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ABSTRACT

Influenza is a ubiquitous virus that has a high rate of mutation. Vaccinations and antiviral
medications must change with a similarly rapid pace to be effective against this capricious
infection. At the inception of the mutation, influenza may produce some combinations of wild
type surface proteins, wild type RNA, and mutated versions of both. To better aid understanding
of these mutations and pave a path for combating mutated virions, we modify a mathematical
model of intracellular replication dynamics created by Heldt et al. to include genetic mutations at
varying times. We then measure the effect of the mutation time on the combination of wild type
and mutated surface proteins and RNA.
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Abstract

Influenza is a ubiquitous virus that has a high rate of mutation.
Vaccinations and antiviral medications must change with a similarly
rapid pace to be effective against this capricious infection. At the
inception of the mutation, influenza may produce some combinations
of wild type surface proteins, wild type RNA, and mutated versions
of both. To better aid understanding of these mutations and pave a
path for combating mutated virions, we modify a mathematical model
of intracellular replication dynamics created by Heldt et al. to include
genetic mutations at varying times. We then measure the effect of the
mutation time on the combination of wild type and mutated surface
proteins and RNA.

1 Introduction

Influenza is a deadly and common virus. So much so that our attempts
to prevent or treat the infection it causes are commonly prescribed
to individuals every year during flu season. However, influenza has
a particularly high rate of mutation [10, 11], making the drugs and
vaccines that we make to fight and prevent it ineffective over short
periods of time [3, 5, 9]. These mutations do not happen immediately
after the virus has entered the cell, more likely during the eclipse phase
of the virus life cycle. This leads to a mixture of both mutated and
wild type surface proteins and RNA in progeny virions [3]. These
chimerical virions can have mutated surface proteins and wild type
RNA or vice versa.
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Figure 1: During its life cycle, a virion enters the cell through the cell mem-
brane and deposits its genetic code into the nucleus. This genetic code is
used to produce surface proteins and copies of the genetic code itself with
materials inside the cell. These pieces are then packaged into progeny virions
which exit the cell through the membrane.

Modeling studies have shown that chimerical virions behave differ-
ently to different medications [2, 3]. For instance, a wild type surface
protein paired with a mutated RNA will still be affected by drugs
whose mechanism of action targets the wild type surface protein. But
a mutated surface protein paired with wild type RNA will make the
wild type virus ”immune” to these approaches. I will use an already
established intracellular model of the virus life cycle [6] to determine
the how much the amount of each kind of virus is affected by the time
that the virus mutates.

2 Methods

2.1 Intracellular model

To better understand the nature of mutation in the influenza virus,
we modified a model proposed by Heldt et al. [6] that describes the
mechanisms involved in intracellular viral replication. This model
consists of 25 ordinary differential equations that correspond to various
chemical processes that take place during viral replication. A list of
the equations from Heldt et al. can be found in appendix A. Pictured
in Fig. 1 are the stages in a virus life cycle.



2.2 Adding a mutation

A mutation event was added such that any wild type RNA that had
not yet been split into its cRNA and mRNA progeny would then
have a mutated section of RNA affecting primarily the neuraminidase
surface protein. This mutation affects two sections of progeny virus,
the progeny neuraminidase surface protein and the viral RNA that
would code future mutated surface proteins. These two mutations do
not necessarily coincide, and in fact mismatches in mutated surface
proteins and RNA sequences are a well established phenomenon. The
mutated proteins and RNA along with their wild type counterparts
were tracked as the mutation time was varied.

To incorporate the muatation, we modified the system by creating
mutated counterparts for each equation that was implicated by the
segment of RNA that codes the neuraminidase protein in the progeny
virus or the production of the protein encapsulating the progeny virus.
This mutation occurred at a predetermined time, after which all in-
coming vRNA would contain the mutation. The proportions of the
various combinations of progeny wild type and mutated virus parts
were measured as the mutation time was varied. The following are
the equations added to simulate the mutated virus,
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where Vpeye is the number of virions (unmutated unless denoted in
the subscript) present in the cytoplasm of the cell. V" is the number
of virions fused to the cell membrane during endocytosis. V. is simi-
larly the number of virions within the nucleus of the cell. Pyp, Prirp,
Py, Pyvgp are the number of NP, RARp, M1, and NEP proteins re-
spectively. R%d Rp 15 the number of VRNP viral polymerase complexes.
RC is the number of cRNA molecules. Vppuerrn and Vpeytrr1 are the
numbers of cytoplasmic and nuclear NEP-M1-vRNP complexes re-
spectively. Réw is the number 6 strand of mRNA. Further explanation
of equations, rates, and variable names can be found in Heldt et al.
[6].

2.3 Computational methods

We solved this system of equations using a version of the Gillespie algo-
rithm [1]. This algorithm is often used in biochemical simulations for
its low computational load compared to its accuracy in output [8]. The
system of differential equations was split into 37 events corresponding
to each term within an equation, the rates of which were given by
the value of the terms. A dynamic uniform probability function was
defined by the rates of possible events at a given time, each possible
event was given a probability proportional to its time dependent rate
so that more common events were more likely. Once an event is chosen
from this distribution, a timestep over which to execute the event was
chosen from an exponential distribution with a time constant equal
to the sum of all rates. Because these rates are time dependent, the
probability distribution for events and timesteps was also dynamic.
This algorithm was implemented in python and run on a Linux-based
system several times to smooth any noise introduced by the stochastic
procedure.

3 Results

3.1 Model validation

Principally we want to show that the model worked as intended, sev-
eral key elements of the viral life cycle were measured and graphed
where both wild type and mutated parts appear (Fig. 2). As ex-
pected, the mutated versions do not appear until later in the infection
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Figure 2: Graphs showing the change in number of particles both mutated
and wild type over time during a simulation of mutation time at hour 4

and grow at a somewhat slower rate due to resources within the cell
being used by wild type counterparts. This fact changes, as expected,
as the time of mutation gets closer to the inception of the virus into
the cell. Therefore, not only have we shown that the mutation event
works as expected, but also that the implementation of the model was
carried out correctly.

Further evidence of the veracity of our model can be gained by
analyzing the changes in timestep over time (Fig. 3). Since the distri-
bution for timestep is dynamic and dependent on the size of the sum of
the rates, it is expected that when the most events are being executed
that the timestep dip to its global minimum. The figure below shows
the timestep as the simulation runs, and we observe the expected
outcome. Between the hours of T+4:00 and T+10:00 the timestep
shrinks significantly, which is also the time at which the most events
occur. This corresponds biologically to the eclipse phase of the virus
life cycle, when the virus orchestrates the mechanisms within the cell
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Figure 3: Timestep in relation to simulated time.

to produce parts that will be packaged as a progeny virion.

3.2 Time of mutation

The proportion of different combinations of wild type and mutated
surface proteins and RNA are shown in Fig. 4. As one might hypoth-
esize, the much later mutation times produced very little mutated
progeny virus. This is to be expected as in the later stages of the viral
life cycle, various necessary mechanisms provided by the host cell have
been run dry. In addition, the majority of virus that has entered the
cell has already passed the stage at which it could possibly mutate.
Rather unexpectedly, the two chimerical virions were not equivalent in
their proportions. Fully mutated virions only dominated in the runs
with early mutation times, which were tracked closely by the virions
with wild type surface proteins and mutated RNA. In runs where the
mutation time was later, the cell still produced virions with mutated
surface proteins, despite hardly any mutated RNA being produced.
This leads us to believe that the limiting factor for a fully mutated
progeny virus is the production of mutated progeny vRNP.
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Figure 4: Relative proportions of the 4 possible combinations of mutated and
wild type variants with respect to a change in mutation time.

4 Discussion

This research is part of a growing literature concerning chimerical
virions. The computational method of measuring the proportions of
these virions will be informative until empirical evidence can be gath-
ered about their relative proportions. This may be difficult, as there
exist biological limitations to measuring virion output in experimen-
tal settings, however there are some promising attempts to solve this
problem using fluorescent labeling [7].

There are limitations to the model. This model does not take
into account immune system response [4], which may have implica-
tions on the proportion of virus types if the immune system is more
likely to target some types of virions or has a time dependent re-
sponse. Another limitation is that the simulation is only of a single
cell, the relationship between cells is likely important and will change
the proportions of the chimerical virions. Further, the model depends
on the accuracy of the constants for each of the equations, some of
which have not been measured directly, but rather inferred from other
measurements or found by fitting the model to relevant data [6].

In conclusion, further research may be guided by the findings in
this research. An interesting relationship was discovered between the
chimerical virions when varying time of mutation, and an unexpected
asymmetry between them was discovered. The model may be im-



proved by implementing an immune system response and simulating
multiple cells, despite this addition requiring a significant increase in
computational power.
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A list of variable names and their meanings along with tables including
numerical values for rates can be found in Heldt et al. [6]
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