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ABSTRACT

In this undergraduate thesis, we use results from Topology and Analysis, including

but not limited to the Banach Fixed Point Theorem, in order to establish some global

forms of the Inverse Function Theorem. As an application that brings together three

different branches of mathematics, we prove a basic, yet important, result in Algebra:

there is no commutative division algebra (not necessarily associative) that is isomor-

phic to R
n for all n greater than or equal to 3.

Furthermore, we will develop enough theory regarding differentiable manifolds to

discuss and prove the Brouwer Fixed Point Theorem and the Schauder Fixed Point The-

orem along with an application to game theory and economics. We will then compare

and contrast the applications of the Banach Fixed Point Theorem and the Schauder

Fixed Point Theorem to the field of differential equations. These applications are two

famous theorems commonly known as the Picard-Lindelöf Theorem and Peano’s The-

orem, respectively.
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0 Introduction

Some of the biggest branches of Mathematics are Analysis, Topology, and Algebra.
Topology is somewhat similar to Analysis in that the notions we learn in Analysis are
much more generalized to deal with different types of spaces and different types of
contexts. However, when learning more about each field in the respective classes, it
doesn’t seem as though there is much overlap between Analysis and Algebra. Sure,
there are basic concepts from the other branches that we may assume to be true in
order to move on, but at first, it doesn’t seem like there is something that really ties
them together. Of course, there is a branch that ties Topology and Algebra together
fittingly called Algebraic Topology. However, in this paper, we will show that the
three branches are connected even in places one may not think.

To even begin to understand, we need to know different basic definitions in Topol-
ogy and Analysis. We will use these to prove the Banach Fixed Point Theorem, and
in turn, we will use this to prove the (local) Inverse Function Theorem. The proof of
the Banach Fixed Point Theorem is vital not only in this section but in the coming
sections as well, when we will turn our focus fom the Inverse Function Theorems to
differentiable manifolds and fixed point theorems. The point of proving these two the-
orems is not only because they are important in general but because they will be used
in later chapters to establish more results, all of which will lead up to global forms of
the Inverse Function Theorem.

After this chapter, we will briefly cover the basics of covering spaces. We will visit
various definitions and examples in order to prove a theorem about when a covering
space is a homeomorphism. The importance of this theorem may not immediately be
seen, but it is used in proofs that Plastock [14] gives regarding different forms of the
Global Inverse Function Theorem.

The final chapter before shifting our focus will be about the global forms of the In-
verse Function Theorem. We will cover different theorems about which conditions are
necessary to turn C1 local diffeomorphisms/homeomorphisms between Banach Spaces
into global diffeomorphisms/homeomorphisms. In these theorems, different condi-
tions are used in order to arrive at a diffeomorphism/homeomorphism, but we will
remark that these conditions are actually equivalent. At this chapter’s culmination, we
cover an application to Algebra due to W. Gordon [5]:

Theorem. For n ≥ 3 there is no operation of multiplication on a commutative division
algebra (not necessarily associative) that is isomorphic to R

n.

Once we have proven this application to Algebra, we will turn back to building up
our analytical and topological foundation. Similar to the first two chapters, we will
only cover what is necessary in order to move onto differentiable manifolds and the
fixed point theorems.

The differentiable manifolds chapter is vital to understand the Brouwer Fixed Point
Theorem. We will cover a few definitions and a lot of lemmas and theorems that keep
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building upon one another. Many of the lemmas rely on each other, leading to results
upon which the proof of the Brouwer Fixed Point Theorem relies.

For the remainder of the paper, we will talk about fixed point theorems, namely
Brouwer’s Fixed Point Theorem, Schauder’s Fixed Point Theorem (which is an exten-
sion of Brouwer’s to Banach spaces), and Peano’s Theorem. We will note the differences
not only between Brouwer’s Fixed Point Theorem and Schauder’s Fixed Point Theorem,
but also between Peano’s Theorem and the Picard-Lindelöf Theorem, the latter being
an application of the Banach Fixed Point Theorem.. The following are the statements
of these theorems:

Theorem. (Brouwer Fixed Point Theorem). Let Dn be the closed unit n-ball. Then, any
continuous function G :Dn→Dn has a fixed point.

Theorem. (Schauder Fixed Point Theorem). Let M be a nonempty, compact, convex sub-
set of a Banach space X, and suppose T : M →M is a continuous operator. Then T has a
fixed point.

Theorem. (Peano’s Theorem). Consider the following initial value problem:

x′(t) = f (t,x(t)),x(t0) = y0.

If f is continuous and bounded on a rectangle ⊂ R
2, then there exists a local solution to the

initial value problem.

Theorem. (Picard-Lindelöf Theorem). Consider the following initial value problem:

x′(t) = f (x,y(t)), y(x0) = y0.

If f is continuous with respect to t and Lipschitz continuous in the second variable on a
rectangle ⊂R

2, then there exists unique local solution to the initial value problem.

These theorems talk about functions f from a space X into itself such that f (x) = x,
x ∈ X. Whether or not this x is unique will depend on the strength of the conditions
regarding f and X, but one thing both theorems guarantee is the existence of such an x
in varying conditions.

Why are we so concerned about whether or not such an x exists? It turns out
that these theorems have far and wide-reaching applications, varying from differential
equations to game theory and economics, all of which we will discuss via applications
of said theorems later. Our first application will be a more light-hearted and fun appli-
cation. This will use the Brouwer’s/Schauder’s Fixed Point Theorem. We will consider
Colorado and show that if we have a continuously-distorted picture of Colorado on a
sheet of paper and proceed to place that paper on Colorado soil, then there is a point
on the picture of Colorado directly above its location in mainland Colorado.

The second application will use Brouwer’s/Schauder’s Fixed Point Theorem to show
that a mixed-strategy Nash equilibrium solution will always exist (though it may not
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be unique) in a finite game, regardless of whether a pure-strategy solution exists. Ba-
sically, a mixed-strategy assigns probabilities to choices from which players in a game
can choose. If we suppose that all players are aware of the other players’ current strat-
egy, then the Nash equilibrium is the strategy “vector” (where the nth component is
the strategy of player n) in which no player can benefit by deviating from it.

The third application will be proving Peano’s Theorem as a result of Schauder’s
Fixed Point Theorem. We will how that certain ordinary differential equations are
guaranteed to have solutions. These solutions may or may not be unique. Because
Peano’s theorem only tells us about the existence of a solution, we cannot conclude
anything about the uniqueness of such a solution without imposing stronger condi-
tions.

The final application will be using a previously-proved theorem: the Banach Fixed
Point Theorem. We will also apply this to the field of differential equations in order to
highlight the differences between Peano’s Theorem and the Picard-Lindelöf Theorem.
Because the Picard-Lindelöf Theorem imposes stronger conditions on the function f ,
namely f must be Lipschitz-continuous, then f is not only guaranteed to have a so-
lution but a unique one at that. Peano’s Theorem does not assume such a condition,
nor does it assume any other strong conditions either, and as such, we are left with a
guarantee only of the existence of a fixed point.
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1 The Inverse Function Theorem

1.1 Topological Preliminaries

The main goal of this section is to provide just enough notions from Topology to
build up toward the Banach Fixed Point Theorem. There is nothing too in-depth with
regard to Topology in this section, and we will assume a moderate knowledge of Cal-
culus and vector spaces. These notions will be used at the end of the chapter to prove
the Inverse Function Theorem. For a more comprehensive and rigorous treatment of
Topology, see [10].

Though Euclidean n-spaces are the most basic and well-known spaces, we will be
generalizing our results to metric and Banach spaces, the latter being special types
of metric spaces. Before that, though, we need to define a sense of “distance” in our
spaces. This notion of distance is called a metric, and is defined as follows:

Definition 1.1. A metric on a set X is a function d : X × X → R with the following
properties:

(1) d(x,y) ≥ 0 for all x,y ∈ X; the equality holds if and only if x = y.

(2) d(x,y) = d(y,x) for all x,y ∈ X.

(3) d(x,z) ≤ d(x,y) + d(y,z) for all x,y,z ∈ X.

Since a metric is considered as a distance between two points, it is very easy to
define a set of points within a certain radius of a single point x. We use the notation
B(x,r) and say “the (open) ball of radius r centered at x.” Formally, it is defined in a
space X as

B(x,r) = {y ∈ X | d(x,y) < r}.

Note that in R, a ball is simply an open interval with midpoint x. In R
2, it is the

open set of all the interior points sitting inside the circle of radius r centered at x.
This notion is extended to an n-dimensional ball in R

n, simply called a ball when the
context is understood. We are also able to talk about norms on vector spaces, which
induce a metric by: d(x,y) =

∣∣∣x − y∣∣∣. We can easily check that this is indeed a metric. In
fact, every normed vector space (X,‖·‖) is a metric space by definition. Recall that the
standard Euclidean norm of Rn

‖x‖ =
√
x2

1 + x2
2 + . . .+ x2

n

is not always used.

Example 1. Since we will be dealing with Banach spaces, which will be introduced
later, let us consider d : R×R→ R defined by d(x,y) =

∣∣∣x − y∣∣∣, where d is the standard
absolute value function. It is fairly simple to check that d is indeed a metric.

(1) Clearly,
∣∣∣x − y∣∣∣ > 0 for x , y by definition of d and when x = y,

∣∣∣x − y∣∣∣ = |0| = 0.
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(2) Since |−z| = |−1| |z| = |z|,

d(x,y) =
∣∣∣x − y∣∣∣ =

∣∣∣y − x∣∣∣ = d(y,x), ∀x,y ∈R.

(3) To prove that d(x,z) ≤ d(x,y) + d(y,z) for all x,y,z ∈ X, one need only consider the
triangle inequality.

d(x,z) = |x − z| =
∣∣∣x − y + y − z

∣∣∣ ≤ ∣∣∣x − y∣∣∣+
∣∣∣y − z∣∣∣ = d(x,y) + d(y,z).

Thus, d(x,z) ≤ d(x,y) + d(y,z), ∀x,y,z ∈R.

Hence, d is indeed a metric.

Definition 1.2.

1) A metric space is a space X endowed with a metric d.

2) A complete metric space is a metric space (X,d) in which every Cauchy sequence
is convergent.

3) A Banach space is a complete normed vector space.

Given any space, we need to be able to classify types of sets (collections of elements
in that space.) This is extremely vital and elementary to many different proofs, not only
in this paper but in Topology and Analysis as well. We will restrict our definitions to
metric spaces, though they can be generalized to any Topological space.

Definition 1.3. Let (M,d) be a metric space with a set U ⊆M.

1) U is open in M if, given a point x ∈U , ∃ε > 0 such that B(x,ε) ⊂U .

2) F is closed in M if M \ F is open. Equivalently, F is closed if every convergent
sequence (xi) in F converges to a point in F.

Though it seems that ifU is open, it can’t be closed (and vice versa), this is not true.
If U is both open and closed, we say U is clopen. We have to be careful, though, in
our frame of reference. Every set U is clopen in U , as will be discussed in Example 2,
but U is not necessarily clopen in V for U ⊂ V . In this paper, however, our frame of
reference will be on the metric space in the context.

Example 2. Let (X,d) be a metric space. Note that Ø,X are both clopen in X. X is open
because every ball in X is by definition a subset of X. On the other hand, Ø vacuously
satisfies the definition of an open set; that is, there is no x ∈ Ø in the first place, and
hence because it does not fail the definition, it satisfies it. X is closed because X \X = Ø
is open. Furthermore, Ø is clearly closed since we have already stated that X \Ø = X is
open.
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Definition 1.4. Let (X,d1) and (Y ,d2) be metric spaces.

1) A Lipschitz map is a continuous function f : X → Y for which there exists a
constant C ∈R+ such that ∀x,y ∈ X, we have

d2(f (x), f (y)) ≤ Cd1(x,y).

C is called a Lipschitz constant.

2) A contraction mapping, or simply a contraction, is a continuous function g :
(X,d)→ (X,d) such that ∃k ∈R with 0 ≤ k < 1 such that ∀x,y ∈ (X,d), we have

d(g(x), g(y)) ≤ kd(x,y).

Note that k is merely a Lipschitz constant constrained to values in [0,1). Furthermore,
Lipschitz constants are independent of the points that we choose; that is, there exists
at least one k ∈ [0,1) such that k works for any pair of points that we choose.

Example 3. Let X = [1,∞). We will show that f : X → X defined by f (x) =
√
x is a

contraction. Let x,y ∈ X. Without loss of generality, let y > x. We need to show that
∃k ∈ [0,1) such that ∀x,y ∈ X, √y −

√
x < k(y − x). This is equivalent to showing that

√
y−
√
x

y−x < k, for all y > x. We note that

√
y −
√
x

y − x
=

√
y −
√
x

(
√
y +
√
x)(
√
y −
√
x)

=
1

√
y +
√
x
<

1
√

1 +
√

1
=

1
2
,

and see that k = 1/2 does the job.
�

It is important to note that g : [0,∞)→ [0,∞) given by g(x) =
√

(x) is not a contraction

since limy→0+

√
y−0
y−0 = +∞. As a concrete counterexample to g being a contraction, note

that g(.7) − g(.01) =
√
.7 −
√
.1 > .7 − .01 = .69. So, there is no k ∈ (0,1) such that g(.7) −

g(.01) ≤ k(.7 − .01). Thus, g cannot be a contraction. In the next section, we will see
another reason as to why g is not a contraction.

1.2 The Banach Fixed Point Theorem

This section will be almost entirely devoted to the Banach Fixed Point Theorem
and its proof. Though we will not cover here its application to first-order differential
equations and the uniqueness/existence of solutions (see Section 9.2), the BFPT does
apply to this and to other areas in mathematics as well. However, we will limit our
scope in the following sections to the Inverse Function Theorem.

Definition 1.5. A point x̄ ∈ X is a fixed point of a map f : X→ X if f (x̄) = x̄.
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Theorem 1.6. (The Banach Fixed Point Theorem). Let (X,d) be a non-empty complete
metric space. If T : X → X is a contraction, then T admits a fixed-point x∗ ∈ X, and
furthermore, x∗ is unique.

Remark 1.7. Recall that since (X,d) is a non-empty complete metric space, that means
X has a metric d, X has at least one point x ∈ X, and every Cauchy sequence (xi)
convergesto a point in X.

Proof of Theorem 1.6. [16] Fix a point x ∈ X and call C ∈ [0,1) the Lipschitz constant
of T . Consider the sequence (T kx)∞k=0. We need to show that this is Cauchy in the space
(X,d) in order to find the candidate for our fixed point. So, without loss of generality,
let n ≥ m > 0 be nonnegative integers and note that because T kx = T (T k−1x) for any
k ∈Z+, then

d(T nx,Tmx) = d(T (T n−1x),T (Tm−1x) ≤ Cd(T n−1x,Tm−1x) ≤ . . . ≤

Cmd(T n−mx,x) = Cmd(x,T n−mx).

Because d is a metric, then by the Triangle Inequality (property 3), we know that
d(x,T n−mx) ≤ d(x,T n−m−1x) + d(T n−m−1x,T n−mx), so by induction on the second term,
we see that

d(x,T n−mx) ≤ d(x,T n−m−1x) + d(T n−m−1x,T n−mx) ≤ d(x,T n−m−2x)+

d(T n−m−2x,T n−m−1x) + d(T n−m−1x,T n−mx) ≤ . . . ≤
n−m∑
k=1

d(T k−1x,T kx).

So,

d(T nx,Tmx) ≤ Cm
n−m∑
k=1

d(T k−1x,T kx) ≤ Cm
n−m∑
k=1

Ck−1d(x,T x) =

Cmd(x,T x)
n−m∑
k=1

Ck−1 = Cm
1−Cn−m−1

1−C
d(x,T x),

since
∑n−m
k=1 C

k−1 is a geometric series. So, because C < 1, we see that

Cm
1−Cn−m−1

1−C
→ 0 as m→∞

and hence d(T nx,Tmx) → 0. So, (T kx)∞k=0 is indeed a Cauchy sequence, and because
(X,d) is complete, (T kx)∞k=0 converges in X, say to u. Now that we have our candidate
for a fixed point, we need to show that it actually is a fixed point; that is, T u = u. By
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definition of a contraction, T is continuous (and hence we can bring it inside/outside
limit signs), so

d(T u,u) = d(T ( lim
k→∞

T kx), lim
k→∞

T kx) = d( lim
k→∞

T k+1x, lim
k→∞

T kx) = d(u,u) = 0.

Since d(T u,u) = 0, one has that T u = u, so u has a fixed point. We have thus shown
existence and now need to show uniqueness. Suppose v ∈ X satisfies T v = v as well.
Then,

d(u,v) = d(T u,T v) ≤ Cd(u,v),

but since C < 1, it must be that d(u,v) = 0, else if d(u,v) = p , 0, then p ≤ Cp, which is
a false statement. Since d is a metric, d(u,v) = 0 ⇐⇒ u = v, hence u is unique.

�

Remark 1.8. Now we return to Example 3. Recall that g : [0,∞)→ [0,∞] was defined
by g(x) =

√
x. We stated that g was not a contraction by finding values to disprove

it. However, in more general cases, it may be harder to show that a function is not a
contraction using this method. Thus, here are some observations:

(1) [0,∞) is clearly a metric space with metric |·| defined as the standard absolute
value.

(2) [0,∞) is complete as a closed subset of the complete metric space R.
Proof: Clearly X = [0,∞) is closed since R \X = (−∞,0) is open. Let (xi) be a
Cauchy sequence in X (and hence, in R). Since R is complete, (xi) converges
in R, say to x ∈ R. But, X is closed and thus contains all of its limit points by
definition 1.3, x ∈ X. We see, then, that every Cauchy sequence inX converges
in X, so X = [0,∞) is complete. Note that this conclusion holds for any closed
subset of a complete metric space.

(3) The Banach Fixed Point Theorem, assuming that (X,d) is a non-empty com-
plete metric space, is equivalent to the following: If there is no fixed point or
more than one fixed point of the function T : X→ X, then T is not a contraction.

Thus, showing that g is not a contraction boils down to simply noting that g(0) = 0 and
g(1) = 1, hence both 0 and 1 are different fixed points. By (3), the contrapositive of
Theorem 1.6, g is not a contraction.

1.3 Analytic Preliminaries

In this section, we will assume knowledge about continuity, inverses, and deriva-
tives. We will also assume a basic knowledge of matrices and determinants, from Lin-
ear Algebra. The point of this section is to provide enough terminology and knowledge
to understand new theorems, lemmas, and definitions in later chapters and sections.
Our focus, then, will be restricted to homeomorphisms, diffeomorphisms, and the Ja-
cobian Matrix.
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Definition 1.9. Let X,Y be metric spaces. Then, f : X → Y is a homeomorphism if f is
continuous, a bijection, and has a continuous inverse.

What a homeomorphism is really doing is stating when two metric spaces (more
generally, topological spaces) are really the “same” if we allow them to be “deformed”
and “bent” from one into the other.

Definition 1.10. Let X,Y be metric spaces. Then, f : X → Y is a diffeomorphism if f is
differentiable, a bijection, and has a differentiable inverse.

Notice the similarity between homeomorphisms and diffeomorphisms. The dif-
ference is that a homeomorphism is not necessarily differentiable for all x ∈ X nor is
its inverse necessarily differentiable for all y ∈ Y . However, because differentiability
implies continuity, every diffeomorphism is a homeomorphism, but not every homeo-
morphism is a diffeomorphism.

Definition 1.11. LetX,Y be open subsets of some Euclidean space Rn. Then, f : X→ Y
is differentiable at a ∈ X if there exists a linear transformation λ : X→ Y such that

lim
h→0

‖f (a+ h)− f (a)−λ(h)‖
‖h‖

= 0.

Theorem 1.12. ([16], p. 16) If such a λ exists, then the derivative of f at a is unique.

Proof of Theorem 1.12. To see this, suppose µ satisfies the above condition as well. If
d(h) = f (a+ h)− f (a), then

lim
h→0

‖λ(h)−µ(h)‖
‖h‖

= lim
h→0

‖λ(h)− d(h) + d(h)−µ(h)‖
‖h‖

≤

lim
h→0

‖λ(h)− d(h)‖
‖h‖

+ lim
h→0

‖d(h)−µ(h)‖
‖h‖

= 0.

If x ∈ X, then tx→ 0 as t→ 0. Hence, for x , 0, we have

0 = lim
t→0

‖λ(tx)−µ(tx)‖
‖tx‖

=
‖λ(x)−µ(x)‖
‖x‖

.

So, λ(x) = µ(x).
�

Definition 1.13. Let X,Y be open subsets of a Euclidean-n space, and f : X → Y be
differentiable at a ∈ X. Then, the matrix associated to the unique λ as in the previous
definition is called the Jacobian matrix of f at a and is denoted by f ′(a) or Df (a).
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Though we will not show this, if f as before has the form f = (f1, f2, . . . , fn), then

f ′((x1,x2, . . . ,xn)) =



∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn


,

where all the partial derivatives are computed at (x1, . . . ,xn).

Lemma 1.14. Chain Rule. ([16], p. 19) If f : X→ Y is differentiable at a ∈ X, and g : Y →
Z is differentiable at f (a), then the composition g ◦ f is differentiable at a, and

D(g ◦ f )(a) =Dg(f (a)) ◦Df (a).

Lastly, we will define the norm of a matrix. This will be used in the Inverse Function
Theorem.

Definition 1.15. Let X,Y be finite-dimensional vector spaces and A a matrix repre-
senting a linear transformation from X to Y . Then, the norm of A is defined as

‖A‖ = sup{‖Ah‖ : ‖h‖ = 1}.

That is, the norm of A is the supremum of the lengths of the images of all the unit
vectors h ∈ X.

1.4 Inverse Function Theorem

Theorem 1.16. (The Inverse Function Theorem). [2] Let U be an open set in R
n, and

f : U → R
n a differentiable function of class C1. Suppose x0 ∈ U is a point where f ′(x0)

is invertible. Then, there exists neighborhoods W ⊂ U of x0 and V of y0 = f (x0) such that
f |W : W → V is a bijection. Furthermore, the inverse g : V → W is differentiable of class
C1, with derivative g ′(y) = f ′(g(y))−1.

Remark 1.17. We will discuss informally what this theorem is saying and how we go
about proving it. Since U is an open set, we can take nonempty open subsets of U
around different points. By picking W around x0 such that f ′(x0), that is the Jacobian
matrix of f at x0 is invertible (determinant is nonzero), then we can make W small
enough so that it only contains points at which f ′(x) is invertible. We are able to
do this because the partial derivatives of f are continuous, meaning f is of class C1.
Furthermore, sinceW is chosen so that it contains only invertible points, there does not
exist any relative extrema and thus f |W is injective. Since V = f (W ), f |W is surjective
as well, thus bijective. We then chooseW in such a way so that f −1 = g is differentiable
and thus continuous as well.

10



Lemma 1.18. ([2], p. 1) Suppose ‖f ′(x)‖ ≤M on some diskD. Then for any points x,x+h ∈
D,

‖f (x+ h)− f (x)‖ ≤M‖h‖.

Proof of Theorem 1.16. (The Inverse Function Theorem). We may assume that x0 =
y0 = 0 and f ′(0) = I . If not, we can use a linear function and a linear change of coordi-
nates to get this normalization. Since f ∈ C1, let

D = {x ∈Rn | ‖x‖ ≤ δ},

where δ is chosen small enough to make D ⊂ U and ‖f ′(x) − I‖ ≤ 1
2 for all x ∈ D. Let

w(x) = f (x)− x, so w′(x) = f ′(x)− I , and by Lemma 1.18, ‖w(x+ h)−w(x)‖ ≤ 1
2‖h‖. So,

‖f (x+ h)− f (x)− h‖ ≤ 1
2
‖h‖. (1.1)

We will now choose our V as in the theorem. Let V = {y ∈ Rn | ‖y‖ < 1
2δ}. From this

point on, δ has been chosen as such. Let g(y) = x.
Let u :D→D be defined by u(x) = x+(y−f (x)). Note that y = f (x) ⇐⇒ u is a fixed

point. If we can eventually check that the map u is a contraction, then we know a fixed
point x exists and is unique by Theorem 1.6 and thus a point where y = f (x). First, we
must check that u is well-defined, that is, u(D) ⊂ D. Let x = 0 in Equation 1.1 and see
that

‖f (h)− h‖ ≤ 1
2
‖h‖ ≤ 1

2
δ, ∀h ∈D.

Rename h as x, and we see that

‖u(x)‖ ≤ ‖y‖+ ‖f (x)− x‖ ≤ 1
2
δ+

1
2
δ = δ.

Now, we will check that u is a contraction. So,

u(x+ h)−u(x) = x+ h+ y − f (x+ h)− x − y + f (x) = −f (x+ h) + f (x) + h.

Using Equation 1.1 again,

‖u(x+ h)−u(x)‖ = ‖f (x+ h)− f (x)− h‖ ≤ 1
2
‖h‖.

Indeed, u is a contraction (and hence continuous) with a Lipschitz constant of 1
2 .

Note that D is the closed ball in R
n, and since (Rn,‖·‖) is a complete metric space, D

is a complete metric space (see Observation (2) in Remark 1.8). So, u is a contraction
and thus yields a fixed point, say x ∈ D. Since ‖u(x)‖ = ‖x‖ < ε, we see that x ∈ D̊.
Now, we define W as in the theorem as W = f −1(V )∩ D̊. f |W is bijective onto V since
f |D∩f −1(V ) is a bijection. Thus, we have shown that there exist neighborhoods W of x0
and V of y0 = f (x0) such that f |W :W → V is a bijection. Let g be the inverse of f |W .

11



We now need to check that our g : V → W is continuous. Let y,y + k ∈ V and let
g(y) = x, g(y + k) = x+ k. By Equation 1.1 once again, ‖k − h‖ ≤ 1

2‖h‖. So,

‖h‖ = ‖h− k + k‖ ≤ ‖k − h‖+ ‖k‖ ≤ 1
2
‖h‖+ ‖k‖.

Thus, 1
2‖h‖ ≤ ‖k‖ and hence ‖h‖ ≤ 2‖k‖. Simply let ‖k‖ ≤ 1

2ε and see that g is indeed
continuous.

We need only show that g is differentiable with a derivative g ′(y) = f ′(g(y))−1. So,
since f is differentiable at x, we have that

f (x+ h) = y + k = f (x) +Ah+ e(h) = y +A[g(y + k)− g(y)] + e(h),

where A is the Jacobian matrix of f at x. So, we can apply A−1 to the previous equation
to obtain

g(y + k) = g(y) +A−1k −A−1e(h).

Recall that ‖h‖ ≤ 2‖k‖ and see that

‖A−1e(h)‖
|k‖

≤ 2‖A−1‖‖e(h)‖
‖h‖

−→ 0

as k→ 0 since ‖e(h)‖
‖h‖ → 0 as h→ 0 as k→ 0 from the differentiability of f and what we

recalled. Thus, g is by definition differentiable with derivative g ′(y) = A−1 = f ′(g(y))−1.
�
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2 Covering Spaces

2.1 Basic Theory

This section will cover basic definitions and review examples in order to gain an
intuition regarding covering spaces and loops. Though seemingly disjoint from the
previous sections on Topology and Analysis, our goal here is to build up to Hadamard’s
Global Inverse Function Theorem which makes use of both topics.

Definition 2.1. A path is a continuous map f : [0,1]→ X. We say that f (0) and f (1)
are called the initial point and terminal point respectively.

Definition 2.2. A path f is called closed if f (0) = f (1).

Definition 2.3. A space X is called path connected if ∀x,y ∈ X, there exists a path p :
I → X such that p(0) = x and p(1) = y.

Definition 2.4. Let f ,g : I → X be paths such that f (0) = g(0) and f (1) = g(1). We say
f and g are equivalent or homotopic relative to the endpoints, denoted by f ∼ g, if there
exists a continuous map h : I × I → X such that for all s, t ∈ I :

(1) h(t,0) = f (t)
(2) h(t,1) = g(t)
(3) h(0, s) = f (0) = g(0)
(4) h(1, s) = f (1) = g(1)

Proof of Equivalence Relation in Definition 2.4. Recall that an equivalence relation
is reflexive, symmetric, and transitive.

(1) Reflexivity: Take h to be h(t, s) = f (t). Then, h(t,0) = f (t), h(t,1) = f (t), h(0, s) =
f (0), and h(1, s) = f (1). Clearly, h is continuous since f is continuous.

(2) Symmetry: Let f ∼ g with homotopy h0. So, consider h1 = h0(t,1 − s). So, note
that h1(t,0) = h0(t,1) = g(t), h1(t,1) = h0(t,0) = f (t), h1(0, s) = h0(0, s) = f (0) = g(0),
and h1(1, s) = h0(1, s) = f (1) = g(1). Thus, h1 is the homotopy from g to f , so g ∼ f .

(3) Transitivity: Let f ∼ g and g ∼ hwith respective homotopies j,k. Clearly, f (0) =
h(0), f (1) = h(1) by transitivity. Define l : I × I → X as:

l(t, s) =

j(t,2s), if s ∈ [0, 1
2 ]

k(t,2s − 1), if s ∈ [1
2 ,1]

(2.1)

Well, l(t,0) = j(t,0) = f (t), l(t,1) = k(t,1) = h(t). Also, l(0, s) = f (0) = g(0) = h(0),
and l(1, s) = f (1) = g(1) = h(1). Also, l is continuous since l(t, 1

2 ) = j(t,1) = k(t,0) =
g(t).

�
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Definition 2.5. A covering space of a metric space X is a pair (X̃,p) of a space X̃ and
a continuous, surjective map p : X̃ → X such that each x ∈ X has a path-connected
neighborhood U with the property that each path-connected component of p−1(U ) is
mapped homeomorphically onto U by p.

Remark 2.6. Note that p as in the previous definition is indeed an open map, but it is
much stronger than that. It states that for each point in the codomain, there is a corre-
sponding neighborhood around it such that the neighborhood is the image of the union
of disjoint open sets, where each open set in the union is mapped homeomorphically
onto the neighborhood by p.

Example 4. Let X = {(cos2πt, sin2πt, t) | t ∈ R}. Let p : X → S1 be the natural pro-
jection given by p(cos2πt, sin2πt, t) = (cos2πt, sin2πt). Note that if we choose any
nonempty, open subset sufficiently small in S1, then these neighborhoods are elemen-
tary neighborhoods, meaning they are the “U” in our covering space definition. If we
let the neighborhood be S1, then note that p−1(S1) = X, but p is clearly not injective,
thus it does not map X homeomorphically onto S1.

2.2 The Covering-Homeomorphism Theorem

Every covering map is a surjective, continuous, and open map, but because of its
strong property as noted in Remark 2.6, a covering map is not typically injective, but
we can find a property such that it makes it one. This property requires that the
codomain be simply connected, which in turn causes the covering map to be injective
and hence a global inverse exists.

We will be making use of a lemma in our proof, but the lemma will be taken as true
without proof. For a full proof, a development of two other lemmas is necessary and
can be found in Massey’s “Algebraic Topology: An Introduction.” ([8], p. 151)

Lemma 2.7. Let (X̃,p) be a covering space of X and let g0, g1 : I → X̃ be paths in X̃ which
have the same initial and terminal points. If pg0 ∼ pg1, then g0 ∼ g1.

Theorem 2.8. Let f : M → N be a covering of N . If N is simply connected, then f is a
homeomorphism.

Proof of Theorem 2.8. Recall that a homeomorphism is a bijective continuous function
with a continuous inverse. We know that since (M,f ) is a covering map, then f is
continuous and surjective by definition. Likewise, because of its special topological
property, it is an open map as well, thus its inverse, if it exists, is continuous. Because
the existence of an inverse is guaranteed by a bijection, we need only prove that it is
injective.

Let g0 : I → M be a path defined as g(0) = a, g(1) = b, where a , b. Suppose
f (a) = f (b), by contradiction. So, f g0 is a closed loop. Let g1 : I → M also be the
constant path defined as g1(x) = a, ∀x ∈ I . Note that f g1 is the trivial loop at f (a) ∈ N .

14



Since N is simply connected, we know that f g0 is homotopic rel. endpoints to the base
point f (a), so f g0 ∼ f g1. By Lemma 2.7, that means g0 ∼ g1, so g0(1) = g1(1). But
g0(1) = a , b = g1(1), thus a contradiction. So, f (a) , f (b). Therefore, f is injective and
hence a homeomorphism.

�
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3 Global Inverse Function Theorems

3.1 Banach Space Homeomorphisms

In this section, we will cover different theorems that can be found in [14] describing
homeomorphisms (diffeomorphisms) between Banach spaces. For more information
on global forms of the Inverse Function Theorem, see [6]. [12], and [14].

Definition 3.1. Let D ⊆ X is open and connected with X,Y being Banach spaces. One
says that F : D → Y lifts lines in F(D) if for each line L(t) = (1 − t)y1 + ty2 in F(D),
t ∈ [0,1], and for every point xα ∈ F−1(y1) there is a path Pα(t) such that Pα(0) = xα and
F(Pα(t)) = L(t), for every t ∈ [0,1].

Definition 3.2. Let F :D→ Y be continuous and supposeD ⊆ X is open and connected
with X,Y being Banach spaces. One says that F satisfies Condition (L) if whenever
P (t), 0 ≤ t < b, is a path satisfying F(P (t)) = L(t) (where L(t) = (1− t)y1 + ty2 is any line
in Y ), then there is a sequence ti → b as i→∞ such that limi→∞ P (ti) exists and is in D.

Lemma 3.3. ([14], p. 170) Let D ⊆ X be open and connected, with X,Y as Banach spaces
and F : D → Y a local homeomorphism. Then, (D,F) covers F(D) if and only if F lifts lines
in F(D).

Theorem 3.4. ([14], p. 170) Let F :D ⊆ X→ Y be a local homeomorphism. Then condition
(L) is necessary and sufficient for F to be a homeomorphism.

Proof of Theorem 3.4. If F is a homeomorphism already, then clearly (L) is satisfied.
So, suppose that condition (L) is satisfied first. Let L(t) be any line in F(D), with L(0) =
ȳ. Let x̄ ∈ F−1(ȳ). Since, F is a local homeomorphism, then for x̄ we can find an ε >
0 and a path P (t) such that P (0) = x̄ and F(P (t)) = L(t) for 0 ≤ t < ε. Let K be the
largest number for which P (t) can be extended to a continuous path for 0 ≤ t < K and
satisfying F(P (t)) = L(t) for 0 ≤ t < K .

Since F satisfies condition (L), let z = limti→K P (ti). By continuity of F, F(z) = L(K).
Let W be a neighborhood of z on which F is a homeomorphism. Then, ∃N such that
P (ti) ∈W for i ≥N . Also, ∃δ > 0 and a path Q(t) defined for K − δ < t < K + δ such that
Q(tM) = P (tM), where M is such that M ≥ N and K − δ < tM < K , and F(Q(t)) = L(t) for
K − δ < t < K + δ. So, P (t) can be extended once again and relabeled to a continuous
path P (t) on 0 ≥ t < K + δ, P (0) = x̄, and F(P (t)) = L(t), 0 ≤ t < K + δ. However, recall
that we chose K to be maximal with respect to extending P (t) to a continuous path, so
K = 1. Therefore, we see that this is true for all t ∈ F−1(ȳ = [0,1), so F lifts lines.

So, (D,F) covers F(D). We now need to show that F(D) = Y . Clearly, F(D) ⊆ Y , so we
will only show Y ⊆ F(D). Let ȳ ∈ Y . Choose y1 ∈ F(D) and let L(t) = (1− t)y1 + tȳ. Thus,
we can find a path P (t), 0 ≤ t ≤ 1, so that F(P (t)) = L(t). Thus, F(P (1)) = L(1) = ȳ, hence
ȳ ∈ F(D). Therefore, Y ⊆ F(D), so F(D) = Y . Since Y is a Banach space, we know that Y
is simply connected. Thus, by Theorem 2.8, we see that F is indeed a homeomorphism.

�
The following theorem is originally due to Banach and Mazur [1].
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Theorem 3.5. ([14], p. 174) Let X,Y be Banach spaces, F : X → Y be a local homeomor-
phism. Then, F is a homeomorphism if and only if it is proper.

Proof of Theorem 3.5. If F is a homeomorphism, then F−1 is continuous and thus maps
compact sets into compact sets. Therefore, F is proper. So, suppose that F is proper.
If we show that F satisfies (L), then by Theorem 3.4, F will be a homeomorphism.
So, let P (t) for 0 ≤ t < b satisfies F(P (t)) = L(t) on the same interval. Let ti → b. Let
S = {L(t)}0≤t≤1 and note that S is compact, therefore F−1(S) is compact by properness.
Also, F−1(S) contains P (ti). By compactness, we can find a subsequence tij → b such
that P (tij )→ x̄, so (L) is satisfied. Therefore, by Theorem 3.4, F is a homeomorphism.

�
Note that under the assumptions of Theorem 3.5,

F satisfies condition (L) ⇐⇒ F is a homeomorphism ⇐⇒ F is proper.

3.2 Application to Algebra

The point of this section is to bring everything that we have learned to a single,
yet important, application. Though this application deals with an area of mathematics
called Algebra, to use the theorem, we have had to gain a better understanding and
intuition of ideas and theorems from Topology and Analysis. Essentially, we have tied
together three big branches in mathematics together with one topic: the Global Inverse
Function Theorem.

Lemma 3.6. A proper local homeomorphism F :D ⊆R
n→R

n lifts lines in F(D).

We will assume this lemma to be true, for its proof is very similar to the maximality
argument used in Theorem 3.4. This lemma is vital in proving the important theorem
which follows.

Theorem 3.7. Let F : D ⊆ R
n → R

n be a proper local diffeomorphism. If F(D) is simply
connected, then F is a diffeomorphism from D onto F(D).

Proof of Theorem 3.7. By Lemma 3.6, we know that F lifts lines in F(D). By Lemma
3.3, we know that (D,F) is a covering of F(D). Since F(D) is simply connected, by
Theorem 2.8, F is homeomorphism from D onto F(D).

�
This theorem is different from Theorem 3.5 in that it doesn’t require F to go from

the whole Banach space but only a subset of it. This will be important in our proof
as we will not take the whole space as the domain. Again, it is interesting to note
that topological and analytical notions and theorems are being brought together to
prove an important result in Algebra: there is no commutative division algebra (not
necessarily associative) that is isomorphic to R

n for n ≥ 3. So, in other words, any
finite-dimensional, commutative division algebra over R is isomorphic to R or C. If we
allow the division algebra to be noncommutative, then it can be isomorphic to either

17



H (the quaternions) or O (the octonions) as well. The quaternions were discovered
in 1843 by William Hamilton whereas the octonions were discovered later that year
by John Graves, inspired by Hamilton’s discovery. It is important to note that the
octonions are not associative. By allowing the division algebra to be noncommutative
and restricting it to be associative, we get the equivalent of Frobenius’ theorem [15],
which states that every finite-dimensional associative division algebra is isomorphic
to R, C, or H. Therefore, we will restrict it to be not necessarily commutative nor
necessarily associative. For more information on the following theorem, see [5] and
([12], p. 85). The rigorous statement is as follows:

Theorem 3.8. For n ≥ 3, there is no operation of multiplication on R
n which satisfies:

(1) x(λy) = λxy, where λ ∈R is a scalar.

(2) x(y + z) = xy + xz (distributivity)

(3) xy = 0 =⇒ x = 0 or y = 0 (no zero divisors)

(4) xy = yx (commutativity)

Because we will assume a multiplication on R
n, we need to define how multiplica-

tion works in relation to the Euclidean norm.

Lemma 3.9. There exists two positive constants C1,C2 such that for x ∈Rn,

C1‖x‖2≤‖x2‖ ≤ C2‖x‖2.

Proof of Lemma 3.9. Note that if x , 0, then by (1),

x2 = ‖x‖2
( x
‖x‖

)( x
‖x‖

)
.

Hence,

‖x2‖ = ‖x‖2
∥∥∥∥∥( x‖x‖)( x‖x‖)

∥∥∥∥∥ .
Consider V : Sn−1→ [0,∞) defined by V (u) = ‖u ·u‖. This is a continuous function over
the compact set Sn−1, so therefore there exists a u0 ∈ Sn−1 such that,

V (u0) = ‖u0 ·u0‖ = inf
u∈Sn−1

‖u ·u‖.

Since there are no zero divisors by (3), ‖u0 ·u0‖ , 0, and so C2 = V (u0). So, we see that

C2‖x‖2 ≤ ‖x2‖.

Likewise, there exists a u1 ∈ Sn−1 such that,

V (u1) = ‖u1 ·u1‖ = sup
u∈Sn−1

‖u ·u‖.
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Since there are no zero divisors by (3) and V is a continuous function acting on a
compact set, ‖u1 ·u1‖ <∞ and ‖u1 ·u1‖ , 0, thus C1 = V (u1). Thus,

‖x2‖ ≤ C1‖x‖2,

and we see that
C2‖x‖2≤‖x2‖ ≤ C1‖x‖2.

�
Proof of Theorem 3.8. We will prove that this cannot be true by contradiction. Sup-
pose that there does exist a multiplication in R

n for n ≥ 3 that satisfies conditions (1)
through (4). Let F be the map from R

n − {0} to R
n − {0} defined by F(x) = x2. This is

well-defined because there are no zero divisors according to condition (3), so we know
that if xy = 0 ∈ Rn − {0}, then either x = 0 or y = 0. If x,y < Rn − {0}, then xy < Rn − {0}.
Thus, F is well-defined.

It is fairly simple to check that the condition below is equivalent to properness:

if xn→

0
∞

, then F(xn) = x2
n→

0
∞

.

We see that by continuity, F(xn)→ 0 as xn→ 0. By Lemma 3.9, F(xn)→∞ as xn→∞.
Thus, F is indeed proper.

Now, in order to check that F satisfies the hypothesis of Theorem 3.7, let us consider
the differential of F, supposing it exists. We claim that the following holds:

dFxv = lim
h→0

1
h

(F(x+ hv)−F(x)) = xv + vx = 2xv,

where the last equality follows from (4). To see this, let us consider the following:

lim
h→0

‖F(x+ h)−F(x)− dFx(h)‖
‖h‖

= lim
h→0

‖x2 + 2xh+ h2 − x2 − 2xh‖
‖h‖

= lim
h→0

‖h2‖
‖h‖

= 0,

where the last inequality follows by Lemma 3.9. Indeed, F is differentiable by Defini-
tion 1.11, and we know dFx is unique by Theorem 1.12, and so dFxv = 2xv. In particu-
lar, F is continuous. Also, 2xv , 0 for all x,v ∈Rn\{0} by (4). Thus, dFx is non-singular,
and so by the Inverse Function Theorem (1.16), F is a local diffeomorphism.

Now, we draw attention to the fact that n ≥ 3. In order to use Theorem 3.7, the
codomain must be simply connected. However, R \ {0} and R

2 \ {0} are not simply
connected. When n ≥ 3, R

n \ {0} is simply connected, and so we see that 3 is the
smallest integer for which Theorem 3.7 applies.

Therefore, F is a diffeomorphism. However, F is not even a injective since (−x)2 =
x2, ∀x ∈Rn\{0}. Thus, we have a contradiction, so our assumption that there does exist
a multiplication as previously stated is false. Therefore, there is no multiplication
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in R
n for n ≥ 3 satisfying conditions (1) through (4); that is, by combining results

and notions from Analysis and Topology, we have found that there is no commutative
division algebra (not necessarily associative) that is isomorphic to R

n for n ≥ 3.
�
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4 Further Analytical and Topological Notions

From here on out, there will be somewhat of a shift in gears. We have talked about
global forms of the inverse function theorem and its application to division algebras,
but let’s recall the Banach Fixed Point Theorem. It states that any contraction from a
space into itself has a unique fixed point. In this second half, we want to study various
fixed point theorems and look at the different conditions necessary for the result to
occur.

Before we can move on, it is precisely because there are various different condi-
tions, applied not only to the spaces but to the functions as well, that we need more
definitions and ideas regarding functions and how they interact with certain spaces.
In this section, we will limit our focus to the setting of a metric space as the space to
which our sets belong.

Definition 4.1. A set A is bounded if ∃M ∈R such that d(x,y) ≤M for all x,y ∈ A.

Definition 4.2. Let f be a function from A to R. We say f is bounded if the image f (A)
is bounded.

Example 5. Consider the following function f : (0,1]→R given by f (x) = 1/x. limx→1
1
x =

1, but limx→0
1
x =∞. Note carefully that (0,1] is clearly bounded since max(d(x,y)) =

1, ∀x,y ∈ (0,1]. However, f ((0,1]) is not bounded because limx→0d(f (x), f (1)) =∞; this
is due to the fact that f is not continuous on the interval (0,1]. Geometrically, it is clear
to see since there is an asymptote at x = 0. Though (0,1] is bounded, because f ((0,1])
is not, we say that f is not bounded on the set (0,1].

With the introduction of bounded sets, one may ask when boundedness in both
the domain and the image is guaranteed. With boundedness alone, we will have to
extra conditions to the function apart from mere continuity. However, if we add more
conditions to the domain rather than the function, we get a whole new set of ideas.

Definition 4.3. An open cover of A is any collection of open sets C = {
⋃
Ua | a ∈ A} such

that A ⊆ C. A subcover of C is any subset B ⊆ C that still covers A.

Definition 4.4. A set A is compact if every open cover of A has a finite subcovering.

Recall that a closed set is a set which contains all of its limit points, that is, the
limit of every convergent sequence in a closed set is also contained in the closed set.
In Euclidean spaces, it turns out that the idea of compactness is equivalent to the
combination of being both closed and bounded.

Theorem 4.5. (Heine-Borel Theorem). For A ⊂R
n, A is compact if and only if A is closed

and bounded.

We will not delve into the proof of this. With the introduction of this concept of
compactness, we return to our idea guaranteeing boundedness in both the domain and
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the image. In fact, we can do much better than this. We can guarantee compactness
in both the domain and image simply by having a continuous function, which, by the
Heine-Borel Theorem, means that the domain and image are not only bounded but
closed as well in the context of a Euclidean space.

Lemma 4.6. The image of a continuous function f over a compact space X is compact.

Proof of lemma 4.6. Given that X is compact and thus has a finite subcover for any
cover of X, we must show that any cover of f (X) has a finite subcover as well. Let C
be an open cover of f (X). Note that for any open set U ∈ C, because f is continuous,
f −1(U ) is open in X. Given any x ∈ X, f (x) must be in some V ∈ C, thus f −1(f (x))
contains x ∈ f −1(V ). So, f −1(C) is an open cover of X. Because X is compact, there
exists a finite subcover {f −1(U1), f −1(U2), . . . , f −1(Un)}which covers X. Given any x ∈ X,
x surely belongs to f −1(Ui) for some 1 ≤ i ≤ n. Thus, by continuity f (x) ∈ Ui . Since x
was arbitrary in X, this applies for any f (x) ∈ f (X), thus {U1,U2, . . . ,Un} is a finite
subcover of f (X). Therefore, f (X) is compact.

�

Lemma 4.7. A continuous bijection f is a homeomorphism if and only if it is open (if U is
open, then f (U ) is as well), or equivalently, if and only if it is closed (if W is closed, then
f (W ) is as well).

Proof of lemma 4.7. First, suppose f is open. Consider any open set U and note that
f (U ) is open. As a switch in notation, we say f (U ) = U ′ and U = f −1(U ′). Thus, we
have that whenever f −1(U ′) is open, then U ′ is open, which shows that f −1 is continu-
ous. Thus, f is a homeomorphism.

Next, suppose f is a homeomorphism. Thus, f −1 is continuous. So, let V be an
open set in the domain of f −1. By continuity, f −1(V ) is open. Let f −1(V ) = V ′ and
V = f (V ′). Thus, whenever V ′ is open, so is f (V ′). Therefore, f is open.

The proof is similar for closed sets.
�
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5 Manifold Preliminaries

Some of the key ideas in understanding the Brouwer Fixed Point Theorem and the
Schauder Fixed Point Theorem are the notions of differentiable manifolds and different
theorems surrounding them. As such, we need to introduce some more definitions and
lemmas. The following definitions and lemmas are to be found in Milnor [9].

Definition 5.1. Let U ⊂ R
k and V ⊂ R

l be open sets. A function f : U → V is called a
smooth function if all of its partial derivatives exist and are continuous. Alternatively,
if U and V are not necessarily open, then a map f :U → V is called a smooth map if for
each x ∈ X, there exists an open setW =U ∩X containing x such that there is a smooth
function F :U →R

l coinciding with W .

We have defined what a diffeomorphism is previously, but now we define a diffeo-
morphism as a homeomorphism f where f and f −1 are both smooth.

Definition 5.2. A subset M ⊂ R
k is called a smooth manifolds of dimension m if each

x ∈ M has a neighborhood W ∩M that is diffeomorphic to an open subset U of the
euclidean space R

m.

The key word here is diffeomorphic. It is not enough to simply be homeomorphic but
rather diffeomorphic. If the diffeomorphic property is not satisfied, then the smooth-
ness of the manifold cannot be guaranteed. Furthermore, the fact that each point has
a neighborhood diffeomorphic to an open subset of U and the fact that it is called a
smooth manifold hint at the idea that the manifold is not jagged and sort of flowey
geometrically.

The main focus of this will not be to study a certain manifold individually but
rather to study functions from one manifold to another. If we have a smooth map
f : M → N , where M,N are smooth manifolds, then there needs to be a sense of a
(partial) derivative.

Definition 5.3. Let f : M ⊂ R
k → N be a smooth map between smooth manifolds.

Then, we denote the tangent space at a point x ∈M as the linear subspace TMx ⊂ R
k of

dimension m formed by the tangent vector at x of all smooth curves lying in M. Then,
dfx is the linear mapping dfx : TMx→ TMf (x).

In the statements of the Brouwer and Schauder Fixed Point Theorems, each has
a continuous function sending a set homeomorphic to a ball (finite-dimensional or
infinite-dimensional) into itself. Thus, the domain and the range both have the same
dimension. With this in mind, we turn in particular toward maps between smooth
manifolds of the same dimension. Naturally, if we have a smooth map f with M,N as
above, then dim(M) = dim(N ) implies that dim(TMx) = dim(TNf (x)).

We will introduce two definitions for some upcoming lemmas. These lemmas will
be useful in proving the Brouwer Fixed Point Theorem.
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Definition 5.4. Let f : M → N be a smooth map between manifolds of the same di-
mension. We say that x ∈M is a regular point of f if the derivative dfx is nonsingular.
The point y ∈ N is called a regular value if f −1(y) contains only regular points. Should
dfx be singular, then x is called a critical point of f and f (x) is called a critical value.

Definition 5.5. A subset X ⊂ R
k is called a smooth m-manifold with boundary if each

x ∈ X has a neighborhood U ∩X diffeomorphic to an open subset V ∩Hm of Hm, where
Hm = {(x1,x2, · · · ,xm) ∈Rm | xm ≥ 0}.

These lemmas build upon each other in a linear fashion, so it is important that we
cover each one in order to understand the subsequent one.

Lemma 5.6. ([9], p. 11) If f : M → N is a smooth map between manifolds of dimension
m ≥ n, and if y ∈ N is a regular value, then the set f −1(y) ⊂ M is a smooth manifold of
dimension m−n.

Proof of Lemma 5.6. Let x ∈ f −1(y). Since y is a regular value, the derivative dfx must
map TMx onto TNy . Therefore, the null space of dfx will be an (m − n)-dimensional
vector space.

IfM ⊂R
k, we will define a linear map L : Rk→R

k that is nonsingular on this afore-
mentioned subspace. We now define a map F : M → N ×Rm−n by F(ξ) = (f (ξ),L(ξ)).
By linearity, we know that dFx(v) = (dfx(v),L(v)). So, dFx is nonsingular due to the
nonsingularity of L on the subspace. By the Inverse Function Theorem, this F maps
some neighborhood U of x diffeomorphically onto a neighborhood V of (y,L(x)). So, F
maps f −1(y)∩U diffeomorphically onto (y ×Rm−n∩V ), so f −1(y) is a smooth manifold
of dimension m−n.

�

Lemma 5.7. ([9], p. 12) Let M be a manifold without boundary and let g : M → R have
0 as a regular value. The set of x ∈M with g(x) ≥ 0 is a smooth manifold, with boundary
equal to g−1(0).

Proof of Lemma 5.7. By Lemma 5.6, if x ∈M gets mapped to 0, then the set of such
x is a smooth manifold since 0 is a regular value. This means that g−1(0) is a smooth
manifold of dimension m − 1. So, g−1(0) is merely the boundary of M. Therefore, the
set of all x ∈M with g(x) ≥ 0 is a smooth manifold.

�

Lemma 5.8. ([9], p. 13) Consider a smooth map f : X → N from an m-manifold with
boundary to an n-manifold, where m > n. If y ∈ N is a regular value, both for f and for
the restriction f �∂X , then f −1(y) ⊂ X is a smooth (m − n)-manifold with boundary, and
furthermore, the boundary ∂(f −1(y)) is precisely equal to f −1(y)∩∂X.

Proof of Lemma 5.8. Since we are not dealing with a global condition but rather a
local one (i.e. with sets dependent upon regular values y ∈ N ) and since every smooth
(m−n)-manifold with boundary is locally diffeomorphic toHm, we will simply consider
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the case of f : Hm → R
n with regular values y ∈ Rn. Let x̄ ∈ f −1(y). If x̄ is an interior

point, then as before f −1(y) is a smooth manifold in the neighborhood of x̄ by Lemma
5.6.

Now, suppose that x̄ is a boundary point. We choose a smooth map g : U → R
n

defined throughout the neighborhood of x̄ coinciding with f on U ∩Hm, where g has
no critical points (we can adjust U if necessary). Hence, g−1(y) is a smooth manifold of
dimension m−n by definition.

Let π : g−1(y)→ R be given as π((x1,x2, . . . ,xm)) = xm. We claim that 0 is a regular
value for π. Indeed, the tangent space of g−1(y) at a point x ∈ π−1(0) is equal to the null
space of dgx = dfx : Rm → R

n. However, f � ∂Hm is regular at x, so we know that the
null space cannot be completely contained in R

m−1 × {0}. By Lemma 5.7, the set of all
x ∈ g−1(y) with π(x) ≥ 0 is a smooth manifold with boundary equal to π−1(0).

�

Lemma 5.9. ([9], p. 14) Let X be a compact manifold with boundary. There is no smooth
map f : X→ ∂X that leaves ∂X point-wise fixed.

Proof of Lemma 5.9. [7] Suppose there were such a map f leaving ∂X point-wise fixed
(i.e. f (x) = x, ∀x ∈ ∂X). We can surely find a regular value y ∈ ∂X. Note that since
y is a regular value of f , clearly y is a regular value of the identity map, which is
simply f | ∂X. So, by Lemma 5.8, then f −1(y) is a smooth (m − (m − 1)) = 1-manifold
with boundary f −1(y)∩∂X = {y}. This is impossible because f −1(y) is compact, and we
claim the only 1-manifolds are finite disjoint unions of circles and segments, so that
∂f −1(y) must consist of an even number of points. Such a proof of this claim can be
found in the appendix of Milnor’s Topology from the Differentiable Viewpoint ([9], p. 55).
Thus, such a map cannot exist.

�

Note how strikingly similar the following lemma is to the Brouwer Fixed Point
Theorem:

Lemma 5.10. ([9], p. 14) Any smooth map g :Dn→Dn has a fixed point.

While the Brouwer Fixed Point Theorem requires only continuity, this statement im-
poses the stronger condition of smoothness, which in and of itself includes continuity
as well. Thus, the Brouwer Fixed Point Theorem is a matter is relaxing this condition
while maintaining the result.
Proof of Lemma 5.10. Suppose such a map g has no fixed point. We will create a new
map which maps the manifold Dn into ints boundary. For x ∈Dn, let f (x) ∈ Sn−1 be the
intersection of Sn−1 with the ray from g(x) in the direction of x (see Proof of Proposition
6.3). The map f is smooth, as is claimed by Milnor. So, whenever x ∈ Sn−1, x = f (x),
thus f leaves Sn−1 = ∂Dn point-wise fixed, which contradicts Lemma 5.9.

�
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As we can see, this set of lemmas is like a pyramid, constantly building on top of
the previous one. However, we want to place our focus specifically on the last lemma.
The statement is extremely similar to the Brouwer Fixed Point Theorem, with the dif-
ference being the smoothness of the function. Our goal in proving the Brouwer Fixed
Point Theorem will rely on an appoximation of a continuous function with a smooth
function, during which time we will call upon Lemma 5.10 for its conclusion.
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6 The Brouwer/Schauder Fixed Point Theorems

Now that we have covered enough material to understand not only the statements
of the Brouwer and Schauder Fixed Point Theorems but the proofs as well, let us recall
the statements of the theorems.

Theorem 6.1. (Brouwer Fixed Point Theorem). Any continuous function G : Dn → Dn

has a fixed point.

In a more general sense, the Brouwer Fixed Point Theorem can be stated as follows:

Reformulation: Let M be a nonempty, compact, convex subset of a Euclidean space R
n.

Then, any continuous function G :M→M has a fixed point.

How do we know that the Brouwer Fixed Point Theorem and the reformulation are
equivalent? We only need to show that the fixed-point property is invariant under
homeomorphisms; that is, if two spaces X,Y are homeomorphic to each other and any
continuous function from one space into itself always has a fixed point, then the other
space has this property as well. This is rather simply to prove. Indeed, Let X,Y be
homeomorphic, denoted by a function g, and let X have the fixed point property. Take
h : Y → Y to be continuous and define j : X → X by j = g−1 ◦ h ◦ g. As a composition
of continuous functions, j is continuous as well, thus j permits a fixed point, say x0 ∈
X. So, x0 = j(x0) = g−1(h(g(x0))), thus due to g being a homeomorphism, we have
g(j(x0)) = g(x0) = h(g(x0)). Therefore, g(x0) is a fixed point of our arbitrary h. Y , then,
has the fixed-point property as well, and we see that such a property is invariant under
homeomorphism.

Theorem 6.2. (Schauder Fixed Point Theorem). Let M be a nonempty, compact, convex
subset of a Banach space X, and suppose T : M →M is a continuous operator. Then T has
a fixed point.

Comparing the reformulation of Theorem 6.1 and Theorem 6.2, we can definitely
see that the Schauder Fixed Point Theorem is an extension of the Brouwer Fixed Point
Theorem into infinite dimensions. In a sense, because Euclidean spaces are Banach
spaces as well, the Schauder Fixed Point Theorem is the Brouwer Fixed Point Theorem
with a more general set M. Though we have yet to show that theorem 6.1 is true,
showing that Theorem 6.1 and the reformulation are equivalent is simply a matter
of proving there is a homeomorphism between the compact, convex set M and some
n-ball.

Now, let K ⊂ R
m be a compact, convex set and let n be the minimum dimension an

affine space needs to contain K . Let A be the affine space such that K ⊂ A.

Proposition 6.3. The n-ball Dn is homeomorphic to K , i.e. there exists a function
f :Dn→ K such that f is a continuous bijection.
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Lemma 6.4. (Two Interior Points). Let a,b ∈ Ko. Then the line segment L with endpoints
a,b is fully contained in Ko.

Proof of Lemma 6.4. Suppose not. By convexity of K , L ⊂ K . Thus, there exists a point
c ∈ ∂K such that c ∈ L as well. Take three neighborhoods of equal radius, Va of a, Vb of
b, and Vc of c, all small enough such that Va,Vb ⊂ K . By definition, there will always
exist a point c∗ ∈ (A \ K) ∩ Vc. Translate L by a vector (call this translation L∗) such
that c∗ ∈ L∗ and the endpoints of L∗ are contained in Va,Vb respectively. We have a line
segment L∗ connecting two interior points a∗,b∗ ∈ Ko with a point c∗ ∈ L∗ outside of K
while L∗ ⊂ K . Thus, a contradiction. Therefore, no such c exists. �

Though Lemma 6.4 will not help with the proof of Proposition 6.3, it did give
inspiration to the following lemma.

Lemma 6.5. (Interior and Boundary Points). Let a ∈ Ko,b ∈ ∂K . Then, the line segment
L \ {b}, whose L is given by L = {ta+ (1− t)b | t ∈ [0,1]}, is completely contained in Ko.

Proof of Lemma 6.5. Suppose not. By convexity of K , L ⊂ K . Thus, it must be that
there exists a point c ∈ L such that for some t0 ∈ (0,1), we have t0 ∗ a+ (1− t0) ∗b = c and
such that c ∈ ∂K . We will take two neighborhoods, Va of the interior point a and Vc
of the (middle) boundary point c. Any neighborhood Vc contains a point outside of K
(label it c∗), so shrink Vc until there exists an a∗ ∈ Va such that a∗, c∗, and b are colinear.
Note that this is possible due to the following. Let x be the radius of Vc. Consider the
line segment Lx given by Lx = {t ∗ ax + t ∗ b | t ∈ [0,1] with cx = t0 ∗ ax + t0 ∗ b and cx < K .
Note that ax lies somewhere in the direction of going from b to cx. Note also that as
x→ 0, ax → a and cx → c. Thus, for a small enough x, we have our a∗ and c∗, which,
respectively, are ax ∈ Va with cx ∈ Vc. Since a∗ ∈ K and b ∈ K , then L∗ is surely in K . This
is a contradiction since c∗ ∈ L∗ lies outside of K . Thus, no such c exists. �

Proof of Proposition 6.3. Recall that n ≤ m. Without loss of generality, let any point
x in the affine space A be written as x = (x1,x2, . . . ,xn, a1, a2, . . . , am−n), where ai are con-
stants, for 1 ≤ i ≤ m − n. We write k ∈ K =⇒ k = (k1, k2, . . . , kn, a1, a2, . . . , am−n). Let
Kn ⊂ R

n be given as {(k1, k2, . . . , kn) | (k1, k2, . . . , kn, a1, a2, . . . , am−n) ∈ K}. Consider the fol-
lowing function:

p : K ⊂R
n × {a1} × {a2} × · · · × {am−n} → Kn ⊂R

n, p((k1, . . . , kn, a1, . . . , am−n)) = (k1, . . . , kn).

p is clearly a homeomorphism. If 0 < Kn, then we can translate Kn by a vector (call this
translation K0) in such a way that 0 ∈ K0

o, and clearly Kn and K0 are homeomorphic,
say, by a function

q : Kn→ K0.

Because 0 ∈ K0
o, we can find a neighborhood of radius ε such that this neighborhood

is contained in K0
o. Consider the set {εx | x ∈ Dn} = Dnε ⊂ R

n, where Dn is the closed
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unit n-ball and Dnε is the closed n-ball of radius ε. Note that Dnε ⊆ K0 The function

s :Dn→Dnε , s(x) = εx

is clearly a homeomorphism. Thus, we need only find a homeomorphism

r : K0→Dnε ,

and we will simply let
f = p−1 ◦ q−1 ◦ r−1 ◦ s (6.1)

to find a homeomorphism betweenDn and K . We will do so in a radial manner. Let the

notation
−−−→
0 : k be {nk, n ∈ [0,∞)}. This is merely the set of points in the ray starting at 0

in the direction of point k ∈ K0. Fix a point k0 ∈ ∂K0. Consider the function r : K0→Dnε
given by

r(k) =


εk∥∥∥∥(

−−→
0:k ∩∂K0)

∥∥∥∥ k , 0

0 k = 0
(6.2)

In order for r to be well-defined, we must ensure that for each k , 0, (
−−−→
0 : k ∩ ∂K0)

produces only one value, i.e. that (
−−−→
0 : k ∩ ∂K0) is a single point. By Lemma 6.5, we

conclude that r is well-defined. The claim that r is a continuous bijection is supported
in Borwein’s and Luis’s Convex Analysis and Nonlinear Optimization ([4], p. 184), where∥∥∥∥(
−−−→
0 : k ∩∂K0)

∥∥∥∥ = ‖k‖−1γK0
(k). We only need to show that r−1 is continuous. Given

any closed set V ⊂ K0, V is compact since K0 is compact. Thus, by lemma 4.6, r(V )
is compact is well. By theorem 4.5, r(V ) is closed and bounded, thus the image of a
closed set under r is closed. So, r is a closed map and is thus a homeomorphism. We
have found a homeomorphism r, and therefore f is also a homeomorphism. �

We have shown that the Brouwer Fixed Point Theorem and its reformulation given
above are equivalent because we have found a homeomorphism. As such, we will
proceed on to proving the Brouwer Fixed Point Theorem. We will assume the validity
of the Weierstrass approximation theorem which states that any continuous function
on a compact subset of Rn can be uniformly approximated as closely as desired by a
polynomial function. The following proof is due to Milnor ([9], p. 14-15).

Proof of the Brouwer Fixed Point Theorem. Because we want to show that any con-
tinuous function G : Dn → Dn has a fixed point, we will start off by approximating
G by a smooth mapping. Given ε > 0, we can find a polynomial P1 : Rn → R

n with
‖P1(x)−G(x)‖ < ε, for all x ∈ Dn. However, this P1 is not guaranteed to send points
x ∈ Dn to points inside Dn, since the distance between P1(x) and G(x) may be ε whilst
P1(x) is outside Dn. To correct this, we will let P (x) = P1(x)/(1 + ε). Suppose we have
a point x0 mapped to a point P1(x0) outside of Dn. So, ‖P (x0)‖ = ‖P1(x0)/(1 + ε)‖ <
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‖(1 + ε)/(1 + ε)‖ = 1, thus P (Dn) ⊆Dn. Also,

‖P (x)−G(x)‖ ≤ ‖P (x)− P1(x)‖+ ‖P1(x)−G(x)‖ <
∣∣∣∣∣1− 1

1− ε

∣∣∣∣∣‖P1(x)‖+ ε ≤ 2ε.

Suppose now that G(x) , x for all x ∈ Dn. Then the continuous function ‖G(x)− x‖,
by compactness of Dn, must take on a miminum µ > 0 on Dn. Choosing P : Dn → Dn

as above, and ε small enough such that ‖P (x)−G(x)‖ < 2ε < µ for all x, then P (x) , x.
Thus, P is a smooth map from Dn to itself without a fixed point, which contradicts
Lemma 5.10.

�

In our proof, we used a polynomial to approximate our continuous function G :
Dn→ Dn as closely as we would like. Because P is smooth and its domain and image
are Dn, then P must have a fixed point by the lemma mentioned.

Our method in proving Schauder’s Fixed Point Theorem will not be similar, but
rather, we will reduce our infinite-dimensional problem to a finite-dimensional one
in order that we may use the Brouwer Fixed Point Theorem. Recall that the Schauder
Fixed Point Theorem states that any continuous function T from a non-empty, com-
pact, and convex subsetM ⊂ X, where X is a Banach space, into itself has a fixed point.

Proof of the Schauder Fixed Point Theorem. ([1], p. 57-58) By continuity of T and
compactness of M, we know that T (M) is compact as well. For each n ∈N, there are
elements yi ∈ T (M), i = 1,2, . . . ,N such that mini

∥∥∥T x − yi∥∥∥ < 1/n, ∀x ∈ M. We will
let Mn be the convex hull of points yi , i = 1,2, . . .N . Because M is convex itself, then
Mn ⊆ co(T (M)) ⊆M, where the first inequality follows from Mn being the smallest set
containing all of the yi and co(T (M)) being the smallest convex set containing T (M)
which contains all of the yi , and where the second inequality follows from the fact that
T (M) ⊆M, and since M is convex, then co(T (M)) ⊆M. Note that because N is finite,
Mn is compact in addition to convex.

We will define a function Pn :Mn→Mn by

Pn(x) =
∑N
i=1 ai(x)yi∑N
i=1 ai(x)

,

where ai(x) = max(n−1 −
∥∥∥T x − yi∥∥∥ ,0). Note that

0 ≤ ai(x)∑N
j=1 aj(x)

≤ 1,
N∑
i=1

ai(x)∑N
j=1 aj(x)

= 1,

thus Pn(x) is a convex combination of y1, . . . , yN . Hence, Pn(Mn) ⊂Mn. Also, Mn ⊆ R
N .

So, span{y1, . . . , yN } is a subspace of R
N . Also note that because ai do not all vanish

simultaneously by our selection of yi , i = 1,2, . . . ,N , then Pn :Mn→Mn is a continuous
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function.
We will also point out that for all x ∈M,

‖Pnx − T x‖ =
∥∥∥∥∥∑i ai(x)(yi − T x)∑

i ai(x)

∥∥∥∥∥ ≤ ∑
i ai(x)n−1∑
i ai(x)

≤ n−1.

We see that as n→∞, we have Pn→ T . for all x ∈M.
We see that the reformulation of the Brouwer Fixed Point Theorem applies, and so

there is a fixed point xn = Pn(xn), where xn ∈ Mn ⊆ M. By compactness of M, there
is a convergent subsequence, denoted by (xn), such that xn → x as n → ∞. This x is
the desired fixed point, as can be seen by letting n→∞ in ‖xn − T x‖ ≤ ‖Pnxn − T xn‖ +
‖T xn − T x‖. �

31



7 Application of the Brouwer Fixed Point Theorem to
Real-World Maps

In the previous section, we discussed two important theorems: the Brouwer Fixed
Point Theorem and its extension to infinite-dimensional spaces, the Schauder Fixed
Point Theorem. A fixed point is guaranteed when we have a nonempty, compact,
convex subset of a Banach space and a continuous map from that subset into itself,
whether the subset be finite-dimensional (Brouwer) or infinite-dimensional (Schauder).
Our first application will be a fun, casual application to start things off.

Theorem 7.1. Consider the rectangular state of Colorado and a sheet of paper on which is
completely printed a (possibly continuously-distorted) map of Colorado. Then, with the map
on the ground, there is at least one point on the paper directly on top of the point in Colorado
which is indicated by the paper.

Remark 7.2. In the real world, Colorado is not a two-dimensional rectangle. Rather, it
is some shape in 3-space due to the curvature of the Earth. However, for our purposes,
we will assume it is flat and a nice rectangle.

Proof of Theorem 7.1. In this proof, “map” will always refer to the piece of paper
and not a function. Note that the sheet of paper/map (denote as M) and Colorado
(denote as C) are rectangular in nature and thus are convex sets. Because they are two-
dimensional and thus can be considered as subsets of R2, they are both homeomorphic
to a disk. Because we placed the map on top of Colorado, we can think of these two
two-dimensional sets as subsets of R3 parallel to each other.

Denote the downward projection of M into C by k : M → C. Note that k is contin-
uous, and k(M) ⊆ C (if k(M) = C, then that is one huge piece of paper!). Note that the
map of Colorado is itself the image of a continuous function j : C→M (possibly even
continuously-distorted) which sends points in actual Colorado to points on the sheet
of paper.

Consider a function f : C → C by f = k ◦ j and note that f is a continuous map of
Colorado into itself, thus it has a fixed point by the Brouwer Fixed Point Theorem since
it is homeomorphic to the disk D2. This fixed point c0 can be traced back by k−1(c0)
(the preimage, not the inverse function). Since k is clearly injective, k−1(c0) is just a set
containing one point, namely j(c0).

Since k was strictly the downward projection, then j(c0) lies directly on top of c0 ∈
C. Thus, there is at least one point on the paper/map directly on top of the point in
Colorado which is indicated by the paper/map itself. �
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8 Application of the Brouwer Fixed Point Theorem to
Nash Equilibriums

We discussed an application of the Brouwer Fixed Point Theorem to the real world
in a physical sense in the previous chapter. While it is certainly appealing to visual-
ize such applications, the Brouwer Fixed Point Theorem is a very important result in
mathematics and has various applications. The second and last application we will be
discussing is its application to game theory and economics.

Theorem 8.1. Every two-person finite game has a Nash equilibrium in mixed strategies.

This is a completely different field, so it will be useful to define our terms.

Definition 8.2. ([18]) A game is a situation involving gains or losses in which at least
two players each have partial control over the outcomes.

Definition 8.3. ([3], p. 88) A strategy of player n is an element of the set of choices
Xn, or the strategy set, from which player n can choose in the game. The product of all
strategy sets is called the set of strategy vectors.

One can think of a possible outcome as the strategy vector x =< x1,a,x2,b, ...,xn,m >,
where xi,j is the j-th choice/strategy in the strategy set Xi (the set of options for player
i).

Definition 8.4. ([20]) A Nash equilibrium is a strategy vector x for which no player
has an incentive to deviate from their current strategy given the choices of the other
players.

It is best to understand what these ideas mean when they come together, so we will
use our own example of the famous problem of the prisoner’s dilemma.

Example 6. Consider the following situation in which Prisoner A’s choices are given in
the left-most rows and Prisoner B’s choices are given in the upmost columns: Silent Testify

Silent Both get 1 year A: 10 years, B: free
Testify A: free, B: 10 years Both get 7.5 years


This situation tells us of two prisoners. Both have the options either to testify or

to remain silent, but how much jail time they receive is dependent not only on their
individual choice but on the other prisoner’s choice as well. From this example, it is
obvious that the best choice that takes everyone into account is for both prisoners to
work together by staying silent; this way, they will each only get half a year. However,
what’s interesting is that the Nash equilibrium does not necessarily work this way.
Suppose A is silent. Then B has the option of getting 1 year or going free, and he will
clearly want to go free. We will “mark” < Silent,T estif y > to show that this is B’s
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strategy given a certain strategy for A. Now, suppose A testifies. Then B will either get
10 years of jail, or he will get 7.5 years. He will clearly choose to testify and receive 7.5
years, so we will mark < T estif y,T estif y >.

Now, let’s switch perspectives. Suppose B remains silent. Then A can testify and
go scot-free, or A can remain silent and get 1 year. Because B’s choice is given, A will
choose to testify to receive less jail time. So, we mark < T estif y,Silent >. Finally,
suppose B testifies. Then, A will want to testify as well because A prefers 7.5 years of
jail time over 10. So, we mark < T estif y,T estif y >.

Notice that the only cell that we marked twice (twice because the number of play-
ers n = 2) is < T estif y,T estif y >. This is the Nash equilibrium. Neither player has the
incentive to deviate from their current strategy individually given the other player’s
strategy. Even though < T estif y,T estif y > is not the best option for the players col-
lectively, when they are treated individually, neither player will have the incentive to
change.

Our example has yet to take into account one more variable in the theorem: the
notion of mixed-strategies.

Definition 8.5. ([19]) A mixed-strategy is a collection of moves together with a corre-
sponding set of weights which are followed probabilistically in the playing of a game.
Alternatively, for every 1 ≤ i ≤ n there are probability variables pi,j attached to each
strategy xi,j ∈ Xi for player i such that

∑m
j=1pi,j = 1.

Our example showed the existence of a Nash equilibrium in a pure-strategy game,
that is, there are no probabilities that one can continually vary assigned to the game;
there are probabilities, namely 100% or 0%, but these cannot be varied; they are fixed.

However, in a mixed-strategy game, players do not have to go all-in and are allowed
to vary their strategy choices with probabilities. By contrast, a Nash equilibrium in a
pure strategy will be a strategy vector that will be picked 100% of the time. In a
mixed-strategy game, a Nash equilibrium will be a vector that includes the strategies
and their probabilities for each player. If you change the probabilities, then the vector
is possibly not a Nash equilibrium (there can be more than one).

Proof of Theorem 8.1 ([17]) In order to proceed, we need notation. We will label
the strategies of player 1 by 1,2, . . . ,m and those of player 2 by 1,2, . . . ,n. We define the
k-simplex by:

∆k = {x ∈Rk+1
+ |

k+1∑
i=1

xi = 1}. (8.1)

Because the mixed-strategy game has probabilities for each player that add up to 1, we
can think of any mixed strategy of player 1 as a point in ∆m−1 and a mixed strategy of
player 2 as a point in ∆n−1.

Let ul(i, j) be the value of player l’s choice numerically given strategy i ≤ m and
j ≤ n. We can define matrices A and B by aij = u1(i, j) and bij = u2(i, j) respectively.
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Given strategies p ∈ ∆m−1 and q ∈ ∆n−1, the expected payoff Eul(p,q) for player l is
given by the formula Eul(p,q) =

∑m
i=1

∑n
j−1piqjul(i, j), or alternatively, Eu1(p,q) = p′Aq

and Eu2(p,q) = p′Bq, where p and q are written as column vectors and p′ and q′ are
written as row vectors.

Now, we will denote the i-th column of A by Ai and the j-th column of B by Bj . So,
Aiq gives the expected payoff of player one when playing the pure strategy i against
player two’s mixed strategy q, while p′Bj gives the expected payoff of player one when
playing the pure strategy j against player one’s mixed strategy p.

With the preparation out of the way, we will now proceed with our proof. Be-
cause the Nash equilibrium says no player is incentivized to deviate from their current
strategy given the other players’ strategies, we can interpret this as saying the gain of
deviating from a pure strategy to a mixed strategy is not positive.

We want to capture this idea with formulas, so we will define two. Let ci(p,q) =
max(Aiq−p′Aq,0) for 1 ≤ i ≤m and dj(p,q) = max(p′Bj −p′Bq,0) for 1 ≤ j ≤ n. Remem-
ber that Aiq and p′Bj represent the payoff for a pure strategy, whereas p′Aq and p′Bq
represent mixed strategies, so functions ci and dj represent the gain (if any) of deviat-
ing from a pure strategy to a mixed strategy. Note that ci and dj are both continuous
functions as the maximum of two continuous functions.

With ci and dj defined, we will define new functions P ((p,q)) = (P1(p,q), . . . , Pm(p,q))
and Q((p,q)) = (Q1(p,q), . . . ,Qn(p,q)), where each Pi and Qj is defined in the following
manner:

Pi(p,q) =
pi + ci(p,q)

1 +
∑m
k=1 ck(p,q)

,

Qj(p,q) =
qj + dj(p,q)

1 +
∑n
k=1dk(p,q)

.

Similarly to ci and dj , Pi andQj are also continuous since each of their denominators
is strictly positive and each numerator is continuous. Note the following sums:

m∑
i=1

Pi(p,q) =
∑m
i=1pi +

∑m
i=1 ci(p,q)

1 +
∑m
k=1 ck(p,q)

=
1 +

∑m
i=1 ci(p,q)

1 +
∑m
k=1 ck(p,q)

= 1,

n∑
j=1

Qj(p,q) =

∑n
j=1 qj +

∑n
j=1dj(p,q)

1 +
∑n
k=1dk(p,q)

=
1 +

∑n
j=1dj(p,q)

1 +
∑n
k=1dk(p,q)

= 1.

Therefore, P (∆m−1) ⊆ ∆m−1 and Q(∆n−1) ⊆ ∆n−1 by Equation 8.1. Now, we will
define a function T : ∆m−1 ×∆n−1 → ∆m−1 ×∆n−1 by T (p,q) = (P (p,q),Q(p,q)). Because
P and Q are both continuous, T is continuous as well. Also, because simplices are
convex hulls of a finite number of points, then S = ∆m−1 ×∆n−1 is compact and convex
as well. Therefore, using the Brouwer Fixed Point Theorem, there is a fixed point
(p∗,q∗) = T (p∗,q∗). We claim that this fixed point is the Nash equilibrium. Therefore,
we claim that

∑m
k=1 ck(p

∗,q∗) = 0, meaning that the gain from deviating from a pure
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strategy p∗ for player one is 0. Suppose this claim is false. Because (p∗,q∗) is a fixed
point, we have

p∗i =
p∗i + ci(p∗,q∗)

1 +
∑m
k=1 ck(p

∗,q∗)

for every i. Therefore, ci(p∗,q∗) = p∗i [
∑
k ck(p

∗,q∗)], so from this we arrive at two relation-

ships: p∗i = 0 whenever ci(p∗,q∗) = 0 and
∑m
i=1p

∗
i =

∑m
i=1 ci(p

∗,q∗)∑m
k=1 ck(p∗,q∗) = 1. Because

∑
i pi = 1, we

know that there is at least one i, denote it by s, for which ci(p∗,q∗) > 0, meaning that
Asq

∗ > u∗1. Thus, p∗sAsq
∗ > p∗su

∗
1. Summing over all such possible s, we get

u∗1 =
m∑
i=1

p∗iAsq
∗ ≥

∑
s

p∗sAsq
∗ >

∑
s

p∗su
∗
1 = u∗1.

This is a contradiction, which means that our supposition that our claim is false is
false itself. Therefore, our claim that

∑m
k=1 ck(p

∗,q∗) = 0 is true. A similar argument
works for a pure strategy q∗ of player 2 in response to player one’s mixed strategy p∗.
Therefore, our fixed point (p∗,q∗) is a Nash equilibrium.

�
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9 Differential Equations and Fixed Point Theorems

9.1 Peano’s Theorem

In a previous section, we discussed the Banach Fixed Point Theorem and used it to
prove the Inverse Function Theorem. Because we are on the topic of fixed point theo-
rems, it will be good to remember the statement of the Banach Fixed Point Theorem in
order to contrast it with Peano’s Theorem.

Theorem 9.1. (Banach Fixed Point Theorem). Let (W,d) be a non-empty complete metric
space. If T :W →W is a contraction, then T admits a fixed point w∗ ∈W , and furthermore,
w∗ is unique.

Theorem 9.2. (Peano’s Theorem). Consider the following initial-value problem:

x′(t) = f (t,x(t)), x(t0) = y0. (9.1)

Let there be given real numbers t0 and y0, and the rectangle

Qb = {(t,x) ∈R2 : |t − t0| ≤ a, |x − y0| ≤ b},

where a and b are fixed positive numbers. Suppose that f : Qb → R is continuous and
bounded with

|f (t,x)| ≤ K for all (t,x) ∈Qb,

and fixed K > 0. Set c = min(a,K/b). Then, the initial-value problem (4.1) has a continu-
ously differentiable solution on [t0 − c, t0 + c].

In our proof of Peano’s Theorem, we will rewrite (9.1) as an intergral, and the in-
tergral as the operator equation x = T x. We will not prove the following, but it is
important to note that if we let X = C[t0 − c, t0 + c], then X is a complete metric space,
whose norm is given by ‖x(s)‖ = maxt0−c≤s≤t0+c |x(s)|, for all x ∈ X. Also, recall that a
contraction is a continuous function for which there is a non-negative number k < 1
such that the distance between the images of two points x,y is less than or equal to k
times the distance between x,y.

Although Peano’s Theorem is a direct application to differential equations while
the Banach Fixed Point Theorem itself is not, we can highlight the difference between
the two. The Banach Fixed Point Theorem tells us that a contraction from a complete
metric space into itself will yield a unique fixed point. On the other hand, Peano’s
Theorem does not require Lipschitz continuity in its function; it only requires regular
continuity. Because of that, the assumptions in Peano’s Theorem only leads to the
guarantee of the existence of a fixed point, not the uniqueness.

In the next section, we will see this contrasted much more when we use the Banach
Fixed Point Theorem in order to prove the Picard-Lindelöf Theorem. In the Picard-
Lindelöf Theorem, the function is Lipschitz continuous in the second variable. Be-
cause this theorem imposes on the function conditions that are stronger, namely that
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it must be Lipschitz continuous, than the conditions in theorem 9.2, which only re-
quires a continuous function, we are able to squeeze out more than existence and get
uniqueness.

Consider the following proof of Peano’s Theorem, and afterward, we will apply the
Banach Fixed Point Theorem to ordinary differential equations as well to contrast the
two once again.

Proof of Theorem 9.2. ([21], p. 57-58) From calculus, recall that (4.1) is equivalent to
finding the solution to

x(t) = y0 +
∫ t

t0

f (s,x(s))ds. (9.2)

We will write this as x = T x, x ∈ M ⊆ X, where we will let X = C[t0 − c, t0 + c], M =
{x ∈ X |

∥∥∥x − y0

∥∥∥ ≤ b}, and ‖x‖ = maxt0−c≤t≤t0+c |x(t)|. So, X is the space of continuous
functions on a small interval [t0 − c, t0 + c], and M is the set of all the functions in X
such that their max distance between the function itself and the point y0 is less than
or equal to b on the aforementioned interval, hence M is closed. Also, M is convex and
bounded in X. If x ∈M, then

∥∥∥x − y0

∥∥∥ ≤ b. Because we see that

∥∥∥T x − y0

∥∥∥ = maxt∈[t0−c,t0+c]

∣∣∣∣∣∣
∫ t

t0

f (s,x(s))ds

∣∣∣∣∣∣ ≤ cK ≤ b,
then T (M) ⊆M.

Claim: IfM is a closed, bounded, convex subset of a Banach spaceX and T :M→M
is compact (i.e. T(M) has a compact closure), then T admits a fixed point.

Proof: Let A = co(T (M)). Then, A ⊆ M since T (M) is a subset of the convex set
M. Additionally, A is compact and convex by definition. Clearly, T (A) ⊆ A, so the
restriction T : A→ A admits a fixed point by the Schauder Fixed Point Theorem. Since
A ⊆M, this is a fixed point on M as well.

By our claim, we have a fixed point for T in M. Therefore, we have a solution for
(9.1), which is x′(t) = f (t,x(t)), x(t0) = y0.

�

9.2 The Picard-Lindelöf Theorem

We will start off in a situation resembling that of Theorem 9.2. However, whereas
Peano’s Theorem did not require Lipschitz continuity in the second variable, the Picard-
Lindelöf Theorem does. In exchange for this stronger condition, we also get a stronger
claim, namely a unique fixed point. Consider the following theorem.

Theorem 9.3. Consider the following initial-value problem.

y′(x) = f (x,y(t)), y(x0) = y0.
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Suppose f is continuous in x and Lipschitz continuous with respect to y. Then, for some
ε > 0, there exists a unique solution y(x) to the initial value problem on the interval [x0 −
ε,x0 + ε].

Proof of Theorem 9.3. [13] Let A = {(x,y) ∈ R
2 | a ≤ x ≤ b,c ≤ y ≤ d} ⊂ R

2, and let
f : A→ R be a Lipschitz continuous function in y. We want to show that y′ = f (x,y)
not only has a solution y = g(x) with g(x0) = y0 defined on an interval [x0−ε,x0 +ε], for
some ε > 0, but also that this y = g(x) is unique. This set A is similar toQb as in Peano’s
Theorem, and our function f which takes A into R is similar to the f in theorem 9.2
that takes A into R.

However, the f in this proof is Lipschitz continuous. Similar to the previous proof,
we will again write note that the initial-value problem is equivalent to

g(x) = g(x0) +
∫ x

x0

f (t,g(t))dt. (9.3)

Because f is Lipschitz continuous in the second variable, then by definition there exists
a Lipschitz constant q > 0, i.e. a q > 0 such that

∣∣∣f (x,y1)− f (x,y2)
∣∣∣ ≤ q ∣∣∣y1 − y2

∣∣∣ for all
(x,y1), (x,y2) ∈ A. Note that these pair of points change with respect to the y-value, not
the x−value. Because A ⊂ R

2 is compact and f is continuous, f is bounded by some
constant M > 0 on A.

We have yet to choose our ε, so we will choose an ε > 0 such that ε < q−1, and we
will define a new set

B = {(x,y) ∈R2 | |x − x0| ≤ ε,
∣∣∣y − y0

∣∣∣ ≤Mε}.
Note that B ⊂ A. Let X be the subset of (C([x0 − ε,x0 + ε]),d), with d(·, ·) = ‖· − ·‖L∞ , of
functions g satisfying d(g,g(x0)) ≤Mε. We see that (X,d) is a closed subspace because
it contains all of its limit points. Now, let h = y0 +

∫ x
x0
f (t,g(t))dt. Observe that

d(h,y0) = supx∈[x0−ε,x0+ε]

∣∣∣∣∣∣y0 +
∫ x

x0

f (t,g(t))dt − y0

∣∣∣∣∣∣ ≤ supx∈[x0−ε,x0+ε]

∫ x

x0

|f (t,g(t))dt|

————————————————————— ≤ supx∈[x0−ε,x0+ε]

∫ x

x0

Mdt =Mε.

Because we have that d(h,y0) ≤Mε, then h ∈ X. Now, let us define a mapping T : X→ X
by T g = h = y0 +

∫ x
x0
f (t,g(t))dt. Because of the previous set of inequalities, we know

that if g ∈ X, then d(T g,y0) = d(h,y0) ≤Mε, thus T g is in X. So, T is well-defined.
We will show that T is a contraction mapping. Take any g1, g2 ∈ X and see that

d(T g1,T g2) = supx∈[x0−ε,x0+ε]

∣∣∣∣∣∣y0 +
∫ x

x0

f (t,g1(t))dt − y0 +
∫ x

x0

f (t,g2(t))dt

∣∣∣∣∣∣
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— ≤ supx∈[x0−ε,x0+ε]

∣∣∣∣∣∣
∫ x

x0

f (t,g1(t))dt −
∫ x

x0

f (t,g2(t))dt

∣∣∣∣∣∣
≤ supx∈[x0−ε,x0+ε]

∫ x

x0

|f (t,g1(t))dt − f (t,g2(t))dt| .

≤ supx∈[x0−ε,x0+ε]

∫ x

x0

q |g1(t)− g2(t)|dt————..

≤ d(g1, g2)supx∈[x0−ε,x0+ε]

∫ x

x0

qdt——————..

≤ qεd(g1, g2) = kd(g1, g2),—————————...

where k ∈ [0,1) due to our choice of ε < q−1. Thus, T is a contraction, and therefore, by
the Banach Fixed Point Theorem, T has a fixed point. �
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