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ABSTRACT

The hyperbolic geometric structure is a type of non-Euclidean geometry. We first
examine the geodesics in hyperbolic space using the properties of Möbius transformations in
the upper half-plane. We derive a distance formula and use it to determine the hyperbolic
versions of the Pythagorean theorem, the Law of Sines, the Law of Cosines, Ceva’s Theorem,
and Menelaus’s Theorem. We then examine the spectral properties of hyperbolic triangles.
We determine a differential equation for a familly of triangles with constant first eigenvalue
of the hyperbolic Laplacian with Dirichlet boundary conditions.



Small Eigenvalues of Hyperbolic Polygons
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1 Geodesic Formulas

1.1 Geodesic path and distance

Let H = {z = x+ iy : y > 0}. The hyperbolic metric is defined as follows. The inner product

of two vectors at a point z0 is defined as < v,w >=
v · w

(Im(z0))2
([1]). Thus, the hyperbolic

length of a path α : [a, b]→ H is

L(α) =

∫ b

a

|α′(t)|
Im(α(t))

dt.

In ([1]), it is shown that distance-minimizing paths (geodesics) are either vertical straight
line in H or semicircular arcs in H centered on the horizontal axis. Given the formula for the
hyperbolic length of a path in the upper half-plane, we will derive formulas for the distance
between two points in the hyperbolic plane.

We will consider a simple case. Let z = i and w = sin(θ1)+ i cos(θ1). One reparametriza-
tion of a geodesic path from z to w is a(t) = (sin(t), cos(t)) for 0 ≤ t ≤ θ1.

So |a(t)| = 1 and a′(t) = (cos(t),− sin(t)) The distance from z to w is

∫ θ1

0

|a′(t)|
cos(t)

dt = ln

(
1

cos(t)
+ tan(t)

)∣∣∣∣∣
θ1

0

= ln

(
1 + sin(t)

cos(t)

)∣∣∣∣∣
θ1

0

=
1

2
ln

(
1 + sin(t)

1− sin(t)

)∣∣∣∣∣
θ1

0

=
1

2
ln

(
1 + sin(θ1)

1− sin(θ1)

)

=
1

2
ln

(
1 + Re(w)

1− Re(w)

)
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We now consider the general case and calculate the distance between z = (z1, z2) and w =
(w1, w2). Let a be a geodesic path a(t) such that a(0) = z and a(1) = w. (Here we assume
z1 ≤ w1 to parametrize our path) If z1 = w1 , we have

distR2(z, w) = |z − w|

Let c be the center of the Euclidean circle A passing through z and w on the real axis. Let

L be the Euclidean line segment joining z and w. The midpoint of L is
1

2
(z+w). The slope

of L is k =
Im(w)− Im(z)

Re(w)−Re(z)
=
w2 − z2

w1 − z1

. The perpendicular bisector H of L passes through

1
2
(z + w) and has slope −1

k
=

Re(z)−Re(w)

Im(w)− Im(z)
=
z1 − w1

w2 − z2

, so H has the equation:

y − 1

2
(Im(w) + Im(z)) =

[
Re(z)−Re(w)

Im(w)− Im(z)

](
x− 1

2
(Re(z) +Re(w))

)

y − 1

2
(w2 + z2) =

[
z1 − w1

w2 − z2

](
x− 1

2
(z1 + w1)

)
The Euclidean center c is the x-intercept of H

c =

[
− 1

2
(Im(z) + Im(w))

][
Im(w)− Im(z)

Re(z)−Re(q)

]
+

1

2
(Re(z) +Re(w))

=
1

2

[
(Im(z))2 − (Im(w))2 + (Re(z))2 −Re(w))2

Re(z)−Re(w)

]

=
1

2

[
|z| 2 − |w| 2

Re (z)−Re(w)

]

c =
1

2

[
|z| 2 − |w| 2

z1 − w1

]
The Euclidean Radius of A is

r = |c− p| = 1

2

∣∣∣∣∣
[
|z|2 − |w|2

z1 − w1

]
− z

∣∣∣∣∣
Let D be the center of the semicircle passing through z and w. By shifting the circle
horizontally by −c ,we construct a formula for a geodesic path b(t) from z′ = z − c to
w′ = w − c such that a(0) = z′ , a(1) = w′, and the center is at the origin O. Let
Z ′,W ′ be the image of z, w after shifting the semicircle with center D. Let t1 = −∠DOZ ′,
t2 = ∠DOW ′. The formula for a geodesic path from z to w in this case is b(t) =

(
r sin

[
t(t2−

t1) + t1
]
, r cos

[
t(t2 − t1) + t1

])
.

Shifting the circle horizontally by c, the general formula for a geodesic path passing
through z and w is a(t) = b(t) + c =

(
r sin

[
t(t2 − t1) + t1

]
+ c, r cos

[
t(t2 − t1) + t1

])
.
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We construct the general formula for the geodesic path passing through z and w by parametriz-
ing the Euclidean circle with center c and radius r passing through z and w. The geodesic
distance from z to w is obtained by

dH(z, w) =

∫ 1

0

|a′(t)|
Im(a(t))

dt

=

∫ 1

0

∣∣(r(t2 − t1)cos(t(t2 − t1) + t1),−r(t2 − t1) sin(t(t2 − t1) + t1
)∣∣

r cos(t(t2 − t1) + t1)
dt

=

∫ 1

0

t2 − t1
cos
[
t(t2 − t1) + t1

]dt
Let u = t(t2 − t1) + t1

dH(z, w) =

∫ t2

t1

sec(u)du

= ln | sec(u) + tan(u)|
∣∣∣∣t2
t1

= ln

∣∣∣∣sin(u) + 1

cos(u)

∣∣∣∣
∣∣∣∣∣
t2

t1

(1.1.1)

We also have

sin(t1) =
z1 − c
r

cos(t1) =
z2

r

sin(t2) =
w1 − c
r

cos(t2) =
w2

r

Substituting into (1.1.1)

dH(z, w) = ln

∣∣∣∣∣z2(w1 − c+ r)

w2(z1 − c+ r)

∣∣∣∣∣ (1.1.2)

1.2 Alternate Formula for Hyperbolic Distance

Let z = z1 + iz2 and w = w1 + iw2 are belonging to C(O, 1), the circle with center O and
radius 1. That means

|z|2 = z2
1 + z2

2 = 1, |w|2 = w2
1 + w2

2 = 1.
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z = eit1 = cos t1 + i sin t1, w = eit2 = cos t2 + i sin t2.

A parametrization (counterclockwise) of C(O, 1) is

a(t) = (cos t, sin t).

The distance:

dH(z, w) =

∫ t2

t1

csc(t)dt

Now consider the transformation for c ∈ R, r > 0,

γ(u) = ru+ c = (ru1 + c, ru2) = (r cos t+ c, r sin t),

where u = u1 + iu2. For every u, v ∈ C,

dH(γ(u), γ(v)) =

∫ θ2

θ1

csc tdt = dH(u, v).

It is shown in ([1]) that all orientation-preserving isometries (distance-preserving maps) of
H to itself are the Möbius transformation maps of the form

z 7→ az + b

cz + d
,

where a, b, c, d ∈ R and ad − bc = 1. Thus γ is an isometry. We may take any circular
geodesic arc and transform it to a C(0, 1) arc with a choice of such a γ.

For z, w ∈ C(O, 1). (In this case c = 0, r = 1), we have dH(z, w) = ln

∣∣∣∣(z1 + 1)w2

(w + 1)z2

∣∣∣∣ by

(1.1.2) We also have

cosh dH(z, w) =
1

2

∣∣∣∣(z1 + 1)w2

(w + 1)z2

+
(w + 1)z2

(z1 + 1)w2

∣∣∣∣
=

[z2
2w

2
1 + 2z2

2w1 + z2
2 + w2

2z
2
1 + 2w2

2z1 + w2
2]

2z2w2(z1 + 1)(w1 + 1)
. (1.2.1)

We substitude z2
2 = 1− z2

1 , w
2
2 = 1− w2

1 and z2
2 + w2

2 = 1 into (1.2.1); we obtain

cosh dH(z, w) =
−z2

1w
2
1 + z1 − z2

1w1 + w1 + z1w
2
1 + 1

2z2w2(z1 + 1)(w1 + 1)

=
(2− 2z1w1)(z1 + 1)(w1 + 1)

2z2w2(z1 + 1)(w1 + 1)

=
(2− 2z1w1)

2z2w2

=
z1

1 + z2
2 + w2

1 + w2
2 − 2z1w1

2z2w2

= 1 +
|z − w|2

2z2w2

.
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Note that if z, w are replaced bny rz + c, rw + c, the result is the same, so that this
formula for hyperbolic distance works for any z, w ∈ H. The formula works even for z, w
such that they are contained in a vertical line.

1.3 The Pythagorean Theorem for Hyperbolic Right Triangles

The following formulas were derived from the hyperbolic distance formulas above

Theorem 1.1 (Hyperbolic Pythagorean Theorem). In a hyperbolic right triangle ABC (right
angle at B), with a,b,c be the opposite sides to the angle at A, B, C respectively then

cosh(b) = cosh(a) cosh(c).

Proof. We conveniently choose 3 vertices of a right triangle at z1, with z1 = (0, 1) = i ,
z2 = (0, y) = yi, z3 = (cos(t), sin(t)) = cos(t) + i sin(t) for 0 < t < π.

The Möbius group acts transitively on H. Given two triples (w1, w2, w3) and (z1, z2, z3) of
distinct points in C̄, there exists a unique element m of Möb+ so that m(w1) = z1,m(w2) =
z2,m(w3) = z3. Möbius transformations preserve angles and also preserve the distance be-
tween two points in H; that is, Möbius transformations of H are conformal and are isometries
of H. Thus, given any triangle ABC that has a right angle at B in H we can construct an
isometry (Möbius transformation) that maps B to z1, A to z2 and C to z3.
Let c = distance between z1 and z2, b = distance between z2 and z3, and a = distance
between z1 and z3. By the hyperbolic distance formula,

cosh(c) = 1 +
(y − 1)2

2y
=
y2 + 1

2y
, (1.3.1)

cosh(a) = 1 +

∣∣ cos(t) + i(sin(t)− 1)
∣∣2

2 sin(t)
= 1 +

cos(t)2 + (sin(t)− 1)2

2 sin(t)
=

1

sin(t)
, (1.3.2)

cosh(b) = 1 +

∣∣ cos(t) + i(sin(t)− y)
∣∣2

2y sin(t)
= 1 +

cos(t)2 + (sin(t)− y)2

2y sin(t)
=

1 + y2

2y sin(t)
. (1.3.3)

From (1.3.1), (1.3.2), (1.3.3) we have

cosh(b) = cosh(a) cosh(c)

.

1.4 Law of Sines

Theorem 1.2 (Hyperbolic Law of Sines). In hyperbolic geometry, the Law of Sines states
that in a hyperbolic triangle ABC, with sides a,b,c be the opposite to the angle at A,B,C
respectively

sin(A)

sinh(a)
=

sin(B)

sinh(b)
=

sin(C)

sinh(c)
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Proof. First, we prove the formula that relates between angle and distance in a hyperbolic
right triangle. Thus, given any triangle ABC that has a right angle at B in H we can con-
struct an isometry (Möbius transformation) that maps B to z1, A to z2 and C to z3, with
z1 = (0, 1) = i , z2 = (0, y) = yi, z3 = (cos(t), sin(t)) = cos(t) + i sin(t) for 0 < t < π.

Let c = distance between z1 and z2, b = distance between z2 and z3, and a = distance
between z1 and z3. We have

tan(A) =
tanh(a)

sinh(c)
, (1.4.1)

sin(A) =
sinh(a)

sinh(b)
, (1.4.2)

cos(A) =
tanh(c)

tanh(b)
(1.4.3)

The points z2 and z3 lie on a unique geodesic, which is a semi-circle with center at u ∈ R.
The line segment from u to z2 is the radius of the semi-circle, as is the line segment from u
to z3. Calculating the length of these line segments, we see that

y2 + u2 = (cos(t) + u)2 + sin2(t).

So y2 = 1 + 2u cos(t). Using u =
y2 − 1

2 cos(t)
, in the triangle with vertices at x, z2, 0, we also

have

tan(A) =
y

u
=

2y cos(t)

y2 − 1
.

Using the fact that (cosh(t))2 − (sinh(t))2 = 1 and tanh(t) =
sinh(t)

cosh(t)
for all t ∈ R we have

from (1.3.2) and (1.3.3),

sinh(c) =
y2 − 1

2y
, so tanh(c) =

y2 − 1

y2 + 1
.

sinh(a) =
cos(t)

sin(t)
, so tanh(a) = cos(x).

Thus tan(A) =
tanh(a)

sinh(c)
.

Note that

cos2(A) =
1

1 + tan2(A)

=
1

1 + tanh2(a)

sinh2(c)

=
sinh2(c)

sinh2(c) + tanh2(a)

9



From the Pythagorean theorem, we see that

cos2(A) =
sinh2(c)

sinh2(c) + 1− cosh2(c)

cosh2(b)

=
tanh2(c)

tanh2(b)

or cos(A) =
tanh(c)

tanh(b)
.

To prove sin(A) = sinh(c)/ sinh(b), we use the equation sin(A) = cos(A) tan(A) to obtain

sin(A) =
tanh(a)

sinh(c)

tanh(c)

tanh(b)

=
sinh(a)

cosh(a)

1

sinh(c)

sinh(c)

cosh(c)

cosh(b)

sinh(b)

=
sinh(a)

sinh(c)
.

Given a triangle ABC, we draw a hyperbolic line perpendicular to BC from A. Let H be
the perpendicular foot. If H lies on B or C, the Law of Sines is true from (1.4.2).
Without loss of generality, We will consider the case where ABC has all three perpendicular
foot lies on their respective segments and the case where a perpendicular foot is external
(not on its opposite segment).
Suppose ABC has all three perpendicular foot lies on their respective segments. Since H
lies between B and C, applying (1.4.2) to the right triangle ABH, we have

sin(B) =
sinh(h)

sinh(c)
.

We can also express sinh(h) as

sinh(h) = sin(B) sinh(c).

Similarly, applying (1.4.2) to the right triangle ACH, we have

sinh(h) = sin(C) sinh(b).

Thus, we have
sin(B) sinh(c) = sin(C) sinh(b).

Dividing both sides by sinh(b) sinh(c) yields

sin(B)

sinh(b)
=

sin(C)

sinh(c)
.

If 4ABC has a perpendicular foot that does not lie between on its opposite segment. In
this case we assume it is H. Also, assume B lies between H and C, applying (1.4.2) to the
triangle 4ABH, we have

sinh(h) = sin(∠ABH) sinh(C.)
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Since ∠ABH = ∠ABC = ∠B, we have

sinh(h) = sin(B) sinh(c).

Also. applying (1.4.2) to the right triangle 4ACH, we have

sinh(h) = sin(C) sinh(b).

Thus, we have
sin(B) sinh(c) = sin(C) sinh(b),

which means
sin(B)

sinh(b)
=

sin(C)

sinh(c)
.

Similarly, using the hyperbolic perpendicular line from B to AC, we can also prove

sin(A)

sinh(a)
=

sin(C)

sinh(c)
.

Hence, combine both statements above, we have

sin(A)

sinh(a)
=

sin(B)

sinh(b)
=

sin(C)

sinh(c)
.

1.5 Law of cosines

Theorem 1.3 (Hyperbolic Law of Cosines). In a hyperbolic triangle 4ABC, with sides a,b,c
be the opposite to the angle at A,B,C respectively,

cosh(b) = cosh(a) cosh(c)− sinh(a) sinh(c) cos(B).

Proof. Given a triangle 4ABC we draw a hyperbolic perpendicular line to BC from A. Let
H be the perpendicular foot. We consider the case where ABC has all three perpendicular
foot lying on their opposite segments. Let dH(B,H) = a1 and dH(C,H) = a2. Applying the
Pythagorean theorem to the right triangle 4ACH, we have

cosh(b) = cosh(a2) cosh(h).

By replacing a2 with a−a1, using the formula cosh(x−y) = cosh(x) cosh(y)−sinh(x) sinh(y),
we have

cosh(b) = cosh(a) cosh(a1) cosh(h)− sinh(a) sinh(a1) cosh(h).

Applying the Pythagorean theorem to the right triangle4ABH, we have cosh(h) =
cosh(c)

cosh(a1)
.

Replace this for cosh(h) in the formula above to get

cosh(b) = cosh(a) cosh(c)− sinh(a) sinh(a1)
cosh(c)

cosh(a1)
,
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which is

cosh(b) = cosh(a) cosh(c)− sinh(a) sinh(c)
tanh(a1)

tanh(c)
.

Finally, we apply (1.4.3) to the right triangle 4ABH to get

cosh(b) = cosh(a) cosh(c)− sinh(a) sinh(c) cos(B).

The case where H is not between B and C is proved similarly.

Theorem 1.4 (Second Hyperbolic Law of Cosines). In a hyperbolic triangle 4ABC, with
sides a,b,c be the opposite to the angle at A,B,C respectively

cos(A) = − cos(B) cos(C) + sin(B) sin(C) cosh(a).

Note

Proof. We use the notation of the previous proof. Applying the Pythagorean theorem for
the triangles 4ABH and 4ACH, and multiply them together, we obtain

cosh(b) cosh(c) = cosh2(h) cosh(a1) cosh(a2).

Multiplying both sides by cosh(a) = cosh(a1+a2), using the formula cosh(x+y) = cosh(x) cosh(y)+
sinh(x) sinh(y), we have

cosh(b) cosh(c)
(

cosh(a1) cosh(a2) + sinh(a1) sinh(a2)
)

= cosh(a) cosh2(h) cosh(a1) cosh(a2).

We substitute cosh2(h) with 1+sinh2(h) and divide both sides by cosh(a1) cosh(a2) to obtain

cosh(b) cosh(c)
(
1 + tanh(a1) tanh(a2)

)
= cosh(a)

(
1 + sinh2(h)

)
.

Rearranging this formula, we have

cosh(b) cosh(c)− cosh(a) = − cosh(b) cosh(c) tanh(a1) tanh(a2) + cosh(a) sinh2(h).

By theorem 1.3, we substitute cosh(b) cosh(c)− cosh(a) with cos(A) sinh(b) sinh(c) and get

cos(A) sinh(b) sinh(c) = − cosh(b) cosh(c) tanh(a1) tanh(a2) + cosh(a) sinh2(h).

We divide both sides by sinh(b) sinh(c) to get

cos(A) = −tanh(a1)

tanh(c)

tanh(a2)

tanh(b)
+

sinh(h)

sinh(c)

sinh(h)

sinh(b)
cosh(a).

Applying (1.4.3) to4ACH and4ABH allows replacing
tanh(a1)

tanh(c)
with cos(B) and

tanh(a2)

tanh(b)

with cos(C), and applying (1.4.2) 4ACH and 4ABH allows us to replace
sinh(h)

sinh(c)
with

sin(B) and
sinh(h)

sinh(b)
with sin(C). Finally, we have

cos(A) = − cos(B) cos(C) + sin(B) sin(C) cosh(a).
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2 The Theorems of Ceva and Menelaus for Hyperbolic

Triangles

2.1 Menelaus’s Theorem for Hyperbolic Triangles

Theorem 2.1 (Menelaus’s Theorem for Hyperbolic Triangles). If L is a hyperbolic line that
does not go through any vertex of a hyperbolic triangle 4ABC such that L intersects AB at
P , BC at Q, and CA at R.Here AB, BC, and CA denote the hyperbolic line segments from
A to B, B to C, and C to A respectively. Then

sinh(dH(P,A))

sinh(dH(P,B))

sinh(dH(Q,B))

sinh(dH(Q,C))

sinh(dH(R,C))

sinh(dH(R,A))
= 1

Proof. Depending on the position of the hyperbolic line L relative to 4ABC, we have
two cases: Either only one intersection is external (not on the line segment) or all three
intersections are external. If only one intersection is external, without loss of generality,
assume Q is external. Applying the Hyperbolic Law of Sines to the triangles4APR,4BPQ,
and 4CRQ, we have

sin(m∠APR)

sinh(dH(R,A))
=

sin(m∠ARP )

sinh(dH(P,A))
,

sin(m∠BPQ)

sinh(dH(Q,B))
=

sin(m∠BQP )

sinh(dH(P,B))
,

sin(m∠CQR)

sinh(dH(R,C))
=

sin(m∠CRQ)

sinh(dH(Q,C))
,

or

sin(m∠APR)

sin(m∠(ARP )
=

sinh(dH(R,A))

sinh(dH(P,A))
,

sin(m∠BPQ)

sin(m∠(BQP )
=

sinh(dH(Q,B))

sinh(dH(P,B))
,

sin(m∠CQR)

sin(m∠(CRQ)
=

sinh(dH(R,C))

sinh(dH(Q,C))
.

Notice that

m∠APR = m∠BPQ,

m∠BQP = m∠CQR,

m∠ARP = π −m∠CRQ.

With a little arrangement, we have

sinh(dH(P,A))

sinh(dH(P,B))

sinh(dH(Q,B))

sinh(dH(Q,C))

sinh(dH(R,C))

sinh(dH(R,A))
= 1.

The case where all intersections are external is proved similarly.
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2.2 Ceva’s Theorem for Hyperbolic Triangles

Theorem 2.2 (Ceva’s Theorem for Hyperbolic Triangles). If I is a point not on any side of
a hyperbolic triangle 4ABC such that AI intersects BC at Q, BI intersects AC at R, and
CI intersects AB at P, then

sinh(dH(P,A))

sinh(dH(P,B))

sinh(dH(Q,B))

sinh(dH(Q,C))

sinh(dH(R,C))

sinh(dH(R,A))
= 1.

Proof. Applying Menelaus’s Theorem to the hyperbolic triangle 4AQC with the hyperbolic
line passing through B,I,and R

sinh(dH(I, A))

sinh(dH(I,Q))

sinh(dH(Q,B))

sinh(dH(B,C))

sinh(dH(R,C))

sinh(dH(R,A))
= 1.

Similarly, applying Menelaus’s Theorem to the hyperbolic triangle 4AQB with the hyper-
bolic line passing through C,I,and P

sinh(dH(I, A))

sinh(dH(I,Q))

sinh(dH(Q,C))

sinh(dH(B,C))

sinh(dH(P,B))

sinh(dH(P,A))
= 1.

Dividing these two expressions, we have

sinh(dH(P,A))

sinh(dH(P,B))

sinh(dH(Q,B))

sinh(dH(Q,C))

sinh(dH(R,C))

sinh(dH(R,A))
= 1.

3 Hyperbolic Tessellations

3.1 Tiling the hyperbolic plane with equilateral triangles

Suppose that there exists a regular tiling of H by equilateral triangles, so that k triangles
meet at each vertex. Then k > 6, since each angle must be less than π

3
. Let 4ABC be a

hyperbolic equilateral triangle with angles of
2π

k
such that k > 6 , k ∈ Z. Let AH be the

hyperbolic perpendicular line to the side BC with H being a point on BC. We let a be
the length of each side. The Second Hyperbolic Law of Cosines states that,in a hyperbolic
triangle 4ABC, with sides a,b,c opposite to the angles ∠A,∠B,∠C respectively,

cos(A) = − cos(B) cos(C) + sin(B) sin(C) cosh(a).

Applying the Second Hyperbolic Law of Cosines to the triangle AHB, we have

cos
(π
k

)
= sin

(2π

k

)
cosh

(a
2

)
= 2 sin

(π
k

)
cos
(π
k

)
cosh

(a
2

)
.
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Since k > 6, we have sin
(π
k

)
<

1

2
. We conclude that

a = 2 arcCosh

(
1

2 sin
(
π
k

)).
From this equation, we have that the length of a side a is smallest when k is the smallest

possible value, or k = 7.
Therefore, we have found that if an equilateral triangle tessellates the hyperbolic plane

with k of these triangles meeting at each vertex, then the side length a of each triangle will

be smallest with a = 2 arcCosh

(
1

2 sin
(
π
7

)) when k = 7.

3.2 Tiling the hyperbolic plane with regular polygons

Let A1A2A3...An be a regular n-gon tiling the hyperbolic plane such that there are k n-gons
meeting at each vertex, n > 3. Let O be the center of the regular n-gon. We can divide
the regular n-gon into n hyperbolic isoceles triangles by drawing a hyperbolic line segment
between O and each vertex. In 4OA1A2, construct a bisector of ∠A1OA2 from O that
cuts A1A2 at H. We denote a = a(n, k) as the side length of the n-gon. Using the Second
Hyperbolic Law of Cosines in 4OA1H, we have

cos
(π
n

)
= sin

(π
k

)
cosh

(a
2

)
.

So

a(n, k) = 2 arcCosh

(
cos
(
π
n

)
sin
(
π
k

)).
In addition, in 4OA1A2, we have, m∠OA1A2 + m∠A1OA2 + m∠A1A2O < π. Thus,

2π

k
+

2π

n
< π, or

1

k
+

1

n
<

1

2
. Since n is fixed, we have a(n, k) is smallest when k is the

smallest possible value greater than 2 such that k >
2n

n− 2
.

For instance, with

n = 4, k = 5

n = 5, k = 4

n = 6, k = 4

n = 7, k = 3

n ≥ 7, k = 3.

For all n ≥ 7, 2 <
2n

n− 2
< 3 since

2n− 4

n− 2
<

2n

n− 2
<

3n− 6

n− 2
. We also have k >

2n

n− 2
,

so k = 3 is the smallest number of these n-gons meeting at each vertex.
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Range of values of a: a(n, k) is increasing with n, and

lim
n→∞

a(n, k) = lim
n→∞

2 arcCosh

(
cos
(
π
n

)
sin
(
π
k

))

= 2 arcCosh

(
1

sin
(
π
k

)).
lim
k→∞

a(n, k) = lim
k→∞

2 arcCosh

(
cos
(
π
n

)
sin
(
π
k

))
=∞.

4 Periodic and Aperiodic Hyperbolic Tilings

In hyperbolic geometry, a periodic hyperbolic tiling is a tiling that has an infinite group
of symmetries.
A uniform tiling is a vertex transitive tiling by regular polygons, which means for every two
vertices, there exists an isometry of H2 mapping the tiling to itself such that the first vertex
gets mapped to the second.
Symmetries are isometries of H2 that map the tiling to itself.

Theorem 4.1. Every regular tiling by regular n-gons (k-regular n-gons meeting at each ver-
tex) is a uniform tiling.

Note: Every uniform tiling of H2 is a periodic tiling (but not vice versa).

Proof. Since we have infinite number of vertices and the tiling is uniform, there is an infinite
number of symmetries.

A tiling of H2 is aperiodic if there does not exist a rearrangement of the set of tiles
into another tiling of H2 that is periodic (in particular, the tiling is not periodic, using the
identity as rearrangement). Note that for R2, a set of two tiles discovered by Roger Penrose
was shown to be periodic in ([5]).

There exists a set of twenty-six tiles that can tile the hyperbolic plane such that the set
of tiles does not admit a tiling with an infinite cyclic subgroup of symmetries; i.e. the tiling
is aperiodic ([2]). This result, published in 2005, was the first example of an aperiodic set of
tiles for the hyperbolic plane.
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5 The Laplacian and its spectrum

5.1 Orthonomal bases of functions

Given a finite-dimensional complex vector space V with inner product, let {e1, e2, ...en} be
an orthonormal basis. For any v ∈ V , we have v = c1e1 + c2e2 + ... + cnen with ci ∈ R for
i = 1 to n

=> 〈v, ej〉 = 〈c1e1 + c2e2 + ...cnen, ej〉 = cj〈ej, ej〉 = cj

=> v =
n∑
j=1

〈v, ej〉ej.

Note that 〈v, ej〉ej is the projection of v onto ej.
Example: Parseval’s Equality (or Parseval Identity) is

〈v, v〉 =

〈
n∑
j=1

〈v, ej〉ej,
h∑
k=1

〈v, ek〉ek

〉

=
n∑
j=1

∣∣〈v, ej∣∣2.
Infinite-dimensional Hilbert spaces (Infinite-dimensional vector spaces with complete in-
ner products) also have bases. For example, the vector space L2(S1) = {f : S1 → C :∫ 2π

0
|f(x)|2dθ < ∞} has the inner product 〈f, g〉 =

∫ 2π

0
f(θ)g(θ)dθ. For this inner product,

{ek(x) = 1√
2π
eikx} forms an orthonormal basis since

〈ek, el〉 =

∫ 2π

0

1

2π
eikxe−ilxdx

=

∫ 2π

0

1

2π
ei(k−l)xdx.

If k = l then 〈ek, el〉 =

∫ 2π

0

1

2π
dx = 1.

If k 6= l then

〈ek, el〉 =
1

2π

eix(k−l)

i(k − l)

∣∣∣∣∣
2π

0

= 0.

The Fourier series of a C-valued function f on S1 can be obtained by expanding

f =
∑
k∈Z

ckek
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with ek =
1√
2π
eikx. Then, as in the finite-dimensional case

ck =

∫ π

−π
f(x)ek(x)dx

=

∫ π

−π
f(x)

1√
2π
eikxdx

=

∫ π

−π

1√
2π
f(x)e−ikxdx.

Similarly, every continuous function u(x) on [0, L] that vanishes at 0 and L can be written

as u(x) =
∞∑
k=1

ck sin
(kπ
L
x
)

because

{√
2

L
sin
(kπx
L

)}∞
k=1

forms an orthonormal basis of the

vector space of such functions.
Check: If m = k∫ L

0

√
2

L
sin

(
kπx

L

)√
2

L
sin
(mπx

L

)
dx =

∫ L

0

2

L
sin2

(
kπx

L

)
dx

=

∫ L

0

x

L
− 1

2
sin

(
2kπx

L

)
dx

= 1− 1

2
sin(2kπ)− 0

= 1

If m 6= k∫ L

0

2

L
sin

(
mπx

L

)
sin

(
kπx

L

)
dx =

∫ L

0

(
cos

(
(m− k)πx

L

)
− cos(

(
(m+ k)πx

L

))
dx

=

(
L

(m− k)π
sin

(
(m− k)πx

L

)
− L

(m+ k)π
sin(

(
(m+ k)πx

L

)∣∣∣∣∣
L

0

= 0

5.2 Spectrum of symmetric operators

Let V be a finite-dimensional vector space with complex inner product 〈, 〉, and let A be a
symmetric operator, meaning that 〈Av,w〉 = 〈v, Aw〉 for all v, w ∈ V .
The Spectral Theorem follows:

Theorem 5.1 (Spectral Theorem). If A is a symmetric operator on the finite dimensional
vector space V with complex inner product 〈, 〉 then

1. All eigenvalues of A are real

2. A is diagonalizable, and
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3. You can choose eigenvectors of A so that they form an orthonormal basis of V ,

4. Eigenvectors corresponding to different eigenvalues are automatically orthogonal.

Proof. 1.Suppose λ is an eigenvalue of A with eigenvector v then

Av = λv, v 6= 0

⇒ 〈Av, v〉 = 〈λv, v〉 = λ〈v, v〉
⇒ 〈v, Av〉 = 〈v, λv〉 = λ〈v, v〉

since 〈v, v〉 6= 0, λ = λ, so λ is real.
4.Suppose v, w are eigenvectors of A corresponding to eigenvalues λ and µ where λ 6= µ, then

〈Av,w〉 = 〈λv, w〉 = λ〈v, w〉

However,
〈Av,w〉 = 〈v, Aw〉 = 〈v, µw〉 = µ〈v, w〉 = µ〈v, w〉.

So, 〈v, w〉 = 0 To prove 2. and 3., take one eigenvalue λ with Av = λv, v 6= 0. Note: every
square matrix has at least one eigenvalue. Let V 1 = {w ∈ V : 〈w, v〉 = 0} ⊆ V
Lemma: A maps V 1 to V 1 If w ∈ V 1, 〈w, v〉 = 0. But then 〈Aw, v〉 = 〈w,Av〉 = 〈w, λv〉 =
λ〈w, v〉 = 0. So if w ∈ V 1, Aw ∈ V 1.
Let W be the set of vectors orthogonal to v. Thus, we can start over with A being a linear
transformation from W to itself.Then A restricted to W must have an eigenvalue, and for
the same reason as before, it must be real. Then, if v is a unit eigenvector corresponding
to that eigenvalue, the orthogonal complement of v inside W must be mapped to itself by
the same reason as before. Thus, one can keep going until an orthonormal basis is formed
of Cn.

The spectral theorem is also valid in infinite dimensions, but only if additional conditions
are met.To construct all the eigenvalues and eigenvectors:
1) Find one eigenvector v, normalize it so |v| = 1. Restrict A to V 1.
2) Go back to 1) with V replaced by V 1.

The Laplacian is a differential operator on the vector space of functions that is actually
symmetric. Intuitively, the Laplacian of f is a measure of the curvature or stress of a function
f . It tells one how much the value of the function differs from its average value taken over
the surrounding points. This is because it is the divergence of the gradient.
Laplacian = ∆f = −div(grad f).

In R1, the Laplacian is
−∂2

∂x2
.

In R2, the Laplacian is
−∂2

∂x2
− ∂2

∂y2
.

In Rn, the Laplacian is
−∂2

∂x2
1

− ∂2

∂x2
2

− ...− ∂2

∂x2
n

.

The Laplacian on H2 (upper half plane model) is

(−y2)
( ∂2

∂x2
+

∂2

∂y2

)
= −4(Im(z))2 ∂

∂z

∂

∂z
.
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The Laplacian on the Disk Model

−
(
1− |z|2

)2
(
∂2

∂x2
+

∂2

∂y2

)
= −4

(
1− |z|2

)2 ∂

∂z

∂

∂z
.

For general Riemannian metrics, there is a more general formula for the Laplacian. The
Laplacian is used in several areas of physics.
Example: Heat equation: u(x, y, t)= temperature at time t at position (x, y) satisfies

∂u

∂t
= −∆u.

Wave equation: u(x, y, t)= position of point on wave when vibrating at time t satisfies

∂2u

∂t2
= −∆u.

Given a polyhedron in H2, we have various boundary conditions for functions ψ defined on
the polyhedron:

1. Dirichlet boundary condition: ψ(z) = 0 when z is on boundary.

2. Neumann boundary condition:
∂

∂n
ψ(z) = 0 when z ∈ boundary. Here

∂

∂n
means the

outward normal derivative at points of the boundary.

3. Periodic boundary conditions on a polygon is equivalent to considering functions on
H2 that satisfy a periodicity condition.

5.3 Selberg Conjecture and Fundamental Gap Conjectures

1. Selberg Conjecture: Consider the group

Γ(N) =

{(
a b
c d

) ∣∣a, b, c, d ∈ Z, ad − bc = 1, a ≡ d ≡ 1, b ≡ c ≡ 0 mod N

}
. Γ(N) acts

on H by

(
a b
c d

)
z =

az + b

cz + d
. Let X(N) be the space of bounded functions f on Γ(N)\H.

Equivalently, they are the bounded, Γ(N)- periodic functions on H We define λn(X(N))
being the nth smallest eigenvalue for the Laplacian on X(N). Then, there is a lower bound
for the first non-zero eigenvalue λ1(X(N)) such that for N ≥ 1

λ1(X(N)) ≥ 1

4
.

2. Fundamental Gap Conjecture: Consider the Laplacian on a bounded convex domain Ω
in Rn with Dirichlet boundary conditions. Given the eigenvalues listed in increasing order
0 < λ1(Ω) < λ2(Ω) ≤ λ3(Ω) ≤ ...→∞. Then the difference between the first two eigenvalues
satisfies

λ2 − λ1 ≥
3π2

d2

with d being the diameter of the convex domain Ω.
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5.4 Methods for estimating the first two eigenvalues

The Spectral theorem tells us that eigenvalues are real and discrete (i.e. no accumulation
points) ([6]). The inner product on functions on a domain G with Dirichlet boundary
conditions (f(x, y) = 0 if (x, y) ∈ boundary) is

〈f, g〉 =

∫
G

f(x, y)g(x, y)
dxdy

y2
.

On H, the Laplacian is

∆ = −y2

(
∂2

∂x2
+

∂2

∂x2

)
.

We have

〈∆f, g〉 = 〈f,∆g〉
= 〈∇f,∇g〉.

∀f, g in the domain, where ∇f = −y2∂f

∂x
− y2∂f

∂y
. We also have 〈∂x, ∂x〉 = 〈∂y, ∂y〉 =

1

y2

Proof: According to ([6]), the formula for the Laplcian ∆ on Riemannian manifold with
(gij(x)) metric

∆ =
−1
√
g
∂i
(
gij
√
g∂if

)
with

√
g = det(gij(x)). We have (gij) is the inverse of (gij). Also

grad f = ∇f =
∑

gij(∂jf)∂i,

div v = ∇ · v =
−1
√
g
∂i (
√
gvi) .

In H
gij =

( 1
y2

0

0 1
y2

)
,

gij =

(
y2 0
0 y2

)
.

Green’s identities formulas for Riemannian manifold∫
M

(f∆g − g∆f)

= −
∫
∂M

f
∂g

∂ν
− g∂f

∂ν

where
∂

∂ν
is the normal derivative. Under Dirichlet boundary conditions

f

∣∣∣∣
∂M

= 0, g

∣∣∣∣
∂M

= 0.
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Under Neumann boundary conditions

∂f

∂ν

∣∣∣∣
∂M

= 0,
∂g

∂ν

∣∣∣∣
∂M

= 0.

The Laplacian is symmetric and is an elliptic differential operator of order 2. If f is an
eigenfunction with eigenvalue λ,

〈∆f, f〉 = 〈λf, f〉 = λ〈f, f〉.

we also have 〈∇f,∇f〉 ≥ 0 and 〈f, f〉 ≥ 0. So λ ≥ 0.

5.5 Approximation of Hyperbolic Laplacian Eigenvalues

We will now investigate the first eigenvalue of the Dirichlet Laplacian on hyperbolic triangles.
We construct the formula for building a hyperbolic equilateral triangle. Let 4 ABC be a
hyperbolic equilateral with ∠A = ∠B = ∠C = α and sides a = b = c be the opposite to the
angle at A,B,C. Using the hyperbolic Law of Cosines II, we have

cos(A) = − cos(B) cos(C) + sin(B) sin(C) cosh(a).

so,

cosh(a) =
cosα + cos2 α

sin2 α

a = arcCosh

(
cosα + cos2 α

sin2 α

)
.

We construct an isomorphic image of ABC in the complex coordinate system. Let B = (0, 1),
let y0 be A’s coordinate on the y-axis. We have y(t) = t with t from 1 to y0 is the function
of the y-axis ranging from A to B.

AB = a =

∫ y0

1

1

y(t)
dt = ln(y0).

Let A = y0 = ea. To determine the coordinate of C, we have B is a point on the Euclidean
semi-circle in H with the center O1 = (cotα, 0) and A is a point on the Euclidean semi-circle
in H with the center O2 = (− exp(a) cotα, 0). We denote r1 and r2 as the length of the
radius of the two circles (O1) and (O2) respectively. We have

r1 = exp(a) csc(α)

r2 = csc(α).

Solving the system two equation we get the coordinates of C.

(xC − cot(α))2 + y2
C = r2

1

(xC + ea cot(α))2 + y2
C = r2

2.
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Thus,

xC =
r2

1 − r2
2 + (ea cot(α))2 + (cot(α))2

2(− exp(a) cot(α)− cot(α))
.

yC =
√
r2

1 − (xC − cot(α))2.

Let z1 and z2 be the parametrization of the two circles (O1) and (O2), we have

z1 = cotα + r1(− cos θ + i sin θ)

with α < θ < arctan

(
yC

cot(α)− xC

)
.

z2 = −ea cot(α) + r2(cos(θ) + i sin(θ))

with arctan

(
yC

ea cot(α) + xC

)
< θ < α.

For any linear transformation L, the eigenvalues of L are the critical values of

f → 〈Lv, v〉
〈v, v〉

.

In particular, the smallest critical value is λ1

The Laplacian from space of all functions

f → 〈∆f, f〉
〈f, f〉

.

λ1, the first eigenvalue, is the minimum critical value of 〈∆f,f〉〈f,f〉 . λ2, the second eigenvalue is
the next critical value.
Using Green’s theorem and the Rayleigh Quotient, we have the eigenvalues λ1 of the Lapla-
cian is the minimum value of R(f) among all f satisfying the boundary conditions.

R(f) =

∫ ∫ ((
∂f
∂x

)2
+
(
∂f
∂y

)2
)
dxdy∫ ∫ (

1
y2
f 2
)
dxdy

We start with hyperbolic triangle4ABC with A = (x1, y1) = (0, e), B = (x2, y2) = (0, 1),
and C = (x0, y0). By changing the coordinates of C, or x0, and y0 and using Dirichlet
boundary conditions, we can estimate the change in the first two eigenvalues and their
difference.

We have the radii of the circles that pass through A,C and B,C respectively are

r2 =

√
e2 +

1

4

(e2 − x2
0 − y2

0

−x0

)
,
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r3 =

√
1 +

1

4

(1− x2
0 − y2

0

−x0

)
.

The center of the circles that pass through A,C and B,C respectively are

c2 =
1

2

e2 − x2
0 − y2

0

−x0

,

c3 =
1

2

1− x2
0 − y2

0

−x0

.

The formulas for AC and BC respectively are:

s(x) =
√
r2

2 − (x− c2)2,

t(x) =
√
r2

3 − (x− c3)2.

The transformation (u, v) turns hyperbolic 4ABC to hyperbolic 4ABC ′. C ′ = (x3, y3)
with x3 = x0 + ∆x and y3 = y0 + ∆y. The formulas for AC ′ and BC ′ respectively are:

h(x) =
√
r2

2N − (x− c2N)2,

g(x) =
√
r2

3N − (x− c3N)2,

where r2N and r3N are the radii of the circles that pass through A,C ′ and B,C ′ respectively.
The numbers c2N and c3N are the x-coordinates of the centers of the circles that pass through
A,C and B,C. We have

r2N =

√
e2 +

1

4

(e2 − x2
3 − y2

3

−x3

)
,

r3N =

√
1 +

1

4

(1− x2
3 − y2

3

−x3

)
,

c2N =
1

2

e2 − x2
3 − y2

3

−x3

,

c3N =
1

2

1− x2
3 − y2

3

−x3

.

Let (x, y) 7→ (u, v) be the transformations that change 4ABC to 4ABC ′. We have

u =
xx0

x3

,

v = t

(
xx0

x3

)
+

(
y − g(x)

h(x)− g(x)

)(
s

(
xx0

x3

)
−
(
xx0

x3

))
.
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By changing the coordinates, we have the Rayleigh quotient:

R(f) =

∫ x3
0

∫ h(x)

g(x)

((
∂f
∂u

)2
+
(
∂f
∂v

)2
)

(x, y)

(
x0
x3

(
s
(

xx0
x3

)
−
(

xx0
x3

)
h(x)−g(x)

))
dydx

∫ x3
0

∫ h(x)

g(x)
1

v2(x,y)
f 2(u(x, y), v(x, y)

(
x0
x3

(
s
(

xx0
x3

)
−t

(
xx0
x3

)
h(x)−g(x)

))
dydx

.

Let C(x0 +∆x, y0 +∆y) be the third vertex of the hyperbolic triange whose other vertices
are (0, 1) and (0, e). Then

x3 = x0 + ∆x,

y3 = y0 + ∆y.

We use Taylor series to estimate the change in the Rayleigh quotient with respect to ∆x
and ∆y in order to obtain a differential equation for the level curve of λ1 as a function of
(x0, y0). We have

s

(
xx0

x3

)
= s(x) + ∆x

x− c2√
r2

2 − (x− c2)2

−xx0

x2
0

,

t

(
xx0

x3

)
= t(x) + ∆x

x− c3√
r2

3 − (x− c3)2

−xx0

x2
0

,

r2N =

√
e2 +

1

4

(e2 − x2
0 − y2

0

−x0

)
+ ∆x

e2+x20−y20
x20

8

√
e2 + 1

4

(
e2−x20−y20
−x0

) + ∆y
y0

4x0

√
e2 + 1

4

(
e2−x20−y20
−x0

) ,

r3N =

√
1 +

1

4

(1− x2
0 − y2

0

−x0

)
+ ∆x

1+x20−y20
x20

8

√
1 + 1

4

(
1−x20−y20
−x0

) + ∆y
y0

4x0

√
1 + 1

4

(
1−x20−y20
−x0

) ,
c2N =

1

2

e2 − x2
0 − y2

0

−x0
+ ∆x

(
e2 + x2

0 − y02

2x2
0

)
+ ∆y

(
y0

x0

)
,

c3N =
1

2

1− x2
0 − y2

0

−x0
+ ∆x

(
1 + x2

0 − y02

2x2
0

)
+ ∆y

(
y0

x0

)
,

h(x) =
√
r2

2N(x0, y0)− (x− c2N(x0, y0))2 + ∆x
r2N

∂r2N
∂∆x

+ (x− c2N)∂c2N
∂∆x√

r2
2N(x0, y0)− (x− c2N(x0, y0))2

+∆y
r2N

∂r2N
∂∆y

+ (x− c2N)∂c2N
∂∆y√

r2
2N(x0, y0)− (x− c2N(x0, y0))2

,

g(x) =
√
r2

3N(x0, y0)− (x− c3N(x0, y0))2 + ∆x
r3N

∂r3N
∂∆x

+ (x− c3N)∂c3N
∂∆x√

r2
3N(x0, y0)− (x− c3N(x0, y0))2

+∆y
r3N

∂r3N
∂∆y

+ (x− c3N)∂c3N
∂∆y√

r2
3N(x0, y0)− (x− c3N(x0, y0))2

,
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Let

αs =
x− c2√

r2
2 − (x− c2)2

−xx0

x2
0

,

αt =
x− c3√

r2
3 − (x− c3)2

−xx0

x2
0

,

αr2N =

e2+x20−y20
x20

8

√
e2 + 1

4

(
e2−x20−y20
−x0

) ,
βr2N =

y0

4x0

√
e2 + 1

4

(
e2−x20−y20
−x0

) ,

αr3N =

1+x20−y20
x20

8

√
1 + 1

4

(
1−x20−y20
−x0

) ,
βr3N =

y0

4x0

√
1 + 1

4

(
1−x20−y20
−x0

) ,
αc2N =

(
e2 + x2

0 − y2
0

2x2
0

)
,

βc2N =

(
y0

x0

)
,

αc3N =

(
1 + x2

0 − y2
0

2x2
0

)
,

βc3N =

(
y0

x0

)
,

αh =
r2N

∂r2N
∂∆x

+ (x− c2N)∂c2N
∂∆x√

r2
2N(x0, y0)− (x− c2N(x0, y0))2

,

βh =
r2N

∂r2N
∂∆y

+ (x− c2N)∂c2N
∂∆y√

r2
2N(x0, y0)− (x− c2N(x0, y0))2

,

αg =
r3N

∂r3N
∂∆x

+ (x− c3N)∂c3N
∂∆x√

r2
3N(x0, y0)− (x− c3N(x0, y0))2

,

βg =
r3N

∂r3N
∂∆y

+ (x− c3N)∂c3N
∂∆y√

r2
3N(x0, y0)− (x− c3N(x0, y0))2

.
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We have

y − g(x)

h(x)− g(x)
=

y − g(x0, y0)− ∆x
2
αg − ∆y

2
βg

h(x0, y0)− g(x0, y0) + ∆x
2

(αh − αg) + ∆y
2

(βh − βg)

=

(
y − g(x0, y0)− ∆x

2
αg −

∆u

2
βg

)(
1

h(x0, y0)− g(x0, y0)

+
1

(h(x0, y0)− g(x0, y0))2

(
∆x

2
(αh − αg) +

∆y

2
(βh − βg)

))

=
y − g(x0, y0)

h(x0, y0)− g(x0, y0)
− ∆xαg

2(h(x0, y0)− g(x0, y0))
− ∆yβg

2(h(x0, y0)− g(x0, y0))

+
∆x(y − g(x0, y0))

2(h(x0, y0)− g(x0, y0))2
(αh − αg) +

∆y(y − g(x0, y0))

2(h(x0, y0)− g(x0, y0))2
(βh − βg).

Let

h0 = h(x0, y0) = s(x),

g0 = g(x0, y0) = t(x).

So

y − g(x)

h(x)− g(x)

(
s

(
xx0

x3

)
− t
(
xx0

x3

))
=

y − g(x)

h(x)− g(x)

(
s(x)− t(x)−∆xs′(x)

xx0

x2
0

+ ∆xt′(x)
xx0

x2
0

)
=

y − g0

h0 − g0

(s(x)− t(x)) +
y − g0

h0 − g0

∆x (αs − αt) + ∆x(s(x)− t(x))

(
−1

2(h0 − g0)
αg

+
y − g0

2(h0 − g0)2
(αh − αg)

)
+ ∆y(s(x)− t(x))

(
−1

2(h0 − g0)
βg +

y − g0

2(h0 − g0)2
(βh − βg)

)
.

Thus,

v(x) = t(x) + ∆xαt +
y − g0

h0 − g0

(s(x)− t(x)) +
y − g0

h0 − g0

∆x (αs + αt) + ∆x(s(x)− t(x))

(
−1

2(h0 − g0)
αg

+
y − g0

2(h0 − g0)2
(αh − αg)

)
+ ∆y(s(x)− t(x))

(
−1

2(h0 − g0)
βg +

y − g0

2(h0 − g0)2
(βh − βg)

)
= t(x) +

y − g0

h0 − g0

(s(x)− t(x)) + ∆x

(
αt +

y − g0

h0 − g0

(αs + αt) + (s(x)− t(x))

(
−1

2(h0 − g0)
αg

+
y − g0

2(h0 − g0)2
(αh − αg)

))
+ ∆y(s(x)− t(x))

(
−1

2(h0 − g0)
βg +

y − g0

2(h0 − g0)2
(βh − βg)

)
.
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Let

αv = αt +
y − g0

h0 − g0

(αs + αt) + (s(x)− t(x))

(
−1

2(h0 − g0)
αg +

y − g0

2(h0 − g0)2
(αh − αg)

)
,

βv = (s(x)− t(x))

(
−1

2(h0 − g0)
βg +

y − g0

2(h0 − g0)2
(βh − βg)

)
,

αu =
−x
x0

,

βu = 0.

Using Taylor series for approximation, we also have

x0

x3

=
x0

x0 + ∆x
= 1− ∆x

x2
0

.

x0

x3

s
(
xx0
x3

)
− t
(
xx0
x3

)
h(x)− g(x)


=

(
1− ∆x

x2
0

)(
s(x)− t(x) + ∆x(αs − αt)

h0 − g0 + ∆x(αh − αg) + ∆y(βh − βg)

)
=

(
1− ∆x

x2
0

)(
1− s(x)− t(x) + ∆x(αs − αt)

(h0 − g0)2
(∆x(αh − αg) + ∆y(βh − βg))

)
=

(
1− ∆x

x2
0

)(
1−∆x

(
s(x)− t(x)

(h0 − g0)2

)
(αh − αg)−∆y

(
s(x)− t(x)

(h0 − g0)2

)
(βh − βg)

)
= 1−∆x

(
s(x)− t(x)

(h0 − g0)2

)
(αh − αg)−∆y

(
s(x)− t(x)

(h0 − g0)2

)
(βh − βg)−∆x

s(x)− t(x)

x2
0(h0 − g0)

= 1−∆x

((
s(x)− t(x)

(h0 − g0)2

)
(αh − αg) +

s(x)− t(x)

x2
0(h0 − g0)

)
−∆y

(
s(x)− t(x)

(h0 − g0)2

)
(βh − βg)

= 1−∆x

((
1

s(x)− t(x)

)
(αh − αg) +

1

x2
0

)
−∆y

(
1

s(x)− t(x)

)
(βh − βg).

1

v2(x, y)
=

1

v(x0, y0)2
−∆x

2

v(x0, y0)3
−∆y

2

v(x0, y0)3
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Let u0 = u(x0, y0) (when ∆x = 0),v0 = v(x0, y0), and f0 = f(u0, v0). We have

1

v2(x, y)
f 2(u(x, y), v(x, y)

x0

x3

s
(
xx0
x3

)
+ t
(
xx0
x3

)
h(x)− g(x)


=

(
1

v2
0

−∆x
2

v3
0

−∆y
2

v3
0

)(
f@

0 + 2∆xf0

(
∂f

∂u
αu +

∂f

∂v
αv

)
+ 2∆yf0

(
∂f

∂u
βu +

∂f

∂v
βv

))(
1

−∆x

((
s(x)− t(x)

(h0 − g0)2

)
(αh − αg) +

s(x)− t(x)

x2
0(h0 − g0)

)
−∆y

(
s(x)− t(x)

(h0 − g0)2

)
(βh − βg)

)
=

(
f 2

0

v2
0

−∆x
2f0

v3
0

−∆y
2f0

v3
0

+
2∆xf0

v2
0

(
∂f

∂u
αu +

∂f

∂v
αv

)
+

2∆yf0

v2
0

(
∂f

∂u
βu +

∂f

∂v
βv

))(
1

−∆x

((
s(x)− t(x)

(h0 − g0)2

)
(αh − αg) +

s(x)− t(x)

x2
0(h0 − g0)

)
−∆y

(
s(x)− t(x)

(h0 − g0)2

)
(βh − βg)

)
=

f 2
0 (s(x)− t(x))

v2
0(h0 − g0)

−∆x
f 2

0

v2
0

((
s(x)− t(x)

(h0 − g0)2

)
(αh − αg) +

s(x)− t(x)

x2
0(h0 − g0)

)
−∆y

f 2
0

v2
0

(
s(x)− t(x)

(h0 − g0)2

)
(βh − βg) + ∆x

(s(x)− t(x))

(h0 − g0)

(
2f0

v2
0

(
∂f

∂u
αu +

∂f

∂v
αv

)
− 2f0

v3
0

)
+∆y

(s(x)− t(x))

(h0 − g0)

(
2f0

v2
0

(
∂f

∂u
βu +

∂f

∂v
βv

)
− 2f0

v3
0

)
=

f 2
0

v2
0

+ ∆x

(
(s(x)− t(x))

(h0 − g0)

(
2f0

v2
0

(
∂f

∂u
αu +

∂f

∂v
αv

)
− 2f0

v3
0

)
− f 2

0

v2
0

((
s(x)− t(x)

(h0 − g0)2

)
(αh − αg)

+
s(x)− t(x)

x2
0(h0 − g0)

))
+ ∆y

(
(s(x)− t(x))

(h0 − g0)

(
2f0

v2
0

(
∂f

∂u
βu +

∂f

∂v
βv

)
− 2f0

v3
0

)
−f

2
0

v2
0

(
s(x)− t(x)

(h0 − g0)2

)
(βh − βg)

)
=

f 2
0

v2
0

+ ∆x

((
2f0

v2
0

(
∂f

∂u
αu +

∂f

∂v
αv

)
− 2f0

v3
0

)
− f 2

0

v2
0

((
1

s(x)− t(x)

)
(αh − αg) +

1

x2
0(s(x)− t(x))

))
+∆y

((
2f0

v2
0

(
∂f

∂u
βu +

∂f

∂v
βv

)
− 2f0

v3
0

)
− f 2

0

v2
0

(
1

s(x)− t(x)

)
(βh − βg)

)
.

29



We also have((
∂f

∂u

)2

+

(
∂f

∂v

)2
)

(x, y)

x0

x3

s
(
xx0
x3

)
+ t
(
xx0
x3

)
h(x)− g(x)


=

((
∂f

∂u0

)2

+

(
∂f

∂v0

)2

+ ∆x
2∂f

∂u

(
∂2f

∂u2

∂u

∂∆x
+

∂2f

∂u∂v

∂v

∂∆x

)
+ ∆x

2∂f

∂v

(
∂2f

∂v2

∂v

∂∆x
+

∂2f

∂u∂v

∂u

∂∆x

)

+∆y
2∂f

∂u

(
∂2f

∂u2

∂u

∂∆y
+

∂2f

∂u∂v

∂v

∂∆y

)
+ ∆y

2∂f

∂v

(
∂2f

∂v2

∂v

∂∆y
+

∂2f

∂u∂v

∂u

∂∆y

))(
1

−∆x

((
s(x)− t(x)

(h0 − g0)2

)
(αh − αg) +

s(x)− t(x)

x2
0(h0 − g0)

)
−∆y

(
s(x)− t(x)

(h0 − g0)2

)
(βh − βg)

)

=

((
∂f

∂u0

)2

+

(
∂f

∂v0

)2
)
−∆x

((
∂f

∂u0

)2

+

(
∂f

∂v0

)2
)((

s(x)− t(x)

(h0 − g0)2

)
(αh − αg) +

s(x)− t(x)

x2
0(h0 − g0)

)

−∆y

((
∂f

∂u0

)2

+

(
∂f

∂v0

)2
)(

s(x)− t(x)

(h0 − g0)2

)
(βh − βg) + ∆x

(
2∂f

∂u

(
∂2f

∂u2

∂u

∂∆x
+

∂2f

∂u∂v

∂v

∂∆x

)

+
2∂f

∂v

(
∂2f

∂v2

∂v

∂∆x
+

∂2f

∂u∂v

∂u

∂∆x

))
+ ∆y

(
2∂f

∂u

(
∂2f

∂u2

∂u

∂∆y
+

∂2f

∂u∂v

∂v

∂∆y

)

+
2∂f

∂v

(
∂2f

∂v2

∂v

∂∆y
+

∂2f

∂u∂v

∂u

∂∆y

))

=

((
∂f

∂u0

)2

+

(
∂f

∂v0

)2
)

+ ∆x

[(
2∂f

∂u

(
∂2f

∂u2

∂u

∂∆x
+

∂2f

∂u∂v

∂v

∂∆x

)
+

2∂f

∂v

(
∂2f

∂v2

∂v

∂∆x
+

∂2f

∂u∂v

∂u

∂∆x

))

−

((
∂f

∂u0

)2

+

(
∂f

∂v0

)2
)((

1

s(x)− t(x)

)
(αh − αg)−

1

x2
0

)]

+∆y

[(
2∂f

∂u

(
∂2f

∂u2

∂u

∂∆y
+

∂2f

∂u∂v

∂v

∂∆y

)
+

2∂f

∂v

(
∂2f

∂v2

∂v

∂∆y
+

∂2f

∂u∂v

∂u

∂∆y

))

−

((
∂f

∂u0

)2

+

(
∂f

∂v0

)2
)(

1

s(x)− t(x)

)
(βh − βg)

]
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with

∂u

∂∆x
=
−xx0

x2
0

,

∂u

∂∆y
= 0,

∂v

∂∆x
= αt +

y − g0

h0 − g0

(αs + αt) + (s(x)− t(x))

(
−1

2(h0 − g0)
αg +

y − g0

2(h0 − g0)2
(αh − αg)

)
,

∂v

∂∆y
= (s(x)− t(x))

(
−1

2(h0 − g0)
βg +

y − g0

2(h0 − g0)2
(βh − βg)

)
.

Let

Nx =

[
2∂f

∂u

(
∂2f

∂u2

∂u

∂∆x
+

∂2f

∂u∂v

∂v

∂∆x

)
+

2∂f

∂v

(
∂2f

∂v2

∂v

∂∆x
+

∂2f

∂u∂v

∂u

∂∆x

)]

−

((
∂f

∂u0

)2

+

(
∂f

∂v0

)2
)((

1

s(x)− t(x)

)
(αh − αg)−

1

x2
0

)
,

Ny =

(
2∂f

∂u

(
∂2f

∂u2

∂u

∂∆y
+

∂2f

∂u∂v

∂v

∂∆y

)
+

2∂f

∂v

(
∂2f

∂v2

∂v

∂∆y
+

∂2f

∂u∂v

∂u

∂∆y

))

−

((
∂f

∂u0

)2

+

(
∂f

∂v0

)2
)(

1

(s(x)− t(x))

)
(βh − βg),

Dx =

(
2f0

v2
0

(
∂f

∂u
αu +

∂f

∂v
αv

)
− 2f0

v3
0

)
− f 2

0

v2
0

((
1

s(x)− t(x)

)
(αh − αg) +

1

x2
0(s(x)− t(x))

)
,

Dy =

(
2f0

v2
0

(
∂f

∂u
βu +

∂f

∂v
βv

)
− 2f0

v3
0

)
− f 2

0

v2
0

(
1

s(x)− t(x)

)
(βh − βg).
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We have

∫ x3

0

∫ h(x)

g(x)

((
∂f

∂u

)2

+

(
∂f

∂v

)2
)

(x, y)

x0

x3

s
(
xx0
x3

)
−
(
xx0
x3

)
h(x)− g(x)

 dydx

=

∫ x0+∆x

0

∫ s(x)+∆xαg+∆yβg

t(x)+∆xαh+∆yβh

((
∂f

∂u0

)2

+

(
∂f

∂v0

)2
)

+ ∆xNx + ∆yNydydx

=

∫ x0

0

∫ s(x)

t(x)

((
∂f

∂u0

)2

+

(
∂f

∂v0

)2
)

(x, y)dydx+ ∆x

(∫ x0

0

∫ s(x)

t(x)

Nxdydx

)

+∆y

(∫ x0

0

∫ s(x)

t(x)

Nydydx

)
+ ∆x

∫ s(x)

t(x)

f(x0, y)dy + αg∆x

∫ x0

0

f(x, s(x))dx

−αh∆x
∫ x0

0

f(x, t(x))dx+ βg∆y

∫ x0

0

f(x, s(x))dx− βh∆y
∫ x0

0

f(x, t(x))dx

=

∫ x0

0

∫ s(x)

t(x)

((
∂f

∂u0

)2

+

(
∂f

∂v0

)2
)

(x, y)dydx+ ∆x

(∫ x0

0

∫ s(x)

t(x)

Nxdydx

+

∫ s(x)

t(x)

f(x0, y)dy + αg

∫ x0

0

f(x, s(x))dx− αh
∫ x0

0

f(x, t(x))dx

)

+∆y

(∫ x0

0

∫ s(x)

t(x)

Nydydx+ βg

∫ x0

0

f(x, s(x))dx− βh
∫ x0

0

f(x, t(x))dx

)
.
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Also,

∫ x3

0

∫ h(x)

g(x)

1

v2(x, y)
f 2(u(x, y), v(x, y)

x0

x3

s
(
xx0
x3

)
+ t
(
xx0
x3

)
h(x)− g(x)

 dydx

=

∫ x0+∆x

0

∫ s(x)+∆xαg+∆yβg

t(x)+∆xαh+∆yβh

(
f 2

0

v2
0

+ ∆xDx + ∆yDy

)
dydx

=

∫ x0

0

∫ s(x)

t(x)

f 2
0

v2
0

dydx+ ∆x

(∫ x0

0

∫ s(x)

t(x)

Dxdydx

)
+ ∆y

(∫ x0

0

∫ s(x)

t(x)

Dydydx

)

+∆x

∫ s(x)

t(x)

f(x0, y)dy + αg∆x

∫ x0

0

f(x, s(x))dx

−αh∆x
∫ x0

0

f(x, t(x))dx+ βg∆y

∫ x0

0

f(x, s(x))dx− βh∆y
∫ x0

0

f(x, t(x))dx

=

∫ x0

0

∫ s(x)

t(x)

f 2
0

v2
0

dydx+ ∆x

(∫ x0

0

∫ s(x)

t(x)

Dxdydx+

∫ s(x)

t(x)

f(x0, y)dy

+αg

∫ x0

0

f(x, s(x))dx− αh
∫ x0

0

f(x, t(x))dx

)
+ ∆y

(∫ x0

0

∫ s(x)

t(x)

Dydydx

+βg

∫ x0

0

f(x, s(x))dx− βh
∫ x0

0

f(x, t(x))dx

)
.

Let

Px =

∫ x0

0

∫ s(x)

t(x)

Nxdydx+

∫ s(x)

t(x)

f(x0, y)dy + αg

∫ x0

0

f(x, s(x))dx− αh
∫ x0

0

f(x, t(x))dx,

Py =

∫ x0

0

∫ s(x)

t(x)

Nydydx+ βg

∫ x0

0

f(x, s(x))dx− βh
∫ x0

0

f(x, t(x))dx,

Qx =

∫ x0

0

∫ s(x)

t(x)

Dxdydx+

∫ s(x)

t(x)

f(x0, y)dy + αg

∫ x0

0

f(x, s(x))dx− αh
∫ x0

0

f(x, t(x))dx,

Qy =

∫ x0

0

∫ s(x)

t(x)

Dydydx+ βg

∫ x0

0

f(x, s(x))dx− βh
∫ x0

0

f(x, t(x))dx.
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We have

R(f) =

∫ x3
0

∫ h(x)

g(x)

((
∂f
∂u

)2
+
(
∂f
∂v

)2
)

(x, y)

(
x0
x3

(
s
(

xx0
x3

)
−
(

xx0
x3

)
h(x)−g(x)

))
dydx

∫ x3
0

∫ h(x)

g(x)
1

v2(x,y)
f 2(u(x, y), v(x, y)

(
x0
x3

(
s
(

xx0
x3

)
−t

(
xx0
x3

)
h(x)−g(x)

))
dydx

=

∫ x0
0

∫ s(x)

t(x)

((
∂f
∂u0

)2

+
(
∂f
∂v0

)2
)

(x, y)dydx+ ∆xPx + ∆yPy∫ x0
0

∫ s(x)

t(x)

f20
v20
dydx+ ∆xQx + ∆yQy

=

∫ x0
0

∫ s(x)

t(x)

((
∂f
∂u0

)2

+
(
∂f
∂v0

)2
)

(x, y)dydx+ ∆xPx + ∆yPy∫ x0
0

∫ s(x)

t(x)

f20
v20
dydx

−∆xQx

∫ x0
0

∫ s(x)

t(x)

((
∂f
∂u0

)2

+
(
∂f
∂v0

)2
)

(x, y)dydx+ ∆xPx + ∆yPy(∫ x0
0

∫ s(x)

t(x)

f20
v20
dydx

)2

−∆yQy

∫ x0
0

∫ s(x)

t(x)

((
∂f
∂u0

)2

+
(
∂f
∂v0

)2
)

(x, y)dydx+ ∆xPx + ∆yPy(∫ x0
0

∫ s(x)

t(x)

f20
v20
dydx

)2

=

∫ x0
0

∫ s(x)

t(x)

((
∂f
∂u0

)2

+
(
∂f
∂v0

)2
)

(x, y)dydx∫ x0
0

∫ s(x)

t(x)

f20
v20
dydx

+∆x

(
Px∫ x0

0

∫ s(x)

t(x)

f20
v20
dydx

−Qx

∫ x0
0

∫ s(x)

t(x)

((
∂f
∂u0

)2

+
(
∂f
∂v0

)2
)

(x, y)dydx(∫ x0
0

∫ s(x)

t(x)

f20
v20
dydx

)2

)

+∆y

(
Py∫ x0

0

∫ s(x)

t(x)

f20
v20
dydx

−Qy

∫ x0
0

∫ s(x)

t(x)

((
∂f
∂u0

)2

+
(
∂f
∂v0

)2
)

(x, y)dydx(∫ x0
0

∫ s(x)

t(x)

f20
v20
dydx

)2

)
.
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