{PC}}=91.8 \mathrm{~Hz}\right), 34.0,31.4,25.7,23.1,21.9,20.8,15.8$; HRMS (EI+) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{P}\left([\mathrm{M}]^{+}\right) 320.1905$, found $320.1907 ;[\alpha]_{\mathrm{D}}{ }^{23}=-89.8^{\circ}$ (chloroform).

(S S_{p}-Menthyl (3-phenylpropyl)-H-phosphinate 19:

To a solution of N-chlorosuccinimide ($721 \mathrm{mg}, 5.4 \mathrm{mmol}, 3$ equiv) in dichloromethane (30 mL) at $78^{\circ} \mathrm{C}$ and under N_{2} was added dropwise a solution of dimethyl sulfide ($0.4 \mathrm{~mL}, 5.4 \mathrm{mmol}, 3$ equiv) in dichloromethane (5 mL). After 10 minutes at $-78^{\circ} \mathrm{C}$, a solution of (R_{p})-menthyl hydroxymethyl(3-phenylpropyl)-H-phosphinate ($630 \mathrm{mg}, 1.8 \mathrm{mmol}, 1$ equiv, $98 \% \mathrm{de}$) in dichloromethane (5 mL) was added over 20 minutes. After 1 h at $-78^{\circ} \mathrm{C}$, triethylamine ($1.25 \mathrm{~mL}, 9 \mathrm{mmol}, 5$ equiv) was added over 15 minutes and the reaction was allowed to warm up to rt. After 1 h at rt , water was added and the two layers were separated. The aqueous layer was extracted with dichloromethane (X2). The combined organic layer was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 99:1 to 97:3) to afford the product as a colorless oil ($554 \mathrm{mg}, 96 \%, 96 \% \mathrm{de}$). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=33.3$ (dsextuplet, $J=12.7$ and 528 Hz); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.16-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.13(\mathrm{~m}, 3 \mathrm{H})$, $7.08(\mathrm{~d}, J=528 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.19(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.91(\mathrm{~m}$, 2 H), 1.53-1.73 (m, 4H), 1.21-1.43 (m, 2H), $1.02(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.94$ (dquint., $J=3.0$ and 12.4 Hz , $1 \mathrm{H}), 0.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.69-0.85(\mathrm{~m}, 1 \mathrm{H}), 0.74(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $140.7,128.4(2 \mathrm{C}), 128.4(2 \mathrm{C}), 126.1,76.7\left(\mathrm{~d}, J_{\mathrm{POC}}=7.4 \mathrm{~Hz}\right), 48.3\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.9 \mathrm{~Hz}\right), 41.6,36.2\left(\mathrm{~d}, J_{\mathrm{PCC}}=\right.$ $16.0 \mathrm{~Hz}), 33.9,31.3,28.1\left(\mathrm{~d}, J_{\mathrm{PC}}=95.0 \mathrm{~Hz}\right), 25.6,22.9,22.4\left(\mathrm{~d}, J_{\mathrm{PCCC}}=2.5 \mathrm{~Hz}\right), 21.9,20.8,15.7 ;[\alpha]_{\mathrm{D}} 23=-$ 27.3^{0} (chloroform).

(S_{p})-Menthyl cyclohexyl-H-phosphinate 20:

To a solution of N-chlorosuccinimide ($400 \mathrm{mg}, 3 \mathrm{mmol}, 3$ equiv) in dichloromethane (25 mL) at $-78^{\circ} \mathrm{C}$ and under N_{2} was added dropwise a solution of dimethyl sulfide ($0.22 \mathrm{~mL}, 3 \mathrm{mmol}, 3$ equiv) in dichloromethane $(3 \mathrm{~mL})$. After 10 minutes at $-78^{\circ} \mathrm{C}$, a solution of (S_{p})-methyl (hydroxymethyl)cyclohexylphosphinate ($316 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv, $>99 \% \mathrm{de}$) in dichloromethane (5 mL) was added over 20 minutes. After 1 h at $-78^{\circ} \mathrm{C}$, triethylamine ($0.70 \mathrm{~mL}, 5 \mathrm{mmol}, 5$ equiv) was added over 15 minutes and the reaction was allowed to warm up to rt. After 1 h at rt , water was added and the two layers were separated. The aqueous layer was then extracted with dichloromethane (X2). The combined organic layer was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 100:0 to 90:10) to afford the product as a colorless oil ($181 \mathrm{mg}, 63 \%$, > 99% de). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=37.1(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.84(\mathrm{~d}, \mathrm{~J}=512 \mathrm{~Hz}$, $1 \mathrm{H}), 4.08-4.17(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.10-1.47(\mathrm{~m}, 7 \mathrm{H})$, $1.04(\mathrm{q}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{dq}, J=2.4$ and $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.78-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=76.4\left(\mathrm{~d}, J_{\mathrm{POC}}=7.8 \mathrm{~Hz}\right)$, $48.4\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.8 \mathrm{~Hz}\right), 41.5\left(\mathrm{~d}, J_{\mathrm{POCC}}=1.2 \mathrm{~Hz}\right), 37.1\left(\mathrm{~d}, J_{\mathrm{PC}}=97.7 \mathrm{~Hz}\right), 34.0,31.3,25.8(2 \mathrm{C}), 25.6\left(\mathrm{~d}, J_{\mathrm{PCC}}\right.$ $=10.7 \mathrm{~Hz}), 25.6\left(\mathrm{~d}, J_{\mathrm{PCC}}=9.5 \mathrm{~Hz}\right), 24.1(2 \mathrm{C}), 22.9,21.9,20.8,15.6$.

(S_{p})-Menthyl triphenylmethyl-H-phosphinate 21:

To a solution of N-chlorosuccinimide ($100 \mathrm{mg}, 0.75 \mathrm{mmol}, 3$ equiv) in dichloromethane (20 mL) at $78^{\circ} \mathrm{C}$ and under N_{2} was added dropwise a solution of dimethyl sulfide ($0.06 \mathrm{~mL}, 0.75 \mathrm{mmol}, 3$ equiv) in dichloromethane (2 mL). After 10 minutes at $-78^{\circ} \mathrm{C}$, a solution of $\left(R_{p}\right)-13(119 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv, $95 \% \mathrm{de}$) in dichloromethane (3 mL) was added over 20 minutes. After 1 h at $-78^{\circ} \mathrm{C}$, triethylamine ($0.17 \mathrm{~mL}, 1.25 \mathrm{mmol}, 5$ equiv) was added over 15 minutes and the reaction was allowed to warm up to rt . After 1 h at rt , water was added and the two layers were separated. The aqueous layer was extracted with dichloromethane (X2). The combined organic layer was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 100:0 to 97:3) to afford the product as a white solid (93 $\mathrm{mg}, 83 \%, 95 \% \mathrm{de}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=35.4$ (dd, $J=4.4$ and 550 Hz); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.66(\mathrm{~d}, \mathrm{~J}=549 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 15 \mathrm{H}), 4.21-4.32(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.57-$ $1.69(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{q}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{dq}, J=3.2$ and 14.7 $\mathrm{Hz}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{dq}, J=3.4$ and $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.74(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=140.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCC}}=3.2 \mathrm{~Hz}, 3 \mathrm{C}\right), 130.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCCC}}=6.9 \mathrm{~Hz}, 6 \mathrm{C}\right)$, $128.2(\mathrm{~s}, 6 \mathrm{C}), 127.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCCCCC}}=1.8 \mathrm{~Hz}, 3 \mathrm{C}\right), 78.7\left(\mathrm{~d}, J_{\mathrm{POC}}=8.7 \mathrm{~Hz}\right), 62.0\left(\mathrm{~d}, J_{\mathrm{PC}}=90.7 \mathrm{~Hz}\right), 48.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{POCC}}=\right.$ $5.8 \mathrm{~Hz}), 41.1\left(\mathrm{~d}, J_{\text {POCC }}=1.9 \mathrm{~Hz}\right), 33.9,31.5,24.8,22.6,22.0,20.9,15.5 ;[\alpha]_{\mathrm{D}}{ }^{23}=-21.1^{0}$ (chloroform).

(S_{p})-Menthyl mesityl-H-phosphinate 22:

To a solution of N-chlorosuccinimide ($400 \mathrm{mg}, 3 \mathrm{mmol}, 3$ equiv) in dichloromethane (40 mL) at $-78^{\circ} \mathrm{C}$ and under N_{2} was added dropwise a solution of dimethyl sulfide ($0.22 \mathrm{~mL}, 3 \mathrm{mmol}, 3$ equiv) in dichloromethane (3 mL). After 10 minutes at $-78^{\circ} \mathrm{C}$, a solution of $\left(R_{p}\right)-8 b(352 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv, $94 \% \mathrm{de}$) in dichloromethane (5 mL) was added over 20 minutes. After 1 h at $-78^{\circ} \mathrm{C}$, triethylamine (0.7 $\mathrm{mL}, 5 \mathrm{mmol}, 5$ equiv) was added over 15 minutes and the reaction was allowed to warm up to rt. After 1 h at rt , water was added and the two layers were separated. The aqueous layer was extracted with dichloromethane (X2). The combined organic layer was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 100:0 to 97:3) to afford the product as a colorless oil ($275 \mathrm{mg}, 85 \%, 94 \%$ de). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.7(\mathrm{~d}, J=548 \mathrm{~Hz}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.09(\mathrm{~d}, J=$ $548 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 4.27-4.37(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 6 \mathrm{H}), 2.27-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$, 2.17 (dquint., $J=2.7$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{q}$, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{dq}, J=3.2$ and $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.77-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=142.2\left(\mathrm{~d}, J_{\mathrm{PCCCC}}=1.9 \mathrm{~Hz}\right), 141.5$ (d, $\left.J_{\mathrm{PCCC}}=11.4 \mathrm{~Hz}, 2 \mathrm{C}\right), 130.0\left(\mathrm{~d}, J_{\mathrm{PCC}}=12.2 \mathrm{~Hz}, 2 \mathrm{C}\right), 123.7\left(\mathrm{~d}, J_{\mathrm{PC}}=136 \mathrm{~Hz}\right), 76.8\left(\mathrm{~d}, J_{\mathrm{POC}}=7.0 \mathrm{~Hz}\right), 48.4$ (d, $J_{\text {Poć }}=6.3 \mathrm{~Hz}$), 41.6, 34.0, 31.4, 25.3, 22.8, 21.9, 21.1, 20.9, 20.8 (2C), 15.4; $[\alpha]_{D^{22}}=-28.8^{0}$ (chloroform).
(S_{p})-Menthyl (benzoxymethyl)phenylphosphinate 23:

To a suspension of $\mathrm{NaH}(120 \mathrm{mg}, 3 \mathrm{mmol}, 1.5$ equiv, 60% in mineral oil) in dichloromethane (15 mL) was added at $0^{\circ} \mathrm{C}$ under N_{2} a solution of (S_{p}) -3 ($621 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv, $>99 \%$ de) in dichloromethane (5 mL). After 30 minutes at $0^{\circ} \mathrm{C}$, benzylbromide ($0.29 \mathrm{~mL}, 2.4 \mathrm{mmol}, 1.2$ equiv) was added. The reaction was stirred for 4 hours at rt . A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the two layers were separated. The aqueous layer was extracted with dichloromethane (3X). The combined organic layers was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (hexane/ethyl acetate $9: 1$ to 7:3) to afford the product as colorless oil ($801 \mathrm{mg}, 100 \%,>99 \%$ de). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=31.3$ (s); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.80-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 3 \mathrm{H})$, 7.13-7.21 (m, 2H), 4.56 (s, 2H), 4.29-4.43 (m, 1H), 3.75-3.94 (m, 2H), 2.18-2.33 (m, 1H), 1.90-2.01 (m, 1 H), 1.56-1.72 (m, 2H), 1.22-1.48 (m, 2H), 0.74-1.17 (m, 3H), $0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.0,132.3\left(\mathrm{~d}, \mathrm{JPcCcc}^{2}=2.7 \mathrm{~Hz}\right.$), $131.8\left(\mathrm{~d}, J_{\mathrm{JcCC}}=10.0 \mathrm{~Hz}, 2 \mathrm{C}\right), 131.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=129 \mathrm{~Hz}\right), 128.3(2 \mathrm{C}), 128.3\left(\mathrm{~d}, J_{\mathrm{PCC}}=12.7 \mathrm{~Hz}, 2 \mathrm{C}\right), 127.8$ (3C), $77.2\left(\mathrm{~d}, J_{\text {Poc }}=7.2 \mathrm{~Hz}\right), 75.0\left(\mathrm{~d}, J_{\text {Pcoc }}=12.2 \mathrm{~Hz}\right), 67.1\left(\mathrm{~d}, J_{\text {PC }}=119 \mathrm{~Hz}\right), 48.7\left(\mathrm{~d}, J_{\text {Pocc }}=6.1 \mathrm{~Hz}\right), 43.4$, 34.0, 31.5, 25.5, 22.8, 21.9, 21.1, 15.7; HRMS (EI+) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 401.2244$, found 401.2246; $[\alpha]_{\mathrm{D}^{25}}=-12.2^{\circ}$ (chloroform).

(S_{p})-Menthyl (benzoxymethyl)phenylphosphinate 23:

To a solution of $\left(S_{p}\right)-3$ ($3.1 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv, $>99 \% \mathrm{de}$) in acetonitrile (30 mL) was added benzylbromide ($6 \mathrm{~mL}, 50 \mathrm{mmol}$, 5 equiv) followed by potassium fluoride on alumina ($7.25 \mathrm{~g}, 50$ $\mathrm{mmol}, 5$ equiv, 40% w.t). The reaction was stirred for 3 days at rt under N_{2}. The suspension was filtered through celite. The solid was washed twice with acetonitrile and the filtrate was concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 100:0 to 95:5) to afford the product as colorless oil ($3.97 \mathrm{~g}, 99 \%,>99 \%$ de). ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=31.3(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.80-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.52-$ $7.62(\mathrm{~m}, 1 \mathrm{H}), ~ 7.42-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.21(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.29-4.43(\mathrm{~m}, 1 \mathrm{H})$, 3.75-3.94 (m, 2H), 2.18-2.33 (m, 1H), 1.90-2.01 (m, 1H), 1.56-1.72 (m, 2H), 1.22-1.48 (m, 2H), 0.74$1.17(\mathrm{~m}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.62 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.0,132.3\left(\mathrm{~d}, J_{\mathrm{Pcccc}}=2.7 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{PcCc}}=10.0 \mathrm{~Hz}, 2 \mathrm{C}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{PC}}=129 \mathrm{~Hz}\right)$, $128.3(2 \mathrm{C}), 128.3(\mathrm{~d}, \mathrm{JPCC}=12.7 \mathrm{~Hz}, 2 \mathrm{C}), 127.8(3 \mathrm{C}), 77.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PoC}}=7.2 \mathrm{~Hz}\right), 75.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCOC}}=12.2 \mathrm{~Hz}\right), 67.1$ $\left(\mathrm{d}, \mathrm{J}_{\mathrm{PC}}=119 \mathrm{~Hz}\right), 48.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{POCC}}=6.1 \mathrm{~Hz}\right), 43.4,34.0,31.5,25.5,22.8,21.9,21.1,15.7$; HRMS (EI+) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 401.2244$, found $401.2246 ;[\alpha]_{\mathrm{D}^{25}}=-12.2^{\circ}$ (chloroform).

(S_{p})-Menthyl [(tert-butyldimethylsilyloxy)methyl]phenylphosphinate 24:

To a solution of (S_{p})-3 ($3.1 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv, $>99 \% \mathrm{de}$) in dichloromethane (20 mL) was added at $0^{\circ} \mathrm{C}$ under N_{2} imidazole ($1.5 \mathrm{~mL}, 27 \mathrm{mmol}, 2.7$ equiv) followed by tert-butyldimethylsilyl chloride (2.6 $\mathrm{mL}, 15 \mathrm{mmol}, 1.5$ equiv). The ice bath was removed and the reaction was stirred for 16 h under N_{2} at rt. The solvent was then removed under vacuum and the crude obtained was dissolved in ethyl acetate. The organic layer was washed with NaHCO_{3} and brine, dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 100:0 to 95:5) to afford the product as colorless oil ($4.23 \mathrm{~g}, 100 \%,>99 \%$ de). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=35.6(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.83-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.53-$ $7.58(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.50(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=9.3$ and $13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=4.6$ and $13.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.34 (dquint., $J=2.5$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.98-2.05 (m, 1H), 1.61-1.73 (m, 2H), 1.32$1.48(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{q}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.85-1.09(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H}),-0.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.)_{3}\right): \delta=$ $132.1\left(\mathrm{~d}, J_{\mathrm{PCCCC}}=2.8 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{\mathrm{PCCC}}=9.7 \mathrm{~Hz}, 2 \mathrm{C}\right), 130.8\left(\mathrm{~d}, J_{\mathrm{PC}}=128 \mathrm{~Hz}\right), 128.0\left(\mathrm{~d}, J_{\mathrm{PCC}}=12.5 \mathrm{~Hz}\right.$, 2C), 76.9 (d, $J_{\text {POC }}=7.5 \mathrm{~Hz}$), 61.0 (d, $J_{\mathrm{PC}}=123 \mathrm{~Hz}$), 48.7 (d, $J_{\mathrm{POCC}}=6.1 \mathrm{~Hz}$), 43.5, 34.0, 31.5, 25.6 (3C), 25.4, 22.9, 21.9, 21.1, 18.2, 15.8, -5.9, -6.0; HRMS (EI+) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{PSi}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 425.2641$, found $425.2629 ;[\alpha]_{\mathrm{D}} 25=-14.1^{\circ}$ (chloroform).

(S_{p})-Menthyl (acetoxymethyl)phenylphosphinate 25:²

To a solution of $\left(S_{p}\right)$-3 ($1.55 \mathrm{~g}, 5 \mathrm{mmol}, 1$ equiv, $>99 \% \mathrm{de}$) in dichloromethane (10 mL) was slowly added at $0^{\circ} \mathrm{C}$ and under N_{2} triethylamine ($0.87 \mathrm{~mL}, 6.25 \mathrm{mmol}, 1.25$ equiv) followed by acetic anhydride ($0.57 \mathrm{ml}, 6 \mathrm{mmol}, 1.2$ equiv). The ice bath was removed and the reaction mixture was stirred at rt for 16 h . The solvent was removed under vacuum and the residue obtained was solubilized in ethyl acetate. The organic layer was washed with a saturated aqueous solution of NaHCO_{3} and brine, dried over MgSO_{4}, filtered and concentrated under vacuum to afford the product as a colorless oil ($1.73 \mathrm{~g}, 98 \%,>99 \%$ de). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.3$ (s).

(S \mathbf{S}_{p}-Menthyl [(tosyloxy)methyl]phenylphosphinate 26:4

To a solution of (S_{p})-3 ($3.1 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv, $>99 \% \mathrm{de}$) in dichloromethane (20 ml) under N_{2} was added N, N-diisopropylethylamine ($4.4 \mathrm{~mL}, 25 \mathrm{mmol}, 2.5$ equiv). The mixture was cooled down to $0^{\circ} \mathrm{C}$ and a solution of tosyl chloride ($2.89 \mathrm{~g}, 20 \mathrm{mmol}, 2$ equiv) in dichloromethane (15 ml) was added over 1 h . The ice-bath was removed and the solution was stirred for 20 h at rt . A saturated aqueous solution of NaHCO_{3} was added and the two layers were separated. The aqueous layer was extracted with dichloromethane (2X). The combined organic layers was dried over MgSO_{4}, filtered and concentrated under vacuum. The residue obtained was purified by column chromatography (hexanes/ethyl acetate $9: 1$ to $7: 3$) to afford the product as colorless crystals ($4.6 \mathrm{~g}, 99 \%,>99 \% \mathrm{de}$). $\mathrm{Mp}=68-70^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=29.3(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.67-7.75(\mathrm{~m}$,

2H), 7.49-7.56 (m, 3H), 7.36-7.43 (m, 2H), 7.17-7.22 (m, 2H), 4.10-4.35 (m, 3H), 2.35 (s, 3H), 2.10 (dquint., $J=2.6$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.86-1.93 (m, 1 H), 1.53-1.66 (m, 2H), 1.22-1.42 (m, 2H), $1.06(\mathrm{q}, J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.76-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=145.2,133.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCCCC}}=2.8 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCCC}}=10.0 \mathrm{~Hz}, 2 \mathrm{C}\right), 131.4$, $129.9(2 \mathrm{C}), 129.3\left(\mathrm{~d}, J_{\mathrm{PC}}=137 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{PCC}}=13.3 \mathrm{~Hz}, 2 \mathrm{C}\right), 128.0(2 \mathrm{C}), 78.5\left(\mathrm{~d}, J_{\mathrm{POC}}=7.4 \mathrm{~Hz}\right), 64.3$ $\left(\mathrm{d}, J_{\mathrm{PC}}=115 \mathrm{~Hz}\right), 48.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{POCC}}=6.1 \mathrm{~Hz}\right), 43.3,33.9,31.5,25.5,22.8,21.8,21.6,21.0,15.6$; HRMS (EI+) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{PS}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 465.1865$, found 465.1857 ; $[\alpha]_{\mathrm{D}}{ }^{25}=-20.1^{\circ}$ (chloroform).

(S S_{p}-Menthyl (benzoxymethyl)phenylphosphinate borane 27:

To a solution of (S_{p})-23 ($400 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv, $>99 \%$ de) in benzene (5 mL) was added triethylamine ($0.7 \mathrm{~mL}, 5 \mathrm{mmol}, 5$ equiv) followed by trichlorosilane ($0.5 \mathrm{~mL}, 5 \mathrm{mmol}, 5$ equiv). After 2 hours at reflux under N_{2}, the reaction was cooled down to rt and then borane dimethylsulfide (2.5 $\mathrm{mL}, 5 \mathrm{mmol}, 5$ equiv, 2.0 M solution in tetrahydrofuran) was added and the reaction was stirred for 12 hours at rt under N_{2}. The solvent was removed under vacuum and the crude obtained was purified by column chromatography (hexane/ethyl acetate $100: 0$ to $90: 10$) to afford the product as colorless oil ($302 \mathrm{mg}, 76 \%$, > 99\% de). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=104.7\left(\mathrm{~d}, J=85.8 \mathrm{~Hz}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.80-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 3 \mathrm{H})$, 7.19-7.24 (m, 2H), 4.54-4.62 (m, 2 H), 4.18-4.28 (m, 1 H), $3.87-3.98(\mathrm{~m}, 2 \mathrm{H}), 2.23$ (dquint., $J=2.6$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.49(\mathrm{~m}, 2 \mathrm{H}), 0.74-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.04(\mathrm{dq}, J=$ 3.6 and $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{q}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.77-0.90(\mathrm{~m}, 1 \mathrm{H}), 0.84(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.1,131.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCCCC}}=2.6 \mathrm{~Hz}\right.$), $131.5\left(\mathrm{~d}, J_{\mathrm{PC}}=57.2 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{PCCC}}=10.5 \mathrm{~Hz}, 2 \mathrm{C}\right), 128.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCC}}=10.2 \mathrm{~Hz}, 2 \mathrm{C}\right), 128.4(2 \mathrm{C}), 127.8$, $127.8(2 \mathrm{C}), 80.3\left(\mathrm{~d}, J_{\mathrm{POC}}=3.8 \mathrm{~Hz}\right), 75.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCOC}}=7.8 \mathrm{~Hz}\right), 69.9\left(\mathrm{~d}, J_{\mathrm{PC}}=56.1 \mathrm{~Hz}\right), 48.9\left(\mathrm{~d}, J_{\mathrm{POCC}}=6.5 \mathrm{~Hz}\right)$, 43.5, 34.1, 31.4, 25.4, 22.9, 22.0, 21.0, 15.9; HRMS (EI+) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{BO}_{2} \mathrm{P}$ ([M-H]+) 397.2468 , found 397.2461; $[\alpha]_{\mathrm{D}}{ }^{24}=-0.9^{\circ}$ (chloroform).

(R_{p})-Menthyl [(tert-butyldimethylsilyloxy)methyl]phenylthiophosphinate 28a:

To a solution of (S_{p})-24 ($2.12 \mathrm{~g}, 5 \mathrm{mmol}, 1$ equiv, $>99 \% \mathrm{de}$) in toluene (20 mL) was added Lawesson's reagent ($1.21 \mathrm{~g}, 3 \mathrm{mmol}, 0.6$ equiv). The reaction mixture was stirred for 16 hours at reflux under N_{2}. After cooling down the reaction to rt, the solvent was concentrated under vacuum and the residue obtained was purified by column chromatography (Hexane/ethyl acetate 98:2 to 95:5) to afford the product as a yellow oil ($2.05 \mathrm{~g}, 93 \%,>99 \%$ de). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=82.4(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.92-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.48(\mathrm{~m}, 2 \mathrm{H}), 4.45-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{dd}$, $J=8.1$ and $13.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.95(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ (dquint., $J=2.5$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.79-1.87 (m, $1 \mathrm{H}), 1.60-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.53(\mathrm{~m}, 2 \mathrm{H}), 0.75-1.13(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}),-0.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=133.2\left(\mathrm{~d}, J_{\mathrm{PC}}=101 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{\mathrm{PCCC}}=10.4 \mathrm{~Hz}, 2 \mathrm{C}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{PCCCC}}=3.0 \mathrm{~Hz}\right), 127.9\left(\mathrm{~d}, J_{\mathrm{PCC}}=12.6\right.$ $\mathrm{Hz}, 2 \mathrm{C}), 77.2\left(\mathrm{~d}, J_{\mathrm{POC}}=7.9 \mathrm{~Hz}\right), 67.7\left(\mathrm{~d}, J_{\mathrm{PC}}=99.1 \mathrm{~Hz}\right), 48.5\left(\mathrm{~d}, J_{\mathrm{POCC}}=7.1 \mathrm{~Hz}\right), 43.4,34.1,31.4,25.6$ (3C), 25.3, 23.0, 22.0, 21.1, 18.2, 16.1, -5.8, -5.8; HRMS (EI+) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{PSSi}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 441.2412, found 441.2394; [$\alpha]_{\mathrm{D}}{ }^{25}=-16.8^{\circ}$ (chloroform).

(R_{p})-Menthyl (acetoxymethyl)phenylthiophosphinate 28b:

To a solution of (S_{p})-25 ($1.73 \mathrm{~g}, 5 \mathrm{mmol}, 1$ equiv, $>99 \% \mathrm{de}$) in toluene (10 mL) was added Lawesson's reagent ($1.21 \mathrm{~g}, 3 \mathrm{mmol}, 0.6$ equiv). The reaction mixture was stirred for 16 hours at reflux under N_{2}. After cooling down the reaction to rt, the solvent was concentrated under vacuum and the residue obtained was purified by column chromatography (Hexane/ethyl acetate 99:1 to 97:3) to afford the product as a colorless oil $\left(1.85 \mathrm{~g}, 100 \%\right.$, $>99 \%$ de). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=78.9$ (s); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.92-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.53(\mathrm{~m}, 2 \mathrm{H}), 4.48-4.61(\mathrm{~m}, 3 \mathrm{H}), 2.19$ (dquint., $J=2.7$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.45(\mathrm{~m}, 1 \mathrm{H})$, $1.08(\mathrm{dq}, J=3.4$ and $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{q}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.85(\mathrm{dq}, J=3.3$ and $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.78(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.8$ (d, $J_{\mathrm{PCOC}}=7.6 \mathrm{~Hz}$), $132.9\left(\mathrm{~d}, J_{\mathrm{PC}}=104 \mathrm{~Hz}\right), 132.4\left(\mathrm{~d}, J_{\mathrm{PCCCC}}=2.8 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{PCCC}}=11.0 \mathrm{~Hz}, 2 \mathrm{C}\right), 128.3$ $\left(\mathrm{d}, J_{\mathrm{PCC}}=13.1 \mathrm{~Hz}, 2 \mathrm{C}\right), 77.9\left(\mathrm{~d}, J_{\mathrm{POC}}=7.5 \mathrm{~Hz}\right), 65.6\left(\mathrm{~d}, J_{\mathrm{PC}}=98.2 \mathrm{~Hz}\right), 48.4\left(\mathrm{~d}, J_{\mathrm{POCC}}=7.3 \mathrm{~Hz}\right), 43.2,34.1$, 31.4, 25.6, 23.0, 21.9, 21.0, 20.5, 16.0.

(R_{p})-Menthyl (hydroxymethyl)phenylthiophosphinate 29:

To a solution of $\left(R_{p}\right)-28 b(1.84 \mathrm{~g}, 5 \mathrm{mmol}, 1$ equiv, $>99 \% \mathrm{de})$ in methanol (10 mL) was added potassium carbonate ($69 \mathrm{mg}, 0.5 \mathrm{mmol}, 0.1$ equiv.) and the mixture was stirred for 16 h at rt . The solvent was removed under vacuum and then the residue was solubilized in ethyl acetate. The organic layer was washed with saturated $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ and brine (150 mL), dried over MgSO_{4}, filtered and concentrated under vacuum to afford the product as a white solid ($1.63 \mathrm{~g}, 100 \%, 96 \%$ de). $\mathrm{Mp}=67-68{ }^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=83.6(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.87-7.97$ $(\mathrm{m}, 2 \mathrm{H}), 7.51-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.50(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{dd}, J=4.4$ and $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-4.03(\mathrm{~m}, 2 \mathrm{H})$, 2.75 (s, 1H), 2.17 (dquint., $J=2.6$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.58-1.77 (m, 3H), 1.43-1.52 (m, 1H), 1.29-1.41 (m, $1 \mathrm{H}), 1.05(\mathrm{dq}, J=3.0$ and $12.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.76-1.01(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.75(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=133.0\left(\mathrm{~d}, J_{\mathrm{PC}}=98.4 \mathrm{~Hz}\right), 132.4\left(\mathrm{~d}, J_{\mathrm{PCCCC}}=\right.$ $3.0 \mathrm{~Hz}), 131.4\left(\mathrm{~d}, J_{\mathrm{PCCC}}=10.6 \mathrm{~Hz}, 2 \mathrm{C}\right), 128.4\left(\mathrm{~d}, J_{\mathrm{PCC}}=12.9 \mathrm{~Hz}, 2 \mathrm{C}\right), 77.9\left(\mathrm{~d}, J_{\mathrm{POC}}=8.3 \mathrm{~Hz}\right), 65.2\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ 88.0 Hz), $48.5\left(\mathrm{~d}, J_{\mathrm{POCC}}=7.1 \mathrm{~Hz}\right), 43.2,34.1,31.4,25.6,23.0,22.0,21.0,16.0 ; \mathrm{HRMS}(\mathrm{EI}+$) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{PS}\left([\mathrm{M}]^{+}\right) 326.1469$, found $326.1466 ;[\alpha]_{\mathrm{D}}{ }^{25}=-24.9^{\circ}$ (chloroform).

(S_{p})-Menthyl (iodomethyl)phenylphosphinate 30:4

To a solution of (S_{p})-26 ($4.78 \mathrm{~g}, 12.5 \mathrm{mmol}, 1$ equiv, $>99 \% \mathrm{de}$) in acetone (40 ml) was added sodium iodide (7.5 g , $50 \mathrm{mmol}, 4$ equiv). The reaction mixture was stirred for 24 h at reflux. The solvent was removed under vacuum and the residue obtained was dissolved in dichloromethane. The organic layer was washed with brine, dried over MgSO_{4}, filtered and concentrated under vacuum. The solid obtained was purified by column chromatography (dichloromethane/ethyl acetate 10:0 to 9:1) to
afford the product as a yellow solid ($4.06 \mathrm{~g}, 94 \%, 96 \% \mathrm{de}$). $\mathrm{Mp}=66-68^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=31.9(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.59-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.28(\mathrm{~m}, 2 \mathrm{H})$, $4.11-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=8.9$ and $12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=5.9$ and $12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.24(\mathrm{~m}$, $1 \mathrm{H})$, 1.58-1.67 (m, 1H), 1.35-1.51 (m, 2H), 1.18-1.28 (m, 1H), 1.03-1.17 (m, 1H), 0.54-0.86 (m, 3H), $0.75(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.52(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $132.5\left(\mathrm{~d}, J_{\mathrm{PcCcC}}=2.7 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{PcCC}}=9.8 \mathrm{~Hz}, 2 \mathrm{C}\right), 130.2\left(\mathrm{~d}, J_{\mathrm{PC}}=136 \mathrm{~Hz}\right), 128.3\left(\mathrm{~d}, J_{\mathrm{PcC}}=13.1 \mathrm{~Hz}\right.$, 2C), 77.9 (d, $J_{\text {Pó }}=7.2 \mathrm{~Hz}$), $48.6\left(\mathrm{~d}, J_{\text {pocc }}=6.2 \mathrm{~Hz}\right), 42.9,33.8,31.3,25.5,22.7,21.8,21.0,15.8,-6.5(\mathrm{~d}$, $\left.J_{\mathrm{PC}}=102 \mathrm{~Hz}\right)$; $\mathrm{HRMS}\left(\mathrm{EI}+\right.$) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{IO}_{2} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 421.0793$, found 421.0793; $[\alpha]_{\mathrm{D}}=-29.5^{0}$.

(R_{p}, R_{p})-Ethane-1,2-diylbis(menthyl phenylphosphinate 31:4

To a solution of $\left(S_{p}\right)$-30 ($420.3 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv, $96 \% \mathrm{de}$) in THF (8 mL) at $-78^{\circ} \mathrm{C}$ under N_{2} was slowly added isopropylmagnesium chloride ($0.55 \mathrm{~mL}, 1.1 \mathrm{mmol}$, 1.1 equiv, 2.0 M in THF). After 1 h of stirring at $-78^{\circ} \mathrm{C}, \mathrm{CuCl}_{2}$ ($403 \mathrm{mg}, 3 \mathrm{mmol}, 3$ equiv) was added. The dry ice-bath was removed and the reaction mixture was stirred for 2 h at rt . A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the two layers were separated. The aqueous layer was extracted with dichloromethane (3X). The combined organic layers was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (hexane/ethyl acetate $8: 2$ to $6: 4$) to afford the product as a white solid ($237 \mathrm{mg}, 81 \%$, de $=89 \%$). $\mathrm{Mp}=78-79^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=39.7(\mathrm{~m}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.77-7.87(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.59(\mathrm{~m}, 6 \mathrm{H}), 4.23-4.36(\mathrm{~m}, 2 \mathrm{H}), 2.21$ (dquint., $J=$ 2.3 and $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.56-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.44(\mathrm{~m}, 4 \mathrm{H})$, $0.74-1.11(\mathrm{~m}, 6 \mathrm{H}), 0.97(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.78(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=133.8\left(\mathrm{~d}, \mathrm{Jpc}^{\prime}=129 \mathrm{~Hz}, 2 \mathrm{C}\right), 131.8\left(\mathrm{~d}, \mathrm{Jpcccc}^{2}=2.7 \mathrm{~Hz}, 2 \mathrm{C}\right), 130.7\left(\mathrm{~d}, J_{\mathrm{Jccc}}=9.9 \mathrm{~Hz}\right.$, 4 C), 128.3 (d, J Jpcc $=12.7 \mathrm{~Hz}, 4 \mathrm{C}), 76.2\left(\mathrm{~d}, J_{\mathrm{Poc}}=7.2 \mathrm{~Hz}, 2 \mathrm{C}\right), 48.6$ (d, Jpocc $\left.=6.1 \mathrm{~Hz}, 4 \mathrm{C}\right), 43.1$ (2C), 34.0 (2C), 31.3 (2C), $25.7(2 \mathrm{C}), 21.9$ (d, $\left.J_{\mathrm{PC}}=138 \mathrm{~Hz}, 2 \mathrm{C}\right), 21.8(2 \mathrm{C}), 17.1(2 \mathrm{C}), 15.7(2 \mathrm{C}) ;[\alpha]_{\mathrm{D}}{ }^{25}=-17.1^{\circ}$ (chloroform).

(S_{p})-Menthyl [(diphenylphosphino)methyl]phenylphosphinate 32:

To a solution of $\left(S_{p}\right)$ - 30 ($676 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv, $96 \% \mathrm{de}$) in tetrahydrofuran (10 mL) was added at $78^{\circ} \mathrm{C}$ and under N_{2} isopropylmagnesium chloride ($1.1 \mathrm{~mL}, 2.2 \mathrm{mmol}$, 1.1 equiv, 2.0 M solution). After 2 hours at $-78^{\circ} \mathrm{C}$, chlorodiphenylphosphine ($0.37 \mathrm{~mL}, 2 \mathrm{mmol}, 1$ equiv) was added. The dry-ice bath was removed and the reaction was allowed to warm up to rt and was stirred for 4 hours at rt. A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the two layers were separated. The aqueous layer was extracted with dichloromethane (3X). The combined organic layers was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 100:0 to 98:2) to afford the product as a white solid ($371 \mathrm{~g}, 39 \%, 96 \%$ de). $\mathrm{Mp}=54-55^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=32.2$ ($\mathrm{d}, \mathrm{J}=9.7 \mathrm{~Hz}, 46 \%$), 11.9 ($\mathrm{s}, 54 \%$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.84-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 1 \mathrm{H})$, 7.21-7.31 (m, 4H), 4.09-4.20 (m, 1H), 3.03 (dd, $J=2.1$ and $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$ (dquint., $J=2.1$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.51-1.65 (m, 3H), 1.12-1.29(m, 2H), 0.69-1.50 (m, 3H), $0.94(\mathrm{q}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.69-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=132.8\left(\mathrm{~d}, J_{\mathrm{PCCC}}=9.9 \mathrm{~Hz}, 2 \mathrm{C}\right), 132.7\left(\mathrm{~d}, J_{\mathrm{PCCC}}=9.6 \mathrm{~Hz}, 2 \mathrm{C}\right), 132.2\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ $134 \mathrm{~Hz}), 132.1\left(\mathrm{~d}, J_{\mathrm{PCCCC}}=2.8 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{PCCC}}=10.5 \mathrm{~Hz}, 2 \mathrm{C}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{PCCCC}}=2.3 \mathrm{~Hz}\right), 131.2(\mathrm{~d}$, $\left.J_{\mathrm{PCCCC}}=2.4 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{\mathrm{PCC}}=10.7 \mathrm{~Hz}, 2 \mathrm{C}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{PC}}=134 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{PC}}=135 \mathrm{~Hz}\right), 128.4(\mathrm{~d}$, $\left.J_{\mathrm{PCC}}=10.3 \mathrm{~Hz}, 2 \mathrm{C}\right), 128.2\left(\mathrm{~d}, J_{\mathrm{PCC}}=13.3 \mathrm{~Hz}, 2 \mathrm{C}\right), 77.7\left(\mathrm{~d}, J_{\mathrm{POC}}=7.4 \mathrm{~Hz}\right), 48.5\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.3 \mathrm{~Hz}\right), 42.9,33.9$, $31.4,28.8$ (dd, $J_{\mathrm{PC}}=92.6 \mathrm{~Hz}$), 25.5, 22.7, 21.9, 21.2, 15.6; HRMS (EI+) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{P}_{2}\left([\mathrm{M}]^{+}\right)$ 478.2191 , found 478.2190; $[\alpha]_{\mathrm{D}^{24}}=-0.9^{\circ}$ (chloroform).

(R_{p})-Menthyl (hydroxymethyl) (3-phenylpropyl)phosphinate 33:

To a suspension of Pd/C ($191 \mathrm{mg}, 0.18 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in ethanol (2 mL) flushed with N_{2} was added a solution of $\left(R_{p}\right)-4(630 \mathrm{~g}, 1.8 \mathrm{mmol}, 1$ equiv, $>99 \% \mathrm{de})$ in ethanol (8 mL). The tube was placed in a hydrogenator and stirred for 20 hours at 50 psi of H_{2}. The suspension was then filtered through celite and the solid was washed with ethanol three times. The filtrate was concentrated under vacuum to afford the product as a white solid ($633 \mathrm{~g}, 100 \%, 98 \%$ de). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.5$ (septuplet, $J=6.5 \mathrm{~Hz}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.24-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.21(\mathrm{~m}, 3 \mathrm{H}), 4.12-4.22$ $(\mathrm{m}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=6.1$ and $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=1.9$ and $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.01-2.12 (m, 2H), 1.88-1.99 (m, 2H), 1.74-1.84 (m, 2H), 1.61-1.69 (m, 2H), 1.37-1.51 (m, 1H), 1.25$1.34(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{q}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.98$ (dquint., $J=2.5$ and $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $0.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.69-0.90(\mathrm{~m}, 1 \mathrm{H}), 0.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 141.0, 128.5 (2C), $128.4(2 \mathrm{C}), 126.1,76.3\left(\mathrm{~d}, J_{\mathrm{POC}}=7.7 \mathrm{~Hz}\right), 59.8\left(\mathrm{~d}, J_{\mathrm{PC}}=105 \mathrm{~Hz}\right), 48.6\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.6\right.$ $\mathrm{Hz}), 43.6,36.8\left(\mathrm{~d}, J_{\mathrm{PCC}}=15.7 \mathrm{~Hz}\right), 34.0,31.5,25.9\left(\mathrm{~d}, J_{\mathrm{PC}}=90.2 \mathrm{~Hz}\right), 25.6,23.3\left(\mathrm{~d}, J_{\mathrm{PCCC}}=3.5 \mathrm{~Hz}\right), 22.7$, 22.0, 21.0, 15.6.

(S S_{p}-Menthyl (3-phenylpropyl)-H-phosphinate 19:

To a solution of N-chlorosuccinimide ($721 \mathrm{mg}, 5.4 \mathrm{mmol}, 3$ equiv) in dichloromethane (30 mL) at $78^{\circ} \mathrm{C}$ and under N_{2} was added dropwise a solution of dimethyl sulfide ($0.4 \mathrm{~mL}, 5.4 \mathrm{mmol}, 3$ equiv) in dichloromethane (5 mL). After 10 minutes at $-78^{\circ} \mathrm{C}$, a solution of $\left(R_{p}\right)-33(630 \mathrm{mg}, 1.8 \mathrm{mmol}, 1$ equiv, $98 \% \mathrm{de}$) in dichloromethane (5 mL) was added over 20 minutes. After 1 h at $-78^{\circ} \mathrm{C}$, triethylamine ($1.25 \mathrm{~mL}, 9 \mathrm{mmol}, 5$ equiv) was added over 15 minutes and the reaction was allowed to warm up to rt . After 1 h at rt , water was added and the two layers were separated. The aqueous layer was extracted with dichloromethane (X2). The combined organic layer was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 99:1 to 97:3) to afford the product as a colorless oil ($554 \mathrm{mg}, 96 \%, 96 \%$ de). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=33.3$ (dsextuplet, $J=12.7$ and 528 Hz); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.16-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=528 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.19(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 H), 1.99-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.21-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{q}, J=11.6 \mathrm{~Hz}$, 1 H), 0.94 (dquint., $J=3.0$ and $12.4 \mathrm{~Hz}, 1 \mathrm{H}$), 0.84 (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$), 0.69-0.85 (m, 1H), 0.74 (d, $J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=140.7,128.4$ (2C), 128.4 (2C), 126.1, 76.7 (d, $J_{\mathrm{Poc}}=7.4 \mathrm{~Hz}$), $48.3\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.9 \mathrm{~Hz}\right), 41.6,36.2\left(\mathrm{~d}, J_{\mathrm{PCC}}=16.0 \mathrm{~Hz}\right), 33.9,31.3,28.1\left(\mathrm{~d}, J_{\mathrm{PC}}=95.0 \mathrm{~Hz}\right), 25.6,22.9,22.4$ $\left(\mathrm{d}, \mathrm{J}_{\mathrm{PCCC}}=2.5 \mathrm{~Hz}\right), 21.9,20.8,15.7 ;[\alpha]_{\mathrm{D}}^{23}=-27.3^{0}$ (chloroform).

(R_{p})-1-Menthyloxy-1,2,3,4-tetrahydro-1-phosphinoline-1-oxide 34:

To a suspension of $\mathrm{Mn}(\mathrm{OAc})_{2}$ ($8.7 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$), MnO_{2} ($261 \mathrm{mg}, 3 \mathrm{mmol}, 3$ equiv.) and sodium acetate ($246 \mathrm{mg}, 3 \mathrm{mmol}, 3$ equiv.) in acetic acid (2.5 mL) at $70^{\circ} \mathrm{C}$ under N_{2} was added a solution of (S_{p})-19 ($322 \mathrm{mg}, 1 \mathrm{mmol}$, 1 equiv, $96 \% \mathrm{de}$) in acetic acid (2.5 mL) over 2 h via a syringe pump. The reaction mixture was then stirred for an additional 2 h at $70^{\circ} \mathrm{C}$ under N_{2}. Ethyl acetate (\sim 30 mL) and an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} 0.2 \mathrm{M}$ saturated with $\mathrm{NaHCO}_{3}(\sim 40 \mathrm{~mL})$ were added. The suspension was stirred vigorously for 5 minutes, filtered through celite and the two layers were separated. The organic layer was washed with an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} 0.2 \mathrm{M}$ saturated with $\mathrm{NaHCO}_{3}(\sim 40 \mathrm{~mL})$, a saturated aqueous solution of $\mathrm{NaHCO}_{3}(\sim 40 \mathrm{~mL})$ and brine ($\sim 40 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 100:0 to 95:5) to afford the product as a colorless oil ($300 \mathrm{mg}, 94 \%, 96 \% \mathrm{de}$). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=36.3(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71-$ $7.79(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.12(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.28(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.47$ $(\mathrm{m}, 2 \mathrm{H}), 1.54-1.79(\mathrm{~m}, 6 \mathrm{H}), 1.53-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{q}, J=10.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 0.94 (dquint., $J=2.6$ and $12.5 \mathrm{~Hz}, 1 \mathrm{H}$), $0.83(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.79$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$), 0.75 (dquint., $J=3.2$ and $12.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=143.7$ (d, $J_{\mathrm{PCC}}=$ $9.9 \mathrm{~Hz}), 131.6\left(\mathrm{~d}, J_{\mathrm{PCCCC}}=2.4 \mathrm{~Hz}\right), 129.8\left(\mathrm{~d}, J_{\mathrm{PCCC}}=5.1 \mathrm{~Hz}\right), 129.8\left(\mathrm{~d}, J_{\mathrm{PC}}=123 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{\mathrm{PCC}}=11.5\right.$ $\mathrm{Hz}), 126.5\left(\mathrm{~d}, J_{\mathrm{PCCC}}=11.5 \mathrm{~Hz}\right), 76.4\left(\mathrm{~d}, J_{\mathrm{POC}}=7.2 \mathrm{~Hz}\right), 48.6\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.9 \mathrm{~Hz}\right), 43.6,34.0,31.5,31.3(\mathrm{~d}$, $J_{\mathrm{PCC}}=8.5 \mathrm{~Hz}$), $26.5\left(\mathrm{~d}, J_{\mathrm{PC}}=92.8 \mathrm{~Hz}\right), 25.6,22.7,22.0,21.2\left(\mathrm{~d}, J_{\mathrm{PCCC}}=5.1 \mathrm{~Hz}\right), 21.1,15.6$; HRMS (EI+) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{P}\left([\mathrm{M}]^{+}\right) 320.1905$, found 320.1907 ; $[\alpha]_{\mathrm{D}}^{22}=-8.6^{\circ}$ (chloroform).

(S_{p})-1-menthyl-2,3-diphenyl-1-phosphindole 35:5

To a suspension of $\mathrm{Mn}(\mathrm{OAc})_{2}$ ($8.7 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$), MnO_{2} ($261 \mathrm{mg}, 3 \mathrm{mmol}, 3$ equiv.), sodium acetate ($246 \mathrm{mg}, 3 \mathrm{mmol}, 3$ equiv.) and diphenylacetylene ($178 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.) in acetic acid $(2.5 \mathrm{~mL})$ at $70^{\circ} \mathrm{C}$ under N_{2} was added a solution of $\left(R_{p}\right)-1$ ($280 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv, $>99 \% \mathrm{de}$) in acetic acid (2.5 mL) over 2 h via a syringe pump. The reaction mixture was then stirred for an additional 2 h at $70^{\circ} \mathrm{C}$ under N_{2}. Ethyl acetate ($\sim 30 \mathrm{~mL}$) and an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} 0.2 \mathrm{M}$ saturated with $\mathrm{NaHCO}_{3}(\sim 40 \mathrm{~mL})$ were added. The suspension was stirred vigorously for 5 minutes, filtered through celite and the two layers were separated. The organic layer was washed with an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} 0.2 \mathrm{M}$ saturated with $\mathrm{NaHCO}_{3}(\sim 40 \mathrm{~mL})$, a saturated aqueous solution of $\mathrm{NaHCO}_{3}(\sim 40 \mathrm{~mL})$ and brine ($\sim 40 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 100:0 to 98:2) to afford the product as a white solid (130 mg, 29\%, > 99\% de). $\mathrm{Mp}=159-160^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=44.8(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.69-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.56(\mathrm{~m}, 13 \mathrm{H}), 4.29-$ $4.42(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.38(\mathrm{~s}, 1 \mathrm{H}), 1.53-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.16-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.75-1.10(\mathrm{~m}$, $2 \mathrm{H}), 0.92(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.66(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.43(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; HRMS (EI+) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{P}\left([\mathrm{M}]^{+}\right) 456.2218$, found $456.2212 ;[\alpha]_{\mathrm{D}}{ }^{25}=-52.9^{0}$ (chloroform).

To a solution of $\left(R_{p}\right)-7(2.76 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv, $96 \% \mathrm{de}$) in acetonitrile (40 mL) in a sealed tube was added cyclohexene ($2.03 \mathrm{~mL}, 20 \mathrm{mmol}, 2$ equiv) and AIBN ($82 \mathrm{mg}, 0.5 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and the reaction was stirred at reflux under N_{2} for 2 hours. After cooling down the reaction to rt, AIBN (82 $\mathrm{mg}, 0.5 \mathrm{mmol}, 5 \mathrm{~mol} \%$) was added and the reaction was stirred at reflux under N_{2} for 2 hours. 2 additional addition of AIBN was made every 2 hours. 2 hours after the last addition, the reaction was cooled down to rt (81\% NMR).

(S_{p})-Menthyl (acetoxymethyl)(1-hydroxycyclohexyl)phosphinate 37:

To a solution of (Sp)/(Rp)-7 (13.8 g, 50 mmol , 1 equiv, dr 54:46) in toluene (75 mL) was added at rt and under N_{2} pyridine ($0.4 \mathrm{~mL}, 5 \mathrm{mmol}, 0.1$ equiv) and cyclohexanone ($10.3 \mathrm{~mL}, 100 \mathrm{mmol}, 2$ equiv). The reaction mixture was stirred for 3 days at reflux. After cooling down to rt, the solvent was removed under vacuum and the residue obtained was purified by column chromatography (dichloromethane/acetone 98:2 to 90:10) to afford the $\left(\mathrm{R}_{\mathrm{p}}\right) /\left(\mathrm{S}_{\mathrm{p}}\right)$ mixture product as a white solid (15 $\mathrm{g}, 80 \%, 54: 46 \mathrm{dr}$). This solid was recrystallized at $-18^{\circ} \mathrm{C}$ in diethyl ether to afford the product as a white solid ($5.1 \mathrm{~g}, 27 \%, 92 \%$ de $) . \mathrm{Mp}=125-126^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=42.6(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.46-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.25-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 1 \mathrm{H}), 2.19$ (dquint., $J=2.7$ and 7.0 $\mathrm{Hz}, 1 \mathrm{H}), 2.10-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.74(\mathrm{~m}, 7 \mathrm{H}), 1.54-$ $1.63(\mathrm{~m}, 3 \mathrm{H}), 1.41-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.16-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{q}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.01$ (dquint., $J=3.5$ and $12.4 \mathrm{~Hz}, 1 \mathrm{H}$), $0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.78-0.92(\mathrm{~m}, 1 \mathrm{H})$, $0.81(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{Pcoc}}=7.5 \mathrm{~Hz}\right), 77.5\left(\mathrm{~d}, J_{\mathrm{POC}}=8.9 \mathrm{~Hz}\right)$, $72.3\left(\mathrm{~d}, J_{\mathrm{PC}}=116 \mathrm{~Hz}\right), 57.2\left(\mathrm{~d}, J_{\mathrm{PC}}=97.9 \mathrm{~Hz}\right), 48.8\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.3 \mathrm{~Hz}\right), 43.2,34.0,31.6,30.8\left(\mathrm{~d}, J_{\mathrm{PCCC}}=3.5\right.$ Hz), 30.2 ($\mathrm{d}, J_{\mathrm{PCCC}}=3.7 \mathrm{~Hz}$), 25.4, 22.6, 22.0, 21.2, 20.7, $20.0\left(\mathrm{~d}, J_{\mathrm{PCC}}=9.9 \mathrm{~Hz}\right), 19.9\left(\mathrm{~d}, J_{\mathrm{PCC}}=10.1 \mathrm{~Hz}\right)$, 15.4; $[\alpha]_{\mathrm{D}}{ }^{24}=-22.4^{\circ}$ (chloroform).

(R_{p})-Menthyl (acetoxymethyl)(cyclohex-1-ene)phosphinate 38:

To a solution of (S_{p})-37 (374 mg , 1 mmol , 1 equiv, $92 \% \mathrm{de}$) in benzene (5 mL) was added at rt under N_{2} thionyl chloride ($0.087 \mathrm{~mL}, 1.2 \mathrm{mmol}, 1.2$ equiv.) followed by triethylamine ($0.17 \mathrm{~mL}, 1.2 \mathrm{mmol}$, 1.2 equiv.). The mixture was then stirred for 16 h at reflux under N_{2}. After cooling down the reaction to rt , the solvent was removed under vacuum. The residue obtained was solubilized in ethyl acetate and the organic layer was washed with a saturated aqueous solution of NaHCO_{3} and brine, dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column
chromatography (dichloromethane/acetone 99:1 to 95:5) to afford the product as a colorless oil (307 $\mathrm{mg}, 86 \%, 92 \% \mathrm{de}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=32.8(\mathrm{~s}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.71(\mathrm{~d}, \mathrm{~J}=$ $20.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-4.31(\mathrm{~m}, 3 \mathrm{H}), 1.98-2.16(\mathrm{~m}, 5 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.92$ (dquint., $J=2.5$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.46-1.61 (m, 6H), 1.27-1.40 (m, 1H), 1.17-1.26(m, 1H), $1.06(\mathrm{q}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{dq}, J=2.4$ and $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.79(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.67-0.79(\mathrm{~m}, 1 \mathrm{H}), 0.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.0\left(\mathrm{~d}, J_{\mathrm{PCOC}}=8.1 \mathrm{~Hz}\right), 144.3\left(\mathrm{~d}, J_{\mathrm{PCC}}=7.9 \mathrm{~Hz}\right), 129.0\left(\mathrm{~d}, J_{\mathrm{PC}}=127 \mathrm{~Hz}\right)$, $76.7\left(\mathrm{~d}, J_{\mathrm{POC}}=7.3 \mathrm{~Hz}\right), 59.4\left(\mathrm{~d}, J_{\mathrm{PC}}=115 \mathrm{~Hz}\right), 48.5\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.8 \mathrm{~Hz}\right), 43.5,33.9,31.5,26.0\left(\mathrm{~d}, J_{\mathrm{PCC}}=15.4\right.$ $\mathrm{Hz}), 25.5,24.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCCC}}=9.8 \mathrm{~Hz}\right), 22.7,21.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCCC}}=8.9 \mathrm{~Hz}\right), 21.9,21.2,21.0,20.4,15.6$; HRMS (EI+) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{P}\left([\mathrm{M}]^{+}\right) 356.2116$, found 356.2114; [$\left.\alpha\right]_{\mathrm{D}}{ }^{23}=-28.7^{0}$ (chloroform).

(R_{p})-Menthyl (hydroxymethyl)cyclohexylphosphinate 39:

To a solution of $\left(R_{p}\right)$ - 38 ($356 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv, $92 \% \mathrm{de}$) in methanol (5 mL) was added potassium carbonate ($14 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.1$ equiv.) and the mixture was stirred for 20 h at rt . The solvent was removed under vacuum and the crude obtained was purified by column chromatography (dichloromethane/acetone $95: 5$ to $85: 15$) to afford the product as a white solid ($135 \mathrm{mg}, 43 \%, 80 \%$ de). $\mathrm{Mp}=80-81^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=38.7(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.74(\mathrm{~d}, \mathrm{~J}=$ $20.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.03-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.89(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.22(\mathrm{~m}, 5 \mathrm{H}), 1.99$ (dquint., $J=$ 2.5 and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.32-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{q}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, 0.92 (dq, $J=2.5$ and $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.73-0.90(\mathrm{~m}, 1 \mathrm{H})$, $0.69(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=143.6\left(\mathrm{~d}, J_{\mathrm{PCC}}=7.4 \mathrm{~Hz}\right), 129.0\left(\mathrm{~d}, J_{\mathrm{PC}}=119 \mathrm{~Hz}\right)$, $76.4\left(\mathrm{~d}, J_{\mathrm{POC}}=7.7 \mathrm{~Hz}\right), 58.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=112 \mathrm{~Hz}\right), 48.6\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.5 \mathrm{~Hz}\right), 43.7,34.0,31.5,26.1\left(\mathrm{~d}, J_{\mathrm{PCC}}=14.7\right.$ $\mathrm{Hz}), 25.5,24.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCCC}}=9.7 \mathrm{~Hz}\right), 22.7,22.0,22.0\left(\mathrm{~d}, J_{\mathrm{PCCC}}=10.4 \mathrm{~Hz}\right), 21.1,21.0,15.7 ;$ HRMS $(E I+) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{P}\left([\mathrm{M}]^{+}\right) 314.2011$, found 314.2007; $[\alpha]_{\mathrm{D}^{24}}=-29.9^{\circ}$ (chloroform).
To a suspension of Pd/C ($34 \mathrm{mg}, 0.032 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in ethanol (1 mL) flushed with N_{2} was added a solution of (R_{p})-menthyl (hydroxymethyl)(cyclohex-1-ene)phosphinate ($100 \mathrm{mg}, 0.32 \mathrm{mmol}, 1$ equiv, $80 \% \mathrm{de}$) in ethanol (4 mL). The tube was placed in a hydrogenator and stirred for 20 hours at 50 psi of H_{2}. The suspension was then filtered through celite and the solid was washed with ethanol three times. The filtrate was concentrated under vacuum to afford the product as a white solid (102 mg , $100 \%, 80 \%$ de). $\mathrm{Mp}=134-135^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=51.8$ (s, 90%); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=5.06(\mathrm{~s}, 1 \mathrm{H}), 4.10-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.89(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.74-2.03(\mathrm{~m}, 5 \mathrm{H})$, 1.69-1.71 (m, 3H), 1.16-1.48 (m, 7H), $1.07(\mathrm{q}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{dq}, J=2.5$ and $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.89$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.74-0.87(\mathrm{~m}, 1 \mathrm{H}), 0.79(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=76.0\left(\mathrm{~d}, J_{\mathrm{POC}}=8.0 \mathrm{~Hz}\right), 58.2\left(\mathrm{~d}, J_{\mathrm{PC}}=99.1 \mathrm{~Hz}\right), 48.8\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.2 \mathrm{~Hz}\right), 43.5,36.1\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ 92.3 Hz), 34.1, 31.5, $26.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCC}}=14.1 \mathrm{~Hz}\right), 26.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCC}}=13.9 \mathrm{~Hz}\right), 25.9,25.4,25.3\left(\mathrm{~d}, J_{\mathrm{PCCC}}=3.3 \mathrm{~Hz}\right)$, $24.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PCCC}}=2.9 \mathrm{~Hz}\right), 22.6,22.1,21.1,15.5$; HRMS (EI+) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{P}\left([\mathrm{M}]^{+}\right) 316.2167$, found 316.2162; $[\alpha]_{\mathrm{D}}{ }^{23}=-32.1^{\circ}$ (chloroform).

(R_{p})-Menthyl (hydroxymethyl)cyclohexylphosphinate 39:

To a solution of $\left(S_{p}\right) /\left(R_{p}\right)-7(13.8 \mathrm{~g}, 50 \mathrm{mmol}, 1$ equiv, $54: 46 \mathrm{dr})$ in toluene (75 mL) was added at rt and under N_{2} pyridine ($0.4 \mathrm{~mL}, 5 \mathrm{mmol}, 0.1$ equiv) and cyclohexanone ($10.3 \mathrm{~mL}, 100 \mathrm{mmol}, 2$ equiv). The reaction mixture was stirred for 3 days at reflux. After cooling down to rt, the solvent was removed under vacuum and the residue obtained was purified by column chromatography (dichloromethane/acetone 98:2 to 90:10) to afford the $\left(\mathrm{R}_{\mathrm{p}}\right) /\left(\mathrm{S}_{\mathrm{p}}\right)$ mixture as a white solid (15 g , 80%). ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=43.9$ ($\mathrm{s}, 46 \%$), 42.8 ($\mathrm{s}, 54 \%$).
To a solution of $\left(S_{p}\right) /\left(R_{p}\right)-37(10.5 \mathrm{~g}, 28 \mathrm{mmol}, 1$ equiv, $54: 46 \mathrm{dr})$ in benzene (80 mL) was added at rt under N_{2} thionyl chloride ($2.3 \mathrm{~mL}, 31 \mathrm{mmol}, 1.1$ equiv.) followed by triethylamine ($4.3 \mathrm{~mL}, 31 \mathrm{mmol}$, 1.1 equiv.). The mixture was then stirred for 16 h at reflux under N_{2}. After cooling down the reaction, the solvent was removed under vacuum. The residue obtained was solubilized in ethyl acetate and the organic layer was washed with a saturated aqueous solution of NaHCO_{3} and brine, dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 99:1 to 95:5) to afford the product as a colorless oil ($8.57 \mathrm{~g}, 86 \%$). ${ }^{31 \mathrm{P}}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=37.9$ ($\mathrm{s}, 42 \%$), 37.2 ($\mathrm{s}, 58 \%$).
To a solution of the crude obtained ($8.5 \mathrm{~g}, 24 \mathrm{mmol}, 1$ equiv, $52: 48 \mathrm{dr}$) in methanol (50 mL) was added potassium carbonate ($331 \mathrm{mg}, 2.4 \mathrm{mmol}, 0.1$ equiv.) and the mixture was stirred for 20 h at rt . The solvent was removed under vacuum and the crude obtained was purified by column chromatography (dichloromethane/acetone 80:20) to afford the product as a white solid (6.58 g , $87 \%)$. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=39.2$ ($\mathrm{s}, 44 \%$), 38.5 ($\mathrm{s}, 56 \%$).
To a suspension of Pd/C ($2.2 \mathrm{~g}, 2.07 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in ethanol (25 mL) flushed with N_{2} was added a solution of the crude obtained ($6.5 \mathrm{~g}, 20.7 \mathrm{mmol}, 1$ equiv) in ethanol (50 mL). The flask was placed in a hydrogenator and stirred for 4 days at 50 psi of H_{2}. The suspension was then filtered through celite and the solid was washed with ethanol three times. The filtrate was concentrated under vacuum to afford the product as a white solid ($6.54 \mathrm{~g}, 100 \%$). This solid was crystallized in ethyl acetate (200 mL) at rt to afford the product as a white solid ($1.55 \mathrm{~g}, 24 \%,>99 \%$ de, 14% overall yield). ${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=47.3(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.76-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.22(\mathrm{~m}, 1 \mathrm{H})$, 3.78-3.90 (m, 2H), 2.18-2.25 (m, 1H), 1.89-2.06 (m, 3H), 1.76-1.88 (m, 3H), 1.60-1.73 (m, 3H), 1.18$1.51(\mathrm{~m}, 7 \mathrm{H}), 1.11(\mathrm{q}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{dq}, J=2.5$ and $12.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.77-0.90(\mathrm{~m}, 1 \mathrm{H}), 0.79(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=76.5(\mathrm{~d}$, $\left.J_{\text {poc }}=8.0 \mathrm{~Hz}\right), 57.5\left(\mathrm{~d}, J_{\mathrm{Pc}}=100 \mathrm{~Hz}\right), 48.7\left(\mathrm{~d}, J_{\mathrm{pocc}}=5.9 \mathrm{~Hz}\right), 44.0,36.3\left(\mathrm{~d}, J_{\mathrm{pc}}=91.2 \mathrm{~Hz}\right), 34.1,31.5,26.2$ (d, JPcC $=13.6 \mathrm{~Hz}$), $26.2\left(\mathrm{~d}, J_{\mathrm{PcC}}=14.7 \mathrm{~Hz}\right), 25.9,25.5,25.3\left(\mathrm{~d}, J_{\mathrm{Pccc}}=3.2 \mathrm{~Hz}\right), 24.7\left(\mathrm{~d}, J_{\mathrm{PcCc}}=3.1 \mathrm{~Hz}\right)$, 22.7, 22.0, 21.2, 15.6; HRMS (EI+) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{P}\left([\mathrm{M}]^{+}\right) 316.2167$, found 316.2162; [$\left.\alpha\right]_{\mathrm{D}}{ }^{23}=$ -32.1° (chloroform).

(R_{p})-Menthyl (hydroxymethyl)cyclohexylphosphinate 39:

To a solution of $\left(R_{p}\right) /\left(S_{p}\right)-7(8.28 \mathrm{~g}, 30 \mathrm{mmol}$, 1 equiv, $54: 46 \mathrm{dr})$ in DMSO (150 mL) was added $\mathrm{Mn}(\mathrm{OAc})_{2}$ ($368 \mathrm{mg}, 1.5 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and cyclohexene ($15.2 \mathrm{~mL}, 150 \mathrm{mmol}, 5$ equiv.) and the reaction was stirred at $100^{\circ} \mathrm{C}$ under N_{2} for 16 hours. After cooling down the reaction to rt, ethyl acetate ($\sim 150 \mathrm{~mL}$) and an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} 0.2 \mathrm{M}$ saturated with $\mathrm{NaHCO}_{3}(\sim 150 \mathrm{~mL})$ were added and the suspension was stirred vigorously for 5 minutes. The 2 layers were separated and the organic layer was washed with an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} 0.2 \mathrm{M}$ saturated with NaHCO_{3} ($\sim 150 \mathrm{~mL}$), a saturated aqueous solution of $\mathrm{NaHCO}_{3}(\sim 150 \mathrm{~mL})$ and brine ($\sim 150 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 100:0 to 94:6) to afford the product as a colorless oil ($5.37 \mathrm{~g}, 50 \%$).
To a solution of the crude obtained ($5.37 \mathrm{~g}, 15 \mathrm{mmol}, 1$ equiv, $54: 46 \mathrm{dr}$) in methanol (50 mL) was added potassium carbonate ($207 \mathrm{mg}, 1.5 \mathrm{mmol}, 0.1$ equiv.) and the mixture was stirred for 20 h at rt .

The solvent was removed under vacuum and the crude obtained was purified by column chromatography (dichloromethane/acetone $95: 5$ to $60: 40$) to afford the product as a white solid ($4.31 \mathrm{~g}, 91 \%$). This solid was crystallized in acetonitrile at rt to afford the product as a white solid $(1.47 \mathrm{~g}, 31 \%,>99 \%$ de $) . \mathrm{Mp}=143-144{ }^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.3$ (s); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=4.35-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.91(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.90-2.07(\mathrm{~m}$, $3 \mathrm{H}), 1.78-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.51(\mathrm{~m}, 7 \mathrm{H}), 1.13(\mathrm{q}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{dq}, J=2.8$ and $12.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.78-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=76.6\left(\mathrm{~d}, J_{\mathrm{POC}}=8.0 \mathrm{~Hz}\right), 57.6\left(\mathrm{~d}, J_{\mathrm{PC}}=99.3 \mathrm{~Hz}\right), 48.7\left(\mathrm{~d}, J_{\mathrm{POCC}}=5.9\right.$ $\mathrm{Hz}), 44.0,36.4\left(\mathrm{~d}, J_{\mathrm{PC}}=91.5 \mathrm{~Hz}\right), 34.1,31.5,26.3\left(\mathrm{~d}, J_{\mathrm{PCC}}=13.7 \mathrm{~Hz}, 2 \mathrm{C}\right), 25.9,25.5,25.3\left(\mathrm{~d}, J_{\mathrm{PCCC}}=3.3\right.$ Hz), $24.8\left(\mathrm{~d}, J_{\mathrm{PCCC}}=3.0 \mathrm{~Hz}\right), 22.8,22.0,21.2,15.6$; HRMS ($\mathrm{EI}+$) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{P}\left([\mathrm{M}]^{+}\right)$ 316.2167 , found $316.2162 ;[\alpha]_{\mathrm{D}}{ }^{23}=-32.1^{\circ}$ (chloroform).

$\left(R_{p}\right) /\left(S_{p}\right)$ Menthyl acetoxymethyl(1,1-diethoxyethyl)phosphinate 40:

$\left(R_{p}\right) /\left(S_{p}\right)-7(4.95 \mathrm{~g}, 17.9 \mathrm{mmol}, 1$ equiv, 51:49 dr), triethyl orthoformate ($19.7 \mathrm{~mL}, 107.5 \mathrm{mmol}, 6$ equiv) and boron trifluoride diethyl etherate ($0.45 \mathrm{~mL}, 3.6 \mathrm{mmol}, 0.2$ equiv.) were introduced in a flask and the reaction mixture was stirred at rt under N_{2} for 24 hours. Ethyl acetate ($\sim 150 \mathrm{~mL}$) and an aqueous solution of $\mathrm{NaHCO}_{3}(\sim 150 \mathrm{~mL})$ were added and the 2 layers were separated. The organic layer was washed with brine ($\sim 150 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (hexane/ethyl acetate 90:10 to 70:30) to afford the product as a colorless oil ($5.17 \mathrm{~g}, 74 \%$). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=35.9$ (s, 52\%) and 35.1 ($\mathrm{s}, 48 \%$).

($\left.R_{p}\right) /\left(S_{p}\right)$ Menthyl hydroxymethyl(1,1-diethoxyethyl)phosphinate 41:

To a solution of $40(6.6 \mathrm{~g}, 17 \mathrm{mmol}, 1$ equiv) in methanol (30 mL) was added potassium carbonate ($235 \mathrm{mg}, 1.7 \mathrm{mmol}, 0.1$ equiv.) and the mixture was stirred for 20 h at rt . The solvent was removed under vacuum to afford the product as a colorless oil ($5.95 \mathrm{~g}, 100 \%$). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 42.0 ($\mathrm{s}, 53 \%$) and 41.7 ($\mathrm{s}, 47 \%$).

($\left.R_{p}\right) /\left(S_{p}\right)$ Menthyl (1,1-diethoxyethyl)-H-phosphinate 43:

To a solution of concentrated $\mathrm{H}_{3} \mathrm{PO}_{2}(3.3 \mathrm{~g}, 50 \mathrm{mmol}, 1$ equiv) was added slowly, at room temperature under nitrogen, trifluoroacetic acid ($1.14 \mathrm{~mL}, 10 \mathrm{mmol}, 0.2$ equiv) followed by triethyl orthoformate ($20 \mathrm{~mL}, 110 \mathrm{mmol}, 2.2$ equiv.). After 4 hours of stirring at room temperature, chloroform was added $(100 \mathrm{~mL})$ as well as a saturated aqueous solution of $\mathrm{NaHCO}_{3}(\sim 100 \mathrm{~mL})$. The 2
layers were separated and the organic layer was washed with brine ($\sim 100 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated under vacuum to afford the product as a yellow oil ($9.87 \mathrm{~g}, 84 \%$ purity). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=31.0\left(\mathrm{~d}, \mathrm{~J}=543 \mathrm{~Hz}, 84 \%\right.$), $17.4(\mathrm{~s}, 3 \%)$ and 7.3 (d, 13\%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.96(\mathrm{~d}, J=543 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.32(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.82(\mathrm{~m}, 4 \mathrm{H}), 1.50(\mathrm{~d}, J=12.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
To a solution of ethyl (1,1-diethoxyethyl)-H-phosphinate ($6 \mathrm{~g}, 28.6 \mathrm{mmol}, 1$ equiv, 84% purity) in toluene (40 mL) was added L-menthol ($17.85 \mathrm{~g}, 114 \mathrm{mmol}, 4$ equiv) followed by $\mathrm{Ti}(\mathrm{OiPr})_{4}(0.85 \mathrm{~mL}$, $2.86 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The reaction mixture was stirred for 24 hours under N_{2} at a slow reflux with a Dean-Stark trap to remove the etanol generated during the reaction. After cooling down the reaction to rt , the solvent was removed under vacuum and the residue was purified by column chromatography (dichloromethane/acetone 100:0 to 95:5) to afford the product a colorless oil (5.44 g, 72\%). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=29.8$ (s, 51\%), 25.3 (s, 49\%).

$\left(R_{p}\right) /\left(S_{p}\right)$ Menthyl hydroxymethyl(1,1-diethoxyethyl)phosphinate 41:

To a solution of menthyl (1,1-diethoxyethyl)-H-phosphinate ($5.12 \mathrm{~g}, 16 \mathrm{mmol}, 1$ equiv, $51: 49 \mathrm{dr}$) in toluene (30 mL) was added paraformaldehyde ($0.53 \mathrm{~g}, 17.6 \mathrm{mmol}, 1.1$ equiv). The reaction mixture was stirred in a sealed tube at reflux for 20 hours under N_{2}. After cooling down the reaction to rt, the solvent was removed under vacuum and the residue was purified by column chromatography (dichloromethane/acetone 100:0 to $90: 10$) to afford the product a colorless oil ($2.58 \mathrm{~g}, 46 \%$). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=42.0$ ($\mathrm{s}, 54 \%$) and 41.7 ($\mathrm{s}, 46 \%$).

$\left(R_{p}\right) /\left(S_{p}\right)$ Menthyl benzoxymethyl (hydroxymethyl)phosphinate 44:

To a solution of $\left(R_{p}\right) /\left(S_{p}\right)-2(4.68 \mathrm{~g}, 20 \mathrm{mmol}, 1$ equiv, $54: 46 \mathrm{dr})$ in dichloromethane (30 mL) at $0^{\circ} \mathrm{C}$ and under N_{2} was added bis(trimethylsilyl)acetamide ($10 \mathrm{~mL}, 40 \mathrm{mmol}, 2$ equiv) followed by benzyl chloromethyl ether ($5.6 \mathrm{~mL}, 40 \mathrm{mmol}, 2$ equiv). The ice-bath was removed and the reaction mixture was then stirred for 20 h at rt. Methanol was added ($1.62 \mathrm{~mL}, 40 \mathrm{mmol}, 2$ equiv) and the reaction mixture was concentrated under vacuum. The residue obtained was dissolved in ethyl acetate and the organic layer was washed with a saturated aqueous solution of NaHCO_{3} and brine. The organic layer was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was purified by column chromatography (dichloromethane/acetone 10:0 to 9:1) to afford the product as white solid ($5.27 \mathrm{~g}, 74 \%$). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=41.8$ (s, 40%), 41.7 (s, 60\%).

$\left(R_{p}\right) /\left(S_{p}\right)$ Menthyl acetoxymethyl(hydroxymethyl)phosphinate 45:

Paraformaldehyde ($4.95 \mathrm{~g}, 165 \mathrm{mmol}, 1.1$ equiv) and hypophosphorous acid ($9.9 \mathrm{~g}, 150 \mathrm{mmol}, 1$ equiv, 50% in water) were introduced in a round bottom flask and the reaction mixture was stirred for 24 h at $75^{\circ} \mathrm{C}$. The reaction was cooled down to rt and the crude was diluted in toluene (150 mL). L-
menthol ($23.44 \mathrm{~g}, 150 \mathrm{mmol}, 1$ equiv) was added and the reaction mixture was stirred for 24 h at reflux under N_{2} in a flask equipped with a Dean-Stark trap. The solvent was then removed under vacuum and the residue obtained was dissolved in dichloromethane (300 mL). triethylamine (26 mL , $187.5 \mathrm{mmol}, 1.25$ equiv) and acetic anhydride ($17.1 \mathrm{~mL}, 180 \mathrm{mmol}, 1.2$ equiv) was then added at $0^{\circ} \mathrm{C}$ under N_{2}. The ice-bath was removed and the reaction mixture was stirred for 16 h at rt . The solvent was removed under vacuum and the residue obtained was solubilized in ethyl acetate. The organic layer was washed with NaHCO_{3} and brine, dried over MgSO_{4}, filtered and concentrated under vacuum to afford the product as a white solid ($38.7 \mathrm{~g}, 93 \%, 46: 54 \mathrm{dr}$). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 25.9 (dm, $J=567 \mathrm{~Hz}, 46 \%), 21.9$ (dm, $J=567 \mathrm{~Hz}, 54 \%)$.

To a solution of menthyl (acetoxymethyl)-H-phosphinate ($38.7 \mathrm{~g}, 140 \mathrm{mmol}, 1$ equiv, $46: 54 \mathrm{dr}$) in toluene (250 mL) was added paraformaldehyde ($5.11 \mathrm{~g}, 170 \mathrm{mmol}, 1.2$ equiv) and the reaction was stirred at reflux under N_{2} for 16 hours. The solvent was removed under vacuum to afford the product as a white solid ($42.7 \mathrm{~g}, 100 \%, 52: 48 \mathrm{dr}$). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=43.8$ (s, 52\%), 43.3 (s, 48\%).

Menthyl [(3,5-dinitrobenzoyloxy)methyl](acetoxymethyl)phenylphosphinate 46:

To a solution of $\left(R_{p}\right) /\left(S_{p}\right)-45(9.18 \mathrm{~g}, 30 \mathrm{mmol}, 1$ equiv, $54: 46 \mathrm{dr})$ in dichloromethane (60 mL) was added at $0^{\circ} \mathrm{C}$ under N_{2} triethylamine ($4.81 \mathrm{~mL}, 34.5 \mathrm{mmol}, 1.15$ equiv) followed by 3,5-dinitrobenzoyl chloride ($7.61 \mathrm{~g}, 33 \mathrm{mmol}, 1.1$ equiv) in dichloromethane (20 mL). The reaction mixture was then stirred for 20 hours at rt. The reaction mixture was concentrated under vacuum. The residue was dissolved in ethyl acetate ($\sim 100 \mathrm{~mL}$) and the organic layer was washed with an aqueous solution of $\mathrm{NaHCO}_{3}(\sim 100 \mathrm{~mL})$ and brine ($\sim 100 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated under vacuum. The crude obtained was crystallized in toluene (80 mL) to obtain the product as yellow needles ($4.35 \mathrm{~g}, 29 \%,>99 \%$ de). $\mathrm{Mp}=139-140^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR ($121.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=34.9$ (s); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.27(\mathrm{~s}, 1 \mathrm{H}), 9.17(\mathrm{~s}, 2 \mathrm{H}), 4.71-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.48-4.57(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.47(\mathrm{~m}$, $1 \mathrm{H}), 2.13-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.02-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~d}, J$ $=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.85-0.97(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=169.9\left(\mathrm{~d}, J_{\mathrm{PCOC}}=7.2 \mathrm{~Hz}\right), 162.0\left(\mathrm{~d}, J_{\mathrm{PCOC}}=\right.$ $7.1 \mathrm{~Hz}), 148.8(2 \mathrm{C}), 132.6,129.6(2 \mathrm{C}), 123.0,79.1\left(\mathrm{~d}, J_{\mathrm{POC}}=7.8 \mathrm{~Hz}\right), 60.0\left(\mathrm{~d}, J_{\mathrm{PC}}=112 \mathrm{~Hz}\right), 59.0\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ 114 Hz), 48.4 (d, $J_{\text {POCC }}=5.9 \mathrm{~Hz}$), 43.4, 33.8, 31.6, 25.9, 22.8, 21.9, 20.8, 20.5, 15.6; HRMS (EI+) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 501.1638$, found 501.1621; [$\left.\alpha\right]_{\mathrm{D}}{ }^{25}=-18.2^{\circ}$ (chloroform).

(R_{p})-Menthyl phenyl-H-phosphinate 1:1

To a solution of $\left(R_{p}\right) /\left(S_{p}\right)-1(8.4 \mathrm{~g}, 30 \mathrm{mmol}, 1$ equiv, $50: 50 \mathrm{dr}$) in diethylether (200 mL) was slowly added at rt under N_{2} phosphorus trichloride ($3.14 \mathrm{~mL}, 36 \mathrm{mmol}, 1.2$ equiv) followed by pyridine ($2.91 \mathrm{~mL}, 36 \mathrm{mmol}, 1.2$ equiv). After 2 hours at rt , the reaction was cooled down to $-78^{\circ} \mathrm{C}$ and then a mixture of diethylether - water (50 mL) was added over 20 minutes. After 4 hours at $-78^{\circ} \mathrm{C}$, the reaction was allowed to warm up to rt. Brine was added and the 2 layers were separated. The organic layer was dried over magnesium sulfate, filtered and concentrated. The crude obtained was purified by column chromatography (hexane/ethyl acetate $7: 3$) to afford the product as a colorless oil (7.3 g , $65 \%, 63 \% \mathrm{de}$). The oil obtained was crystallized in petroleum ether (7.5 mL) at $-30^{\circ} \mathrm{C}$ to afford the product as a colorless oil ($2.5 \mathrm{~g}, 22 \%, 96 \% \mathrm{de}$). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.7(\mathrm{dm}, \mathrm{J}=553 \mathrm{~Hz}$);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.73-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=553 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.64(\mathrm{~m}, 3 \mathrm{H}), 4.22-$ $4.36(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{q}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.78-$ $1.13(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;[\alpha]_{\mathrm{D}}^{23}=-35.5^{\circ}$ (chloroform, literature with 90% de: -21.0° in benzene).
${ }^{1}$ O. Berger, J.-L. Montchamp Angew. Chem. Int. Ed. 2013, 52, 11377-11380.
${ }^{2}$ O. Berger, J.-L. Montchamp Chemistry - A European Journal 2014, 20, 12385-12388.
${ }^{3}$ H. C. Fisher, O. Berger, F. Gelat, J.-L. Montchamp Adv. Synth. Catal. 2014, 356, 1199-1204.
${ }^{4}$ J.-L. Montchamp, O. Berger U.S. Pat. Appl. Publ. 2013, US 20130331594 A1 20131212.
${ }^{5}$ Y.-R. Chen, W.-L. Duan J. Am. Chem. Soc. 2013, 135, 16754-16757.

Compound $\left(R_{p}\right)-2$ ${ }^{31} \mathrm{P} / \mathrm{H} \mathrm{H}$ NMR decoupled

Compound $\left(R_{p}\right)-2$
${ }^{31} \mathrm{Pf} \mathrm{H} N \mathrm{MR}$ coupled

Compound $\left(R_{p}\right) / 2$
${ }^{13} \mathrm{C}$ NMR
$=4 \mathrm{CRE}$
 Expeno

Compound $\left(\mathrm{S}_{\mathrm{p}}\right) / 3$ 31 P/H NMR decoupled

ERUKER

 procko

Compound $\left(S_{p}\right) / 3$ ${ }^{31} \mathrm{PJ} 1 \mathrm{H}$ NMR coupled

 nexico

Current Data Farametors
Mase
OB
1888
Znd
crystallization in
BAME
EXPRO
PROCNO
F2 - Acquisition paxameters

Date
Time-

PDemerog

${ }_{8012.820} \frac{13}{2} \mathrm{~Hz}$
80.122266 Hz
4.0894465 se
62.400 usec
62.400 usec
6.50 usec
1.00000000 sec

FOI $\quad 400.1324710 \mathrm{MHz}$
P1 P1 25.00300026 bsec
2 - Processing parameters

$\begin{array}{ll}\text { SSB } \\ \text { LB } & 0 \\ B & 0\end{array}$
0.30 Hz

Compound $\left(\mathrm{S}_{\mathrm{p}}\right) / 3$ ${ }^{13} \mathrm{C}$ NMR

Cumgen
Wamen
EROCNO

OB 900
pad=10 run with findz0 before acquisitio
expl Phosphorus
SAMPLE
date
soll
file
file home colvis vnmesys/data/autor
$\begin{array}{lr} & 20 \\ 2013.01 .20 / s_{-2013} 2013 \sim & \text { pw } \mathrm{p} 90\end{array}$

| 0201..12/data cdc13~ pw90 | 18.300 |
| :--- | :--- | :--- |

ACOURSTITOR. fid ACQuISITTON

Compound (R_{p})-4 ${ }^{31} \mathrm{P} \mathrm{J}^{1} \mathrm{H}$ NMR decoupled

OB 900

Compound ($\left.\mathrm{R}_{\mathrm{p}}\right)^{1} 4$ ${ }^{31} \mathrm{P}$ I'H NMR coupled

Compound $\left(R_{p}\right)-4$
${ }^{1} \mathrm{H}$ NMR
cdc ph

OB 90.
expl Carbon

$$
\text { date Feb } 12013 \text { temp not used }
$$

$$
\begin{array}{lr}
\text { solvent cdel3 gain } & 20 \\
\text { file home/rcuuser~ spin } & 20 \\
\text { vnmrsys/data/autor } & \text { nt } \\
2013.01 .20 / 5-2013 \times \text { pw } 90 & 18.500
\end{array}
$$

$$
\begin{aligned}
& 2013.01 .20 / \mathrm{s} 2013 \times \text { pw90 } \\
& \mathbf{0 2 0 1} 12 \text { tata/cdc13~ alfa }
\end{aligned}
$$

$$
\begin{gathered}
\text { [201_12/data/cdci3~ alfa } \\
\text { AcouIsITITON.fid in flags }
\end{gathered}
$$

$$
\begin{aligned}
& 18.500 \\
& 10.000
\end{aligned}
$$

$$
\text { ACOUSSITTON. Tid } \begin{aligned}
& 05 \text { in FLAGS } \\
& \text { sw } \\
& 18115.9 \\
& \text { in }
\end{aligned}
$$

$$
\begin{array}{rrrr}
\mathrm{fb} & 10000 & & \text { PROCESSING } \\
\mathrm{bs} & 64 & \mathrm{~b} & 0.50 \\
\mathrm{~d} 1 & 2.000 & \mathrm{fn} & \text { not used } \\
\mathrm{nt} & 750 & & \text { DISPLAY } \\
\text { ct } & 750 & \mathrm{sp} & -1135.5
\end{array}
$$

$$
\text { ct TRANSMITTER } \begin{array}{llr}
750 & \mathrm{sp} & -1135.5 \\
& \mathrm{wp} & 18115.4
\end{array}
$$

$$
\operatorname{tn}_{5 f 0}
$$

$$
\begin{aligned}
& \text { sfr } \\
& \text { tof }
\end{aligned}
$$

$$
\begin{aligned}
& \text { stra } \\
& \text { tof } \\
& \text { tpwr }
\end{aligned}
$$

$$
\begin{array}{rr}
.13 \\
5.454 & \text { rff }
\end{array}
$$

$$
\begin{aligned}
& \text { tot } \\
& \text { tpwr } \\
& \text { pw }
\end{aligned}
$$

$$
\begin{array}{lll}
5.454 & \text { rfp } \\
766.0 & \text { rp } \\
58 & 1 \mathrm{p} & \\
9.250
\end{array} \quad \text { PLot }{ }^{-1}
$$

$$
\begin{aligned}
& \mathrm{dn} \\
& \text { dof } \\
& \text { dmm } \\
& d \mathrm{dmm}
\end{aligned}
$$

DECOUPLER

$$
\begin{array}{cc}
H_{1} & w C \\
0 & 5 c \\
v 5
\end{array}
$$

dm
dpur
dpwr
$d m f$ yyy th
w ai
675

Compound $\left(R_{p}\right) 4$
${ }^{13} \mathrm{C}$ NWIR

OB 876
pad=10 run with findzo before acquisitio
expl Phosphorus
SAMPLE
date Dec 182012 temp not used

solvent cucl3	gain
file home/rcuuserw spin	25
vnmrsys/data/autor hst	20

$\begin{array}{lr}\text { vnmrsys/data/auto~ hst } & 0.008 \\ 2012.12 .14 / s_{2} 2012 \sim & \text { pw90 }\end{array}$
1218_04/data/cdc13~ alfa flacs 10.000

$\begin{array}{lrrrr}\text { sw } & 15797.8 & \text { in } & & n \\ \text { at } & 1.600 & \text { dp } & & n \\ \text { ip } & 50552 & \text { hs } & \text { processing } & \text { ny }\end{array}$

$\begin{array}{lrrr}\text { tn } & \text { PS1 } & \text { rf } & 15697.3 \\ \text { sfrq } & 121.465 & \text { rfp } & 3647.8 \\ \text { tof } & 1421.1 & 0\end{array}$
$\begin{array}{lrlr}\text { tof } & 121.465 & \text { rfp } & 68 . \\ \text { tpwr } & 7421.1 & \text { rp } & 55 \\ \text { pp } & \text { pp } & -113 .\end{array}$
DECOUPLER
$\begin{array}{rl}H 1 & \text { WC } \\ \text { Sc } \\ 0 & v s\end{array}$
PLOT
$\begin{array}{lr} & 0 \\ \text { wyy } & \mathrm{vs} \\ \mathrm{w} & 0 \\ \text { th } & 12\end{array}$
dn
dof
dom
dof
dim
dim
dmm
dpwr
dpwr 6700

Compound $\left(R_{\mathbf{p}}\right)$)-3 ${ }^{31} \mathrm{P} \mathrm{P}^{1} \mathrm{H}$ NMR decoupled

OB 876
exp1 Phosphorus

> SAMPL
date
solvent cdec cis tein
vimersys/data/auto~ nst
$-2012.12 .14 / \mathrm{s}^{2012 \sim}$ pw90
1ク18-04/data/cdersw

$\begin{array}{lrlr}\text { at } & 1.600 & \text { dp } & \\ \text { np } & 50552 & \text { hs } & y \\ \text { fb } & 8800 & & \text { processing } \\ \text { bs } & 64 \\ \text { di } & 1.000 & \text { ib } & \text { not } \\ \text { nt } & 1.00 \\ \text { nt } & 16 & & \text { notsplay }\end{array}$
d1
nt
$\begin{array}{llll} & 16 & \mathrm{sp} & \text { DISPLAY } \\ & -3647.3\end{array}$
tn $\quad 121.031$ wp $\quad 15797.3$
$\begin{array}{lrlr}\text { sfrq } & 121.465 & \text { rfp } & 3647.8 \\ \text { tof } & 7421.1 & \text { rp } & 0 \\ \text { tpwr } & 9.150 & 1 p & 50.4 \\ & & & \end{array}$
pw DECOUPLER ${ }^{9}$.
DECOUPLER
$H 1$
0
ynn
PLOT
250
58
4
dmm w at cdc ph
dmf
670

08876
exp1 Carbon
SAMPLE Spectal
date Dec 182012 temp not usea
solvent cacl3 gain
file home/rcuuser spin
vnmrsys/data/autor hst 2012.12.14/s_2012~ pw90 1218_04/data/cdci3~ alfa flags 10.000

	ACQUISITİOn.	il	n
sw	18115.9	in	n
at	1.301	dp	y
np	47120	hs	n
fb	10000		processing
bs	64	11	0.50
d1	2.000	$f \mathrm{n}$	not used
nt	800		dISPlay
ct TRANSMITTER 800		sp	-1135.5
		wp	18115.4
tn	C13	rfi	1136.1
sfre	q 75.454	rfp	0
tof	766.0	rp	43.1
tpwr	r r 58	1 p	-199.8
pw	9.250		PLOT
	DECOUPLER	wc	250
dn	H1	5 c	0
dof	0	vs	483

Compound $\left(R_{p}\right)$ s ${ }^{13} \mathrm{C}$ NMP
\qquad

OB 882
pad=10 run with findzo before acquisitio
exp1 Phosphorus
SAMPLE 2012 temp SPECIAL
date Dec $18 \quad 2012$ temp not used
$\begin{array}{lr}\text { solvent cdcis gain } & 20 \\ \text { file home/tcuuser spin } & 20\end{array}$
$\begin{array}{lr}\text { vnmrsys/data/autor hst } & 20 \\ 2012.12 & 0.008\end{array}$
$\begin{array}{ll}2012.12 .14 / s _2012 \sim & \text { pw90 } \\ 1218 _31 / d a t a / \mathrm{cdc} 13 \sim \text { alfa } & 18.300 \\ & 10.000\end{array}$
ACOUISITION fid flags 10.00

$\begin{array}{lrrr}\text { bs } \\ \text { d } \\ \text { nt } & 1.000 & 64 & 10 \\ \text { fn } & 1600\end{array}$
$\begin{array}{lll}\text { nt } & 16 & \text { not us } \\ c t & 16 & \mathrm{sp} \\ \mathrm{ct} & \text { OLSPLAY }\end{array}$
TRANSMITTER ${ }^{16}$ sp wp -3647.3

$\begin{array}{lrlrl}\text { sfrq } & 121.465 & \text { rfp } & & 0 \\ \text { tof } & 7421.1 & \text { rp } & & 29.2 \\ \text { tpwr } & 555 & 1 p & \text { plot } & -113.7\end{array}$
$\begin{array}{crrr}\text { DECOUPLER } & \text { WC } & 250 \\ & H 1 & 5 C & 0 \\ & y y y & \text { th } & 7 \\ & & \text { th } & 2\end{array}$
$\begin{array}{lrr}\text { dmm } & \text { yyy } \\ \text { dpwr th } & \text { th } & \text { ai } \\ \text { cde }\end{array}$
dpwr
dmf

$$
\operatorname{dmf} \quad 6700
$$

$$
2
$$

Compound $\left(R_{p}\right)-5$
${ }^{31} \mathrm{P}$ IH NMR decoupled

OB 882
exp1 Phosphorus

SPEGIAL

sample
date Dec 18 2012 temp not used
colvent
cacis
$\begin{array}{lr}\text { solvent cdci3 gain } & 20 \\ \text { file home/tcuuser~ } \operatorname{spin} & 20\end{array}$

flle /home/TCuuser~ spin	
vnmrsys/data/auto~ hst	
$2012.12 .14 / \mathrm{s} 2012 \sim$ pw 90	0.008

T218_31/data/caci3~ alfa FLAGS 10.000

$\begin{array}{lrll}\text { Sw } & 15797.8 & \text { in } & \\ a t & 1.600 & \text { dp } & \\ n p & 50552 & \text { hs } & \\ \text { fb } & 8800 & & \text { Processing } \\ \text { bs } & 664 & 1 \mathrm{n} & \end{array}$
$\begin{array}{rrrc}\text { fb } & 8800 & & \text { PROCESSING } \\ \text { os } & 64 & \text { fb } & \text { not } 1.00 \\ \text { d1 } & 1.000 & \text { fn } & \text { USed } \\ \text { nt } & 16 & & \text { DISPLAY }\end{array}$

n DECOUPLER
dn
dof
din
H_{1}
$\begin{array}{rr}1 & s c \\ 0 & v s \\ \text { yon } & \text { th }\end{array}$

Compound $\left(R_{p}\right)$. 5
${ }^{1} \mathrm{HNMR}$

OB 882
exp1 Carbon
SAMPLE 2012
date Dec 182012 temp not usea solvent cilemore/rcuuser~ gain vnmrsys/data/auto~ spin vnmrsys/data/auto~ hst
$2012.12 .14 / \mathrm{s} 2012 \sim$ pw90 2018_31/data/cdc12~ pw90 1218 _31/data/caci3~ alfa $\quad 18.00$ ACOUISITION.fid FLAGS 10.00

Compound $\left(R_{q}\right)=5$ 13 C NMR

OB 883
pad=10 run with findzo before acquisitio
n
exp1 Phosphorus
SAMPLE SPECIAL

$$
\begin{aligned}
& \text { SAMPLE } \\
& \text { date Dec } 192012 \\
& \text { solvent temp }
\end{aligned}
$$

$$
\begin{aligned}
& \text { file home tcuuser spi } \\
& \text { vnmrsys/tata/autor hat }
\end{aligned}
$$

$$
\begin{array}{r}
25 \\
20 \\
20
\end{array}
$$

$$
\begin{aligned}
& \text { vinesysfata/autor hst } \\
& 2012.12 .14 / 5-2012 \sim \text { pw90 } \\
& 12190 \text { data/cdr12~ }
\end{aligned}
$$

$$
\begin{array}{r}
0.008 \\
18.300
\end{array}
$$

sw

$$
\begin{array}{ll}
\text { Ton } & \text { in } \\
15797.8 & \text { ir } \\
15600 & \text { do }
\end{array}
$$

$d 1$
$n t$
$c t$

$\begin{array}{lrrrrr}\text { DECOUPLER } & & \text { WC } & & 250 \\ \text { dn } & \text { Si } & \text { sC } & & 0 \\ \text { dof } & 0 & \text { vs } & & 10 \\ \text { dn } & \text { yyy } & \text { th } & & 5 \\ \text { dmm } & \text { w } & \text { ai } & \text { cdC } & \text { ph } & 5 \\ \text { dpwr } & 35 & & & & \end{array}$

Compound $\left(R_{v}\right)^{-6}$ ${ }^{31} \mathrm{P} J^{1} \mathrm{H}$ NMR decoupled
$\begin{aligned} & 8.300 \\ & 0.000\end{aligned}$

OB 883		
expl Phosphorus		
Sample		Spectal
date Dec 192012	temp	not used
solvent cdcla	gain	25
file home/TCutuserw	spin	20
fumrsys/data/autor	hst	0.008
$-2012.12 .14 / \mathrm{s}$ 2012*	pw90	18.300
1219_02/data/cdci3*	alfa	10.000
$02 . f i d$		flags
ACQUTSItion	11	n
SW 15797.8	in	n
at 1.600	$d p$	y
np 50552	hs	y
fb 8800		Processing
bs 64	1b	1.00
$41 \quad 1.000$	fn	not used
nt 16		DISPLAY
ct transmitter 16	sp	-3647.3
	wp	1.5797 .3
tn P31	rff	3647.8
sffa 121.465	rfp	0
tof 7421.1	rp	70.0
tpwr 55	$1 p$	-113.7
pw 9.150		PL.OT
DECOUPLER	we	250
dn H1	Sc	0
dof	vs	59
dm ynn	th	4
dinm ${ }^{\text {dew }}$	ai	cdc ph
$\begin{array}{ll}\text { dpwr } \\ \text { dmf } & 6700\end{array}$		

Compound $\left(R_{q}\right)$-6 ${ }^{31} \mathrm{P} \boldsymbol{1}^{1} \mathrm{H}$ NMR coupled

90	80	70	60	50	40	30	20	10	0	-10	-20

08883
pad=10 run with findz0 before acquisitio
expl Proton
SAMPLE DEC. \& VT
date Dec 192012 dfr
solvent cdci3 dn
file homercuusern dowr
vnmrsys/data/auto~ dof
$-2012.12 .14 / \mathrm{s}$ _2012~ dm mmn

ACOULSITITON PROCESSING

sfra	300.047	wtfile
tn	H1	proc ft
at	1.998	$f \mathrm{n}$ not used
$n \mathrm{p}$	19184	
sw	4800.8	werr xmreact
f b	2600	wexp abortoff flus
bs	16	h procplot aborton
topr	55	wbs
pw	7.9	wnt
d1	1.000	
tof	277.9	
nt	16	
ct	16	
alock	y	
gain	not used flags	
i1	n	
in	n	
dp	y	
	drsplay	
sp	-592.5	
wp	4800.5	
vs	97	
sc	0	
wc	240	
hzmm	20.00	
is	341.07	
rfi	592.8	
Ifp	0	
th	3	
ins	2.000	

Compound $\left(R_{p}\right)$-6
${ }^{1}$ HNMR

08883

exp1 Carbon
SAMPLE \qquad
Dec 192012 temp file home ctcucluser gain vnmrsys/data/autor hst -2012.12.14/s-2012~ pw90 1219.-02/data/cdcis ACQuISITITON
sw
at
not used
20
20
0.008
18.500
10.000

	ACQUISITİON.	11	n
sw	18115.9	in	n
at	1.301	dp	y
np	47120	ns	nn
fb	10000		Processing
bs	64	1 b	0.50
d1	2.000	fn	not used
nt	800		DISPLAY
ct TRANSMITTER 800		sp	-1135.5
		wp	18115.4
tn	C13	rfi	1136.1
sfra	$9 \quad 75.454$	rfp	
tof	766.0	rp	5.2
	r 58	$1 p$	-204.1
pw	9.250		PLOT
	decoupler	wc	250
dn	H1	sc	
dof	0	vs	510
dm	yyy	th	cdc ph

Compound $\left(R_{p}\right)-6$ ${ }^{13} \mathrm{C}$ NMR

220	200	180	160	140	120	100	80	60	40	20	0

Compound $\left(R_{p}\right)$-4 ${ }^{31} \mathrm{Pr} \mathrm{l}^{1} \mathrm{H}$ NMR decoupled

Current Data Parameters
NAME
EXPNO 2157 after column
EROCNO

$\begin{aligned} & \mathrm{E} 2-\mathrm{Aca} \\ & \mathrm{Date} \end{aligned}$	uisition Parameters 20150828
Time	18.10
INSTRTMM	spect
PROBHD	5 mm PABBO BB/
PUIProg	290930
TD	65536
SOLVENT	CDC13
NS	16
DS	4
SWH	64102.563 Hz
ETDRES	0.978127 Hz
AQ	0.5111808 sec
RG	203.57
DW	7.800 usec
DE	6.50 usec
TE	295.4 K
D1.	2.00000000 sec
011	0.03000000 sec
TD0	-
	CHANNEL $61=0=0=0$
SEO1	161.9674942 MHz
NuCl	31P
P1	14.25 usec
EWWI	15.00000000 60

| 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 | ppm |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Compound $\left(R_{p}\right)-4$ ${ }^{1} \mathrm{H}$ NWAR

Compound $\left(R_{p}\right)$)-7
${ }^{1} \mathrm{H}$ NMR
Current Data Parameters NAME OB 1781 after work-up EXPNO

E2 - Acquisition Parameters
Date 20141015
Tirne 18.09
INSTRUM spect
PROBHD 5 mm PABBO $\mathrm{mB} /$
PULPROG $\begin{aligned} & 2930 \\ & T D\end{aligned} \quad 6536$
SOLVENT CDC13

NS
DS
DS
SWH
$\begin{array}{ll}\text { FIDRES } & 8012.820 \mathrm{~Hz} \\ & 0.122266 \mathrm{~Hz}\end{array}$
$\begin{array}{lr}\text { AQ } & 0.122266 \mathrm{~Hz} \\ & 4.0894465 \mathrm{sec}\end{array}$
$\begin{array}{lr}\text { AQ } & 4.0894465 \\ \text { RG } & 81.67\end{array}$
62.400 usec
62.400 usec
6.50 usec
6.50 us
294.9 K
1.00000000 se

D1 $\quad 1.00000000$
$=-======$ CHANNEL f $1=======$
SEOL
400.1324710 MHz
$\begin{array}{ll}\text { NUC1 } \\ \text { pl } & 10.00\end{array}$
PTW1 25.00300026 use
E2 -- Processing parameters
$\begin{array}{rr}2 & \text { - Processing parameters } \\ \mathrm{SI} & 65536 \\ \mathrm{SF} & 400.1300000 \mathrm{MHz}\end{array}$
$\begin{array}{ccc}\text { SE } & & 400.1300000 \mathrm{MHz} \\ \text { WDW } & 0 & \text { EM } \\ \text { SSB } & 0 & 0.30 \mathrm{~Hz} \\ \text { GB } & 0 & \end{array}$
$\begin{array}{lll}\mathrm{GB} & 0 & 1.00\end{array}$

Compound $\left(R_{p}\right)_{7}^{7}$ ${ }^{13} \mathrm{C}$ NMR

[^0]

Compound (R_{p})-הa
${ }^{3} \mathrm{C}$ NMR

Compound (R_{p})-8 ${ }^{31} \mathrm{P}$ / H NMR coupled

Compound $\left(\mathrm{R}_{\mathrm{p}}\right) / 3$ ${ }^{13} \mathrm{C}$ NMR

Current Data Earameters
NAME
EXPNO 1438 pure
EROCNO

Compound $\left(R_{v}\right)$-8a ${ }^{31} \mathrm{Pl} 1 \mathrm{H}$ NWR coupled

Current Data Parameters

Current Data Parameters NAME OB 1843 after column EXPNO 1 PROCNO

E2 - Acquisition Parameter
Date_ 20141121
TNSTRUM spect
5 mm PABEO BR
PULPROG $\begin{array}{r}\text { mm PABBO } \\ \text { zg } 30\end{array}$
TD 65536
SOLVENT CDC13

DS

SWH
8012.820 Hz
0.122266 Hz

AQ	0.122266
	4.0894465
sec	

$$
4.0894465 \mathrm{sec}
$$

2.400 usec
6.50 usec 296.0 K
1.00000000 se

CHANNEL $£ 1$
400.1324710 MHz

SFOI 400.1324710 MH
$\begin{array}{ll}\text { NUC1 } & 1 \mathrm{H} \\ \text { P1 } & 10.00 \text { usec }\end{array}$
PLW1 25.00300026
F2 - Processing parameters
SI $\quad 400.1300000$
WDW
400.1300000 MHz
EM
SSB $\quad 0$
LB

0
0.30 Hz
1.00

Compound ($\left.\mathrm{R}_{\mathrm{p}}\right)^{1-56}$
${ }^{31} \mathrm{P} \mathrm{P}^{\prime} \mathrm{H}$ NMR coupled

Compound 8a
${ }^{31} \mathrm{P} \mathrm{P}^{\prime} \mathrm{H}$ NMR decoupled
.

EXPNO
F2 Acquisition parameter Time
instrum inStrum
PROBHD TD

$$
\begin{aligned}
& \text { TD } \\
& \text { SOL } \\
& \text { NS }
\end{aligned}
$$

$$
\begin{array}{lr}
\text { SOLVENT } & 65036 \\
\text { NS } & \text { COC } 13 \\
\text { DS } & 16 \\
\text { SWH } & 4 \\
\text { FIDRES } & 64102.563 \mathrm{~Hz} \\
0.978127 \mathrm{~Hz}
\end{array}
$$

$$
\begin{array}{ll}
\text { SWH } & 64102.563 \mathrm{~Hz} \\
\text { FIDRES } & 0.978127 \mathrm{~Hz} \\
\text { An } & 0.711808 \mathrm{seo}
\end{array}
$$

$$
\begin{array}{lr}
\text { FIDRES } & 0.978127 \mathrm{~Hz} \\
\text { RG } & 0.5111808 \mathrm{sec} \\
& 203.57
\end{array}
$$

$$
\begin{array}{r}
20.51 \\
7.800 \text { usec } \\
6.50 \text { usec }
\end{array}
$$

$$
\begin{aligned}
& 6.50 \text { usec } \\
& 295.8 \mathrm{~K}
\end{aligned}
$$

$$
\begin{array}{r}
295.8 \mathrm{~K} \\
2.00000000 \mathrm{se}
\end{array}
$$

$$
\begin{array}{r}
2.00000009 \mathrm{sec} \\
0.0300000 \mathrm{sec}
\end{array}
$$

CHANNE1. $\mathrm{fl}========$
161.9674942 MH
15.00000000 W

HANNEL $E 2=0==0=$
SEO2
400.1316005 MHz

CPDPRG12 waltz 1 H
$\begin{array}{lr}\text { PCPD2 } & 90.00 \text { us } \\ \text { PLW2 } & 10.09000000\end{array}$
PLW2 $\quad 10.00000000 \mathrm{~W}$
$\begin{array}{ll}\text { PLW12. } & 0.31604999 \mathrm{~W} \\ \text { PLW13 } & 0.25600001 \mathrm{~W}\end{array}$
F2
SI
$\begin{array}{cc}\text { E2 } & \text { Processing parameters } \\ \text { SI } & 32768 \\ \text { SE } & 161.9755930 \mathrm{MHz} \\ \text { WDW } & \mathrm{EM}\end{array}$
SSB 0
1.00 Hz

1. 40

	90	80	70	60	50	40	30	20	10	0	l

0B 320
pad=10 run with findz0 before acquisitio pad
n
exp1 Phosphorus
date AMPLE Apr 122012 temp SPEGTAL

$\begin{array}{lr}\text { Solvent cdcla gain } & 14 \\ \text { file home/fcuuserw spin } & 20 \\ \text { innirsys/data/autow hst } & 0.008\end{array}$
Nhnrsys/data/auto nst
$2012.04 .10 / \mathrm{s} 2012 \sim$ pw90
2012.04.10/s 2012~ pw90
万412_30/data/cda

9412_30/data/cdci3r alfa flags
sw ACOUISITION 15797.3 in
$\begin{array}{rrr}\text { sw } & 15797.3 & \text { in } \\ \text { at } & 1.600 & \text { dp } \\ \text { ne } & 50552 & \text { hs }\end{array}$
$\begin{array}{lrl}\mathrm{fb} & 8800 & \\ \mathrm{bs} & 64 & 1 \mathrm{~b} \\ \mathrm{~d} 1 & 1.000 & \mathrm{fn}\end{array}$
$d 1$
$n t$
$n t$
ct $\quad \begin{aligned} & 16 \\ & 16 \\ & \mathrm{sp}\end{aligned}$
TRANSMITTER $\begin{array}{cc}16 & \text { sp } \\ \text { P3 } \\ \text { Pf }\end{array}$
$\begin{array}{lll}\mathrm{sfrq} & 121.465 & \text { rfp }\end{array}$
$\begin{array}{lrl}\text { tof } & 7421.1 & \mathrm{rp} \\ \text { towr } & 55 & \mathrm{pm}\end{array}$
pW pecoupler ${ }^{9.15}$

y
ny
DISPLAY
-3647.3

dpwr	35
dmf	6700

Compound ($\mathrm{R}_{\mathbf{p}}$)-10 ${ }^{31} \mathrm{P}$ f H NMR decoupled

0B 320
exp1 Phosphorus
SAMPLE SPECTAL
date Apr 122012 temp
solvent cocle gain
Vnmrsys/data/auto~ nst

0412_30/data/cocis~ alfa
ACQUISMTION ${ }^{06}$ fid
$\begin{array}{lrl}\text { sw } & 15797.8 & \text { in } \\ \text { at } & 1.600 & \text { dp } \\ \text { np } & 50552 & \text { hs }\end{array}$

$\begin{array}{lrr}\mathrm{bs} & 1.000 & \mathrm{fn} \\ \mathrm{d} 1 & \text { not used }\end{array}$
di
nt
ct
ct TRANSMITTER 16 sp
tn
sfr

$\begin{array}{lrl}\text { sfra } & 121.465 & \text { rfp } \\ \text { tof } & 721.1 & \text { rp }\end{array}$

$\begin{array}{lrrr}\text { in } & \text { WC } & 250 \\ \text { dof } & H 1 & \text { Sc } & 0 \\ & 0 & \mathrm{~V}^{2} & 116\end{array}$
$\underset{d m m}{d m} \quad \begin{aligned} & \text { dim } \\ & 35\end{aligned}$
$\begin{array}{lr}\mathrm{dpwr} & 35 \\ \mathrm{dmf} & 6700\end{array}$

14
20
0.008
18.300
10.000

FLAGS
n
display
Y -3647.3
-3647.3
15797.
3647.8
0
PLOT

$$
\begin{array}{r}
250 \\
0
\end{array}
$$

Compound (R_{p})-10
${ }^{31} \mathrm{Pr}{ }^{1} \mathrm{H}$ NMR coupled
exp1 Proton
SAMPLE $\quad \begin{gathered}\text { DEC. \& VT } \\ \text { Apr } 12 \\ 2012 \\ \text { dfrq }\end{gathered}$
date Apr 122012 dfro
solvent cdcis dn
file home TCluser~ dpwr
vnmrsys/data/auto~
0412 28/data/cdc13~ dmm
ACOUTSITION 01. fid dmf processing 13
ACOUSSITION
sfrq
300.047
wtfile
$\begin{array}{lrlr}\text { sfrq } & 300.047 & \text { wtfile } & \\ \text { tn } & H 1 & \text { proc } & \text { fot ased } \\ \text { at } & 1.998 & \text { fn } & \text { not } \\ \text { np } & 19184 & & \text { nereat }\end{array}$
1998
1984
1808
$\begin{array}{ll}1900.8 & \text { werr xmreact } \\ 2600 & \text { wexp abortoff flus }\end{array}$

cdo ph

OB 320
expl

> special
date Apr 12 2012 temp
solvent cacla gain
file homencuuser~ spin
Numrsys/data/auto hst
0412 30/data/cact1~ alf
ACQUISTTITON. fid il Flags

$\begin{array}{llll}\text { at } & 1.301 & \text { dp } \\ n p & 47120 & \text { hs } \\ \text { fb } & 10000\end{array}$ processing on
$\begin{array}{lrlr}\text { bs } & 100004 & \text { ib } & \text { not used } \\ \text { d1 } & 2.000 & \text { fn } & 0.50 \\ \text { nt } & 512 & & \text { DISPLAY }\end{array}$
ct TRANSMITTER $\begin{array}{lll}512 & \text { sp } & -1135.5 \\ \text { wp } & 18115.4\end{array}$
$\begin{array}{lrlr}\operatorname{tn} & \text { C13 } & \text { rfl } & 1136.1 \\ \text { sfrq } & 75.454 & \text { rfp } & 0 \\ \text { tof } & 766.0 & \text { rp } & -3.0\end{array}$

tof	76.43 .0	rpp	-3.0
tpwr	58	10	-195.3

$$
\begin{array}{lrlll}
\text { dm } & y y y & \text { th } & & \\
\text { dman } & 6 & a i & \text { cdc } & \text { ph } \\
\text { dpwr } & 6700 & & & \\
\text { dmf } & 6700 & &
\end{array}
$$

Compound $\left(R_{v}\right)$-10
${ }^{13} \mathrm{C}$ N以R

OB 87712

pad=10 run with findzo before acquisitio

exp1 Phosphorus

-

$$
\operatorname{date} \quad \begin{gathered}
\mathrm{SA} \\
\mathrm{D}
\end{gathered}
$$

$$
\begin{aligned}
& \text { date } \text { dec } 192012 \\
& \text { solvent } \\
& \text { file thome/tcuuser }
\end{aligned}
$$

$$
\begin{aligned}
& \text { solvent cdcis gain } \\
& \text { file home/tcuuser~ spin } \\
& \text { /vnmrsys/data/autow hst }
\end{aligned}
$$

$$
\begin{array}{llll}
\text { ACQUISITION. } & \text { il } \\
\text { SW } & 15797.8 & \text { in } & n \\
n
\end{array}
$$

$$
\begin{array}{lrlr}
\text { TRANSMITIER } & \text { wp } & 15797.3 \\
\text { ti } & \text { P31 } & \text { rft } & 3647.8 \\
\text { sfrq } & 121.465 & \text { rfp } & 0
\end{array}
$$

$$
\begin{array}{lrlr}
\text { sfrq } & 121.465 & \mathrm{rfp} & 0 \\
\text { tof } & 7421.1 & \mathrm{rp} & 18.5 \\
\text { tpw } & 55 & 1 p & -113.7
\end{array}
$$

$$
\begin{array}{lrr}
\text { dof } & 0 & v s \\
\text { dm } & y y y & \text { th } \\
\text { dmm } & w & a i \\
\text { dpwr } & 35 & \\
\operatorname{dmf} & 6700 &
\end{array}
$$

Compound (R_{p})-11 ${ }^{31} \mathrm{P}$ IH NMR decoupled

90	80	70	60	50	40	30	20	10	0	-10	-20	ppm

OB 877 f 1
pad=10

Compound (R_{v})-11 ${ }^{1} \mathrm{H} N \mathrm{NWR}$

Compound $\left(R_{p}\right)$-11 ${ }^{13} \mathrm{C}$ NWR

Compound (R_{p})-12 ${ }^{31} \mathrm{P} \mathrm{I}^{1} \mathrm{H}$ NMR decoupled

Compound $\left(R_{p}\right)$-12
${ }^{31}$ P/ ${ }^{1} \mathrm{H}$ NMR icoupled

Current Data Parameters	
NAME	ob 1614 after column
EXPNO	2
PROCNO	1
E2 - Acquisition Parameters	
Date...	20140805
Time	9.08
INSTRUM	spect
EROBHD	$5 \mathrm{~mm} \mathrm{PABEO} \mathrm{BB} /$
PULPROG	zg30
TD	65536
SOLVENT	CDCl 3
NS	32
DS	4
SWH	64102.563 Hz
EIDRES	0.978127 Hz
AQ	0.5111808 sec
RG	203.57
DW	7.800 usec
DE	6.50 usec
TE	295.0 K
Dl	2.00000000 see
Tro	1
$\Rightarrow=$	CHANNEL Cl - $=-=-=$
SFOI	161.9674942 MHz
NUC1	31 P
El	14.25 usec
PLW	15.00000000 w
E2 - Processing parameters	
SI	32768
SE	161.9755930 MHz
WDW	EM
SSB	0
LB	1.00 Hz
CB	0
PC	1.40

Compound $\left(\mathrm{F}_{\mathrm{p}}\right)^{-12}$

Current Data Parameters EXPNO
PROCNO
E2 - Acquisition Parameters
Date_ 20140805
Time 9.11
INSTRUM 5 mm PABEOPECt
PROBHD 5 mm PABBO BB/
PULPROG

PULPROG	2930
$T D$	65536

SOLVENT	65536
CDC13	

NS	16
DS	2
SWH	8012.820

EIDRES $\quad 0.122266 \mathrm{~Hz}$
$\mathrm{AQ} \quad 4.0894465 \mathrm{sec}$

RG	32.38
DW	62.50

62.400 usec
22.400 usec
6.50 usec 294.9 K
1.00000000 sec
$=========0$ CHANNEL $\mathbb{E}=======$
$\begin{array}{ll}\text { SEO1 } & 400.1324710 \mathrm{MHz} \\ \text { NUC1 }\end{array}$
$\begin{array}{ll}\mathrm{PuCl} & 1 H \\ \text { P1 } & 10.00 \text { usec }\end{array}$
PLWI 25.00300026 w
E2 - Processing parameters

SI	65536
SE	400.1300000 MHz
WDW	EM

SBE EM
$\mathrm{LB} \quad 0.30 \mathrm{~Hz}$

GB
PC $\quad 1.00$

Compound $\left(R_{p}\right)-12$ ${ }^{13} \mathrm{C} N \mathrm{MR}$

Compound (R_{p})-13
${ }^{31} \mathrm{Pi}{ }^{1} \mathrm{H}$ NMR coupled

Cursent Data Earameters NAME PROCNO

Compound $\left(R_{p}\right)$-13

Current Data Parameters			
NAME		OE 1052	
EXPNO		1	
PROCNO		1	
E2 - Acquisition Parameters			
Date		20130510	
Time		10.02	
INSTRUM		spect	
PROBHD	5 max	PABBO EB/	
PULPROG		zapg30	
TD		65536	
SOLVENT		CDCl 3	
NS		16	
DS		4	
SWH		64102.563	Hz
FTDRES		0.978127	Hz
AO		0.5111808	sec
RG		203.57	
DW		7.800	usec
DE		6.50	usec
TE		297.0	
D1		2.00000000	sec
D11		0.03000000	sec
TDO		1	

SEO2 400.1316005 MHz
NUC2 400.1316005
CPDPRG[2 waltz16
PcpD2 90.00 usec
PLW2 $\quad 10.00000000 \mathrm{~W}$
$\begin{array}{lr}\text { PLW12 } & 0.31604999 \mathrm{~W}\end{array}$
F2 -- Processing parameters
. 32768
161.9755930 MHz
WDW EM

Compound $\left(R_{p}\right)$-14 ${ }^{31} \mathrm{P} \mathrm{I}^{1} \mathrm{H}$ NWR couplad

Compound $\left(R_{p}\right)^{-15}$
31 P IH NMR decoupled

Current Data Parameters
NAME
EXENO PROCNO

F2 - Acquisition Parameters
sition Param
Time 20.05

INSTRUM \quad spect
PROBHD 5 mm PABBO BB/
PULPROG $\quad 2 g p g 30$

TD	65536
SOLVENT	CDC13

NS
NS
DS
SWH $\quad 64102.563 \mathrm{~Hz}$
EIDRES $\quad 0.978127 \mathrm{~Hz}$
$\mathrm{AQ} \quad 0.5111808 \mathrm{sec}$ RG $\quad 203.57$ 7.800 used 6.50 usec 294.6 K
294.6 k
2.0000000 sec $011 \quad 0.03000000 \mathrm{sec}$
TDO
CHANNEL $f 1======$
SEO1 $\quad 161.9674942 \mathrm{MHz}$ NUC1 31P
Pl
14.25 usec

PLW1
15.00000000 W
$======\begin{array}{r}\text { CHANNEL } f 2=-==== \\ 400.1316005 \mathrm{MHz}\end{array}$
NUC2
CPDPRGI2
PCPD2
PLW2
$\begin{array}{ll}\text { PLW12 } & 10.00000000 \mathrm{~W}\end{array}$
PLW13 0.25600001 W
22 - Processing parameters
SI Erocessing paramet 32768
$\mathrm{SE} \quad 161.9755930 \mathrm{MH}$
$\left.\begin{array}{lllllllllllllllllllllll}95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & \mathrm{ppmssB} & 0 & 1.00 \mathrm{~Hz} \\ \mathrm{LB} \\ \mathrm{GB} \\ \mathrm{PC}\end{array}\right)$

Compound (R_{ν})-15
31P/H NMR coupled

Current Data Earameters NAME EXPNO PROCNO

E2 - Acquisition Parameters Date $\quad 20130717$
$\begin{array}{lr}\text { Time } & 20.11\end{array}$
INSTRUM spect
PROBHD 5 mm PABBO BB/ $\begin{array}{lr}\text { PULPROG } & 2930 \\ & 65536\end{array}$ TD
SOLVENT CDC13
$\begin{array}{lr}\text { DS } & 4 \\ \text { SWH } & 64102.563 \mathrm{~Hz}\end{array}$
$\begin{array}{lr}\text { SWH } & 64102.563 \mathrm{~Hz} \\ \text { FIDRES } & 0.978127 \mathrm{~Hz}\end{array}$
$\begin{array}{lr}\text { EIDRES } & 0.978127 \mathrm{~Hz} \\ \mathrm{AQ} & 0.5111808 \mathrm{sec}\end{array}$
$A Q$
$R G$
RG
$\begin{array}{ll}\text { DW } & 7.800 \text { usec } \\ \text { DE }\end{array}$
6.50 used
293.9 K
2.00000000 sec
2.00000000
1
$=======-=-=$ CHANNEL $\mathrm{C} 1=======$
SFO1 $\quad 161.9674942 \mathrm{MHz}$

$$
\begin{array}{lr}
\text { SFO1 } & 161.9674942 \\
\text { NUC1 } & 31 p
\end{array}
$$

$$
\text { P1 } \quad 14.25 \text { us }
$$

$$
\begin{array}{ll}
\text { P1 } \\
\text { PLW1 }
\end{array} \quad 15.00000000 \mathrm{~W}
$$

E2 - Processing parameters
SI $\quad 32768$
WDW $\quad 161.9755930$
$\begin{array}{ll}L B & 0\end{array}$
1.00 Hz
1.40

Compound ($\left.\mathrm{F}_{\mathrm{p}}\right)^{\text {l-15 }}$ ${ }^{1} \mathrm{H}$ NMR

Compound ($\left.R_{p}\right)^{\text {l-1 }}$
${ }^{31} \mathrm{P}$ /H NMR decouplad

Current Data Parameters
NAME
EXPNO 2018 PROCNO

Date		20150429	
Time		17.03	
TNSTROM		spect	
PROBHD	5 mm	PABBO Bb	
pulerog		2gpg30	
TD		65536	
SOLVENT		CDC13	
NS		16	
08		- 4	
SWH		64102.563	Hz
FTDRES		0.978127	Hz
AQ		0.5111808	sec
RG		203.57	
DW		7.800	used
DE		6.50	used
TE		295.7	K
D1		2.00000000	sec
011		0.03000000	sec
TDO			

$==-=-=-=$

HEO2
$400 \cdot 316005 \mathrm{MHz}$ 400.316005
wa $1+216$

CPDPRGl2 waltz16	
CPD2	90.00 used

$\begin{array}{ll}\text { PCPD2 } \\ \text { PLH2 } & 10.00000000 \mathrm{~W}\end{array}$
$\begin{array}{lr}10.00000000 \mathrm{~W} \\ \mathrm{pLW12} & 0.31604999 \mathrm{~W}\end{array}$
E1W13 0.25600002 W

Processing parameters

162768
161.9755930 MHz

0
1.00 Hz

Compound ($\mathbf{R}_{\mathbf{p}}$)-1 ${ }^{31} \mathrm{P} \mathrm{I}^{1} \mathrm{H}$ NMR coupled

$\begin{array}{lr}\text { Current Data Parameters } \\ \text { NAME } & \text { OB } 2018 \\ \text { EXPNO } & 3 \\ \text { PROCNO } & 1\end{array}$

E2 - Acquisition Parameters	
Date	20150429
Time	17.06
INSTRUM	spect
PROBHD	5 mm PABBO $\mathrm{BB} /$
PULRROG	2 g 30
TD	65536
SOLVENT	CDC13
NS	10
DS	2
SWH	8012.820 Hz
FIDRES	0.122266 Hz
AQ	4.0894465 sec
RG	32.38
DW	62.400 usec
DE	6.50 usec
TE	295.1 K
DI	1.00000000 sec
TDO	1

$$
\begin{array}{r}
======= \\
\text { SEO1 CHANNEL E1 }===== \\
400.1324710 \mathrm{MHz}
\end{array}
$$

$$
\begin{array}{rr}
\text { SEO1 } & 400.1324710 \mathrm{MHz} \\
\text { NUC1 } & 10.00 \mathrm{usec}
\end{array}
$$

$$
\begin{array}{lr}
\text { P1 } & 10.00 \mathrm{u} \\
\text { PLW1 } & 25.00300026
\end{array}
$$

$$
\begin{gathered}
\mathrm{E} 2 \\
\mathrm{SI}
\end{gathered}
$$

$$
400.1300000 \mathrm{MHz}
$$

EM

$$
0.60 \mathrm{~Hz}
$$

$$
1.00
$$

Compound $\left(R_{p}\right)$-1
${ }^{13} \mathrm{C}$ NMR

Cument Data Barameters
NAME
EXPNO
PROCNO
E2 - Acquisition Parameters
Dete 20150429
Trime 20150429
$\begin{array}{ll}\text { Time } & 18.03 \\ \text { INSTRUM }\end{array}$
INSTRUM spect
PROBHD
PULPROG
$T \mathrm{~T}$ TOLVM $\quad 65536$
$\begin{array}{lr}\text { SOLVENT } & \text { CDCL3 } \\ \mathrm{NS} & 942\end{array}$

EIDRES 0.366798 Hz
$\begin{array}{lr}\mathrm{AQ} & 1.3631488 \mathrm{sec} \\ \mathrm{RG} & 203.57\end{array}$
20.800 usec
20.800 usec
6.50 usec
20.50 u
2.00000000 sec
0.03000000 sec

	CEON	100.6228293
MUC1	130	$=0$
P1	10.00	wse
PLW1	45.00000000 W	

$-===5=0=0=0$
$\mathrm{SFO} \quad 400.1316005 \mathrm{MH}$
-
walta16
$\begin{array}{lr}\text { CPDPRG12 waltz16 } \\ \text { PCPD2 } & 90.00 \text { useo }\end{array}$
PLN2 10.00000000
$\begin{array}{ll}\text { ELW12 } & 0.31604999 \mathrm{~W}\end{array}$
ELW13 0.25600001 W
F2 - Procesming parameters $\begin{array}{cc}\mathrm{SI} & 102768 \\ \mathrm{SE} & 100.6127685 \mathrm{MHz} \\ \mathrm{EM} & \mathrm{EM}\end{array}$

0
1.00 Hz
1.40

Compound $\left(\mathrm{S}_{\mathrm{p}}\right)$)-1
${ }^{31} \mathrm{P}$ /H NMR decoupled
\qquad

0.6085
exad-stput

Compound $\left(\mathrm{S}_{\mathrm{p}}\right)$-1 ${ }^{31} \mathrm{P} \mathrm{I}^{1} \mathrm{H}$ NMR coupled

OB 085

exp1 s2pu1

$$
\text { SAMPLE } \text { SPECIAL }
$$

date oct 242011 temp not used

solvent	Cuc13	gain	not used
ACQuxstition exp		spin	20
		hst.	0.008
sw	4803.1	pw90	17.200
at	1.994	alfa	20.000
np	19158		flags
$f 1$	not used	11	
bs	16	in	
55	4	dp	
d1	1.000	hs	proctssing mn
nt	16		Processing
ct	16	$f \mathrm{f}$	not used
transmitter			display
tn	H1	sp	-598.0
sfra	300.047	wp	4802.8
tof	277.8	rfi	598.3
tpwr	55	rfp	
pw	8.690	rp	-117.1
decoupler		1p	-79.0
dn	C13		PLOT
dof	0	we	250
dm	man	sc	
dmm	c	vs	17

$\begin{array}{lrl}\text { dpwr } \\ \text { dmf } & 13100 & \text { th } \\ \text { ai cdc } & \text { ph }\end{array}$

OB 953
pads=10 run with findz0 before acquisitio n
exp10 Phosphorus
SAMPLE
date Feb 142013
solvent
cdols
solvent cacis temp
Tle /home/Tcuuser~ spin
vnmrsys/data/auto het

25
20 0.008
18.800
$\begin{array}{ll}0214 _12 / d a t a / c d c 13 \sim \text { alfa } & 18.300 \\ 10.000\end{array}$
acQuIsITTON.fid il FLAGS
$\begin{array}{ccc}\text { sw } & 15797.8 & \text { in } \\ \text { in } & \text { in } & n \\ 1.600 & \text { din } & n\end{array}$
$\begin{array}{lrr}\text { SW } & 15797.8 & \text { in } \\ \text { at } & 1.600 & \text { dp } \\ \text { np } & 50552 & \text { hs }\end{array}$
$\begin{array}{lrlr}\mathrm{fb} & 8300 & & \text { processing } \\ \mathrm{bs} & 64 & \mathrm{lb} & \text { not used }\end{array}$
nt

Compound $\left(S_{p}\right)$-16 ${ }^{31} \mathrm{P}$ /H NMR decoupled

90	80	70	60	50	40	30	20	10	0	-10	-20

OB 953
explo Phosphorus

		AL
date Feb 142013 solvent CdCl3		not used
file home/TCUuser~	spin	20
/vnmrsys/data/auto	hst	0.008
-2013.02.14/s_2013~	pw90	18.300
0219_12/data/cuc13~	alfa	10.000
-02.fid		flags
ACQUISITİON	11	
Sw 15797.8	in	n
at 1.600	dp	y
np 50552	hs	ny
fb 8800		Processing
bs 64	16	1.00
d1 1.000	fn	not used
64		OISPLAY
ct 64	sp	-3647.3
TRANSMITTER	wp	15797.3
tn P31	rfi	3647.8
sfrq 121.465	rfo	0
tof 7421.1	rp	113.7
tpwr 55	1 p	-113.7
pw 9.150		PLOT
DECOUPLER	wc	250
dn H1	sc	0
dof	vs	357
dm ynn	th	12
${ }_{\text {dmm }}^{\text {dim }}$	ai	cdc ph
$\begin{array}{lr}\text { dpwr } \\ \text { dmf } & 35 \\ \end{array}$		
dmf f 6700		

Compound $\left(S_{q}\right)$)-16 ${ }^{31} \mathrm{Pi}$ H NWMR coupled

OB 970
exp10 Carbon

Sample	Special	
date Feb 202013	temp	not used
solvent cacl3	gain	20
file home/Tcuuser*	spin	- 20
Vnmersy/data/autor	hst	0.008
2013.02.14/s_2013~	pw90	18.500
0220_28/data/cdel3~	alfa	10.000
amouisition.fid		Flags
ACOUISITITON	i)	
Sw 18115.9	in	
at 1.301	dp	
np 47120	hs	
$f \mathrm{~b}$		Processing
bs 64	1 b	0.50
d1 2.000	fn	not used
nt 800		display
ct 800	sp	-1135.5
transmitter	wp	18115.4
tn C13	rfi	1136.1
Sfrg 75.454	rfp	
tof 766.0	rp	55.8
tpwr 58	1 p	-160.4
pw 9.250		PLOT
OECOUPLER	wc	250
an H1	sc	
dof 0	vs	256
dm yyy	th	
dmm w	a 1	cdc ph
$\begin{array}{lr}\text { dipwr } \\ \text { dmf } & 6700\end{array}$		

Compound $\left(S_{p}\right)-16$
${ }^{13} \mathrm{C}$ NMR

OB 949
pad=10 run with findzo before acquisitio
exp1 Phosphorus
SAMPLE SPECTAL
date Feb 92013 temp
solvent cdcl3 gain
file home/tcuuser~ spin
Nnmrsys/data/autor hst

$2013.02 .09 / \mathrm{s} 2013 \sim$
-0209 pw90

$\begin{array}{cc}0209 \ldots 05 / d a t a / c d c 13 \sim \\ 02 . f i d f a r & 0.008 \\ & 18.300\end{array}$

Compound $\left(\mathrm{S}_{\mathrm{p}}\right)$-17
${ }^{31} \mathrm{P}$ fl H NMR decoupled

OB 949
exp1 Phosphorus
SAMPLE
SAMPLE SPECIAL

Compound $\left(\xi_{0}\right)$-17 ${ }^{31} \mathrm{P} \mathrm{J}^{1} \mathrm{H}$ NMR coupled
OB 952.
pad=10 run with findzo before acquisitio
$\begin{array}{lll} \\ 00.047 & \text { wtfile } \\ \text { H1 } & \text { proc } \\ 1.998 & \text { fn } \\ 19184 & & \text { not used }\end{array}$
$\begin{aligned} 1800.8 & \text { werr xmreact } \\ 2600 & \text { wexp abortoff flus }\end{aligned}$ ${ }_{5}^{16}$ hexp procplot aborton
55
7
9 wbs
1.000
16
16
used
gain flock not used
$\begin{array}{ll}\text { in } \\ \text { in } & n \\ n\end{array}$
dp dISplay

sp	-597.2
wp	4800.5
ss	257
sc	0
we	240
izmm	20.00
is	554.72
ff	597.5
fh	0
th	2
ins cdc	1.000

OB 949
exp1 Carbon

$$
\text { SAMPLE }_{\text {g }} \text { SPECIAL }
$$

date feb 92013 temp not used
solvent
cdci3 gain
file home/rcuuser~ spin
vnmesys/data/auto~ hst
$2013.02 .09 / 5$ _ $2013 \sim$ pw 90
0209_05/data/ctel3~
$05 . f i d$
sw ACOURSITTTON
$\begin{array}{rrr} & 18115.9 & 1 \mathrm{n} \\ \text { sw } & 18.301 & \text { dp } \\ \text { at } & 1.3720 & \text { hs } \\ \text { pp } & 4000\end{array}$
$\begin{array}{lll} & n_{0} \\ f b & 47120 & \text { hs } \\ 10000 & \text { y } \\ \text { n }\end{array}$
bs $\quad \begin{aligned} & \text { bs } \\ & \text { di }\end{aligned}$
\(\begin{array}{ll}at \& 2.000

nt \& 1600\end{array} \quad\)| fn |
| :--- |
| |

ct TRANSMITTER 1600 sp \quad wp $\quad 18115.4$

tn	cis		
sfrq	wf	18115	
tof	75.454	rfp	1136

$\begin{array}{llrl}\text { tof } & 766.0 & \text { rp } & 61 \\ \text { tpwr } & 58 & 1 p & -197 \\ \text { pw } & 9.250 & \text { plor }\end{array}$

dimm yyy ai cde ph
$\begin{array}{lr}\text { dpwr } & 65 \\ d m f & 6700\end{array}$

Compound $\left(S_{p}\right)$)-17 ${ }^{13} \mathrm{C}$ NMR

OB 948
pad=10 run with findzo before acquisitio
expl Phosphorus
SAMPLE
date Feb 112013 temp SPECIAL
$\begin{array}{lr}\text { solvent } & \text { cdcls gain } \\ \text { file honefcuuser~ spin } & 25 \\ \text { vnmrsys data/autow hst } & 20 \\ 2013.0209 / 52012 \sim & 0.008\end{array}$ $\begin{array}{ll}0211 \text { 20/data/cdc13~ alfa } & 18.300 \\ 10.000\end{array}$

 $\begin{array}{lrllr}\text { sw } & 15797.8 & \text { in } & & n \\ \text { at } & 1.600 & \text { dp } & & n \\ \text { np } & 50552 & \text { hs } & \\ \text { fb } & 8800 & & \text { processing } & \text { ny } \\ \text { bs } & 64 & 10 & & \end{array}$ | Tb | 8800 | | Processing |
| :--- | ---: | :--- | ---: |
| bs | 64 | 10 | not used |
| d1 | 1.000 | fn | DISPLAY |

ct TRANSMITTER 16 sp $\quad-3647.3$

tn	P31	rf f1	15797.3
sfrq	121.465	rfp	3647.

on Decoupler
$\begin{array}{llr}\text { H1 } & \text { SC } & 250 \\ 0 & \text { V } & 0 \\ & \text { th } & 11\end{array}$
$\begin{array}{rrr}\text { yyy th } \\ \text { w } \\ 35 & \text { ai } \\ \text { cde }\end{array}$
35
6700

Compound (S_{p})-18
${ }^{31} \mathrm{P} \mathrm{I}^{1} \mathrm{H}$ NMR decoupled

OB 948

Compound $\left(S_{p}\right)-18$
${ }^{31} \mathrm{P}$ / H NMR coupled

OB 948
pad $=10$ run with findzo before acquisitio n
exp1 proton

Compound $\left(S_{p}\right)$-18 ${ }^{1} \mathrm{H} N \mathrm{NMR}$
ade ph

(:)
19184
200.8
werr
2600
wexp abortoff flus 16 h procplot aborton 7.9 wnt
1.000
277.9
not usea
n
n
n
y
OISPLAY -596
-596.6
4800.5
$\begin{array}{r}0 \\ 240 \\ \hline 00\end{array}$
20.00
567.89 567.89
596.9 1.000^{4}

cdc ph

OB 948
exp1 Carbon
\qquad SAMPLE SPECIAL
date feb 112013 temp not used
solvent cdci3 gal 2013.02 data/auto~ hst 2013.02.09/5 2013~ pw9

	ACQUISITİON.	11	LA		
sw	18115.9	In			
at	1.301	dp			
np	47120	hs			nn
$f \mathrm{~b}$	10000		PROCESSING		
bs	64	16			0.50
d1	2.000	fn			t used
nt	650			SPLAY	
ct	650	sp			1135.5
TRANSMITTER		wp			8115.4
tn	C13	rfi			1136.1
sfrq	Q 75.454	rfp			
tof	766.0	rp			55.8
tpwr	\% 58	1p			-193.3
pw	9.250			PLOT	
DECOUPLER		wc			250
dn	H1	sc			
dof	0	vs			1156
dm	yyy	th			10
dman dpwr	35	a)			

Compound $\left(S_{p}\right)-18$ ${ }^{13} \mathrm{C}$ NMR

Compound (S_{p})-19 ${ }^{31} \mathrm{PI}{ }^{1} \mathrm{H}$ NWR coupled

Compound $\left(S_{p}\right)$-19 ${ }^{13} \mathrm{C}$ NMR

Compound $\left(S_{p}\right)-20$
${ }^{31} \mathrm{P}$ f'H NMR decoupled

Current Data Earameters EAME OB 1826 after colum PROCNO

E2 -- Acquisition Parameters

Date		20141112	
Time		9.44	
INSTRUM		spect	
EROBHD	5 mm	EABBO BB/	
PULPROG		zgpg30	
TD		65536	
SOLVENT		CDCl 3	
NS		16	
DS		4	
SWH		64102.563	Hz
FIDRES		0.978127	Hz
AO		0.5111808	sec
RG		203.57	
DW		7.800	usec
DE		6.50	usec
TE		298.6	K
D1		2.00000000	sec
D11		0.03000000	sec
TDO		- 1	

\qquad
CHANNEL $\mathrm{F}==\mathrm{man}=.=$

SEO1	161.9674942 MHz
NUC1	31 E
R1	14.25 usec
PLW1	15.00900000 W

Compound $\left(S_{p}\right)-20$ ${ }^{31} \mathrm{Pil} \mathrm{H}$ NMR coupled

Current Data Earameters
NAME
OB 1826 after column
EXPNO
PROCNO
E2 - Acquisition Parameters
Date 2014112
Time $\quad 11.08$
INSTRUM spect
PROBHD 5 mm PABBO BE/
PULPROG $\left.\begin{array}{r}2930 \\ 65536\end{array}\right]$
SOLVENT CDC13

NS
DS
ETDRES $\quad 64102.563 \mathrm{~Hz}$
EIDRES $\quad 0.978127 \mathrm{~Hz}$
$\begin{array}{lr}\text { AQ } & 0.5111808 \mathrm{~s} \\ \text { RG } & 203.57\end{array}$
203.57
7.800 usec
7.800 usec
6.50 usec
297.8 K
2.00000000 sec

Current Data Parameters
NAME OB 1826 after column EXPNO PROCNO

E2 - Acquisition Parameters
Date
20141112
Date_ 20141112
Time $\quad 11.10$
INSTRUM spect
PROBHD 5 mm PABBO $\mathrm{mB} /$
PULPROG \quad zg30
SOI 65536 CDC13
NS
DS
SWH
$\begin{array}{ll}\text { FIDRES } & 8012.820 \mathrm{~Hz} \\ & 0.122266 \mathrm{~Hz}\end{array}$ $\begin{array}{lr}\text { FIDRES } & 0.122265 \mathrm{~Hz} \\ \text { AQ } & 4.0894465 \mathrm{sec}\end{array}$
12.95
62.400 usec
6.50 usec 6.50 usec
297.8 0297.8 K 1.00000000 sec

Compound $\left(S_{p}\right)-20$
${ }^{13} \mathrm{C}$ NWR

Current Data Paraneters NAME EXPNO

Compound $\left(S_{p}\right)-21$
${ }^{31} \mathrm{P} \mathrm{I}^{1} \mathrm{H}$ NMR coupled

Compound $\left(S_{p}\right)-22$
${ }^{31}$ Pl'H NMR coupled

compound $\left(S_{p}\right) 22$
${ }^{13} \mathrm{C}$ NMR

एC 1.40

OB 396		
exp1 Phosphorus		
SAmple		special
date Apt 252012	temp	not used
solvent 020	gain	20
file home/TCutserw	spin	20
/vimrsys/data/auto	hst	0.008
-2012.04.23/5 2012-	pw90	18.300
0425_05/data/020 0~	alfa	10.000
2.fid		flags
ACQUISITION	i)	n
\$W 15797.8	in	n
at 1.600	$d p$	y
np 50552	hs	ny
fb 8800		Processing
bs 64	1 b	1.00
$d 11.000$	$f 0$	not used
nt 16		dISPLAY
ct transmitter 16	sp	-3647.3
	wp	15797.3
tn Pel	ff	3647.8
sfrq 121.465	rfp	0
tof 7421.1	rp	56.4
tpwr 55	1 p	-113.7
pw 9.150		PLOT
decoupler	we	250
dn H1	sc	0
dof	vs	16
dm yyy	th	10
dmm ${ }^{\text {c }}$	a 1	cde ph
$\begin{array}{lr}\text { dpwr } \\ \text { dmf } & 6700\end{array}$		

Compound $\left(S_{p}\right)$-23 ${ }^{31} \mathrm{Pi} 1 \mathrm{H}$ NMR decoupled

Compound $\left(\mathrm{S}_{\mathrm{p}}\right)$)-23 ${ }^{31} \mathrm{P} 1^{1} \mathrm{H}$ NWR coupled

OB 396 n
exp. Proton
SAMPLE

$$
\begin{array}{lll}
\text { date } & \text { Apr } 25 & 2012 \\
\text { dolvent } & \text { dit } \\
\text { colv }
\end{array}
$$

$$
\begin{array}{lr}
\text { solvent cdcl3 dn } & \text { c13 } \\
\text { file home/Tciuser~ dpwr } & 43 \\
\text { vnorsys/data/autor dof } & 0 \\
2012.04 .23 / s^{2} 212 \sim \text { dm } & \text { nnn }
\end{array}
$$

$$
\begin{aligned}
& \text { ACQUISITION. fid } \begin{array}{l}
\text { dmf } \\
300.047 \\
\text { wtfile } \\
\text { Processing }
\end{array}{ }^{1310}
\end{aligned}
$$

$$
\begin{array}{llll}
& \text { frq } & 300.097 & \text { wtfile } \\
\text { tn } & \text { H1 } & \text { proc } & \text { ft } \\
\text { it } & 1.938 & \text { fn } & 19189
\end{array}
$$

$$
4800.8 \text { werr xmreact }
$$

$$
\begin{aligned}
& 2000 \\
& 16 \\
& 55 \text { whs procplot aborton } \\
& 55
\end{aligned}
$$

$$
\begin{aligned}
& \text { pw } \\
& \text { d1 } \\
& \text { tof } \\
& \text { nt } \\
& \text { ct }
\end{aligned}
$$

$$
\begin{array}{cc}
55 & \text { wbs } \\
7.9 & \text { wnt }
\end{array}
$$

$$
\begin{array}{r}
1.009 \\
1.009
\end{array}
$$

$$
\begin{array}{r}
277.9 \\
32 \\
32
\end{array}
$$

$$
\begin{aligned}
& \text { ct } \\
& \text { alock } \\
& \text { gain }
\end{aligned}
$$

not used

$$
\begin{array}{lll}
1 & \text { FLAGS } & \\
1 & & n \\
n & & n
\end{array}
$$

$$
\begin{aligned}
& d p \\
& s p
\end{aligned}
$$

DISPLAY

$$
\begin{array}{lr}
\text { sp } & -599.8 \\
\text { wp } & 4800.5 \\
\text { vs } & 193 \\
\text { st } & 0 \\
\text { wo } & 240 \\
\text { hzm } & 20.00 \\
\text { is } & 458.77 \\
\text { rf } & 600.1 \\
\text { rfp } & 0 \\
\text { th } & 3 \\
\text { ins } & 2.000
\end{array}
$$

OB 396
pad=10 run with findzo before acquisitio
exp1 Carbon

$\begin{array}{lr}\text { dpwr } \\ \text { dmf } & 6700\end{array}$

Compound (S_{p})-23 ${ }^{13} \mathrm{C}$ NMR

Compound $\left(S_{p}\right)-23$
${ }^{31} \mathrm{PI} 1 \mathrm{H}$ NMR decoupled

Compound $\left(S_{p}\right)-23$
${ }^{31} \mathrm{P}$ i'H NWR coupled

Current Data Parameters NAME
EXPNO PROCNO

Compound $\left(S_{p}\right)$-23
${ }^{1} \mathrm{H} N \mathrm{NW}$

Current Data Parameters NAME OB 1816 after EXPNO
F2 -- Acquisition Parameters

Date 20141107
Time 17.41 INSTRUM spect PROBHD 5 mm PABBO BB/ $\begin{array}{lr}\text { PULPROG } & \text { zg30 } \\ & 65536\end{array}$

SOLVENT	65530
	$C 0013$

NS
8012.820 Hz
0.122266 Hz
4.0894465 sec
11.05
62.400 usec
6.50 use
. 00000000 0e
1.00000000 sec

CHMNET $51=\cdots=\cdots=$
400.1324710 MHz
10.1 H
25.00300026 w

F2 - Processing parameters
SI $\quad 400.1300000 \mathrm{MHz}$
WOW EM
SSB 0
0.30 Hz
1.00

Compound $\left(\mathrm{S}_{\mathrm{p}}\right)$-24 ${ }^{31} \mathrm{P}$ IH NMMR decoupled

Current Data Parameters
NAME
EXPNO
PROCNO

Date 20140716
gime - 10.20
INTE $\quad 10.20$
INSTRUM \quad spect
PRORHD
PROBHD 5 mm PABBO BB/
PULPROG $\quad 2 g p g 30$
TD $\quad 65536$

SOLVENT	CDCl3
NS	16

SWH $\quad 64102.563 \mathrm{~Hz}$
EIDRES $\quad 0.978127 \mathrm{~Hz}$
AQ 0.5111808 sec
203.57 used
6.50 usec
29.50 use
2.00000000 sec
2.00000000
0.03000000 sec
D11

$======$
SFO2
400.1316005 MHz
NuC2
$\begin{array}{lr}\text { NUCZ } & 1 H \\ \text { CPDPRGL2 } & \text { waltz16 } \\ \text { PCPD2 } & 90.00 \text { usec }\end{array}$
$\begin{array}{lr}\text { PCPD2 } & 90.00 \mathrm{u} \\ \text { PIW2 } & 10.00000000 \mathrm{~W}\end{array}$
$\begin{array}{lr}\text { PIW2 } & 10.00000000 \mathrm{~W} \\ \text { PLW12 } & 0.31604999 \mathrm{~W}\end{array}$
$\begin{array}{ll}\text { PLW12 } & 0.31604999 \mathrm{~W} \\ \text { PLW13 } & 0.25600001 \mathrm{~W}\end{array}$
2 - Processing parameters
32768
161.9755930 MHz
1.00 Hz

Compound (S_{p})-24
${ }^{31} \mathrm{P} 1^{1} \mathrm{H}$ NMR coupled

| | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 | ppm |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Compound (S_{p})-24
${ }^{1} \mathrm{H}$ NMR

Current Data Parameters NAME OB 158 \& pure EXPNO PROCNO

E2 -- Acquisition Parameters
Date 20140716

Time"
INSTRIMM
INSTRUM
PROBHD
PULPROG
TD
SOLVENT
NS
DS
SWH
EIDRES
ELDR
AQ
RG
DW

- spect

5 mom PABBO BB/
BB/
2930
2930
65536
CDC13
16
8012.820 Hz
0.122266 Hz
4.0894465 sec
81.67
62.400 usec
6.50 usec
294.4 K
1.00000000 sec
$01 \quad 1.00000000$ s

E2	Processing parameters
SI	65536
SE	400.1300000 MHz
WDW	0
SSB	0
EB	0.30 Hz
GB	0

Compound (S_{p})-24
${ }^{13} \mathrm{C}$ NMR

Current Data Parameters NAME EXENO
PROCNO

Compound $\left(S_{p}\right)-25$
${ }^{31} \mathrm{Pil} \mathrm{H}$ NMR decoupled

$\begin{array}{lr}\text { Current Data Parameters } \\ \text { NAME } & \text { OB } 1591 \\ \text { EXPNO } & 1 \\ \text { PROCNO } & 1\end{array}$

E2 -- Acquisition Parameters	
Date	20140722
Time	9.29
INSTRUM	spect
PROBHD	$5 \mathrm{~mm} \mathrm{EABBO} \mathrm{BE} /$
PULPROG	2gpg 30
TD	65536
SOLVENT	Acetome
NS	16
DS	4
SWH	64102.563 Hz
EIDRES	0.978127 Hz
AQ	0.5111808 sec
RG	203.57
DW	7.800 usec
DE	6.50 usec
TE	295.6 K
D1	2.00000000 sec
D11	0.03000000 sec
T00	-1

$=-=-=-=0=0$

NUCR
CPDPRGI2
400.1316005 MHz

CPDPRGI2 1H
PIW2 $\quad 10.00000000 \mathrm{~W}$
$\begin{array}{lr}\text { PLW12 } & 10.00000000 \mathrm{~W} \\ 0.31604999\end{array}$

PLW12	0.31604999 W
PLW13	0.25600001 W

E2 - Processing parameters

SI	32758
SE	161.9755930 MHz
WDW	EM

$\operatorname{LB} \quad 1.00 \mathrm{~Hz}$

Compound (S_{p})-25 ${ }^{31} \mathrm{Pi}$ iH NWR coupled

Compound $\left(S_{p}\right)$-25
${ }^{31} \mathrm{P}$ I' $^{1} \mathrm{H}$ NWR coupled

Current Data Parameters NAME EXPNO

E2 -.. Acquisition Parameters
Date 20140722
Time 9.31
INSTRUM spect
PROBHD 5 mm PABBO BB/

ID VYENT $\quad 65536$

SOLVENT	Acetone
NS	22

DS	
SWH	64102.563 Hz

ETDRES $\quad 0.978127 \mathrm{~Hz}$
AQ 0.5111808 se
RW 203.57

EE	6.50 usec
EE	295.2 K

12.00000000 sec

Compound $\left(S_{p}\right)-26$
${ }^{31} \mathrm{P}$ IH NWR decoupled

Cuxrent Data parameters
NAME
EXPNO
OROCNO

$\begin{aligned} & \text { F2 - Aco } \\ & \text { Date } \end{aligned}$		ion Darame 2015111	
Thme ${ }^{\text {- }}$		9.45	
TNSTRUM		spect	
PROBHD	5 mm	EABBO BE/	
PULPROG		zgpg30	
TL		65536	
SOLVENT		CDC13	
NS		16	
DS		4	
SWH		64102.563	
FIDRES		0.978127	Hz
AQ		0.5121808	sec
RG		203.57	
DW		7.800	usec
DE		6.50	usec
TE		295.2	K
D1.		2.00000000	sec
D1. 1		0.03000000	sec
TDO		1	

15.00000000

Compound $\left(\mathrm{S}_{\mathrm{p}}\right)$-26 ${ }^{31} \mathrm{P}$ I'H NMR coupled

Current Data Parameters NAME
EXPNO
PROCNO

$$
\begin{aligned}
& \text { SF } \quad 400.1300000 \\
& \begin{array}{l}
\text { WDW } \\
\operatorname{SSB}
\end{array} \\
& 0 \\
& 0 \\
& 0.30 \mathrm{~Hz} \\
& 1.00
\end{aligned}
$$

Compound $\left(S_{p}\right)-26$
${ }^{13} \mathrm{C}$ NMAR

Current Data Parameters
NAME 648 2nd NAME EXENO
EROCNO

\square

Compound (S_{p})-27 ${ }^{31} \mathrm{PI}{ }^{1} \mathrm{H}$ NMR decoupled

Current Data Parameters EXENO EROCNO

E2 - Acq Date		ion Parame 20140911	
Time		17.17	
INSTRUM		spect	
PROBHD	5 mm	PABBO BB/	
PULPROG		zgpg 30	
TD		65536	
SOLVENT?		cbol3	
NS		16	
DS		4	
SWH		64102.563	Hz
EIDRES		0.978127	Hz
AQ		0.5111808	sec
RG		203.57	
DW		7.800	usec
DE		6.50	usec
TE		294.8	K
D]		2.00000000	sec
D1. 1		0.03000000	sec
TDO		1	

SEOL	 161.9674942 MHz
NOCl	31P
P1	14.25 usec
PWW1.	15.00000000 W
	CHANNEL $22=0==-=$
SEO2	400.1316005 MHz
NuC2	1 H
CPDPRGI2	watez 16
PCPD2	90.00 usec
PLW2	10.00000000 相
PLW12	0.31604999 W
ETW13	0.25600001 W

	130	120	110	100	90	80	70	60

Compound $\left(S_{p}\right) 27$
${ }^{31} \mathrm{P} \mathrm{I}^{1} \mathrm{H}$ NWR coupled

Cument Data Eamameters

$=-$	CHANNEL $41=0=$
SEO1	161.9674942 MHz
NOC1	31 m
P1	14.25 usec
PLW1	15.0000000 W

2. - Processing parameters

$S 1$	161.9755930	MHz
SE	EM	
WOW	0	1.00 Hz
$S S B$	0	1.40

Compound $\left(\mathcal{S}_{\boldsymbol{p}}\right)^{1-27}$
${ }^{1} \mathrm{H}$ NMR

Current Data Parameters NAME OB 1707 after column EXPNO

F2 - Acquisition Parameters
F2 - Acquisition Paramet
Date_ 20140911
$\begin{array}{lr}\text { Date_ } & 20140911 \\ \text { Time } & 17.24\end{array}$
INSTRUM spect
INROBHD 5 mm PABBO BB/
$\begin{array}{lr}\text { PROBHD } \\ \text { PULPROG } & \mathrm{mm} \text { PABBO } \\ \mathrm{zg} 30\end{array}$
TD 65536
SOLVENT CDC13

NS	11
DS	2

SWH $\quad 8012.820$

FIDRES $\quad 0.122266 \mathrm{~Hz}$
$\begin{array}{lr}\text { AQ } & 4.0894465 \\ \text { RG } & 10.22 \\ & 62.400\end{array}$
62.400 usec
6.50 usec 294.6 K 1.00000000 sec
$========$ CHANNEL $\mathrm{f} 1 \mathrm{~m}=======$
SFOl $\quad 400.1324710 \mathrm{MHz}$
$\begin{array}{lr}\text { NUC1 } & 1 \mathrm{H} \\ \text { P1 } & 10.00 \text { usec }\end{array}$
$\begin{array}{lr}\text { P1 } & 10.00 \text { u } \\ \text { PLW1 } & 25.00300026 \mathrm{~W}\end{array}$
F2 - Processing parameters

SI	65536
SF	400.1300000 MHz

WDW EM
SSB $\quad 0$
0
0.30 Hz
1.00

Compound $\left(S_{p}\right)$)27
${ }^{13} \mathrm{C}$ NMR

- $2 \mathrm{c} 1+216$
PWW12 $\quad 10.00000000$ W
PTW13 0.25600001 w
2 - \quad rocessing parameter
100.6127685 MHz
1.00 Hz
1.40

Current Data Parameters , PROCNO

100.1216005 MH
NUC2 \quad - 23.6005
PCPD2 90.00 use

Compound (R_{p}) FBa ${ }^{31} \mathrm{P} / 1 \mathrm{H}$ NMR coupled

$\begin{array}{lrr}\text { Curment Data } & \text { Parameters } \\ \text { NAME } & \text { OB } & 1588 \text { pure } \\ \text { EXPNO } & & 2 \\ \text { PROCNO } & & 1\end{array}$

Compound (R_{p}) -28 a
${ }^{13} \mathrm{C}$ NMR

Current Data Parameters NAME OB 1588 pure? EXPNO EXENO
PROCNO

Compound $\left(R_{p}\right)$-28b ${ }^{31} \mathrm{Pi} \mathrm{H}$ NMR decoupled

| 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | ppm |
| :--- |

Compound $\left(\mathrm{R}_{\mathrm{p}}\right) \cdot 28 \mathrm{~b}$
${ }^{31} \mathrm{P} \mathrm{H}^{\prime} \mathrm{H}$ NMR coupled

Compound $\left(R_{p}\right)-28 b$

Current Data Parameters
NAME OB1601 pure. EXPNO
PROCNO 1
F2 - Acquisition Parameters
Date 20151124 Time $\quad 17.18$ INSTRUM 5 spect PROBRD 5 mm PABBO BB/
PULPROG TD $\quad 65536$

SOLVENT	CDCl3
NS	16

DS
SWH
$\begin{array}{ll}\text { SWH } & 8012.820 \mathrm{H} \\ \text { FTDRES } & 0.122266 \mathrm{H}\end{array}$
$\begin{array}{lr}\text { EIDRES } & 0.122266 \mathrm{~Hz} \\ \text { AQ } & 4.0894465 \mathrm{sec}\end{array}$
12.96
62.400 usec
2. 400 usec
6.50 use
292.2 K
1.00000000 sec

1400.1324710 MH	400.1324710 MH		

NUC1	1 H
p1	10.00 usec

D1 25.00300026

E2	Processing parameters
SI	65536
SE	400.1300000 MHz
WDW	0
SSB	0
LB	
GB	0

Compound $\left(S_{p}\right)-30$
 ${ }^{31}$ Pil H NMR decoupled

Current Data Parameters
Name OB 1662 after work-up
EXPNO
PROCNO

Compound $\left(\mathrm{S}_{\mathrm{p}}\right)$,30
 ${ }^{31} \mathrm{P}$ il H NMR coupled

Compound $\left(\mathrm{S}_{\mathrm{p}}\right)$,30
 ${ }^{13} \mathrm{C}$ NMR

Current Data Paramecers
NAME OB 1662 after Woxk-uP EROCNO

OB 927
ad=10 run with findz0 before acquisitio
exp1 Phosphorus
sample
SAMPLE sPECIA
date Jan 312013 temp
solvent
codci3
filvent home/rcuuser gain
$\begin{array}{lr}\text { vnmisys/data/autor hit } & 14 \\ \text { hat } & 0.008\end{array}$
$\begin{array}{lr}2013.01 .20 / \mathrm{s} 2013 \sim \text { pw90 } & 18.300 \\ 0131 \text { 14/data/ctct3~ alfa } & 10.000\end{array}$

$\begin{array}{rrrr}\text { b } & 8800 & & \text { PROCESSING } \\ \mathrm{s} & 64 & 1 \mathrm{~b} & \text { not } 1.00 \\ 1 & 1.000 & \text { fn } & \text { DISPLAY } \\ \mathrm{t} & 16 & \mathrm{sp} & -3647.3\end{array}$
ct

$\begin{array}{lrlr}\text { sfrq } & 121.465 & \text { rfp } & 0 \\ \text { tof } & 7421.1 & \text { rp } & -137.9 \\ \text { tpwr } & 55 & 1 p & -350.5\end{array}$

$\mathrm{dpmi}_{\mathrm{d}}^{\mathrm{dmf}}$
35
6700

Compound (R_{p}, R_{p}) 81
${ }^{31}$ Pil H NWR decoupled

OB 927
expl Phosphorus

SAMPLE		SPECIAL
date Jan 312013	temp	not used
solvent cacl3	gain	14
file home/rcuuser*	spin	20
pumrsys/data/autor	hst	0.008
2013.01.20/s_2013~	pw90	18.300
0131.14/data/cdel3~	a)fa	- 10.000
06.fid		Flags
ACOUISITTON	il	
Sw 15797.8	in	
at 1.600	dp	
np 50552	hs	ny
fb		processing
bs 64	16	1.00
d1 1.000	$f 0$	not used
nt 16		display
ct 16	sp	-3647.3
TRANSMITTER	wh	15797.3
tn P31	rit	3647.8
sfrq 121.465	Ifp	
tof 7421.1	rp	108.7
tpwr 55	$1 p$	-113.7
pw 9.150		PL.OT
dECOUPLER	wc	250
dn H1	sc	0
dof	vs	170
$\mathrm{dm} \quad \mathrm{ymn}$	th	4
dmm w	ai	cdc ph
dpwr 675 dinf 6700		

Compound $\left(R_{p,}, R_{p}\right)-31$
$31 \mathrm{P}^{1} \mathrm{H}$ NMR coupled

OB 927
pad=10 run with findzo before acquisitio
exp1 proton

Compound $\left(R_{p}, R_{p}\right)$ /31
1 H NMP

OB 92
exp1 Carbo
date Jan 312013 temp
folvent cdcla gain
file home tcuuser spin
vnmrsys data/auto hst 2013.01.20/5 2013~ pw90 13_14/data/cdcl3~ alfa flags $\begin{array}{r}20 \\ 20 \\ \hline\end{array}$
0.008 18.500
10.000 sw AcQuISITITON $\begin{array}{ll}\text { is } \\ 18115.9 & \text { in }\end{array}$ $\begin{array}{lrl}\text { sw } & 18115.9 & \text { in } \\ \text { at } & 1.301 & \text { dp }\end{array}$

$$
\begin{aligned}
& n \mathrm{np} \\
& \mathrm{fb} \\
& \mathrm{bs}
\end{aligned}
$$

PROCESSING

$$
\begin{aligned}
& \mathrm{fb} \\
& \mathrm{bs} \\
& \mathrm{~d} 1 \\
& \mathrm{nt} \\
& c t
\end{aligned}
$$

$$
\begin{array}{rl}
47120 & \text { hs } \\
10000 & \text { PROCESSING } \\
64 & 1 \mathrm{~b}
\end{array}
$$

$$
\begin{array}{r}
64 \\
\text { 2. } 000 \\
800
\end{array} \text { fn not used } \begin{array}{r}
0.50 \\
800
\end{array}
$$

t TRANSMITTE
transmitter

$$
\begin{array}{rlr}
800 \\
800 & \text { D } & \text { DISPLAY } \\
800 & \text { sp } & -1135.5
\end{array}
$$ $\begin{array}{cc}800 & \mathrm{sp} \\ \mathrm{wp} \\ \mathrm{c} 13 & \mathrm{rf}\end{array}$ 18115.4

1136.1

dm
dmm
$d \mathrm{mwr}$
dmf yy th cdc ph 35
6700

Compound $\left(R_{p}, R_{p}\right)$-31
${ }^{13} \mathrm{C}$ NMR

Compound $\left(S_{p}\right)$ 32
${ }^{31} \mathrm{P} / \mathrm{I}^{1} \mathrm{H}$ NMR coupled

Compound (R_{p})-33
${ }^{31} \mathrm{P} I^{1} \mathrm{H}$ NMR decoupled

| 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | ppm |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Compound (R_{p})- 3
${ }^{31}$ PI'H NMAR coupled

Compound $\left(R_{p}\right)$) 38
${ }^{1} \mathrm{HNMR}$

Current Data Parametexs
NAME OB 2092 after colum
EXPNO

F2-Acquisition Parameters	
Date	20150626
Time	17.20
INSTRUM	spect
PROBHD	$5 \mathrm{~mm} \mathrm{PABBO} \mathrm{BB} /$
Pulerog	zg30
TD	65536
SOLVENT	CDCl3
NS	8
DS	2
SWH	8012.820 Hz
FIDRES	0.122266 Hz
AQ	4.0894465 sec
RG	13.94
DW	62.400 usec
DE	6.50 usec
TE	294.0 K
D1	1.00000000 sec
TD0	1
$= \pm=$	
SFOL	400.1324710 MHz
Nucl	1H
P1	10.00 usec
PLW 1	25.00300026 W

HWN 25.00300026 W
E2 - Processing parameters

SI	65536
SF	400.1300000 MHz

Wow EM
$\begin{array}{lll}\operatorname{SBB} & 0 & 0.30 \mathrm{~Hz} \\ L B & 0\end{array}$
GB 0
1.00

Compound (R_{p}) 34
${ }^{31} \mathrm{PJ}{ }^{\prime 1} \mathrm{H}$ NMR decoupled

F2 - Acquisition parameters

$$
\text { Date } 20151201
$$

$$
\begin{array}{lr}
\text { Time } & 11.29
\end{array}
$$

INSTRUM

$$
\text { PROBHD } 5 \text { m } \mathrm{mABBO} \text { BB/ }
$$

$$
\begin{array}{lr}
\text { PULEROG } & \text { zgpg } 30 \\
\text { Tn } & 6536
\end{array}
$$

$$
\begin{array}{ll}
\text { TD } & 65536 \\
\text { SOLVENT } & 00 C 13
\end{array}
$$

NS CDENI $\quad 16$
64102.563 Hz
0.978127 Hz
$0.5111000^{-H z}$
.5111808 sec
203.57
7.800 usec
6.50 Lise
2.00000000 see
2.00000000 sec
0.03000000 sec
Channes fl
$\begin{array}{lr}\text { SEO1 } & 161.9674942 \mathrm{MHz} \\ \text { NUCI } & 319\end{array}$
$\begin{array}{ll}\text { plot } & 31 p \\ 14.25 & \text { use }\end{array}$
PIIN 15.00000000 W
$=-=-=-==$
NOCZ
cpoprgl2
cpoprg
pcpd2
PCPD
pr 2
QLW2
$\begin{array}{ll} & 90.00 \\ \text { PLW12 } & 10.00000000\end{array}$
$\begin{array}{ll}\text { PLAR } & 0.31604999 \mathrm{~W}\end{array}$

E2	Erocessing parameters
$S I$	32768
$S E$	161.975930 MHz
SDW	EM
$S S B$	0

| | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 | ppm |

Compound (F_{p}) 34
${ }^{31} \mathrm{P} / \mathrm{H}$ N NMR coupled

Current Data Parameters Current Data earameters
NAME 2097 after column
EXPNO
EROCNO

Current Data Parameters NAME OB 2097 after column EXPNO

F2 - Acquisition parameters
F2 - Acquisition Parameter
Date
20151201
$\begin{array}{lr}\text { Date } & 20151201 \\ \text { Time } & 11.33\end{array}$
Time 11.33
INSTRUM 5 mm pABEO spect

TD $\quad 65536$

SOLVENT	CDC13
NS	

DS
SSH
EIDRES $\quad 8012.820 \mathrm{~Hz}$
0.122266 Hz

RG	4.0894465

62.400 usec
6.50 usec
291.3 K
1.00000000 sec
$=======$ CHANNEL
$\mathbb{E} 1====$
SEOL $\quad 400.1324710 \mathrm{MHz}$
NUC1 14

ELW] 25.00300026 W
F2 - Processing parameters
$\begin{array}{ll}\mathrm{SI} & 65536 \\ \mathrm{SF} & 400.1300000 \mathrm{MH}\end{array}$
HDW 400.1300000
SSB 0
0.30 H

GB 0
1.00

Compound (R_{p})84 ${ }^{13} \mathrm{C}$ NMMR

PWW13 0.25600001 W

Current Data Earameters NAME OB 2097 after column EXPNO PROCNO

$\begin{aligned} & \mathrm{E}_{2}-\mathrm{Acq1} \\ & \text { Date } \end{aligned}$	sition Paxameters 20151201
Time	12.00
Instrgom	spect
PROBHD	5 mm PABRO BE/
puterog	2gpg30
TL	65536
SOLVENT	CDC13
NS	410
DS	4
SWH	24038.461 日z
EIDRES	0.366798 Bz
AQ	1.3631488 sec
RG	203.57
DW	20.800 usec
DE	6.50 usec
TE	292.1 K
D 1	2.00000000 sec
D11	0.03000000 sec
TDO	- 1
$=$	CHANNES $f 1=0=0$
Srol	100.6228293 MHz
NuCl.	130
P1	10.00 usec
PLW1	45.00000000 W

$======-=-=0$ CHANNEI $\mathrm{CX}=0=0=0$ SEO2 400.1316005 MH NUC2 1H
\qquad 90.00 usec
cpperg
pCpD?
LW2
10.00000000 W
0.31604999 W

E2 - Processing paramete 100.6127685 MH 7

EM
1.00 Hz

080
1.40

Compound $\left(S_{p}\right)$-35
${ }^{31} \mathrm{PI}$ H NMR coupled

100	90	80	70	60	50	40	30	20	10	0	10

Compound $\left(\mathrm{S}_{\mathrm{p}}\right)$)-ss

Compound $\left(\mathrm{S}_{\boldsymbol{p}}\right)$)-37 ${ }^{31} \mathrm{Pr} 1 \mathrm{H}$ NMR decouplad

Compound $\left(\mathrm{S}_{\mathrm{p}}\right)$-37 $31 \mathrm{P} \mathrm{I}^{1} \mathrm{H}$ NMR icoupled

Compound $\left(\mathrm{S}_{\mathrm{p}}\right)$)37
${ }^{13} \mathrm{C}$ NMR

Compound $\left(R_{v}\right) \approx 8$ ${ }^{31} \mathrm{PI} 1 \mathrm{H}$ NWR coupled

Current Data Parameters	
NAME	OB 2096 after colum
EXPNO	3
procno	.
E2 - Acquisition Earameters	
Date	20150701
Time	10.08
INSTRUM	spect
PROBHD	$5 \mathrm{~mm} \mathrm{PABBO} \mathrm{BB} /$
PULPROG	2930
TD	65536
SOLVENI	CDC13
NS	8
DS	2
SWH	8012.820 Hz
EIDRES	0.122266 Hz
A0	4.0894465 sec
RG	11.05
DW	62.400 usec
DE	6.50 usec
TE	294.3 k
01.	1.00000000 sec
TDO	1
=-	CHANNEL ${ }^{\text {d }}$
SFOL	400.1224710 MHz
NuCl	1H
E1	10.00 usec
PWW	25.00300026 w
E2 - Processing parameters	
SI	65536
SE	400.1300000 MHz
WDW	EM
SSB	0
IB	0.30 Hz
GB	0
PC	1.00

Compound $\left(\mathrm{F}_{\mathrm{p}}\right) ; 8$ ${ }^{13} \mathrm{C}$ NMAR

Current Data parameters
NAME
EXPNO
PROCNO 2096 after column
4 EXPNO

E2 - Acquisition Parameters
Date_ 20150701 Time 10.21 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zgpg30

TO	65536
SOLVENM	$\operatorname{CDC13}$

NS $\quad 101$

DS	24038.461 Hz

FIDRES $\quad 0.366798 \mathrm{~Hz}$
$\mathrm{AQ} \quad 1.3631488 \mathrm{sec}$
$\begin{array}{r}+3631488 \text { se } \\ \hline 203.57\end{array}$ 20.800 used 6.50 used $294.9 k$
2.00000000 sec
0.03000000 sec

TDO
. 0 or se

$P \mathrm{CB} \quad 1.40$

E2 - Acquisition Parameter
Date_ 20150715
Time $\quad 16.09$
INSTRUM spect
PROBHD 5 mm PABBO BB/

PULPROG	2930
TD	65536

SOLVENT $\quad \operatorname{CDCl} 3$

NS
DS
EIDRES
AO
DW
TE
DI TDO

FOI
NUC1
P1
PLW1
2 - Processing parameter

SE	65536
SDW	400.1300000

SSB EM $\begin{array}{lll}\operatorname{SSB} & 0 & 0.30 \mathrm{H}\end{array}$ $\begin{array}{ll}\mathrm{CB} & 0\end{array}$ 0
0.30 Hz
1.00

${ }^{3} \mathrm{C}$ NMR

Compound (R_{p}) 89
${ }^{31} \mathrm{Pi}{ }^{1} \mathrm{H}$ NWR coupled

Current Data Parameters
NAME
EXPNO
PROCNO

SFO1	161.9674942
NUCl	31 E
P1	14.2

PIW1 15.00000000 ws

- Processing parameters
. 32768
161.9755930 MHz

EM
1.00 Hz
1.40

Compound $\left(R_{p}\right) *$ es
${ }^{13} \mathrm{C}$ NMR

Current Data Parametexs NAME
PROCNO
E2 - Acquisition Parameters
Date 20150716 Time 17.55 TNSTRUM EROBHD PULPROG
SOLDVENT
NS
DS
$\begin{array}{rr} & 24038.461 \mathrm{~Hz}\end{array}$
$\mathrm{AQ} \quad 1.3631488 \mathrm{sec}$ $\begin{array}{ll}\mathrm{RG} & 203.5\end{array}$
20.800 usec
6.50 usec
295.9 K
2.00000000 sec
0.03000000 sec

TDO

SEOL	100.6228293
NuCl	13 C
P1	10.00

RLW1 45.00000000 W

SEO2
NuC2
CPDERGI2
CHANNEL ${ }^{6} 2==-====$
400.1316005 MHz

MergGl2 waltz16
PLW2 $\quad 90.00$ usec
$\begin{array}{rr}\text { PLW12 } & 10.00000000 \mathrm{~W} \\ & 0.31604999 \mathrm{~W}\end{array}$
$\begin{array}{ll}\text { PLW13 } & 0.25604999 \mathrm{~W} \\ & 0.2560001 \mathrm{~W}\end{array}$

- Frocessing parameters
 100.6127685 MHz

0

Compound $\left(\mathrm{R}_{\mathrm{p}}\right), 39$
${ }^{31} \mathrm{PJ} \mathrm{H}^{1} \mathrm{H}$ NMR decoupled

Compound (R_{p}) 39
${ }^{31} \mathrm{Pi} 1 \mathrm{H}$ NMR coupled

| 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | ppm |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Compound $\left(R_{p}\right) * \mathcal{1 3}$ ${ }^{13} \mathrm{C}$ NMR

Compound (R_{p}). 39 ${ }^{31} \mathrm{Pi} 1 \mathrm{H}$ NWR coupled

Compound $\left(R_{p}\right) * 9$
${ }^{13} \mathrm{C}$ NMR

92 - Acquisition paxameters
Date $\quad 20150903$ Marrum PROBHD pulerog 5 ma pabro spet

OB $\frac{1059}{1008 f 1}$
exp1 Phosphorus
SAMPLE
spectal.
date Apr 92013 temp
solvent cdcl3 gain
file home/tcuuser spin
vnmrsys/data/auto~ hst 2013.04.06/s 2013~ pw90 acQursmtion.fid il Flags 8 20.008
10.000 0.008
18.300
10.000 18.300
10.000
sw ACOULSTTTON 15797.8

Lags

n
n
n
$\begin{array}{lrl}\text { sw } & 15797.8 & \text { in } \\ \text { at } & 1.600 & \text { dp } \\ \text { np } & 50552 & \text { hs }\end{array}$
processing
$\begin{array}{lrrr}\text { bs } & 6800 & \text { ib } & \text { not } 1.00 \\ \text { d } & 1.000 & \text { fn } & \text { used } \\ \text { nt } & 32 & \text { DISPLAY } & -3647.3\end{array}$
ny
1.00
used

$$
\begin{array}{cc}
\text { H1 } & \begin{array}{c}
\text { WC } \\
\text { SC }
\end{array}
\end{array}
$$

$$
\begin{array}{rr}
H 1 & 5 c \\
0 & v s \\
v \times v
\end{array}
$$

$$
\begin{gathered}
\text { yyy th } \\
\text { w ai }
\end{gathered}
$$

$$
\begin{array}{r}
\text { yyy } \\
\text { w } \\
35
\end{array} \text { ai cde ph }
$$

6700

Compound 40 ${ }^{31} \mathrm{P} J^{\prime} \mathrm{H}$ NWR decoupled

90	80	70	60	50	40	30	20	10	0	-10	-20	$p p m$

OB 1055
expl Phosphorus

SAMPLE		SPECIAL
date Apr 92013	temp	not used
solvent cdcla	gain	25
file home/TCUuser~	spin	20
/Vnmrsys/data/auto	hist	0.008
-2013.04.06/s_2013	pw90	18.300
0409_22/data/Cdc13~	alfa	10.000
- ${ }^{02 . f i d}$		FLAGS
ACQUISITİON	11	n
5 F 15797.8	in	
at 1.600	dp	y
np 50552	hs	ny
fb 8800		PROCESSING
64	1b	1.00
d1 1.000	$f 0$	not used
nt 64		DISPLAY
ct 64	sp	-3647.3
TRANSMITTER	wp	15797.3
$t \mathrm{n}$ P31	rfi	3647.8
Sfra 121.465	rfp	0
tof 7421.1	rp	27.0
tpwr 55	10	-113.7
pw 9.150		PLOT
DECOUPLER	wc	250
dn H1	sc	0
dof 0	vs	344
dm yon	th	?
dmm ${ }^{\text {dis }}$	ai	cdc ph
dpwr 65 dinf 6700		

100	90	80	70	60	50	40	30	20	10	0	-10	ppm

Compound 42 ${ }^{1} \mathrm{HNMAR}$

Curren Data Parameters NAME OB 1725 after work-up EXPNO
PROCNO
F2 - Acquisition Parameters
Date 20140917
Time 12.05
INSTRUM $\quad 5 \mathrm{~mm}$ PABBO BB/
PROBHD
PULPROG $\quad \mathrm{zg} 30$
SOLVENT
NS
DS
FIDRES $\quad 8012.820 \mathrm{~Hz}$
FIDRES $\quad 0.122266 \mathrm{~Hz}$
$\begin{array}{lr}\text { AQ } & 4.0894465 \\ \text { RG } & 113.32\end{array}$
113.32
6.50 usec
295.7 K
1.00000000 sec
$========$ CHANNEL $\mathrm{fl}========$
SFO1 400.1324710
$\begin{array}{ll}\text { NUCl } \\ \text { Pl } & 10.00 \text { usec }\end{array}$
PLW1 25.00300026 W
F2 - Processing parameters SI 65536 $\begin{array}{ll}\text { SF } & 400.1300000\end{array}$ SSB 0

0
0
0.30 Hz

GB
PC
1.00

Compound 43
${ }^{31} \mathrm{PJ} \mathrm{H}$ NWR coupled

$\begin{array}{lr}\text { Current Data Parameters } \\ \text { NAME } & \text { OB } 1701 f 2 \\ \text { FXPNO } & 2 \\ \text { PROCNO } & 1\end{array}$
E2 - Acquisition Parameters
E2 - Acquisition Paramet
Date

Time	9.06
INSTRUM	speot

INSTRUM spect PROBHD 5 mm PABBO $\mathrm{BB} /$
PULPROG

PULPROG	2930
$T D$	6556

SOLVENT	DMSO
NS	32

NS
D
SSH
64102.563 Hz
0.978127 Hz
0.5111808 sec
203.57
203.50 used
7.800 usec
.800 usec
6.50 usec
295.3 K
2.00000000 sec

90	80	70	60	50	40	30	20	10	0	-10	-20	-30

OB 1037
expl Phosphorus

Compound 41
${ }^{31} \mathrm{PJ}$ 'H NMR decoupled

OB 1037
exp1 Phosphorus

Compound 41
$3^{31} \mathrm{P} \mathrm{I}^{1} \mathrm{H}$ NMR coupled

Compound 44
${ }^{31}$ Pi'H NMR coupled

Compound 46 ${ }^{31} \mathrm{P} \mathrm{J}^{1} \mathrm{H}$ NMR decoupled

Compound 46 ${ }^{31} \mathrm{P} \mathrm{I}^{1} \mathrm{H}$ NMR coupled

| 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 | ppm |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Compound 46
${ }^{13} \mathrm{C}$ NWR

[^0]: $\begin{array}{lllllllllllll}90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & \mathrm{ppm}\end{array}$

