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1 Introduction

The topic of indices of algebraic integers is a largely underdeveloped area of algebraic

number theory. Although indices are quite elementary in concept, existence questions

in all families of number fields (with the exception of quadratic fields) still abound.

In cubic fields alone, much is still unknown. As is typical of number theory in general,

an all-encompassing theory of indices remains elusive to the extent that new results

are typically relegated to developing the theory for specific families of number fields.

Such will remain the case for the present dissertation, as our sole concern will be with

cubic fields.

The historical motivation for the study of indices is rooted in the contributions of

Richard Dedekind [2]. The key idea with which Dedekind grappled was that while

number fields are always generated by a single element over Q, the same is not always

true for number rings over Z. The example he gave (which was the first of its kind)

was the cubic field F generated by a root θ of the polynomial x3 +x2− 2x+ 8. While

there are infinitely many algebraic integers generating F over Q, the ring of integers

of F can be generated over Z by a minimum of two algebraic integers. In fact, one

example of a basis for OF over Z is given by {1, θ, (θ2 + θ)/2}. Clearly, OF cannot

be generated by θ over Z; more generally, OF cannot be generated over Z by any

Z-linear combination of these basis elements.

The concept of indices is inseparably linked to a discussion of bases for number

rings over Z. Our motivation for studying them comes from our interest in the

structure of these bases and in their relation to orders generated by a single element

within their respective number rings. In this dissertation, we uncover results about

indices in families of cubic fields. The results obtained extend and generalize the work

of Spearman and Williams [10, 11] on power bases and index sets, and of Hall [5] and
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of Dummitt and Kisilevsky [3] on minimal indices. In the subsequent exposition, we

will lay the groundwork for exploring these results, and then give a preview of our

own results. We begin by discussing the relevant background from algebraic number

theory, and introducing the concept of index.

Throughout, let F ⊆ C be a number field of degree n, with number ring OF . Let

σj : F ↪→ C, with j ∈ {1, ..., n} and σ1 = id, be the n embeddings of F into C. If

B = {β1, ..., βn} is any Q-basis for F , the discriminant of B is given by

disc(B) = disc(β1, ..., βn) := det(σj(βi))
2 ∈ Q− {0} ,

where (σj(βi)) denotes the matrix with entry σj(βi) in the ith row and the jth column.

Let f(x) ∈ Q[x] be a polynomial of degree n with roots θ1, ..., θn ∈ C. Then

f(x) = d ·
n∏
i=1

(x− θi), for some d ∈ Q. The discriminant of f(x) is given by

disc(f(x)) := d2n−2 ·
∏

1≤i<j≤n

(θi − θj)2.

If f(x) is the minimal polynomial over Q of θ ∈ OF , and F = Q(θ), we have

disc(f(x)) = disc(1, θ, ..., θn−1).

The number ring OF is a free Z-module of rank n. A basis for OF over Z is called

an integral basis. If B = {β1, ..., βn} where βi ∈ OF for each i ∈ {1, ..., n}, we have

that disc(B) ∈ Z. This leads to the following important proposition:

Proposition 1.1. Let F be a number field. A set B is an integral basis for OF if and

only if B ⊂ OF , B is a Q-basis for F , and |disc(B)| ∈ N is minimal over the set of

all Q-bases for F contained in OF .
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If B is an integral basis for F , then disc(B) is called the field discriminant of F ,

denoted by ∆F . While there are a countably infinite number of distinct integral bases

for OF , ∆F is an invariant of F due to the minimality of |disc(B)|.

Let θ ∈ OF . Recall Z[θ] is the Z-submodule of OF consisting of all polynomials

in θ. Since [F : Q] = n, the minimal polynomial of θ over Q has degree at most n.

Thus Z[θ] is a finitely generated Z-submodule of OF . The Z-module index of Z[θ] in

OF is called the index of θ in OF , written

indF (θ) := [OF : Z[θ]].

Depending on the choice of θ, indF (θ) need not be finite. If the minimal polyno-

mial of θ over Q has degree less than n, then Z[θ] is freely generated over Z by fewer

than n elements. In this case, indF (θ) = ∞. However, if the minimal polynomial of

θ over Q has degree n, then OF and Z[θ] have the same rank. Thus, indF (θ) <∞.

In this dissertation, we will be concerned exclusively with the case in which

indF (θ) < ∞. Hence, we will have no need to reference the field from which we

are computing the index. From now on, we will simply write ind(θ) instead, where it

will always be implied that θ is a generator for F .

Let B1 be any integral basis for OF and let B2 = {1, θ, ..., θn−1}. Since B1 and B2

are both Q-bases for F consisting of algebraic integers, we have that OF and Z[θ] are

both (isomorphic to) full Z-lattices in Rn. The ratio of the volume of a fundamental

parallelotope of Z[θ] to the volume of a fundamental parallelotope of OF is the abso-

lute value of the determinant of the change-of-basis matrix from B2 to B1. This ratio

is also equal to |OF/Z[θ]| by the third isomorphism theorem. Therefore, ind(θ) is the

absolute value of the determinant of the change-of-basis matrix from B2 to B1.
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We can use this fact to derive a more useful one. Suppose {β1, ..., βn} is an

integral basis for OF . Then for any i ∈ {0, 1, ..., n− 1}, we have θi =
n∑
j=1

aijβj for

some aij ∈ Z. Applying the embeddings σk to both sides for each k ∈ {1, ..., n}, gives

σk(θ
i) =

n∑
j=1

aijσk(βj).

Converting this equivalence to matrices, taking determinants, and squaring both sides

gives

disc(1, θ, ..., θn−1) = (det(aij))
2∆F .

Since (aij) is the change-of-basis matrix from {1, θ, ..., θn−1} to {β1, ..., βn}, we have

that ind(θ) = |det(aij)|. This gives the following proposition:

Proposition 1.2. Let F = Q(θ), with θ ∈ OF , be a number field of degree n. Then

disc(1, θ, ..., θn−1) = (ind(θ))2∆F .

This provides us with a more useful way of computing the index of an algebraic

integer, as we will see later.

For any θ ∈ OF such that F = Q(θ), it is well-known that OF has an integral

basis of the form

B =

{
1,
θ + b1,0
k1

,
θ2 + b2,1θ + b2,0

k2
, ...,

θn−1 + bn−1,n−2θ
n−2 + ...+ bn−1,0

kn−1

}
,

where bi,l, ki ∈ N for each i ∈ {0, 1, ..., n− 1} and l ∈ {0, 1, ..., n− 2}, k0 = b0,0 = 1,

and ki | ki+1 for each i ∈ {0, 1, ..., n− 2}.1 We call B a θ-standard form for OF . Since

1See Hall [5] for the proof of the cubic case. The degree n case follows similarly.

4



the change-of-basis matrix from {1, θ, ..., θn−1} to B is a lower triangular matrix with

diagonal entries given by the ki, we have that ind(θ) =
n−1∏
i=0

ki. Thus, indices can be

thought of as products of denominators of integral bases in standard form.

From the definition of index, OF = Z[θ] exactly when ind(θ) = 1. When this is

the case, F is said to be monogenic. Moreover, the basis {1, θ, ..., θn−1} for F over

Q is actually an integral basis for OF , called a power basis. If ind(θ) > 1 for every

θ ∈ OF , then F is said to be non-monogenic.

A field F is non-monogenic exactly when OF cannot be generated over Z by a

single element. Dedekind’s example of the field F generated by a root θ of x3 + x2 −

2x + 8 provides an example of a non-monogenic field. Since {1, θ, (θ2 + θ)/2} is an

integral basis for OF , we have that ind(θ) = 2. However, it can be shown that no

algebraic integer in OF of index 1 exists. It follows that any integral basis for OF in

standard form must have some basis elements with denominators.

It is well-known that quadratic and cyclotomic fields are monogenic. Indeed, any

quadratic field F = Q(
√
d), with d ∈ Z and squarefree, has ring of integers given by

OF =


Z[
√
d] if d ≡ 2, 3 (mod 4),

Z

[
1 +
√
d

2

]
if d ≡ 1 (mod 4).

Furthermore, if F = Q(ζn) is any cyclotomic field, where n ∈ Z and ζn is a primitive

nth root of unity, then OF has an integral basis given by

{
ζjn : 1 ≤ j ≤ n− 1, gcd(j, n) = 1

}
.

Hence OF = Z[ζn].
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The characterization of all monogenic number fields is still an open problem. In

the past, number theorists have typically focused on finding families of monogenic

number fields. However, such families are usually more exotic than the standard ex-

amples given above. We will see a few of these examples later.

Determining whether a given number field is monogenic is equivalent to deter-

mining whether it contains an algebraic integer of index 1. A more general question

we might ask is: what is the smallest natural number assumed by the index of an

algebraic integer in a given number ring? Even more generally, we might ask: which

natural numbers occur as indices of algebraic integers within that number ring?

For any number field F , we define

SF := {ind(θ) : F = Q(θ), θ ∈ OF} ⊆ N.

Since SF 6= ∅, we define the minimal index of OF by

m(F ) := min SF .

If m(F ) = 1, then F is monogenic. In general, if m(F ) = ind(θ), then a θ-standard

form for OF will have denominators that multiply to give m(F ). In this sense, m(F )

describes how close OF is to having a power basis; the closer m(F ) is to 1, the closer

F is to being monogenic.2

2While the presence of some denominator ki > 1 in an integral basis for OF in θ-standard form
certainly indicates that ind(θ) > 1, it does not necessarily indicate that m(F ) > 1. This is easy
to see in the case of the quadratics, in which ind(

√
d) = 2 for each squarefree d ≡ 1 (mod 4) with

d 6= 1, whereas each quadratic is monogenic.
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Given an element of SF , we can easily determine infinitely many more. This is

summarized in the following proposition:

Proposition 1.3. Let F = Q(θ) be a number field of degree n, with θ ∈ OF . Then

for any a, b ∈ Z with a 6= 0,

ind(aθ + b) = |a|n · ind(θ).

The proof is an easy application of change-of-basis matrices. One consequence of this

proposition is that the value of b does not affect the index of θ. Hence, when comput-

ing ind(θ), we can ignore the basis element 1 when we write θ as a linear combination

of the basis elements in some α-standard form.

Determining the set SF is equivalent to finding the values assumed by a polyno-

mial form dependent on F , called an indicial form. For a number field of degree n,

an indicial form is a homogeneous polynomial IF (x1, ..., xn−1) : Zn−1 → Z of degree

n(n− 1)

2
in n − 1 variables whose image is ±SF . To derive an indicial form, first

take any integral basis for F of the form {β0, ..., βn−1}, where β0 = 1. For arbitrary

θ ∈ OF , we have that ind(θ) = ind(θ − x0) by Proposition 1.3. Thus, without loss

of generality we may write θ =
n−1∑
i=1

xiβi. Finally, we compute the determinant of the

change-of-basis matrix from {1, α, ..., αn−1} to {β0, ..., βn−1}. This determinant gives

the indicial form.3 Since integral bases are unique up to linear transformation by a

matrix in SLn(Z), indicial forms are also unique up to unimodular substitution. Thus,

distinct indicial forms for a given number field represent the same set of integers ±SF .

3The indicial form for any quadratic field L is given by IL(x) = x. Thus SL = N. We will provide
some nontrivial examples of indicial forms when we discuss cubic fields. Indicial forms for number
fields of degree greater than 3 are not easy to derive. In fact, as the degree of the number field
increases, the indicial form becomes increasingly cumbersome to compute.
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For any θ ∈ OF , ind(θ) may computed by writing θ =
n−1∑
i=1

ciβi for some ci ∈ Z

and then calculating |IF (c1, ..., cn−1)|. Thus, determining whether a number field is

monogenic is equivalent to determining whether an element in {±1} is represented

by the form. In general, finding the set of all integers represented by an integral form

like the indicial form is a highly nontrivial problem. Hence, analyzing the indicial

form might only be practical when determining whether a specific index exists.4

A more practical way to harness the power of the indicial form is to show that

every index has a common divisor, called a common index divisor. The field index of

a number field F summarizes all common index divisors for F , and is given by

i(F ) = gcd {ind(θ) : F = Q(θ), θ ∈ OF} .

If it can be shown that an indicial form for F always has a particular prime factor, we

will have that i(F ) > 1. This is useful for eliminating the possibility of monogeneity.

For its use in determining SF , we always have that SF ⊆ i(F ) · N.

We now narrow our discussion to cubic fields, starting with an overview of some

definitions and properties. Recall that a cubic field F may be classified in two ways

according to the Galois group of its normal closure K over Q. If Gal(K/Q) ∼= C3,

then F is called a cyclic cubic. In this case, F = K and is a totally real extension of

Q. If Gal(K/Q) ∼= S3, then F is called a non-cyclic cubic. In this case, K is a de-

gree 6 extension of Q containing 3 isomorphic cubic subfields and a unique quadratic

subfield L. We call L the quadratic field associated to F . Likewise, we say F and its

conjugates are associated to L.

4A common way to do this is to use congruence conditions to obtain a contradiction with nth
power residues modulo a prime.
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Let L = Q(
√
d) be any quadratic field, with d ∈ Z and squarefree. The set of

all cubic fields associated to L is denoted by C(d). Although d = 1 does not yield a

quadratic field, we still denote the set of all cyclic cubics by C(1) for consistency. The

index results for cubic fields that are most important to us will focus on the families

C(d) for a given squarefree d ∈ Z.

The simplest family of non-cyclic cubics is the set of pure cubics. This is the set

of all cubic fields of the form F = Q(
3
√
ab2), where a, b ∈ N, squarefree, and relatively

prime. Let θ =
3
√
ab2. Since the minimal polynomial of θ over Q is given by x3− ab2,

the primitive cube roots of unity ζ3 =
−1±

√
−3

2
are contained in the normal closure

of Q(θ). Thus, the associated quadratic of any pure cubic is Q(
√
−3). Conversely,

we know from Kummer Theory that any cubic associated to Q(
√
−3) must be a pure

cubic. Hence, the set of all pure cubics is C(−3).

An integral basis for OF is given by {1, θ, f(θ)}, where

f(θ) =


θ2/b if a2 6≡ b2 (mod 9),

b+ bθ + θ2

3b
if a2 ≡ b2 (mod 9).

In the latter case, the signs of a and b are chosen so that a ≡ b ≡ 1 (mod 3). For

each integral basis, a corresponding indicial form is given by

IF (x, y) =


bx3 − ay3 if a2 6≡ b2 (mod 9),

b(3x+ y)3 − ay3

9
if a2 ≡ b2 (mod 9).

For the pure cubics, the indicial form is simple enough to provide immediate

results. For instance, we can quickly deduce that F = Q( 3
√
n) is monogenic for any

squarefree n 6≡ ±1 (mod 9). Simply observe in this case that a = n, b = ±1, and

n2 6≡ 1 (mod 9), which gives IF (±1, 0) = ±1. This shows the following:
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Proposition 1.4. There exist infinitely many pure cubic fields whose ring of integers

has a power basis.

We now look at the relevant history of index results for cubic fields and then follow

with a discussion of the specific index questions we aim to answer.

One of the first results came from Engstrom [4] in 1930. He determined that for

any cubic field F , we have i(F ) ∈ {1, 2}.5 Furthermore, he determined that the exact

value of i(F ) depends only on prime ideal factorization of (2) in OF :

Theorem 1.5 (Engstrom [4]). If F is a cubic field, then i(F ) = 2 if and only if (2)

is completely split in OF .

In 1937, Hall proved that the minimal index runs unbounded over the set of all

pure cubics by applying congruence conditions for cubic nonresidues to an indicial

form:

Theorem 1.6 (Hall, Theorem 2 [5]). Given any integer N > 0, there is a pure cubic

field F = Q(
3
√
ab2) with a, b ∈ N relatively prime and squarefree in which every integer

of F has an index greater than N .

Dummit and Kisilevsky [3] proved an identical result in 1977 for a subfamily of

the cyclic cubics, namely, the family of degree 3 subfields of cyclotomic fields of the

form F = Q(ζl), where l ≡ 1 (mod 3) is any prime and ζl is any primitive lth root

of unity. Since Gal(F/Q) is generated by τ : ζl → ζgl , where g is any primitive root

modulo p, F is a cyclic extension of Q of degree l − 1. Thus F has a unique subfield

of degree 3 over Q which must be cyclic as well. The result, given below, was again

proved by invoking a convenient indicial form for the above family of cyclic cubics.

5If i(F ) = 1, it is not necessarily true that OF contains an element of index 1; rather, there exist
a pair of elements in OF whose indices have no common factor. If i(F ) = 2, then 2 divides the index
of every element of OF and there exists some element in OF whose index is not divisible by 4.

10



Theorem 1.7 (Dummit-Kisilevsky, Theorem 2 [3]). Given any N > 0, there exists

a cubic subfield F of a prime cyclotomic field Fl = Q(ζ), with l ≡ 1 (mod 3) and ζ a

primitive lth root of unity, such that m(F ) > N .

In addition, Dummit and Kisilevsky showed that there are infinitely many cyclic

cubics among this family with a power basis. In 1979, Huard [6] extended this result

by showing that for any I ∈ N there are infinitely many cyclic cubic fields containing

an algebraic integer of index I. Hence, he proved that

⋃
F∈C(1)

SF = N.

Spearman and Williams [10] showed in 2001 that, given a fixed quadratic, there

are infinitely many associated cubics whose ring of integers has a power basis. This

expands upon Proposition 1.4, in which the fixed quadratic is Q(
√
−3).

In 2008, Spearman and Williams [11] took Huard’s result a step further and de-

termined which indices occur in subfamilies of C(1) according to a dependence on the

field index. The index sets they determined are broken down as follows:

i(F )
⋃

F∈C(1)

SF

1 {8nm : n ∈ N ∪ {0} ,m ∈ 2N− 1}

2 2N

(1)

They also showed that for each index set in the right-hand column, every element of

the set is the index of an algebraic integer in infinitely many cyclic cubic fields.

In 2016, Spearman, Yang, and Yoo [12] extended Hall’s result on unbounded

minimal indices among the pure cubics by showing that every cubefree natural number
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occurs as the minimal index of infinitely many pure cubics. Using ideas similar to

theirs, we can easily prove the following theorem:

Theorem 1.8. Every natural number is the index of an algebraic integer in infinitely

many pure cubics.

Proposition 1.8 is a natural extension of Proposition 1.4. Furthermore, it imme-

diately implies that

⋃
F∈C(−3)

SF = N.

Notice the similarity of this result with Huard’s result for cyclic cubics. While The-

orem 1.8 includes any cubefree index, it is currently unknown whether the result of

Spearman, Yang, and Yoo extends to include these as well.

The results we will prove expand upon the aforementioned index results. We have

two main goals. The first is to generalize the two results of Spearman and Williams on

indices in cubic fields. We will extend their result on power bases in non-cyclic cubics

by showing that, given a fixed quadratic field L = Q(
√
d) with d ∈ Z squarefree, and

a fixed I ∈ N, there are infinitely many cubic fields F associated to L whose number

rings contain an algebraic integer of index I.6 At the same time, we will generalize

their result on index sets in cyclic cubics. Spearman and Williams split up the full

set of indices for C(1) into subsets according to the field index i(F ); we shall do this

for each family C(d). However, rather than breaking up the index sets according to

a dependence on i(F ), we will do so according to a dependence on the factorization

of the prime ideal (2) in OF .

Due to Theorem 1.5, the shift to a dependence on the factorization of (2) turns

out to be quite natural. By the Kronecker-Weber Theorem, if F is a cyclic cubic,

6Accomplishing this for I = 1 will immediately prove the result of Spearman and Williams.
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then F ⊂ Q(ζm) where ζm is a primitive mth root of unity, and m is the conductor

of F . It is known that m is either equal to 9 or is of the form m0 or 9m0, where m0

is a product of primes of the form 3n + 1. Regardless, we have that 2 - m. Hence 2

does not ramify in Q(ζm) and so cannot ramify in F . Therefore, since F is normal

over Q, we have that (2) is either inert in F or completely split in F . Consequently,

Theorem 1.5 tells us that for a cyclic cubic F , i(F ) = 1 and i(F ) = 2 correspond

precisely to when (2) is inert and completely split, respectively, in OF . In fact, the

first column in Table 1, which lists the possible values of i(F ), may be replaced by a

column listing these two possible factorizations of (2) in OF .

Thus, the result of Spearman and Williams on index sets for cyclic cubics can

easily be reformulated in terms of a dependence on the factorization of (2) in OF .

This lays the foundation for us to do so as well. However, there are five possible

factorizations of (2) within the set of all cubic fields. For any cubic field F , it still

holds that i(F ) = 2 is equivalent to (2) being completely split in OF by Theorem

1.5. Thus, it follows that if (2) is not completely split in OF , then we must have

i(F ) = 1. Hence, we may subdivide the case i(F ) = 1 into four subcases, to account

for the other four possible factorizations of (2) in a cubic field. As mentioned earlier,

the choice of d = 1 reduces the number of possible factorizations in C(d) to two.

More generally, the choice of d will reduce the number of possible factorizations of

(2) in C(d) from five to one or two. For a fixed squarefree d ∈ Z and fixed possible

factorization of (2) in C(d), we will give the set of indices of all algebraic integers

within all cubic fields in C(d) with the given factorization of (2). Furthermore, like

Spearman and Williams, we will show that for each index I in each index set, there

are infinitely many cubic fields in C(d) with the given factorization of (2) that contain

an algebraic integer of index I.
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Our second goal is to extend Hall’s result on unbounded minimal indices in pure

cubics. The families of cubics for which we extend this result will be the same as in

our first goal. In particular, we fix a squarefree d ∈ Z and show that the minimal

indices run unbounded over the set of all cubics in C(d). Hall proved this for the

pure cubics, which corresponds to the case d = −3. Dummit and Kisilevsky proved

the cyclic cubic case of d = 1. Rather than reprove these, we exclude the cases

d = −3, 1 from our proof. The structure of our argument will loosely follow the main

ideas employed by Hall to prove Theorem 1.6, as well as those used by Dummit and

Kisilevsky to prove Theorem 1.7.
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2 Sets of Indices

In this chapter, we will work towards proving the first of our two main results. Given

a squarefree d ∈ Z, we will determine the set of all natural numbers that are indices

of algebraic integers in the set of all cubic fields in C(d) with a given factorization

of the prime ideal (2). Furthermore, we will show that each element of each index

set is an index in infinitely many such cubic fields. When d 6= 1, this amounts to

fixing a quadratic field and determining indices of integers within subsets of the set

of all associated cubics. When d = 1, this amounts to determining indices of integers

within subsets of the set of all cyclic cubics.

2.1 Indices and Discriminants

The proof of our result requires the construction of infinitely many cubic fields in C(d)

for a given squarefree d ∈ Z. To ensure that any such cubic field F is an element of

C(d) requires some condition on F relating it to d. Given a quadratic field L = Q(
√
d)

with d ∈ Z squarefree, we know that any non-cyclic cubic field whose discriminant

has squarefree part equal to d will be associated to L. We also know that any cubic

field whose discriminant is a perfect square (so that its squarefree part is d = 1), is a

cyclic cubic field. The following proposition summarizes these relationships:

Proposition 2.1. Let d ∈ Z be squarefree. Then F ∈ C(d) if and only if ∆F = dn2

for some n ∈ N.

We obtain our cubic fields by constructing irreducible cubic polynomials f(x) ∈

Z[x] whose roots are algebraic integers of the desired indices. As we will see below,

by constructing f(x) carefully, we can compute both disc(f(x)) and ∆F to produce
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a desired index. We do this by applying Proposition 1.2, which gives

disc(f(x)) = (ind(θ))2∆F

for any root θ of f(x). This leads to the following corollary of Proposition 2.1:

Corollary 2.1.1. Suppose d ∈ Z is squarefree, f(x) ∈ Z[x] is a monic cubic polyno-

mial irreducible over Q, θ is a root of f(x), and F = Q(θ). Then F ∈ C(d) if and

only if disc(f(x)) = dn2 for some n ∈ N.

To assist with the construction of our generating polynomials f(x), we employ

some important simplifications.

Suppose F = Q(θ) is a cubic field, with θ ∈ OF . Let f(x) = x3+ax2+bx+c ∈ Z[x]

be the minimal polynomial of θ over Q. By a simple change of basis over Q, we also

have that F = Q(3θ + a) where 3θ + a ∈ OF . Since 3θ + a is a root of

g(x) = 27 · f
(
x− a

3

)
= (x− a)3 + 3a(x− a)2 + 9b(x− a) + 27c

= x3 − (3a2 − 9b)x+ (2a3 − 9ab+ 27c) ∈ Z[x]

and generates F , we have that g(x) is the minimal polynomial of 3θ + a over Q.

Thus, there exists θ ∈ OF which generates F and has minimal polynomial of the

form x3 − Ax+B ∈ Z[x].

By a tedious manipulation of the roots, we have disc(x3−Ax+B) = 4A3− 27B2.

As a result, Proposition 1.2 gives

4A3 − 27B2 = (ind(θ))2∆F
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for any cubic field F = Q(θ), where θ is a root of an irreducible polynomial of the

form x3 − Ax+B ∈ Z[x].

For any prime p and n ∈ Z with n 6= 0, write n = pkm where k ∈ Z≥0, m ∈ Z and

p - m. The p-adic valuation vp : Z→ Z≥0 is given by vp(n) = k. For consistency, we

define vp(0) =∞.

Suppose F = Q(θ) is a cubic field and θ is a root of x3 − Ax + B ∈ Z[x]. Let p

be any prime in which vp(A) ≥ 2 and vp(B) ≥ 3. Then we may write vp(A) = 2i+ i′

and vp(B) = 3j+ j′, where i, j ≥ 1, i′ ∈ {0, 1}, and j′ ∈ {0, 1, 2}. Let m = min {i, j}.

Then θ/pm is a root of x3 − (A/p2m)x + B/p3m ∈ Z[x]. Thus F = Q(θ/pm) with

θ/pm ∈ OF . Moreover, by construction we have vp(A/p
2m) < 2 or vp(B/p

3m) < 3.

Therefore, any cubic field F may be generated by a polynomial of the form

f(x) = x3 − Ax+B ∈ Z[x], where vp(A) < 2 or vp(B) < 3 for all primes p.7

To compute ind(θ) by using Proposition 1.2 also requires knowing the value of ∆F

for the constructed cubic field F . Llorente and Nart show that ∆F may be computed

exclusively in terms of the coefficients A and B of f(x). As they do, we define

sp = vp(4A
3 − 27B2),

∆p = (4A3 − 27B2)/psp

for any prime p. Their result is given below.

7In order for F to be a cubic field, f(x) must be irreducible over Q. Hence, we can never have
B = 0. In the event that A = 0, we have vp(A) = ∞ > 2, which will be useful in subsequent
theorems.
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Theorem 2.2 (Llorente-Nart, Theorem 2 [7]). Let A and B be integers such that the

cubic polynomial x3 − Ax + B is irreducible over Q, and such that either vp(A) < 2

or vp(B) < 3 for all primes p. Let θ be a root of x3 − Ax + B and set F = Q(θ) so

that [F : Q] = 3. Then the discriminant of the cubic field F is given by

∆F = sign(4A3 − 27B2)2α3β
∏
p > 3

sp ≡ 1 (mod 2)

p
∏
p > 3

1 ≤ vp(B) ≤ vp(A)

p2,

where

α =



3 if s2 ≡ 1 (mod 2),

2 if 1 ≤ v2(B) ≤ v2(A),

or s2 ≡ 0 (mod 2) and ∆2 ≡ 3 (mod 4),

0 otherwise,

β =



5 if 1 ≤ v3(B) < v3(A),

4 if v3(A) = v3(B) = 2,

or A ≡ 3 (mod 9), 3 - B,B2 6≡ 4 (mod 9),

3 if v3(A) = v3(B) = 1,

or 3 | A, 3 - B,A 6≡ 3 (mod 9), B2 6≡ A+ 1 (mod 9),

or A ≡ 3 (mod 9), B2 ≡ 4 (mod 9), B2 6≡ A+ 1 (mod 27),

1 if 1 = v3(A) < v3(B),

or 3 | A,A 6≡ 3 (mod 9), B2 ≡ A+ 1 (mod 9),

or A ≡ 3 (mod 9), B2 ≡ A+ 1 (mod 27), s3 ≡ 1 (mod 2),

0 if 3 - A

or A ≡ 3 (mod 9), B2 ≡ A+ 1 (mod 27), s3 ≡ 0 (mod 2),
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With some effort, the reader will notice that any values of A,B ∈ Z satisfying the

hypothesis of the Theorem 2.2, will fall under one of the several cases for the value

of α (and similarly for the value of β).

The proof of Theorem 2.2 invokes facts about the factorizations of rational primes

p into prime ideals in OF . This is because the value of ∆F is derived from the

ramification indices of prime OF -ideals. Indeed, p | ∆F if and only if p is ramified in

OF . The different ideal allows us to say more.

Let DF/Q denote the different of F over Q. Let IOF
be the multiplicative group

of all fractional OF -ideals. If N : IOF
→ Z is the ideal norm from F over Q, then

N(DF/Q) = ∆F .

If P is an OF -ideal with ramification index eP , then vP(DF/Q) ≥ eP − 1. Let p be a

prime and suppose P is above p. Then p is said to be wildly ramified at P if p | eP .

Otherwise, p is said to be tamely ramified at P . If p is tamely ramified at P , then

vP(DF/Q) = eP − 1. However, if p is wildly ramified at P , then vP(DF/Q) ≥ eP .

Since F is a cubic field, the prime ideal factorization of any rational prime in OF

has factors with ramification indices lying within the set {1, 2, 3}. Hence 2 and 3 are

the only primes that are potentially wildly ramified in OF . Thus, 2 and 3 are the

only factors of ∆F whose powers may be greater than 2. This is why they are given

special attention in the computation of ∆F in Theorem 2.2. Hence, they will be given

special attention in our results as well.

For us, the main consequence of Theorem 2.2 is that the index of any algebraic

integer with minimal polynomial of the form f(x) = x3 − Ax + B, where vp(A) < 2

and vp(B) < 3 for all primes p, may be computed with knowledge of the values of

A and B alone. This narrows our task to selecting appropriate A,B ∈ Z so that
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f(x) is irreducible over Q and so that, by applying Proposition 1.2, a desired index

is produced.

2.2 The Factorization of (2) in a Cubic Field

Since the index sets we obtain will depend on the factorization of the prime ideal (2)

in OF , we need to determine conditions on d under which each factorization occurs

in a given C(d). We can do this based on congruence classes of d modulo 8.

We mentioned in the introduction that (2) is either inert or completely split in

the case that d = 1, so we will focus below on the non-cyclic cubic cases. These are

precisely the cases in which the cubics in C(d) have associated quadratics; we will

take advantage of this fact to determine our factorizations.

Throughout, our notation for prime ideal factorizations is as follows: the inertia

degree of a prime is its subscript, the ramification index is its superscript, and distinct

prime ideals are distinguished by apostrophes. For any prime p, there are five possible

prime ideal factorizations of (p) in a cubic field: Q2
1Q′1, Q3

1, Q1Q2, Q1Q′1Q′′1, and Q3.

There are three possible factorizations of (p) in a quadratic field: P2
1 , P2, and P1P ′1.

By knowing the factorization of (2) in a given quadratic field, we will be able to

deduce the possible factorizations of (2) in the family of all associated cubics. Criteria

for the factorization of (2) in a quadratic field is well-known and given below.

Proposition 2.3. Let L = Q(
√
d) be a quadratic field with d ∈ Z squarefree. Then

(2)OL =


P2

1 if d ≡ 2, 3 (mod 4),

P2 if d ≡ 5 (mod 8),

P1P ′1 if d ≡ 1 (mod 8).
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Proof. Apply Dedekind’s factorization criteria by factoring the polynomial

f(x) =

 x2 − d if d ≡ 2, 3 (mod 4),

x2 − x− 1− d
4

if d ≡ 1 (mod 4).

over F2. We are able to do this because f(x) is the minimal polynomial of θ =
√
d

and θ =
1 +
√
d

2
over Q, respectively, and 2 - ind(θ) in either case.

To obtain a similar criteria for factorizations of (2) in cubic fields, we need another

result from Llorente and Nart.

Theorem 2.4 (Llorente-Nart, Theorem 1 [7]). Let F be a cubic field. If F = Q(θ)

where θ ∈ OF has minimal polynomial over Q given by f(x) = x3 − Ax + B ∈ Z[x]

and v2(A) < 2 or v2(B) < 3, then the factorization of (2) in OF is dependent on A

and B, and is given as follows:

(2)OF =



Q2
1Q′1 if 1 = v2(A) < v2(B),

or, A odd, B even, and s2 odd,

or, A odd, B even, s2 even, and ∆2 ≡ 3 (mod 4),

Q3
1 iff 1 ≤ v2(B) ≤ v2(A),

Q1Q2 if A even and B odd,

or, A odd, B even, s2 even, and ∆2 ≡ 5 (mod 8),

Q1Q′1Q′′1 iff A odd, B even, s2 even, and ∆2 ≡ 1 (mod 8),

Q3 iff A odd and B odd.

Unsurprisingly, Theorem 2.4 (along with a similar theorem for the prime 3 and

the primes p > 3) is used by Llorente and Nart to prove Theorem 2.2. However, we

will use it as a lemma to obtain congruence conditions on d for the way in which (2)

factors in any cubic in C(d). For each congruence condition on d, we will have one
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or two possible factorizations of (2) in C(d). When we determine the index set for a

given d and possible factorization of (2), we will refer back to Theorem 2.4 to directly

verify that the factorization of (2) is achieved within the infinitely many F ∈ C(d)

we construct by investigating the coefficients of their generating polynomials.

For any prime p, we now determine the possible factorizations of the prime ideal

(p) in OF . We will first describe these possible factorizations in terms of a dependence

on the factorization of (p) in Q(
√
d). We will then deduce the desired dependence on

d for the specific case of p = 2.

Proposition 2.5. Let L = Q(
√
d) be a quadratic field with d ∈ Z squarefree, let

F ∈ C(d), and let p be any prime. Then, given a factorization of (p) in OL, the

possible factorizations of (p) in OF are given as follows:

(p)OF =


Q3

1 or Q2
1Q′1 if (p)OL = P2

1 ,

Q3
1 or Q1Q2 if (p)OL = P2.

Q3
1, Q3, or Q1Q′1Q′′1 if (p)OL = P1P ′1,

Proof. We naturally divide this proof into 3 cases, based on the factorization of (p)

in OL. In each case, we eliminate the factorizations of (p) that are not possible in

OF . We repeatedly use the fact that the compositum field K = FL is Galois over Q.

Case 1: (p)OL = P2
1 .

Since (p) ramifies in OL, (p) also ramifies in OK . But K is the smallest extension

of F that is normal over Q. So, if F1, F2, and F3 are the cubic fields conjugate to F ,

where F = F1, then K = F1F2F3. Therefore (p) must also ramify in OF . Thus, the

only possible factorizations of (p) in OF are Q3
1 and Q2

1Q′1.
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Case 2: (p)OL = P2.

If (p)OF = Q3, then (p)OK = R6. Therefore, generated by the Frobenius element,

the decomposition group DR6(K/Q) ∼= C6. However, DR6(K/Q) ⊂ Gal(K/Q) ∼= S3,

which has no cyclic subgroup of order 6.

If (p)OF = Q2
1Q′1, then every prime ideal in OK above p must ramify, with all

ramification indices equal and divisible by 2. Thus, the only possible factorization of

(p) in OK is given by (p)OK = R2
1(R′1)2(R′′1)2. But since (p)OL = P2, every prime

ideal in OK above p must have an inertia degree of at least 2, a contradiction.

If (p)OF = Q1Q′1Q′′1, then (p) is completely split in each cubic field Fi conjugate

to F . But since (p) is completely split in each Fi if and only if (p) is completely split

in K = F1F2F3, this contradicts that (p)OL = P2.

This leaves Q1Q2 or Q3
1 as the only possible factorizations of (p) in OF .

Case 3: (p)OL = P1P ′1.

If (p)OF = Q2
1Q′1, then we must have that (p)OK = R2

1(R′1)2(R′′1)2, as in case 2.

But since (p)OL = P1P ′1 and K/L is Galois, both P1 and P ′1 are either inert, totally

ramified, or completely split in OK , which is impossible.

If (p)OF = Q1Q2, then every prime ideal in OK above p must have an iner-

tia degree of 2. Thus, the only possible factorization of (p) in OK is given by

(p)OK = R2R′2R′′2. But this is again incompatible with (p)OL = P1P ′1.

This leavesQ3
1, Q3, orQ1Q′1Q′′1 as the only possible factorizations of (p) inOF .

In particular, Proposition 2.5 holds for p = 2. We now pass over to congruence

classes of d modulo 8 to give the desired result.
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Corollary 2.5.1. Given d ∈ Z squarefree, let F ∈ C(d). Then the possible factoriza-

tions of (2) in OF are given as follows:

(2)OF =


Q2

1Q′1 if d ≡ 2, 3 (mod 4),

Q3
1 or Q1Q2 if d ≡ 5 (mod 8),

Q3, or Q1Q′1Q′′1 if d ≡ 1 (mod 8).

Proof. If d = 1, we mentioned before that (2) is either inert or completely split.

Now assume d 6= 1, so that F is associated to the quadratic field L = Q(
√
d).

Suppose F = Q(θ) where θ ∈ OF and has minimal polynomial over Q given by

f(x) = x3 − Ax + B ∈ Z[x], with vp(A) < 2 or vp(B) < 3 for all primes p. Suppose

also that (2)OL = Q3
1. Then by Theorem 2.4, we have that 1 ≤ v2(B) ≤ v2(A).

Therefore 22v2(B) ‖ 4A3 − 27B2. Hence

∆2 = (4A3 − 27B2)/22v2(B)

= 4A3/22v2(B) − 27(B/2v2(B))2

≡ −27(B/2v2(B))2

≡ 5 (mod 8).

On the other hand, by Proposition 2.1 we have ∆F = dn2 for some n ∈ N. Since

2 | v2(4A3 − 27B2) and

dn2 = ∆F =
4A3 − 27B2

(ind(θ))2
,

it follows that d is odd. Thus

∆2 = d(n/2v2(n))2 ≡ d (mod 8),
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which implies that d ≡ ∆2 ≡ 5 (mod 8). Hence, by combining Proposition 2.3 and

Proposition 2.5, the result follows.

When we say we have found the possible factorizations of (2) in OF , this leaves

open the possibility that for each congruence class of d modulo 8 we may be able to

rule out more factorizations than we do. However, we will see that this is not the

case when we prove the main theorem, for we will give explicit examples of cubics in

C(d) for a given d, in which each of the above possible factorizations of (2) occur.

Observe that for a given congruence class of d modulo 8, some factorizations of

(2) are not possible in C(d). In fact, the sets of possible factorizations of (2) are

pairwise disjoint with respect to the three cases. Hence, by picking a factorization of

(2), the congruence class of d will be uniquely determined. However, since we must

apply Theorem 2.4 to determine whether a desired factorization is achieved in a given

cubic field, knowing the congruence class of d must be established first in order to

prove the main theorem. Thus, we will think of the choice of a factorization of (2) as

the choice to narrow the family C(d) to a particular subfamily.

2.3 Some Lemmas

Let A = {Q2
1Q′1,Q3

1,Q1Q2,Q1Q′1Q′′1,Q3}. For each squarefree d ∈ Z and factoriza-

tion J ∈ A of (2), we define

C(d,J ) := {F ∈ C(d) : (2)OF = J } .

Notice that C(d,J ) ⊆ C(d) for each possible factorization J of (2) in C(d). If J

is not a possible factorization of (2) in C(d), we simply have that C(d,J ) = ∅.

The cubic fields we construct to obtain our index sets will be partitioned into these
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families. We define

Sd,J :=
⋃

F∈C(d,J )

SF

to be the desired index sets for each family C(d,J ).

We obtain the index sets Sd,J for each squarefree d ∈ Z and J ∈ A by introducing

candidate subsets of N. We show these candidates are, in fact, equivalent to the index

sets by double containment. We first show that the index sets are contained within

these candidate sets by showing that there exist restrictions on the possible indices in

each case. Then, in the proof of the main result, we show that each of these candidate

sets is contained within its respective index set. For instance, by Theorem 1.5, we

already know that Sd,Q1Q′1Q′′1 ⊆ 2N. We will show that Sd,Q1Q′1Q′′1 = 2N in the proof

of the main result.

We will provide the restrictions on each index set as lemmas to be used in the

main theorem. But first, we need a result on polynomial discriminants.

Proposition 2.6. Let f(x), g(x) ∈ Z[x] are polynomials of degree n. Suppose that

g(x) =
f(ax+ b)

c
, where a, b, c ∈ Z and a, c 6= 0. Then

disc(g(x)) =
an(n−1)

c2n−2
disc(f(x)).

Proof. For each i ∈ {1, ..., n}, let αi ∈ C be the roots of f(x). Write

f(x) = d ·
n∏
i=1

(x− αi),
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where d ∈ Z. Then

g(x) =
f(ax+ b)

c
=
d

c
·
n∏
i=1

(ax+ b− αi) =
dan

c
·
n∏
i=1

(
x− αi − b

a

)
.

Then, by the definition of polynomial discriminant, we have that

disc(g(x)) =

(
dan

c

)2n−2 ∏
1≤i<j≤n

(
αi − b
a
− αj − b

a

)2

=

(
d2n−2an(2n−2)

c2n−2

)
1

an(n−1)
·
∏

1≤i<j≤n

(αi − αj)2

=
an(n−1)

c2n−2
disc(f(x)).

The following corollary will be used repeatedly.

Corollary 2.6.1. Let f(x), g(x) ∈ Z[x] be cubic polynomials irreducible over Q such

that f(x) = 27g

(
x− v

3

)
for some v ∈ Z. Then

disc(f(x)) = 36disc(g(x)).

Proof. Observe that g(x) =
f(3x+ v)

27
. Thus using a = 3, c = 27 and n = 3, we may

apply Lemma 2.6 to obtain the result.

We now give the lemmas which provide restrictions on the contents of our index sets.

Lemma 2.7. Let F be a cubic field such that (2)OF = Q3. Let θ ∈ OF . If 2 | ind(θ),

then
θ + k

2
∈ OF for some k ∈ Z.

Proof. The proof is similar to that of Lemma 2.2 of Spearman and Williams [11].

We saw earlier that if θ is a root of g(x) = x3 + ax2 + bx + c ∈ Z[x], then 3θ + a
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is a root of f(x) = x3 − Ax + B, where A = 3a2 − 9b, B = 2a2 − 9ab + 27c, and

f(x) = 33g

(
x− a

3

)
. Then by Corollary 2.6.1, we have

4A3 − 27B2 = disc(f(x)) = 36disc(g(x)).

Since disc(g(x)) = (ind(θ))2∆F and 2 | ind(θ), we have that 2 | disc(g(x)). Therefore

2 | 4A3−27B2, so that B is even. But since (2)OK = Q3, we have by Theorem 2.4 that

if v2(A) < 2 or v2(B) < 3, then A and B are both odd. So since B is even, we must

have that v2(A) ≥ 2 and v2(B) ≥ 3. Thus
3θ + a

2
is a root of x3−(A/4)x+B/8 ∈ Z[x],

so that
3θ + a

2
∈ OF . So

θ + a

2
=

3θ + a

2
− θ ∈ OF .

Lemma 2.8. Let F be a cubic field such that (2)OF = Q3. If F = Q(θ) for some

θ ∈ OF , then ind(θ) = 2tn with t ∈ Z≥0, t ≡ 0 (mod 3), and n ∈ 2N− 1.

Proof. This proof closely follows that of Lemma 2.3 of Spearman and Williams [11].

Suppose for contradiction there exists θ ∈ OF such that F = Q(θ), 2t ‖ ind(θ) for some

t ∈ N, and t 6≡ 0 (mod 3). Let t∗ ∈ N be smallest such t, corresponding to θ∗ ∈ OF .

Since t∗ 6≡ 0 (mod 3), then 2 | ind(θ∗). Thus, by Lemma 2.7,
θ∗ + k

2
∈ OF for some

k ∈ Z. Then by Proposition 1.3, we have 2t
∗−3 ‖ ind

(
θ∗ + k

2

)
with t∗−3 6≡ 0 (mod 3),

so that t∗ − 3 > 0. But this contradicts the minimality of t∗.

Lemma 2.9. Let F be a cubic field such that (2)OF = Q3
1. Let θ ∈ OF . If 4 | ind(θ),

then
θ + k

2
∈ OF for some k ∈ Z.

Proof. Again, if θ is a root of g(x) = x3 + ax2 + bx + c ∈ Z[x], then 3θ + a is a root

of f(x) = x3 − Ax + B where A = 3a2 − 9b and B = 2a2 − 9ab + 27c. Suppose that

v2(A) < 2 or v2(B) < 3. Then since (2)OF = Q3
1, we have by Theorem 2.4 that

1 ≤ v2(B) ≤ v2(A). Note by Theorem 2.2, this gives that 4 ‖∆F . We have two cases.
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Case 1: Suppose v2(B) = 1. Then 4A3 − 27B2 = 4(A3 − 27(B/2)2), where

A3 − 27(B/2)2 ≡ 1 (mod 2).

Thus 4 ‖ 4A3 − 27B2 = ind(θ)2∆F , so that 2 - ind(θ), a contradiction.

Case 2: Suppose v2(B) = 2. Then 4A3 − 27B2 = 16(2(A/2)3 − 27(B/4)2), where

2(A/2)3 − 27(B/4)2 ≡ 1 (mod 2).

Thus 16 ‖ 4A3 − 27B2 = ind(θ)2∆F , so that 2 ‖ ind(θ), a contradiction.

So v2(A) ≥ 2 and v2(B) ≥ 3. Thus,
3θ + a

2
is a root of x3− (A/4)x+B/8 ∈ Z[x],

so that
3θ + a

2
∈ OF . Therefore,

θ + a

2
=

3θ + a

2
− θ ∈ OF .

Lemma 2.10. Let F be a cubic field such that (2)OF = Q3
1. If F = Q(θ) for some

θ ∈ OF , then ind(θ) = 2tn with t ∈ Z≥0, t 6≡ 2 (mod 3), and n odd.

Proof. The proof is similar to that of Lemma 2.8. Suppose for contradiction there

exists some θ ∈ OF such that F = Q(θ), 2t ‖ ind(θ) for some t ∈ N, and t ≡ 2 (mod 3).

Let t∗ ∈ N be the smallest such t, corresponding to θ∗ ∈ OF . Since t∗ ≡ 2 (mod 3),

then 4 | ind(θ∗). Thus, by Lemma 2.9,
θ∗ + k

2
∈ OF for some k ∈ Z. Then by

Proposition 1.3, we have 2t
∗−3 ‖ ind

(
θ∗ + k

2

)
with t∗ − 3 ≡ 2 (mod 3), so that

t∗ − 3 > 0. But this contradicts the minimality of t∗.

It is immediate from Lemma 2.8 that

Sd,Q3 ⊆ {8nm : n ∈ Z≥0, m ∈ 2N− 1}
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for any d ≡ 1 (mod 8). Likewise, we have from Lemma 2.10 that

Sd,Q3
1
⊆ {8nm : n ∈ Z≥0, m ∈ 2N− 1} ∪ {2 · 8nm : n ∈ Z≥0, m ∈ 2N− 1}

for any d ≡ 5 (mod 8). For shorthand, we will denote these two sets by 8n (2N− 1)

and 8n (2N− 1) ∪ 2 · 8n (2N− 1), respectively.

The following two lemmas will also be used repeatedly in the proof of the main

result.

Lemma 2.11. If v 6≡ 0 (mod 3), then 3v2 + 1 ≡ 4v6 (mod 27).

Proof. Write v = 3w ± 1 for some w ∈ Z. Then by the binomial theorem we have

4(3w ± 1)6 − 3(3w ± 1)2 − 1 ≡ (4± 72w)− (3± 18w)− 1 ≡ 0 (mod 27).

Lemma 2.12. If p(x) = x3 − Ax+ B ∈ Z[x] and q(x) =
p(3x+ v)

27
for some v ∈ Z,

then

q(x) = x3 + vx2 +

(
3v2 − A

9

)
+

(
v3 − Av +B

27

)
.

Proof. Observe

q(x) =
(3x+ v)3 − A(3x+ v) +B

27

=
27x3 + 27vx2 + 9v2x+ v3 − 3Ax− Av +B

27

= x3 + vx2 +

(
3v2 − A

9

)
x+

(
v3 − Av +B

27

)
,

as desired.
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Lastly, we shall generalize a result from Silvester, Spearman, and Williams [9] on

squarefree values of quadratic polynomials. We will use this result not only for the

main result in this chapter, but also for the main result in the next. In this chapter,

it will provide us with the ability to construct infinitely many cubic fields in C(d,J ),

for a given d and J , that possess an algebraic integer of index I for all I ∈ Sd,J . We

will use a result from Nagel:

Theorem 2.13 (Nagel [8]). Let F (x) ∈ Z[x] be a primitive quadratic polynomial with

disc(F (x)) 6= 0. Then there exist infinitely many v ∈ N such that F (v) is squarefree.

The generalized result is given below.

Theorem 2.14. Let F (x) ∈ Z[x] be a primitive quadratic polynomial such that

disc(F (x)) 6= 0. Let n ∈ N be squarefree and let r ∈ Z. Suppose F (r) 6= 0 and

that for every prime p | n, we have p2 - F (r) or p - F ′(r). Let q ∈ N be a prime or a

unit with gcd(q, n) = 1 and q2 ‖F (r) if q > 1. Let m = qkn for some k ∈ N. Then

there exist infinitely many positive integers v ≡ r (mod m) such that F (v) = q2w, w

is squarefree, and gcd(q, w) = 1.

Proof. The proof follows the same general structure as that of Proposition 2 from

Silvester, Spearman, and Williams [9]. Let F (x) = dx2 + ex+f ∈ Z[x] be a primitive

quadratic polynomial with nonzero discriminant. Let

M =
∏
p | m
p ‖F (r)

p,

N =
∏
p | m

p2 | F (r)

p,
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where p runs over all primes dividing m with the given conditions. Then set

G(x) =
F (mMNqx+ (mMq2 + r))

MNq

=
d[mMNqx+ (mMq2 + r)]2 + e[mMNqx+ (mMq2 + r)] + f

MNq

= dm2MNqx2 +m[2d(mMq2 + r) + e]x+
dm2M2q4 +mMq2(2dr + e) + F (r)

MNq
.

Let

A = dm2MNq

B = m[2d(mMq2 + r) + e]

C =
dm2M2q4 +mMq2(2dr + e) + F (r)

MNq
.

Clearly A 6= 0 so that G(x) is quadratic. Moreover, A,B ∈ Z. Since gcd(M,N) = 1,

we have MN | m. Furthermore, since q2 ‖F (r) = dr2 + er + f , and q ‖N if q > 1,

we have that MNq | F (r). Thus C ∈ Z and therefore G(x) ∈ Z[x].

Next we will show that G(x) is primitive. Suppose to the contrary that p is a

prime such that p | gcd(A,B,C). If p = q, then q3 | F (r) since q | C and q2 | MNq.

But since q2 ‖F (r), this is a contradiction. Thus p 6= q.

Now suppose p | m = qkn. Since p 6= q, p | n. Since p | C, we must have that

p | F (r). If p ‖F (r), then p ‖M and p - N . Thus since p | C, we have that p2 | F (r),

a contradiction. If p2 | F (r), then p - M and p ‖N . But since p | n and p2 | F (r),

we have by hypothesis that p - F ′(r) = 2dr + e. So since p | C, we have that p2 | m

with p 6= q. Thus p2 | n. But this contradicts that n is squarefree. Thus p - m, and

consequently, p -MN .

32



So since p | A, we must have that p | d. As a result, since p | B, we must have p | e.

Finally, since p | C, p | d, and p | e, we must have that p | f . Thus p | gcd(d, e, f) = 1,

a contradiction. Thus G(x) is primitive.

By Lemma 2.6, we have that

disc(G(x)) =
(mMNq)2(2−1)

(MNq)2(2)−2
disc(F (x)) = m2disc(F (x)) 6= 0,

which shows that the discriminant of G(x) is nonzero.

Furthermore, for any y ∈ Z, we have gcd(Ay2+By+C,MNq) = gcd(C,MNq) = 1

since MNq | A,B and gcd(A,B,C) = 1. Therefore, by Theorem 2.13, there exist

infinitely many positive integers y such that G(y) = Ay2 +By + C is squarefree and

relatively prime to MNq.

Moreover, we have that

F (mMNqy + (mMq2 + r)) = MNq ·G(y) = q2M(N/q) ·G(y),

where gcd(q,M(N/q) · G(y)) = 1. Thus there exist infinitely many v ≡ r (mod m)

such that F (v) = q2w, w is squarefree, and gcd(q, w) = 1.
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2.4 The Main Result

The proof of the main result loosely follows the proofs of the results of Spearman

and Williams in [10, 11]. Since our result will generalize both of theirs, our proof

will implicitly prove theirs as well. To note when this occurs, we restate their results

using our notation. In [10], they show

S1,Q3 = 8n (2N− 1) ,

S1,Q1Q′1Q′′1 = 2N.

In [11], they show that for any squarefree d ∈ Z such that d 6= 1, we have that 1 ∈ SF

for infinitely many F ∈ C(d).

As mentioned before, given a fixed squarefree d ∈ Z, the cases of our proof will

depend on both the congruence class of d modulo 8 and the factorization of (2) in

C(d). In each case, we will construct an infinite family of cubic polynomials of the

form pv(x) = x3 −A(v)x+B(v), where A(v), B(v) ∈ Z[v] are quadratic polynomials

in v. To produce the desired index sets, A(v) and B(v) will be chosen so as to

satisfy several conditions. First, they must share a common squarefree factor F (v)

for infinitely many v ∈ Z. This will give us our infinitely many algebraic integers of

a given index. Second, they must be chosen so that pv(x) is irreducible over Q. This

ensures that any root θv of pv(x) generates a cubic field Fv. Third, disc(pv(x)) must

have squarefree part equal to d. This will give Fv ∈ C(d) by Corollary 2.1.1. Fourth,

they must be chosen so that, by applying Theorem 2.4, the desired factorization

of (2) is achieved. Finally, they must be chosen so that when we apply Theorem

2.2, we obtain a value of ∆Fv that gives the desired value of ind(θv) when we apply
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Proposition 1.2. In particular, we must be able to solve the equation

4(Av)
3 − 27(Bv)

2 = (ind(θv))
2∆Fv

for ind(θv) to give any natural number in our candidate index sets. As has already

been stated, it will be particularly important to control the ramification of the primes

2 and 3 in order to accomplish this.

All of the cases follow the same general format of introducing the polynomials

pv(x) and showing that all appropriate conditions are satisfied.

Theorem 2.15. For any equivalence class of d modulo 8 and prime ideal factorization

of (2) in C(d), the index sets Sd,J are given below:

J Sd,J

d ≡ 2, 3 (mod 4) Q2
1Q′1 N

d ≡ 5 (mod 8)
Q3

1 8n (2N− 1) ∪ 2 · 8n (2N− 1)

Q1Q2 N

d ≡ 1 (mod 8)
Q1Q′1Q′′1 2N

Q3 8n (2N− 1)

Moreover, for each I ∈ Sd,J there are infinitely many F ∈ C(d,J ) such that OF

possesses an algebraic integer of index I.

Proof. Lemmas 2.8 and 2.10 show that each set Sd,J is contained in the candidate sub-

set of N provided in the third column. In this proof, we will show the reverse contain-

ments. We break the proof into three major cases: d ≡ 2, 3 (mod 4), d ≡ 5 (mod 8),

and d ≡ 1 (mod 8). We subdivide each case according to the possible factorizations

of (2) in C(d). This gives five natural cases.
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By Proposition 1.3, we have that ind(mθ) = m3ind(θ) for any m 6= 0. In par-

ticular, this holds when m = 2 or m = 3. Thus, if we show that I is an index, we

will immediately have that 23iI and 33iI are indices for any i ∈ Z≥0. Hence, for each

of our five prospective cases we may assume that if I is in the candidate index set,

then 33 - I, 23 - I, 22 - I, 24 - I, and 2 - I. Thus, respectively, we may assume

v3(I) ∈ {0, 1, 2}, v2(I) ∈ {0, 1, 2}, v2(I) ∈ {0, 1}, v2(I) ∈ {1, 2, 3}, and v2(I) = 0.

Case 1: d ≡ 2, 3 (mod 4).

For each I ∈ N such that v3(I) ∈ {0, 1, 2}, we will show that I ∈ Sd,Q2
1Q′1 . Fur-

thermore, we will show that there exist infinitely many F ∈ C(d,Q2
1Q′1) such that

OF possesses an element of index I.

For each v3(I) ∈ {0, 1, 2}, define

F (x) = x2 + 22 · 33−v3(I)dIx+ 32dI2
(
3 + 22 · 34−2v3(I)d

)
∈ Z[x].

First, we will apply Theorem 2.14 to obtain congruence conditions on x for which

F (x) is squarefree infinitely often.

Observe that F (x) is clearly primitive. Moreover,

disc(F (x)) =
(
22 · 33−v3(I)dI

)2 − 4 · 32dI2
(
3 + 22 · 34−2v3(I)d

)
= 24 · 36−2v3(I)d2I2 − 22 · 33dI2 − 24 · 36−2v3(I)d2I2

= −22 · 33dI2 6= 0.

We now partition F (x) into two cases; the first being that d ≡ 2 (mod 4) or 2 | I,

and the second being that d ≡ 3 (mod 4) and 2 - I.
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First, suppose d ≡ 2 (mod 4) or 2 | I. Let n = 6d/(2v2(d) · 3v3(d)) for any

v2(d) ∈ {0, 1} and v3(d) ∈ {0, 1}. Note that n is squarefree and F (1) ≡ 1 (mod p)

for every prime p | n. Hence, for each prime p | n, we have that p - F (1). Thus, with

r = 1 and q = 1, we may apply Theorem 2.14 to conclude that there exist infinitely

many positive integers v ≡ 1 (mod n) such that F (v) is squarefree.

Now suppose that d ≡ 3 (mod 4) and 2 - I. Then

F (0) ≡ 1 (mod 2),

F (1) ≡ 1 (mod 3d/3v3(d)),

for any v3(I) ∈ {0, 1, 2}, v2(d) ∈ {0, 1}, and v3(d) ∈ {0, 1}. By the Chinese Remain-

der Theorem, there exists r ∈ Z with

r ≡ 0 (mod 2),

r ≡ 1 (mod 3d/3v3(d)).

This gives that F (r) ≡ 1 (mod 6d/3v3(d)). Let n = 6d/3v3(d) and again note that n

is squarefree. Then for any prime p such that p | n, we have that p - F (r). Thus,

with the r given above and q = 1, we may again apply Theorem 2.14 to conclude

that there exist infinitely many positive integers v ≡ r (mod n) such that F (v) is

squarefree.
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Combining both cases, we have shown that there exist infinitely many positive

integers

v ≡ r (mod 6d/(2v2(d) · 3v3(d)))

such that F (v) is squarefree.

Since the leading coefficient of F (x) is positive, there exists N ∈ N such that

F ′(x) > 0 and F (x) > 1 for all x ≥ N . Since the interval [N,∞) excludes only

finitely many positive integers, there exist infinitely many integers v ≥ N such that

v ≡ r (mod 6d/(2v2(d) · 3v3(d))) and F (v) is squarefree. Denote the set of all such v

by V . As F (x) is strictly increasing on the interval [N,∞), note that no two distinct

values of v in V can give the same value to F (v).

Since v ≡ r (mod 6d/(2v2(d) · 3v3(d))) for all v ∈ V , we have that

F (v) ≡ F (r) ≡ 1 (mod 6d/(2v2(d) · 3v3(d))).

Thus it is clear that gcd(F (v), 6d) = 1 for each v ∈ V .

For each v ∈ V and v3(I) ∈ {0, 1, 2}, set pv(x) = x3 − Ax+B ∈ Z[x], where

A = 3F (v),

B = 2
(
v + 2 · 33−v3(I)dI

)
F (v).

We will show that pv(x) is an Eisenstein polynomial for each v ∈ V .

First, we show that

gcd
(
v + 2 · 33−v3(I)dI, F (v)

)
= 1.
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Suppose there exists some prime p such that p |
(
v + 2 · 33−v3(I)dI

)
and p | F (v).

Observe

F (v) −
(
v + 2 · 33−v3(I)dI

)2
= v2 + 22 · 33−v3(I)dIv + 32dI2

(
3 + 22 · 34−2v3(I)d

)
−
(
v + 2 · 33−v3(I)dI

)2
= v2 + 22 · 33−v3(I)dIv + 33dI2 + 22 · 36−2v3(I)d2I2 − v2 − 22 · 33−v3(I)dIv

−22 · 36−2v3(I)d2I2

= 33dI2.

Thus p | 33dI2. But since gcd(F (v), 6d) = 1 and p | F (v), we must have that p - 3d.

Thus p | I2 so that p2 | 33dI2. Since p2 |
(
v + 2 · 33−v3(I)I

)2
, this gives that p2 | F (v).

But this contradicts that F (v) is squarefree.

So since 2 - F (v), gcd
(
v + 2 · 33−v3(I)dI, F (v)

)
= 1, and F (v) > 1 is squarefree,

we have for any prime p | F (v) that p | A,B and p2 - B. Thus pv(x) is p-Eisenstein

for each prime p | F (v). Therefore pv(x) is irreducible over Q for each v ∈ V . Thus

the field generated by pv(x), call it Fv, is a cubic field.

Next, observe that

disc(pv(x)) = 4A3 − 27B2

= 4(3F (v))3 − 27
[
2
(
v + 2 · 33−v3(I)dI

)
F (v)

]2
= 22 · 33F (v)2

[
F (v)−

(
v + 2 · 33−v3(I)dI

)2]
= 22 · 33F (v)2

[
33dI2

]
= d(2 · 33F (v)I)2.

Thus, by Corollary 2.1.1 we have that Fv ∈ C(d) for each v ∈ V .

39



Next, we compute ∆Fv for each v3(I) ∈ {0, 1, 2} by using Theorem 2.2. Recall

that sp and ∆p are defined before Theorem 2.2. Since F (v) is squarefree and 3 - F (v),

it is clear that vp(A) < 2 for all primes p, so that the hypotheses of Theorem 2.2 hold.

Now if d ≡ 2 (mod 4), then s2 ≡ 1 (mod 2). Thus, by Theorem 2.2 we have that

23 ‖∆Fv . On the other hand, if d ≡ 3 (mod 4), we have that s2 ≡ 0 (mod 2) and

∆2 ≡ d(33F (v)I/2v2(I))2 ≡ 3 (mod 4).

In this case, we have by Theorem 2.2 that 22 ‖∆Fv . Hence, combining both cases, we

may conclude that 22+v2(d) ‖∆Fv .

Furthermore, for each v3(I) ∈ {0, 1, 2} we have that

A = 3F (v) = 3
[
v2 + 22 · 33−v3(I)dIv + 32dI2

(
3 + 22 · 34−2v3(I)d

)]
≡ 3v2 (mod 27).

This gives that A + 1 ≡ 3v2 + 1 (mod 27). Moreover, since v ≡ 1 (mod 3), we get

A ≡ 3 (mod 9). Also,

B2 =
[
2
(
v + 2 · 33−v3(I)dI

)
F (v)

]2 ≡ (2v · v2)2 ≡ 4v6 (mod 27).

Since v ≡ 1 (mod 3) for all v ∈ V , we have by Lemma 2.11 that B2 ≡ A+1 (mod 27).

Lastly, note that s3 ≡ v3(d) (mod 2). Thus, by Theorem 2.2, 3v3(d) ‖∆Fv .

Next, since gcd(d/(2v2(d) · 3v3(d)), 6) = 1 and d is squarefree, we have that

∏
p > 3

sp ≡ 1 (mod 2)

p = |d|/(2v2(d) · 3v3(d))
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and ∏
p > 3

1 ≤ vp(B) ≤ vp(A)

p2 = F (v)2.

Therefore, by Theorem 2.2 we have that

∆Fv = sign(d) · 22+v2(d) · 3v3(d)
(
|d|/(2v2(d) · 3v3(d))

)
F (v)2 = 22dF (v)2.

Note that since distinct values of v ∈ V gives distinct values of F (v), each value

of ∆Fv is distinct. Consequently, each of the cubic fields Fv are distinct.

Now, set qv(x) =
pv(3x+ v)

27
. Then by Lemma 2.12, we have

qv(x) = x3 + vx2 +

(
3v2 − A

9

)
x+

(
v3 − Av +B

27

)
.

Observe that v2 − A/3 ≡ 0 (mod 3) and

v3 − Av +B ≡ v3 − 3v2 · v + 2v · v2 ≡ 0 (mod 27).

Thus qv(x) ∈ Z[x]. Since pv(x) = 27qv

(
x− v

3

)
, we have that qv(x) is irreducible

over Q since pv(x) is irreducible over Q. Moreover, qv(x) and pv(x) generate the same

cubic extension Fv of Q.

Finally, let θv be any root of qv(x). Then by Corollary 2.6.1, we have that

d(2IF (v))2 =
disc(pv(x))

36

= disc(qv(x))

= ind(θv)
2∆Fv

= ind(θv)
2 · 22dF (v)2,
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which gives that I = ind(θv). Therefore I ∈ Sd,Q2
1Q′1 and is an index of an algebraic

integer in Fv ∈ C(d,Q2
1Q′1) for each v ∈ V .

Case 2: d ≡ 5 (mod 8).

By Corollary 2.5.1, there are 2 possible factorizations of (2) in C(d) for any

d ≡ 5 (mod 8), namely, Q3
1 or Q1Q2. So, we break Case 2 into two subcases.

Case 2a: (2) = Q3
1.

Since d ≡ 5 (mod 8), we can write d ≡ 5 + 8j (mod 32) for some j ∈ {0, 1, 2, 3}.

It is easy to check that

1 + 33+6(v2(I)+j)d ≡ 23+v2(I) (mod 32).

for each j ∈ {0, 1, 2, 3} and v2(I) ∈ {0, 1}. This gives

v2(3
3d+ 36(v2(I)+j+1)d2) = v2((3

3d)(1 + 33+6(v2(I)+j)d))

= v2(1 + 33+6(v2(I)+j)d)

= 3 + v2(I).

For any j ∈ {0, 1, 2, 3} and v2(I) ∈ {0, 1}, define

F (x) = 211−v2(I)x2 + 25−2v2(I) · 33(v2(I)+j+1)dIx+
33d+ 36(v2(I)+j+1)d2

23+v2(I)
(I/2v2(I))2

and observe that F (x) ∈ Z[x].
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Again, we will apply Theorem 2.14 to obtain congruence conditions on x for

which F (x) is squarefree infinitely often. First, since the leading coefficient of F (x) is

a power of 2 and the constant term is odd, we have that F (x) is primitive. Moreover,

disc(F (x)) =
(
25−2v2(I) · 33(v2(I)+j+1)dI

)2
−4 · 211−v2(I) · 33d+ 36(v2(I)+j+1)d2

23+v2(I)
(I/2v2(I))2

= 210−4v2(I) · 36(v2(I)+j+1)d2I2

−210−4v2(I) · 33dI2 − 210−4v2(I) · 36(v2(I)+j+1)d2I2

= −210−4v2(I) · 33dI2 6= 0.

Now, let n = d/3v3(d), where v3(d) ∈ {0, 1}. Observe that n is squarefree and

F (1) 6≡ 0 (mod p) for any prime p | n. Hence, for any prime p | n, we have that

p - F (1). Thus, with r = 1 and q = 1, we may apply Theorem 2.14 to conclude

that there exist infinitely many positive integers v ≡ 1 (mod n) such that F (v) is

squarefree.

Let V denote the same set as in previous cases, so that F (v) > 1 for all v ∈ V and

no two distinct values of v in V give the same value to F (v). Since v ≡ 1 (mod n)

for all v ∈ V , we have F (v) ≡ F (1) 6≡ 0 (mod p) for every prime p | n. Thus

gcd(F (v), 6d) = 1 for each v ∈ V .

For each v ∈ V and v2(I) ∈ {0, 1}, set pv(x) = x3 − Ax+B ∈ Z[x], where

A = 3 · 21+v2(I)F (v),

B = 21+v2(I)
(
27v + 33(v2(I)+j+1)d(I/2v2(I))

)
F (v).

We will show that pv(x) is an Eisenstein polynomial for each v ∈ V .
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First, we show that

gcd
(
27v + 33(v2(I)+j+1)d(I/2v2(I)), F (v)

)
= 1.

Suppose there exists some prime p such that p | 27v + 33(v2(I)+j+1)d(I/2v2(I)) and

p | F (v). Observe

23+v2(I)F (v) −
[
27v + 33(v2(I)+j+1)d(I/2v2(I))

]2
= 214v2 + 28−v2(I) · 33(v2(I)+j+1)dIv +

(
33d+ 36(v2(I)+j+1)d2

)
(I/2v2(I))2

−
[
214v2 + 28−v2(I) · 33(v2(I)+j+1)dIv + 36(v2(I)+j+1)d2(I/2v2(I))2

]
= 33d(I/2v2(I))2.

So p | 33d(I/2v2(I))2. But since gcd(F (v), 6d) = 1 and p | F (v), we must have p - 6d.

Thus p | (I/2v2(I))2 so that p2 | 33d(I/2v2(I))2. Thus p2 |
[
27v + 33(v2(I)+j+1)d(I/2v2(I))

]2
so that p2 | 23+v2(I)F (v). Then since p 6= 2, we must have p2 | F (v). But this contra-

dicts that F (v) is squarefree.

So since gcd(27v + 33(v2(I)+j+1)d(I/2v2(I)), F (v)) = 1, F (v) > 1, and 2 - F (v), we

have for any prime p | F (v) that p | A,B and p2 - B. Thus pv(x) is p-Eisenstein for

each prime p | F (v). Therefore pv(x) is irreducible over Q for each v ∈ V . Thus, the

field generated by pv(x), say Fv, is a cubic field.

44



We now show that Fv ∈ C(d,Q3
1) for each v ∈ V . Observe

disc(pv(x)) = 4A3 − 27B2

= 4(3 · 21+v2(I)F (v))3 − 27
[
21+v2(I)

(
27v + 33(v2(I)+j+1)d(I/2v2(I))

)
F (v)

]2
= 22+2v2(I) · 33F (v)2

[
23+v2(I)F (v)−

(
27v + 33(v2(I)+j+1)d(I/2v2(I))

)2]
= 22+2v2(I) · 33F (v)2

[
33d(I/2v2(I))2

]
= d(2 · 33IF (v))2.

Thus, by Corollary 2.1.1 we have that Fv ∈ C(d) for each v ∈ V .

Since F (v) is squarefree and 3 - F (v), we have that vp(A) < 2 for all primes p 6= 2.

Since 2 - F (v), v2(I) + 1 ≤ 2 for each v2(I) ∈ {0, 1}, and

27v + 33(v2(I)+j+1)d(I/2v2(I)) ≡ 1 (mod 2),

we have that v2(B) < 3. Therefore vp(A) < 2 or vp(B) < 3 for all primes p. Also

note that 1 ≤ v2(B) = v2(A) = 1 + v2(I). Thus, by Theorem 2.4, we have that

(2)OFv = Q3
1.

Next, we compute ∆Fv for each v2(I) ∈ {0, 1}. First, since 1 ≤ v2(B) ≤ v2(A),

we have by Theorem 2.2 that 22 ‖∆Fv . Next, observe

A = 3 · 21+v2(I)F (v) ≡ 3 · 212v2 ≡ 3v2 (mod 27).

This gives that A + 1 ≡ 3v2 + 1 (mod 27). Also, since v ≡ 1 (mod 3), we get

A ≡ 3 (mod 9). Furthermore,

B2 = 22+2v2(I)(214v2)(211−v2(I)v2)2 ≡ 238v6 ≡ 4v6 (mod 27).
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Since v ≡ 1 (mod 3), we have by Lemma 2.11 that B2 ≡ A + 1 (mod 27). Lastly,

note that s3 ≡ v3(d) (mod 2). Thus, by Theorem 2.2, 3v3(d) ‖∆Kv .

Now, since gcd(d/3v3(d), 6) = 1 and d is squarefree, we have that

∏
p > 3

sp ≡ 1 (mod 2)

p = |d|/3v3(d)

and ∏
p > 3

1 ≤ vp(B) ≤ vp(A)

p2 = F (v)2.

Therefore, by Theorem 2.2 we have that

∆Fv = sign(d) · 22 · 3v3(d)(|d|/3v3(d))F (v)2 = 22dF (v)2.

Note that since distinct values of v ∈ V gives distinct values of F (v), each value

of ∆Fv is distinct. Consequently, each of the cubic fields Fv are distinct.

Set qv(x) =
pv(3x+ v)

27
. Then by Lemma 2.12, we have

qv(x) = x3 + vx2 +

(
3v2 − A

9

)
x+

(
v3 − Av +B

27

)
.

Observe that

v2 − A/3 ≡ v2 − 21+v2(I) · 211−v2(I)v2 ≡ (1− 212)v2 ≡ 0 (mod 3)
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and

v3 − Av +B ≡ v3 − 3 · 21+v2(I) · 211−v2(I)v2 · v + 21+v2(I) · 27v · 211−v2(I)v2

≡ (1− 3 · 212 + 219)v3 ≡ 0 (mod 27).

Thus qv(x) ∈ Z[x].

Since pv(x) = 27qv

(
x− v

3

)
, we have that qv(x) is irreducible over Q since pv(x)

is irreducible over Q. Moreover, qv(x) and pv(x) generate the same cubic extension

Fv of Q. Finally, if θv is a root of qv(x), then by Corollary 2.6.1 we have that

22dI2F (v)2 =
disc(pv(x))

36

= disc(qv(x))

= ind(θv)
2∆Fv

= ind(θv)
2 · 22dF (v)2,

which gives I = ind(θv). Therefore I ∈ Sd,Q3
1

and is the index of an algebraic integer

in Fv ∈ C(d,Q3
1) for each v ∈ V .

Case 2b: (2) = Q1Q2.

Since d ≡ 5 (mod 8), we may write d ≡ 5 + 8j (mod 64), for some j ∈ {0, 1, ..., 7}.

It is easy to check that

33d
(
313+6jd+ 1

)
≡ 32 (mod 64)

for each j ∈ {0, 1, ..., 7}. Therefore v2(3
3d(313+6jd+ 1)) = 5.
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For any j, define

F (x) =


223x2 + 210 · 38+3jdIx+

33dI2 (313+6jd+ 1)

32
if v2(I) = 0,

224−12v2(I)x2 + 226−13v2(I) · 33dIx

+33d
(
1 + 228−14v2(I) · 33d

)
(I/2)2 if v2(I) = 1, 2,

and observe that F (x) ∈ Z[x].

Again, we will apply Theorem 2.14 to obtain congruence conditions on x for which

F (x) is squarefree infinitely often.

First, suppose v2(I) = 0. Since v2(3
3d (313+6jd+ 1)) = 5, the constant term of

F (x) is not divisible by 2, whereas the leading coefficient is a power of 2. Thus F (x)

is primitive. Moreover,

disc(F (x)) =
(
210 · 38+3jdI

)2 − 4 · 22333dI2 (313+6jd+ 1)

32

= 220 · 316+6jd2I2 − 220 · 316+6jd2I2 − 220 · 33dI2

= −220 · 33dI2 6= 0.

Now suppose v2(I) ∈ {1, 2}. When v2(I) = 1, the constant term of F (x) is not

divisible by 2 whereas the leading coefficient is a power of 2. When v2(I) = 2, the

leading coefficient is 1. Therefore, F (x) is primitive in these cases as well. Moreover,

disc(F (x)) =
(
226−13v2(I) · 33dI

)2 − 4 · 224−12v2(I) · 33d
(
1 + 228−14v2(I) · 33d

)
(I/2)2

= 252−26v2(I) · 36d2I2 − 224−12v2(I) · 33dI2 − 252−26v2(I) · 36d2I2

= −224−12v2(I) · 33dI2 6= 0.
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Let n = 6d/3v3(d), where v3(d) ∈ {0, 1}. Observe that n is squarefree. Also note

that for each v2(I) ∈ {0, 1, 2}, we have F (1) 6≡ 0 (mod p) for any prime p | n. Hence,

for any prime p such that p | n, we have that p - F (1). Thus, with r = 1 and q = 1, we

may apply Theorem 2.14 to conclude that there exist infinitely many positive integers

v ≡ 1 (mod n) such that F (v) is squarefree.

Let V denote the same set as in the previous case so that F (v) > 1 for all v ∈ V and

no two distinct values of v in V give the same value to F (v). Since v ≡ 1 (mod n)

for all v ∈ V , we have F (v) ≡ F (1) 6≡ 0 (mod p) for every prime p | n. Thus

gcd(F (v), 6d) = 1 for each v ∈ V .

For each v ∈ V and v2(I) ∈ {0, 1, 2}, set pv(x) = x3 − Ax+B ∈ Z[x], where

A =

 6F (v) if v2(I) = 0,

3F (v) if v2(I) = 1, 2,

and

B =

 (214v + 38+3jdI)F (v) if v2(I) = 0,

213−6v2(I)
(
v + 33d(I/2v2(I)−1)

)
F (v) if v2(I) = 1, 2.

We will show that pv(x) is an Eisenstein polynomial for each v ∈ V .

First, suppose v2(I) = 0. In this case, we will show that

gcd(214v + 38+3jdI, F (v)) = 1.

Suppose there exists some prime p such that p | (214v + 38+3jdI) and p | F (v).
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Observe

32F (v) −
(
214v + 38+3jdI

)2
= [228v2 + 215 · 38+3jdIv + 33dI2

(
313+6jd+ 1

)
]−
(
214v + 38+3jdI

)2
= 228v2 + 215 · 38+3jdIv + 316+6jd2I2 + 33dI2 − 228v2

−215 · 38+3jdIv − 316+6jd2I2

= 33dI2.

Thus p | 33dI2. But since gcd(F (v), 6d) = 1 and p | F (v), we must have that p - 6d.

Thus p | I2 so that p2 | 33dI2. Since p2 | (214v+ 38+3jdI)2, this gives that p2 | 32F (v).

Since p 6= 2, we have p2 | F (v). But this contradicts that F (v) is squarefree.

Next, suppose v2(I) ∈ {1, 2}. In this case, we will show that

gcd
(
213−6v2(I)(v + 33d(I/2v2(I)−1)), F (v)

)
= 1.

Suppose there exists some prime p such that p | 213−6v2(I)
(
v + 33d(I/2v2(I)−1)

)
and

p | F (v). Observe

4F (v) −
[
213−6v2(I)

(
v + 33d(I/2v2(I)−1)

)]2
=

[
226−12v2(I)v2 + 228−13v2(I) · 33dIv + 33dI2

(
1 + 33 · 228−14v2(I)d

)]
−
[
213−6v2(I)

(
v + 33d(I/2v2(I)−1)

)]2
= 226−12v2(I)v2 + 228−13v2(I) · 33dIv + 33dI2 + 36 · 228−14v2(I)d2I2

−226−12v2(I)v2 − 228−13v2(I) · 33dIv − 228−14v2(I) · 36d2I2

= 33dI2.

Thus p | 33dI2. This contradicts that F (v) is squarefree for the same reason as before.
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Since 2 - F (v) and F (v) > 1, the previous results show that for any prime p | F (v),

we have that p | A,B and p2 - B in both cases. Thus pv(x) is p-Eisenstein for any

prime p | F (v). Therefore pv(x) is irreducible over Q for each v ∈ V . Thus, the field

generated by pv(x), call it Fv, is a cubic field.

We now show that Fv ∈ C(d,Q1Q2) for each v ∈ V . First, suppose v2(I) = 0.

Observe that

disc(pv(x)) = 4A3 − 27B2

= 4(6F (v))3 − 27
[(

214v + 38+3jdI
)
F (v)

]2
= 33F (v)2

[
32F (v)−

(
214v + 38+3jdI

)2]
= 33F (v)2(33dI2)

= d(33IF (v))2.

Thus, by Corollary 2.1.1 we have that Fv ∈ C(d) for each v ∈ V . Since F (v) is

squarefree and 2, 3 - F (v), we have that vp(A) < 2 for all primes p. Also, A is even

and B is odd, since 214v + 38+3jdI ≡ 1 (mod 2). So by Theorem 2.4, we have that

(2)OFv = Q1Q2.

Now suppose v2(I) ∈ {1, 2}. Observe that

disc(pv(x)) = 4A3 − 27B2

= 4(3F (v))3 − 27
[
213−6v2(I)

(
v + 33d(I/2v2(I)−1)

)
F (v)

]2
= 33F (v)2

(
4F (v)−

[
213−6v2(I)

(
v + 33d(I/2v2(I)−1)

)]2)
= 33F (v)2(33dI2)

= d(33IF (v))2.
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Thus by Corollary 2.1 we have that Fv ∈ C(d) for each v ∈ V . Since F (v) is squarefree

and 3 - F (v), we have that vp(A) < 2 for all primes p. Also, A is odd, B is even, s2

is even, and

∆2 = d
(
33(I/2v2(I))F (v)

)2 ≡ d ≡ 5 (mod 8).

So by Theorem 2.4, we have that (2)OFv = Q1Q2.

Next, we compute ∆Fv for each v2(I) ∈ {0, 1, 2} by using Theorem 2.2. First,

since (2)OFv = Q1Q2 for all v ∈ V , 2 is unramified in Fv. Thus 2 - ∆Fv in both cases.

Suppose v2(I) = 0. Then for each j ∈ {0, 1, ..., 7} we have

A = 6F (v) = 6

[
223v2 + 210 · 38+3jdIv +

33dI2 (313+6jd+ 1)

32

]
≡ 3 · 224v2 ≡ 3v2 (mod 27).

This gives A+1 ≡ 3v2+1 (mod 27). Also, since v ≡ 1 (mod 3), we get A ≡ 3 (mod 9).

Lastly,

B2 =
[(

214v + 38+3jdI
)
F (v)

]2
≡ (214v2 · 223v2)2 ≡ 4v6 (mod 27).

Now suppose v2(I) ∈ {1, 2}. Then for each j ∈ {0, 1, ..., 7} we have

A = 3F (v) = 3
[
224−12v2(I)v2 + 226−13v2(I) · 33dIv + 33d

(
1 + 228−14v2(I) · 33d

)
(I/2)2

]
≡ 3 · 224−12v2(I)v2 ≡ 3v2 (mod 27).
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Again, this gives that A+ 1 ≡ 3v2 + 1 (mod 27) and A ≡ 3 (mod 9). Lastly,

B2 =
[
213−6v2(I)

(
v + 33d(I/2v2(I)−1)

)
F (v)

]2
≡ (213−6v2(I)v · 224−12v2(I)v2)2 ≡ 4v6 (mod 27).

Therefore, since v ≡ 1 (mod 3) for all v ∈ V , we have by Lemma 2.11 that

B2 ≡ A+ 1 (mod 27) in both cases. Lastly, note that s3 ≡ v3(d) (mod 2). Hence, by

Theorem 2.2, 3v3(d) ‖∆Fv in both cases.

Now since gcd(d/3v3(d), 6) = 1 and d is squarefree, in both cases we have that

∏
p > 3

sp ≡ 1 (mod 2)

p = |d|/3v3(d)

and ∏
p > 3

1 ≤ vp(B) ≤ vp(A)

p2 = F (v)2.

Therefore, by Theorem 2.2 we have

∆Fv = sign(d) · 3v3(d)
(
|d|/3v3(d)

)
F (v)2 = dF (v)2.

Note that since distinct values of v ∈ V gives distinct values of F (v), each value

of ∆Fv is distinct. Consequently, each of the cubic fields Fv are distinct.

In both cases, set qv(x) =
pv(3x+ v)

27
. Then by Lemma 2.12, we have

qv(x) = x3 + vx2 +

(
3v2 − A

9

)
x+

(
v3 − Av +B

27

)
.
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When v2(I) = 0, we have v2 − A/3 ≡ v2 − 224v2 ≡ 0 (mod 3) and

v3 − Av +B ≡ v3 − 3 · 224v3 + 214v · 223v2 ≡ (1− 3 · 224 + 237)v3 ≡ 0 (mod 27).

When v2(I) ∈ {1, 2}, we have v2 − A/3 ≡ v2 − 224−12v2(I)v2 ≡ 0 (mod 3) and

v3 − Av +B ≡ v3 − 3 · 224−12v2(I)v3 + 213−6v2(I)v · 224−12v2(I)v2

≡ (1− 3 · 224−12v2(I) + 237−18v2(I))v3 ≡ 0 (mod 27).

Thus in both cases, we have that qv(x) ∈ Z[x].

Since pv(x) = 27qv

(
x− v

3

)
, we have that qv(x) is irreducible over Q since pv(x)

is irreducible over Q. Moreover, qv(x) and pv(x) generate the same cubic extension

Fv of Q. Finally, if θv is a root of qv(x), then by Corollary 2.6.1 we have that

dI2F (v)2 =
disc(pv(x))

36

= disc(qv(x))

= ind(θv)
2∆Fv

= ind(θv)
2dF (v)2,

which gives that I = ind(θv). Therefore I ∈ Sd,Q1Q2 and is an index of an algebraic

integer in Fv ∈ C(d,Q1Q2) for each v ∈ V .

Case 3: d ≡ 1 (mod 8).

By Corollary 2.5.1, there are 2 possible factorizations of (2) in C(d) for any

d ≡ 1 (mod 8), namely, Q1Q′1Q′′1 or Q3. So, we break Case 3 into two subcases.
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Case 3a: (2) = Q1Q′1Q′′1.

For each v2(I) ∈ {1, 2, 3}, define F (x) ∈ Z[x] by

F (x) =

 212x2 + 29 · 33dIx+ 33d (1 + 26 · 33d) (I/2)2 if v2(I) = 1,

212x2 + 27−v2(I) · 33dIx+ 33d
(
22v2(I)−2 + 33d

)
(I/2v2(I))2 if v2(I) = 2, 3.

Again, we will apply Theorem 2.14 to obtain congruence conditions on x for which

F (x) is squarefree infinitely often.

First, notice for each v2(I) ∈ {1, 2, 3} that the leading coefficient of F (x) is a

power of 2, whereas the constant term is not divisible by 2. Hence, F (x) is primitive

in both cases. If v2(I) = 1, then

disc(F (x)) =
(
29 · 33dI

)2 − 4 · 212 · 33d
(
1 + 26 · 33d

)
(I/2)2

= 218 · 36d2I2 − 212 · 33dI2 − 218 · 36d2I2

= −212 · 33dI2 6= 0.

If v2(I) ∈ {2, 3}, then

disc(F (x)) =
(
27−v2(I) · 33dI

)2 − 4 · 212 · 33d
(
22v2(I)−2 + 33d

)
(I/2v2(I))2

= 214−2v2(I) · 36d2I2 − 212 · 33dI2 − 214−2v2(I) · 36d2I2

= −212 · 33dI2 6= 0.

Thus disc(F (x)) 6= 0 in both cases.
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Now, let n = 6d/3v3(d), where v3(d) ∈ {0, 1}. Observe F (1) 6≡ 0 (mod p) for each

p | n. Hence, for any prime p such that p | n, we have that p - F (1). Thus, with

r = 1 and q = 1, we may apply Theorem 2.14 in both cases to conclude that there

exist infinitely many positive integers v ≡ 1 (mod n) such that F (v) is squarefree.

For each case, let V denote the same set as before so that F (v) > 1 for all v ∈ V

and no two distinct values of v in V can give the same value to F (v). Observe that

since v ≡ 1 (mod n) for all v ∈ V , we have that F (v) ≡ F (1) 6≡ 0 (mod p) for each

p | n. Thus gcd(F (v), 6d) = 1 for each v ∈ V .

For each v ∈ V , set pv(x) = x3 − Ax+B ∈ Z[x], where A = 3F (v) and

B =

 24(23v + 33d(I/2))F (v) if v2(I) = 1,

2(26v + 33d(I/2v2(I)))F (v) if v2(I) = 2, 3.

We will show pv(x) is an Eisenstein polynomial for each v ∈ V .

First, suppose v2(I) = 1. In this case, we will show that

gcd
(
24(23v + 33d(I/2)), F (v)

)
= 1.

Suppose there exists some prime p such that p | 24(23v + 33d(I/2)) and p | F (v).

Observe

4F (v)−
[
24(23v + 33d(I/2))

]2
= 214v2 + 211 · 33dIv + 33dI2 + 26 · 36d2I2 − 214v2

−211 · 33dIv − 26 · 36d2I2

= 33dI2.
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So p | 33dI2. But since gcd(F (v), 6d) = 1 and p | F (v), we must have that p - 6d.

Thus p | I2 so that p2 | 33dI2. Since p2 | (24(23v + 33d(I/2)))
2
, we have p2 | 4F (v).

Since p 6= 2, this gives p2 | F (v). But this contradicts that F (v) is squarefree.

Next, suppose v2(I) ∈ {2, 3}. In this case, we will show that

gcd
(
2(26v + 33d(I/2v2(I))), F (v)

)
= 1.

Suppose there exists some prime p such that p | 2(26v + 33d(I/2v2(I))) and p | F (v).

Observe

4F (v) −
[
2(26v + 33d(I/2v2(I)))

]2
= 214v2 + 29−v2(I) · 33dIv + 22 · 33dI · 22v2(I)−2(I/2v2(I))2 + 22 · 36d2(I/2v2(I))2

−214v2 − 29−v2(I) · 33dIv − 22 · 36d2(I/2v2(I))2

= 33dI2.

So p | 33dI2, which contradicts that F (v) is squarefree by the same reasoning as

before.

So by the above arguments, along with the fact that F (v) > 1 for all v ∈ V and

2 - F (v), we have for any prime p | F (v) that p | A,B and p2 - B. Thus pv(x) is

p-Eisenstein for each prime p | F (v). Therefore pv(x) is irreducible over Q for each

v ∈ V . Thus, the field generated by pv(x), call it Fv, is a cubic field.
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We now show that Fv ∈ C(d,Q1Q′1Q′′1) for each v ∈ V . First, suppose v2(I) = 1.

Observe that

disc(pv(x)) = 4A3 − 27B2

= 4(3F (v))3 − 27
[
24(23v + 33d(I/2))F (v)

]2
= 33F (v)2

(
4F (v)−

[
24(23v + 33d(I/2))

]2)
= 33F (v)2(33dI2)

= d
(
33IF (v)

)2
.

Now suppose v2(I) ∈ {2, 3}. Observe that

disc(pv(x)) = 4A3 − 27B2

= 4(3F (v))3 − 27
[
2(26v + 33d(I/2v2(I)))F (v)

]2
= 33F (v)2

(
4F (v)−

[
2(26v + 33d(I/2v2(I)))

]2)
= 33F (v)2(33dI2)

= d
(
33IF (v)

)2
.

Thus, by Corollary 2.1.1 we have that Fv ∈ C(d) for each v ∈ V in both cases.

Since F (v) is squarefree and 3 - F (v), we have in both cases that vp(A) < 2 for

all primes p. We also have that A is odd, B is even, s2 is even, and

∆2 = d
(
33(I/2v2(I))F (v)

)2 ≡ d ≡ 1 (mod 8).

So by Theorem 2.4, we have that (2)OFv = Q1Q′1Q′′1.

Next, we compute ∆Fv for each v2(I) ∈ {1, 2, 3} by using Theorem 2.2. Since (2)

is completely split in OFv , 2 does not ramify in Fv. Thus 2 - ∆Fv in both cases. Next,
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observe in both cases that

A = 3F (v) ≡ 3 · 212v2 ≡ 3v2 (mod 27).

This gives A+1 ≡ 3v2+1 (mod 27). Also, since v ≡ 1 (mod 3), we get A ≡ 3 (mod 9).

Furthermore,

B2 ≡ (27v · 212v2)2 ≡ 4v6 (mod 27).

Since v ≡ 1 (mod 3), we have by Lemma 2.11 that B2 ≡ A + 1 (mod 27). Finally,

note that s3 ≡ v3(d) (mod 2). Thus by Theorem 2.2, 3v3(d) ‖∆Fv in both cases.

Now since gcd(d/3v3(d), 6) = 1 and d is squarefree, we have in both cases that

∏
p > 3

sp ≡ 1 (mod 2)

p = |d|/3v3(d)

and ∏
p > 3

1 ≤ vp(B) ≤ vp(A)

p2 = F (v)2.

Therefore, by Theorem 2.2 we have that

∆Fv = sign(d) · 3v3(d)
(
|d|/3v3(d)

)
F (v)2 = dF (v)2.

Note that since distinct values of v ∈ V give distinct values of F (v), each value of

∆Fv is distinct. Consequently, each of the cubic fields Fv are distinct.
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In both cases, let qv(x) =
pv(3x+ v)

27
. Then by Lemma 2.12, we have

qv(x) = x3 + vx2 +

(
3v2 − A

9

)
x+

(
v3 − Av +B

27

)
.

Observe that

v2 − A/3 ≡ (1− 212)v2 ≡ 0 (mod 3)

and

v3 − Av +B ≡ (1− 3 · 212 + 219)v3 ≡ 0 (mod 27).

Thus, in both cases, we have that qv(x) ∈ Z[x].

Since pv(x) = 27qv

(
x− v

3

)
, we have that qv(x) is irreducible over Q since pv(x)

is irreducible over Q. Moreover, qv(x) and pv(x) generate the same cubic extension

Fv of Q. Finally, if θv is a root of qv(x), then by Corollary 2.6.1 we have that

dI2F (v)2 =
disc(pv(x))

36

= disc(qv(x))

= ind(θv)
2∆Kv

= ind(θv)
2dF (v)2,

which gives I = ind(θv). Therefore I ∈ Sd,Q1Q′1Q′′1 and is an index of an algebraic

integer in Fv ∈ C(d,Q1Q′1Q′′1) for each v ∈ V .
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Case 3b: (2) = Q3.

Since d ≡ 1 (mod 8), we have that 35d + 1 ≡ 4 (mod 8) so that v2(3
5d + 1) = 2.

Now set

F (x) = x2 + 34dIx+ 33dI2
(

35d+ 1

4

)
∈ Z[x].

Again, we will apply Theorem 2.14 to obtain congruence conditions on x for which

F (x) is squarefree infinitely often.

Observe that F (x) is clearly primitive. Next,

disc(F (x)) =
(
34dI

)2 − 4 · 33dI2
(

35d+ 1

4

)
= 38d2I2 − 38d2I2 − 33dI2

= −33dI2 6= 0.

Now, let n = 6d/3v3(d) for each v3(d) ∈ {0, 1}. Again observe that n is squarefree.

Furthermore, F (1) ≡ 1 (mod p) for each p | n. Hence, for any prime p such that p | n,

we have that p - F (1). Thus, with r = 1 and q = 1, we may apply Theorem 2.14 to

conclude that there exist infinitely many positive integers v ≡ 1 (mod n) such that

F (v) is squarefree.

For each case, we let V denote the same set as in previous cases so that F (v) > 1

for all v ∈ V and no two distinct values of v in V can give the same value to F (v).

Since v ≡ 1 (mod n) for all v ∈ V , we have F (v) ≡ F (1) ≡ 1 (mod p) for each p | n.

Thus gcd(F (v), 6d) = 1 for each v ∈ V .
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For each v ∈ V , set pv(x) = x3 − Ax+B ∈ Z[x], where

A = 3F (v),

B = (2v + 34dI)F (v).

We will show pv(x) is an Eisenstein polynomial for each v ∈ V .

First, we show that

gcd(2v + 34dI, F (v)) = 1.

Suppose there exists some prime p such that p | 2v + 34dI and p | F (v). Observe

4F (v)− (2v + 34dI)2 = 4v2 + 4 · 34dIv + 38d2I2 + 33dI2 − 4v2 − 4 · 34dIv − 38d2I2

= 33dI2.

Thus p | 33dI2. But since gcd(F (v), 6d) = 1 and p | F (v), we have p - 6d. Thus p | I2

so that p2 | 33dI2. Since p2 | (2v + 34dI)2, we have p2 | 4F (v). Since p 6= 2, this gives

p2 | F (v). But this contradicts that F (v) is squarefree.

Since gcd(2v + 34dI, F (v)) = 1, 3 - F (v), and F (v) > 1, we have for any prime

p | F (v) that p | A,B and p2 - B. Thus pv(x) is p-Eisenstein for each prime p | F (v).

Therefore pv(x) is irreducible over Q for each v ∈ V . Thus, the field generated by

pv(x), call it Fv, is a cubic field.
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We now show that Fv ∈ C(d,Q3) for each v ∈ V . First, observe that

disc(pv(x)) = 4A3 − 27B2

= 4(3F (v))3 − 27
[
(2v + 34dI)F (v)

]2
= 33F (v)2

[
4F (v)− (2v + 34dI)2

]
= 33F (v)2(33dI2)

= d
(
33IF (v)

)2
.

Thus by Corollary 2.1.1 we have that Fv ∈ C(d) for each v ∈ V . Since F (v) is

squarefree and 3 - F (v), we have that vp(A) < 2 for all primes p. Since 2 - I, we also

have that A and B are odd. So by Theorem 2.4, we have that (2)OFv = Q3.

Next, we compute ∆Fv by using Theorem 2.2. Since (2)OFv = Q3, 2 is unramified

in Fv. Thus we have that 2 - ∆Fv . Furthermore we have

A = 3F (v) ≡ 3v2 (mod 27).

This gives A + 1 ≡ 3v2 + 1 (mod 27). Also, since v ≡ 1 (mod 3), we have that

A ≡ 3 (mod 9). Furthermore,

B2 ≡ (2v · v2)2 ≡ 4v6 (mod 27).

Since v ≡ 1 (mod 3), we have by Lemma 2.11 that B2 ≡ A + 1 (mod 27). Lastly,

note that s3 ≡ v3(d) (mod 2). Thus, by Theorem 2.2, 3v3(d) ‖∆Fv .
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Now since gcd(d/3v3(d), 6) = 1 and d is squarefree, we have that

∏
p > 3

sp ≡ 1 (mod 2)

p = |d|/3v3(d)

and ∏
p > 3

1 ≤ vp(B) ≤ vp(A)

p2 = F (v)2.

Therefore, by Theorem 2.2 we have that

∆Fv = sign(d) · 3v3(d)(|d|/3v3(d))F (v)2 = dF (v)2.

Note that since distinct values of v ∈ V gives distinct values of F (v), each value

of ∆Fv is distinct. Consequently, each of the cubic fields Fv are distinct.

Set qv(x) =
pv(3x+ v)

27
. Then by Lemma 2.12, we have

qv(x) = x3 + vx2 +

(
3v2 − A

9

)
x+

(
v3 − Av +B

27

)
.

Observe that v2 − F (v) ≡ 0 (mod 3) and

v3 − Av +B ≡ v3 − 3v2 · v + 2v · v2 ≡ 0 (mod 27).

Thus qv(x) ∈ Z[x].

Since pv(x) = 27qv

(
x− v

3

)
, we have that qv(x) is irreducible over Q since pv(x)

is irreducible over Q. Moreover, qv(x) and pv(x) generate the same cubic extension
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Fv of Q. Finally, if θv is a root of qv(x), then by Corollary 2.6.1 we have that

dI2F (v)2 =
disc(pv(x))

36

= disc(qv(x))

= ind(θv)
2∆Kv

= ind(θv)
2dF (v)2,

which gives I = ind(θv). Therefore I ∈ Sd,Q3 and is an index of an algebraic integer

in Fv ∈ C(d,Q3) for each v ∈ V .

The following corollary is immediate.

Corollary 2.15.1. For each squarefree d ∈ Z and J ∈ A, there exist infinitely many

cubic fields F ∈ C(d,J ) whose ring of integers has a power basis.

Since the natural numbers represented by an indicial form are quite irregular, so

are the indices in any given cubic field. Hence, our choice to look at indices for the

families of cubic fields C(d,J ) was essential for obtaining the well-structured sets in

our result.

A natural way to extend our result is to generalize to factorizations of (p) for any

prime p. Llorente and Nart expand the result of Theorem 2.4 to give conditions on

a cubic field F for the factorizations of primes p = 3 and p > 3 in OF . Theorem

2.2 suggests that a result like ours for p = 3 might have a similar proof due to the

potential wild ramification of 3. However, since i(F ) has no relationship with the

prime ideal factorization of (3) like that of (2) according to Theorem 1.5, it is unclear

how the index sets might change. One could do the same for any prime p > 3 or a

combination of any finite number of primes.
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3 Unbounded Minimal Indices

In this chapter, we will work towards proving the second of our two main results.

Given an N ∈ N and a squarefree d ∈ Z, we will show that there exist infinitely many

F ∈ C(d) such that m(F ) > N . This will show that the minimal index is unbounded

as we run through all cubic fields in C(d).

3.1 An Indicial Form for Cubic Fields

The proofs of Hall and of Dummit and Kisilevsky on the unboundedness of the mini-

mal index in the pure cubics and cyclic cubics, respectively, rely on convenient indicial

forms. Both results are proved by showing that for each N ∈ N, there exists a cubic

field F in the cubic family such that m(F ) 6∈ {1, ..., N}. This is accomplished by

providing an indicial form for F and showing that it cannot assume any of these

values. We aim to do this as well. However, in order to obtain an indicial form for a

number field, we need an integral basis for its ring of integers. Hall and Dummit and

Kisilevsky construct explicit integral bases for C(−3) and C(1), respectively. Since

we want to extend their results to C(d) for d 6= −3, 1, our first task will be to find

integral bases for these families.

We provide a way to determine an integral basis for any cubic field by using the

concept of p-integral bases for any prime p. Let F be a number field of degree n, P

be a prime OF -ideal, and α ∈ F . Write

αOF =
∏
P∈IOF

PeP

where eP ∈ Z. For any prime ideal P dividing pOK recall that vP(α) = eP . If

vP(α) ≥ 0, then α is called a P-integral element of F . If α is P-integral for each
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prime ideal P of F such that P | pOF , then α is called a p-integral element of F . Let

{β1, β2, ..., βn} be a basis for F over Q where each βi is a p-integral element of F . If

every p-integral element α of F is given by α = a1β1 + ... + anβn, where the ai are

p-integral elements of Q, then B = {β1, β2, ..., βn} is called a p-integral basis for F .

The set of all p-integral elements of Q is the localization of Z at the prime ideal

(p), given by

Z(p) :=
{a
b

: a, b ∈ Z, p - b
}
.

Since the elements of Z(p) are the scalars for linear combinations of p-integral basis

elements, a p-integral basis for F in θ-standard form need only have denominators

that are powers of p.

Alaca [1] gives p-integral bases for cubic fields of the form F = Q(θ), where θ is

a root of the irreducible polynomial x3 − Ax + B, with A,B ∈ Z and vp(A) < 2 or

vp(B) < 3 for every prime p. The p-integral bases are provided in tables which we will

not replicate here; the tables are subdivided according to p = 2, p = 3, and p > 3,

and then further subdivided according to conditions on A and B.

By synthesizing the information encoded by the p-integral bases found within the

tables, Alaca is able to produce an integral basis for any cubic field.

Theorem 3.1 (Alaca, Theorem 2.2 [1]). Let F = Q(θ) be a cubic field, where θ is a

root of the irreducible polynomial x3 − Ax + B ∈ Z[x] with vp(A) < 2 or vp(B) < 3

for every prime p. Suppose for any prime p that a p-integral basis of F is given by

Bp =
{

1, θ, (Rp + Spθ + θ2)/pTp
}
,

67



where Rp, Sp, Tp ∈ Z≥0. Let R and S be integers such that

R ≡ Rp (mod pTp), and S ≡ Sp (mod pTp)

for all primes p. Let T be the positive integer T =
∏
p

pTp. Then

B =
{

1, θ, (R + Sθ + θ2)/T
}

is an integral basis for OF , except in the case that v3(B) = 0, A ≡ 3 (mod 9), and

B2 ≡ A+ 1 (mod 27), in which an integral basis is given by

B =
{

1, (B + θ)/3, (R + Sθ + θ2)/T
}
.

Hence, by knowing a p-integral basis for F for every prime p, we can determine

an integral basis for OF . In the case of a pure cubic field F = Q(
3
√
ab2), where

a, b ∈ N, squarefree, and relatively prime, we have an integral basis whose elements

are determined explicitly by a and b. We do not have this luxury for the integral

basis given in Theorem 3.1 for an arbitrary cubic field. In fact, the third basis

element involves variables R and S whose exact values are unknown. However, the

congruence conditions on R and S provided in the theorem will suffice for the proof

of the main result of this chapter.

Given an integral basis for OF of the form given in Theorem 3.1, we now compute

the corresponding indicial form.

Lemma 3.2. Let F = Q(θ) be a cubic field with θ a root of x3 − Ax + B ∈ Z[x].

Suppose OF has an integral basis of the form B =

{
1, θ,

R + Sθ + θ2

T

}
for some
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R, S, T ∈ Z≥0. Then an indicial form for OF is given by

IF (x, y) = Tx3 + 3Sx2y +

(
3S2 − A

T

)
xy2 +

(
S3 − AS +B

T 2

)
y3

for any x, y ∈ Z.

Proof. Let F = Q(β), where β ∈ OF . By Proposition 1.3, ind(β) = ind(β + c) for

any c ∈ Z. Thus we may assume without loss of generality that

β = xθ + y

(
R + Sθ + θ2

T

)

for some x, y ∈ Z. In order to compute an indicial form for OF , we need to compute

the determinant of the change-of-basis matrix from {1, β, β2} to B. First, note

β2 =

[
θx+

(
R + Sθ + θ2

T

)
y

]2
= θ2x2 + 2

(
Rθ + Sθ2 + θ3

T

)
xy +

(
R2 + S2θ2 + θ4 + 2RSθ + 2Rθ2 + 2Sθ3

T 2

)
y2

= θ2x2 + 2

(
Sθ2 + (R + A)θ −B

T

)
xy

+

(
(S2 + A+ 2R)θ2 + (−B + 2RS + 2SA)θ − 2SB +R2

T 2

)
y2

=

(
−2Bxy

T
+

(R2 − 2BS)y2

T 2

)
+

(
2(R + A)xy

T
+

(−B + 2RS + 2SA)y2

T 2

)
θ

+

(
x2 +

2Sxy

T
+

(S2 + A+ 2R)y2

T 2

)
θ2

=

(
−Rx2 − 2(RS +B)xy

T
− (R2 + AR + 2SB +RS2)y2

T 2

)
+

(
−Sx2 +

2(R + A− S2)xy

T
− (S3 − AS +B)y2

T 2

)
θ

+

(
Tx2 + 2Sxy +

(S2 + A+ 2R)y2

T

)(
R + Sθ + θ2

T

)
.
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Let

C = −Rx2 − 2(RS +B)xy

T
− (R2 + AR + 2SB +RS2)y2

T 2
,

D = −Sx2 +
2(R + A− S2)xy

T
− (S3 − AS +B)y2

T 2
,

E = Tx2 + 2Sxy +
(S2 + A+ 2R)y2

T
.

Then

IF (x, y) =

1 0 0

0 x y

C D E

= Ex−Dy

= Tx3 + 3Sx2y +

(
3S2 − A

T

)
xy2 +

(
S3 − AS +B

T 2

)
y3.

For a given N ∈ N and squarefree d ∈ Z with d 6= −3, 1, our goal will be to

construct a cubic field F so that IF (x, y) /∈ {1, 2, ..., N} for any x, y ∈ Z. We will do

this by using cubic nonresidues just as Hall [5] does. For each n ∈ {1, 2, ..., N} we

will find a prime pn so that IF (x, y) 6≡ ±n (mod pn). To use the technique of cubic

nonresidues, we must eliminate the first three terms of the indicial form whenever we

pass over to congruences modulo pn. Thus, our goal will be to construct F according

to an irreducible polynomial of the form x3 − Ax+B, with A,B ∈ Z and vp(A) < 2

or vp(B) < 3 for every prime p, so that the values of A and B (along with R, S, and

T , which are derived from A and B) make the coefficients of these terms congruent

to zero modulo pn.
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3.2 The Main Result

Theorem 3.3. Let d ∈ Z be squarefree with d 6= −3, 1. Let N ∈ N. Then there exists

a cubic field F ∈ C(d) such that m(F ) > N .

Proof. Let

C = 2v2(d) · 3v3(d)+1

D = d/(2v2(d) · 3v3(d)) (2)

First, observe that since d 6= −3, 1, we have that [Q(
√
−3,
√
−3d) : Q] = 4. Now,

by the Cheboratev Density Theorem, the primes that are completely split in Q(
√
−3d)

have density 1/2 and are exactly those primes p for which
(
−3d
p

)
= 1. Likewise, the

primes that are completely split in the cyclotomic field Q(ζ3) = Q(
√
−3) have density

1/2 and are exactly those primes p for which p ≡ 1 (mod 3). Therefore the primes

p for which both p ≡ 1 (mod 3) and
(
−3d
p

)
= 1 are exactly those primes that

are completely split in the compositum field Q(
√
−3,
√
−3d) and have density 1/4.

Hence, there are infinitely many of them. So, we may choose distinct primes p0 = u,

p1, ..., pN such that gcd(pn, N !D) = 1, pn ≡ 1 (mod 3), and
(
−3d
pn

)
= 1 for each

n ∈ {0, 1, ..., N}.

Note CD = 3d. So, since
(
−3d
pn

)
= 1 for each n ∈ {0, 1, ..., N}, each congruence

equation x2 ≡ −CD (mod pn) is solvable. Consequently, the congruence equations

Dx2 ≡ −C (mod pn) are also solvable for each n. Say

Da2n ≡ −C (mod pn), (3)

where an ∈ Z.
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Let f(x) = Dx2 + C + u2 ∈ Z[x]. Observe

f(a0) ≡ Da20 + C + u2 ≡ −C + C + u2 ≡ 0 (mod u).

Since gcd(u,D) = 1 and u ≡ 1 (mod 3), we have u - 6D. Thus Da20 ≡ −C (mod u)

gives a0 6≡ 0 (mod u). Moreover, f ′(a0) = 2Da0 6≡ 0 (mod u). Therefore, by Hensel’s

Lemma there exists α ∈ Z such that f(α) ≡ 0 (mod u3) and α ≡ a0 (mod u).

Define

t =

 0 if d ≡ 1, 2 (mod 4),

1 if d ≡ 3 (mod 4).

Since gcd(pn, N !D) = 1, we have that pn - n for all n ∈ {1, 2, ..., N}. Note also

that pn ≡ 1 (mod 3). So, for each n, we may choose rn ∈ Z relatively prime to pn

that satisfy two simultaneous conditions. The first is that −22t+2 · 31−v3(d)Dur2n is in

a different cubic residue class than n modulo pn; the second is that
(
−2Crn
pn

)
= 1.

These choices are possible since exactly 2/3 of the elements of the set (Z/pnZ)∗ are in

a different cubic residue class than n modulo pn, and exactly 1/2 of the elements in the

set (Z/pnZ)∗ are quadratic residues modulo pn. Therefore, at least 2/3 − 1/2 = 1/6

of the elements of the set (Z/pnZ)∗ satisfy both conditions. Hence there are infinitely

many choices for rn ∈ Z.

Note that the integers in the set {2, 3D, u, p1, ..., pN} are pairwise relatively prime.

Thus, we may apply the Chinese Remainder Theorem to conclude that the congruence
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equations

y ≡ 4 (mod 8),

y ≡ 1 (mod 3D),

y ≡ 1 (mod u3),

y ≡ −(2C)−1r1 (mod p1),

...

y ≡ −(2C)−1rN (mod pN) (4)

have a unique solution modulo E = 24Du3p1 · · · pN . Observe that since
(
−2Crn
pn

)
= 1

for each n ∈ {1, 2, ..., N}, each value on the right-hand side of these congruence equa-

tions is a perfect square with respect to its modulus. Thus, any particular solution y0

that simultaneously satisfies all of these congruence equations is a quadratic residue

modulo E. So, the arithmetic progression {y0 + Ej}j∈Z≥0
contains a perfect square,

say r2 = y0 + Ei, where i ∈ Z≥0. Note that since r2 ≡ 4 (mod 8), we have 2 ‖ r.

Furthermore, since r2 ≡ 1 (mod 3D), we have 3 - r.

Now, let g(x) = Dx2 + Cr2 ∈ Z[x]. We will apply Theorem 2.14 to obtain con-

gruence conditions on x for which g(x) is of the form u2z, where z is squarefree and

u - z.

Since r2 ≡ 1 (mod D) and gcd(C,D) = 1, we have that gcd(D,Cr2) = 1. Hence,

g(x) is primitive. In addition, we have that disc(g(x)) = −4DCr2 6= 0.
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Since 6D, u3, p1 · · · pn are pairwise relatively prime, we may apply the Chinese

Remainder Theorem to conclude there exists R ∈ Z such that

R ≡ 1 (mod 6D),

R ≡ α (mod u3),

R ≡ anr (mod pn),

for each n ∈ {1, 2, ..., N}. Since 3 | C and 3 - DR, observe

g(R) ≡ DR2 + Cr2 ≡ D 6≡ 0 (mod 3).

This gives g(R) 6= 0.

Let M = 6Dp1 · · · pNu2. Note that u - 6Dp1 · · · pN and 6Dp1 · · · pN is squarefree.

Thus M is the product of a power of u and a squarefree integer relatively prime to

u. Moreover,

g(R) = DR2 + Cr2 ≡ Dα2 + C ≡ −u2(mod u3),

since r2 ≡ 1 (mod u3) and α is a root of the polynomial f(x) = Dx2 +C+u2 modulo

u3. Therefore, we have that u2 ‖DR2 + Cr2.

Recall that pn - 2Dan and r2 ≡ −(2C)−1rn 6≡ 0 (mod pn) for each n ∈ {1, 2, ..., N}.
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Thus,

g′(R) = 2DR ≡ 2Danr 6≡ 0 (mod pn),

g(R) 6≡ 0 (mod 3),

g(R) ≡ DR2 + Cr2 ≡ D ≡ 1 (mod 2),

g(R) ≡ Cr2 ≡ C 6≡ 0 (mod p)

for any n ∈ {1, 2, ..., N} and for any prime p | D. Hence, pn - g′(R) and 22, 32, p2 - g(R)

for any prime p | D. Therefore, by Theorem 2.14 there exist infinitely many positive

integers v ≡ R (mod M) such that g(v) is of the form u2z, where z is squarefree and

u - z.

Fix one such v. Then

v ≡ 1 (mod 6D),

v ≡ α (mod u3),

v ≡ anr (mod pn), (5)

for each n ∈ {1, 2, ..., N}. Furthermore, g(v) ≡ −u2 (mod u3). This gives that

u2 ‖ g(v) = Dv2 + Cr2.

Let k, w ∈ Z be given by

k =
Dv2 + Cr2

u2
and w = Dv2 − Cr2.

For each n ∈ {1, 2, ..., N}, recall Da2n ≡ −C (mod pn) and r2 ≡ −(2C)−1rn (mod pn).
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Thus

w ≡ Dv2 − Cr2 ≡ D(anr)
2 − Cr2 ≡ −Cr2 − Cr2 ≡ −2Cr2 ≡ rn (mod pn). (6)

By the same reasoning, we have

k ≡ Dv2 + Cr2

u2
≡ −Cr

2 + Cr2

u2
≡ 0 (mod pn) (7)

for each n ∈ {1, 2, ..., N}. Hence k is squarefree, and contains p1, ..., pN as distinct

prime factors.

Next, observe

u2k + w = (Dv2 + Cr2) + (Dv2 − Cr2) = 2Dv2,

u2k − w = (Dv2 + Cr2)− (Dv2 − Cr2) = 2Cr2.

This gives

u4k2 − w2 = (u2k + w)(u2k − w) = (2Dv2)(2Cr2) = 4DCv2r2 = 12dv2r2. (8)

Since v ≡ 1 (mod 2) and 2 ‖ r, we have that

w = Dv2 − Cr2 ≡ D ≡ 1 (mod 2),

u2k ≡ Dv2 + Cr2 ≡ D ≡ 1 (mod 2).
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Thus 2 - kw. Furthermore, since v ≡ 1 (mod 3) and 3 | C, we have

w ≡ Dv2 − Cr2 ≡ D 6≡ 0 (mod 3),

u2k ≡ Dv2 + Cr2 ≡ D 6≡ 0 (mod 3),

so that 3 - kw.

Since u2 ‖Dv2 + Cr2, we have that u - k. Note that w = u2k − 2Cr2 so that if

u | w, then u | r2 since u 6= 2, 3. However, r2 ≡ 1 (mod u3). Thus u - w.

We now show that gcd(k, w) = 1. Suppose to the contrary that p | gcd(k, w) for

some prime p. Since 2, 3 - k, we have that p 6= 2, 3. Note that p | u2k ± w. We saw

earlier that u2k + w = 2Dv2 and u2k − w = 2Cr2, so that p | 2Dv2 and p | 2Cr2.

Since p 6= 2, 3, we have that p | r2. So since gcd(r2, D) = 1, we have that p | v2.

Thus p2 | Dv2 + Cr2. However, k =
Dv2 + Cr2

u2
is squarefree. Hence p = u. Then

since p | r, we have that u | r. But r2 ≡ 1 (mod u3), a contradiction. Therefore

gcd(k, w) = 1.

Now let h(x) = x3 − Ax+B ∈ Z[x], where

A = 3k2u2,

B = 2k2wu. (9)

From the previous arguments, we have for any prime p that vp(A) < 2 or vp(B) < 3.

Since u | A,B and u2 - B, we have that h(x) is u-Eisenstein and thus irreducible over

Q. Thus, if θ is a root of h(x), then F = Q(θ) is a cubic field.
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Observe that

disc(h(x)) = 4A3 − 27B2

= 4(3k2u2)3 − 27(2k2wu)2

= 4 · 27k4u2(u4k2 − w2)

= 4 · 27k4u2(12dv2r2)

= d(22 · 32k2uvr)2.

Thus, by Corollary 2.1.1, we have that F ∈ C(d).

We now show that the integers in the set {2, 3, u, k, w, v, r/2, D} are pairwise rela-

tively prime. So far, we have seen that 2 - 3ukwvD, 2 ‖ r, 3 - 2ukwvrD, u - 6kwvrD,

gcd(k, w) = 1, v ≡ 1 (mod D), and r2 ≡ 1 (mod D).

First, we show that gcd(k, v) = 1. Suppose to the contrary that p | k and p | v

for some prime p. Since 2 - v and 3 - v, we have p 6= 2, 3. Since k =
Dv2 + Cr2

u2
, we

have that p | r. Thus p2 | Dv2 + Cr2 = u2k. But since v ≡ α 6≡ 0 (mod u) and p | v,

we have that p 6= u. Therefore p2 | k, which contradicts the fact that k is squarefree.

Similarly, we have that gcd(k, r) = 1. Suppose to the contrary that p | k and

p | r for some prime p. Since r2 ≡ 1 (mod D), we must have p - D. So since

k =
Dv2 + Cr2

u2
, we have that p | v. Thus p2 | Dv2 + Cr2 = u2k. But again we have

that p 6= u. Therefore p2 | k, which contradicts the fact that k is squarefree.

Next, we show that gcd(w, r) = 1. Suppose p | w and p | r for some prime p. Since

w = u2k − 2Cr2, we have that p | u2k. But r ≡ 1 (mod u3), so that p - u. Therefore

p | k. But then p | w and p | k, whereas we have already shown that gcd(k, w) = 1, a

contradiction. Thus gcd(w, r) = 1. Since w = 2Dv2− u2k, the same argument shows

that gcd(w, v) = 1.
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We also have that gcd(D, k) = 1. Suppose to the contrary that p | D and p | k

for some prime p. Then p 6= 2, 3. Since k =
Dv2 + Cr2

u2
, we have that p | r.

But r2 ≡ 1 (mod D) so that p - D, a contradiction. Similar reasoning shows that

gcd(D,w) = 1.

Finally, we have that gcd(v, r) = 1. For if there exists some prime p such that

p | v and p | r, then p2 | k =
Dv2 + Cr2

u2
, which contradicts that k is squarefree.

Therefore, the integers in the set {2, 3, u, k, w, v, r/2, D} are pairwise relatively

prime, as desired. Now, by referring to the values A = 3k2u2, B = 2k2wu, and

disc(h(x)) = d(22 · 32k2uvr)2, and partitioning the set of all primes by which, if any,

of {2, 3, u, k, w, vr/2, D} they divide, we may easily compute vp(A), vp(B) and sp for

all primes p. Since vp(A) < 2 or vp(B) < 3 for any prime p, we may then apply

Alaca’s tables [1] to determine the corresponding p-integral bases for OF .

Most cases are easy to verify, but the cases p = 2 and p = 3 require some expla-

nation. Observe

A ≡ 3k2u2 ≡ 3 (mod 4),

B ≡ 2k2wu ≡ 2 (mod 4),

∆2 ≡ d/2v2(d) ≡ 1, 3 (mod 4),

s2 = 6 + v2(d).

Thus, according to Alaca’s table for p = 2, this leaves us with three cases. We will

determine the form of a 2-integral basis in each case.

First, suppose v2(d) = 1. Then s2 = 7 and s2 ≡ 1 (mod 2). Hence, OF has a 2-

integral basis of the form {1, θ, (R2 + S2θ + θ2)/22}, where R2, S2 ∈ Z are determined

according to the table. Second, suppose v2(d) = 0 and ∆2 ≡ 3 (mod 4). Then s2 = 6

and OF has a 2-integral basis of the form {1, θ, (R2 + S2θ + θ2)/22}. Third, suppose
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v2(d) = 0 and ∆2 ≡ 1 (mod 4). Then s2 = 6 and OF has a 2-integral basis of the

form {1, θ, (R2 + S2θ + θ2)/23}. Recall

t =

 0 if d ≡ 1, 2 (mod 4),

1 if d ≡ 3 (mod 4).

Thus, all three cases may be summarized by a 2-integral basis of the form

{
1, θ, (R2 + S2θ + θ2)/23−v2(d)−t

}
.

Note that since ku 6≡ 0 (mod 3), we have

A ≡ 3k2u2 ≡ 3(ku)2 ≡ 3 (mod 9).

Thus v3(A) = 1. Moreover, it is clear that v3(B) = 0 and s3 = 4+v2(d) ∈ {4, 5}. Now,

according to Alaca’s table for p = 3, this leaves us with two cases. If B2 ≡ 4 (mod 9),

then OF has a 3-integral basis of the form {1, θ, (1−Bθ + θ2)/3}. If B2 6≡ 4 (mod 9),

then OF has a 3-integral basis of the form {1, θ, θ2}. Both cases may be summarized

by a 3-integral basis of the form

{
1, θ, (R3 + S3θ + θ2)/3v3(d)

}
,

where R3, S3 ∈ Z.

The information for all primes p is summarized in the table below. Note that all p-

integral bases are given in the form
{

1, θ, (Rp + Spθ + θ2)/pTp
}

, where Rp, Sp, Tp ∈ Z

and are determined according to Alaca’s tables.
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prime p vp(A) vp(B) sp p-integral basis

2 0 1 6 + v2(d)
{

1, θ, (R2 + S2θ + θ2)/23−v2(d)−t
}

3 1 0 4 + v3(d)
{

1, θ, (R3 + S3θ + θ2)/3v3(d)
}

u 2 1 2 {1, θ, θ2}

p | k 2 2 4 {1, θ, θ2/p}

p | w 0 vp(w) 0 {1, θ, θ2}

p | (vr/2) 0 0 2vp(vr/2)
{

1, θ, (Rp + Spθ + θ2)/pvp(vr/2)
}

p | D 0 0 1 {1, θ, θ2}

otherwise 0 0 0 {1, θ, θ2}

We now show B2 6≡ A + 1 (mod 27). Suppose otherwise. Since ku 6≡ 0 (mod 3),

we have by Lemma 2.11 that

A+ 1 ≡ 3k2u2 + 1 ≡ 3(ku)2 + 1 ≡ 4(ku)6 ≡ 4k6u6 (mod 27).

On the other hand,

B2 ≡ 4k4w2u2 (mod 27).

Hence B2 ≡ A+1 (mod 27) gives w2 ≡ u4k2 (mod 27). However, u4k2−w2 = 12dv2r2

by (8). Since v3(d) ∈ {0, 1} and 3 - vr, this is a contradiction.

Therefore, by Theorem 3.1 an integral basis for OF is given by

B =
{

1, θ, (R + Sθ + θ2)/T
}
,
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where R ≡ Rp (mod pTp) and S ≡ Sp (mod pSp) for all primes p, and

T = 23−v2(d)−t · 3v3(d)k(vr/2) = 22−v2(d)−t · 3v3(d)kvr.

Note that pn ‖ k for each n ∈ {1, ..., N} by (7). Hence R, S ≡ 0 (mod pn).

By Lemma 3.2, an indicial form for OF is given by

IF (x, y) = Tx3 + 3Sx2y +

(
3S2 − A

T

)
xy2 +

(
S3 − AS +B

T 2

)
y3,

where x, y ∈ Z. Since pn ‖ k, we have by (9) that p2n | A and p2n | B for each n.

Thus, the coefficients of the x3, x2y and xy2 terms have pn as a factor for all n. Set

kn = k/pn for each n. Then, with reference to (2), (3), (4), (5), (6), and (9), we have

for each n ∈ {1, ..., N} that

IF (x, y) ≡
(
T

pn

)−2
B

p2n
y3

≡ (22−v2(d)−t · 3v3(d)knvr)−2(2k2nwu)y3

≡ 22v2(d)+2t−3 · 3−2v3(d)wu(vr)−2y3

≡ 22v2(d)+2t−3 · 3−2v3(d)rnu(anr
2)−2y3

≡ 22v2(d)+2t−3 · 3−2v3(d)rnua−2n r−4y3

≡ 22v2(d)+2t−3 · 3−2v3(d)rnu(−DC−1)(4C2r−2n )y3

≡ −22v2(d)+2t−1 · 3−2v3(d)r−1n u(DC)y3

≡ −23v2(d)+2t−1 · 31−v3(d)Dur−1n y3

6≡ ±n (mod pn),

since −22t+2 · 31−v3(d)Dur2n is in a different cubic residue class than n modulo pn.
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Now, if IF (x, y) = ±n for some x, y ∈ Z, then IF (x, y) ≡ ±n (mod pn). Therefore,

IF (x, y) 6= ±n for any n ∈ {1, 2, ..., N}. This gives m(F ) > N .

While this result shows that the minimal index is unbounded as F varies in C(d),

it does not tell us anything about which natural numbers occur as minimal indices.

A natural generalization of our result would be a result like that of Spearman, Yang,

and Yoo [12], in which we determine the minimal index sets for each squarefree

d ∈ Z. Showing that they are infinite for each d would immediately imply our result.

Spearman, Yang, and Yoo show that any cubefree natural number is the index of an

algebraic integer in infinitely many pure cubics. Thus, the minimal index set in this

case at least includes the set of all cubefree natural numbers. However, they are only

able to do this because of the explicit nature of the indicial form they use for the pure

cubics. Since we do not know the exact coefficients of the indicial form we develop in

Lemma 3.2, a result like theirs which uses our integral basis does not seem possible.

The following corollary of the previous result is immediate.

Corollary 3.3.1. Let d ∈ Z be squarefree. Then there exist infinitely many cubic

fields F ∈ C(d) whose ring of integers does not have a power basis.

In tandem with Corollary 2.15.1, this gives us a connection between the two main

results proved in this dissertation. While neither corollary conveys the full power of

our results, they nevertheless reiterate the relationship between indices and monogenic

number fields.
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Theorie der höheren Kongruenzen, Abh. Akad. Wiss. Göttigen, Math.-Phys. Kl.
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Let F = Q(θ) be a cubic field with θ ∈ OF . The index of θ in OF is the

Z-module index ind(θ) := [OF : Z[θ]] ∈ N. The minimal index of F is given by

m(F ) = min
θ∈OF

ind(θ). Let d ∈ Z be squarefree. If d 6= 1, let C(d) denote the set of all

non-cyclic cubic fields whose normal closure contains the unique quadratic subfield

Q(
√
d). Let C(1) denote the set of all cyclic cubic fields.

For a given squarefree d ∈ Z, we determine the set of all index values assumed

by algebraic integers in cubic fields in each subfamily of C(d) with a given factoriza-

tion of the prime ideal (2). We also determine that each index assumed is assumed

by infinitely many algebraic integers in distinct cubics fields within this subfamily.

Moreover, for each N ∈ N, we show that there exists a cubic field F ∈ C(d) with

m(F ) > N .


