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Introduction

Unconventional shale plays have been a significant source of natural gas, gas
condensates, and crude oil throughout North America since the mid-2000’s. The Eagle Ford
Shale in South Texas is among the top shale producers, producing over 1,400 MMBO/Day (EIA,
2018). This play extends from College Station to the USA-Mexico border following the trend of

the coast line, covering several million acres (million hectares).

The Lower Cenomanian Maness Shale is a clay-rich mudrock originally identified in the
East Texas field lying between the Woodbine and Buda Limestone that has been correlated to
the basal Lower Eagle Ford in the vicinity of the San Marcos Arch (Denne et al., 2016). Where
present, the Maness has been known to pose instability problems for horizontal wells that have
encountered it. However, presence of the Maness may prove beneficial if it acts as a fracture
barrier between hydraulically fractured Eagle Ford wellbores and underlying aquifers. The
present study is an attempt to determine if the Maness has different geomechanical and
mineralogic properties than the overlying Eagle Ford, and if so, are they sufficient to enable the
Maness to act as a fracture barrier, preventing water production from underlying aquifers? This
study tested the following hypotheses within the study area marked by a royal blue polygon

(Figure 1):

1. Maness Shale is geomechanically weaker than the Eagle Ford Shale.

2. Maness Shale has a higher clay and lower calcite content than the Eagle Ford
Shale.

3. The Maness acts as a fracture barrier between the Eagle Ford and the

underlying water wet formation.
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FIGURE 1. SOUTH TEXAS COUNTIES MAP SHOWING THE STUDY AREA POLYGON IN ROYAL BLUE AND DISPLAYING

MAJOR FEATURES WITHIN THE STUDY AREA.



Regional Geology

In South Texas near the San Marcos Arch, the Lower Cenomanian Maness Shale is the
basal member of the hydrocarbon-rich mudrock, the Eagle Ford Group, which was deposited
within the Gulf Basin. The Gulf Basin was formed as a result of rifting of the Pangean
supercontinent during the Late Triassic to the Early Jurassic, which was followed by spreading of
transitional oceanic and continental crust during the opening of the Gulf of Mexico (Phelps et
al., 2014; 2015). Deposition of the Middle to Lower Jurassic Louann Salt within isolated sub-
basins, including the Maverick and East Texas basins, produced differential subsidence and
sedimentation throughout the Cretaceous (Phelps et al., 2014). The structural features that
influenced sedimentation patterns and paleoceanography in the Texas portion of the Gulf Basin
include the Sligo and Stuart City reef margins to the south and east, the Quachita Uplift on the
northern margin, the Sabine Uplift to the northeast, and the Mexia-Talco fault zone to the west
(Figure 2). The Llano Uplift and the associated San Marcos Arch formed the southern boundary
of the greater East Texas Basin as they were structural highs at the time of deposition (Denne

and Breyer, 2016).
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The Sligo and Stuart City reefs developed during the Hauterivian-Barremian and Albian,
respectively, along the southeastern rim of the Texas shelf, forming a prominent shelf-slope
break (Phelps et al., 2015). The shelf to basin slope likely had thousands of feet (hundreds of
meters) of relief, sporadically isolating the Texas shelf from the deeper Gulf Basin (Phelps et al.,
2015). A series of drowning and recovery events of the reefs during the Cretaceous produced
platform deposition of anoxic to dysoxic shales adjacent to nonmarine siliciclastic deposits
sourced from the deltas to the northwest (Sohl et al., 1991; Phelps et al., 2015). The organic-rich
shales are associated with oceanic anoxic events, sequence stratigraphic maximum flooding
surfaces, and termination of carbonate sedimentation (Phelps et al., 2015).

Throughout most of the Early Cretaceous, deposition on the Texas shelf was
predominantly a widespread, continuous blanket of mostly marine sediments. During the Late
Cretaceous, however, the Texas shelf was more diverse in its depositional patterns and
sediment types (Sohl et al., 1991). Terrigenous deposits in the northeastern part of the Gulf of
Mexico were predominantly sourced from the southern Appalachians (Figure 3) (Blum et al.,
2016). Topographic highs such as the Sabine and Ouachita uplifts sustained significant erosion
during the major regression of the Early to Middle Cenomanian, producing the influx of
terrigenous fluvial and deltaic sediments associated with the Woodbine Group into the East

Texas Basin (Sohl et al., 1991).

The Eagle Ford Group, which includes the Maness Shale in South Texas, was deposited
from the Early Cenomanian through the Early Turonian, during the flooding of the North
American continent that established a connection between the Texas shelf and the Western
Interior Seaway (Figure 4). This flooding is documented as the highest transgression in the rock
record, coincident with Ocean Anoxic Event 2 (OAE2) (Arthur and Sageman, 2004). The OAE2,

also referred to as the Bonarelli Event, which marks the transition between the end of the



Cenomanian and the beginning of the Turonian (93.2 Ma), lasted for approximately 580 k.y. and
is associated with global deposition of black, organic-rich shales (Saltzman and Thomas, 2012;
Denne and Breyer, 2016). On the Texas shelf, the transgression prior to the onset of OAE2 is
interpreted to have produced an influx of organic matter preserved by an anoxic-euxinic
stratified water column in a silled basin, creating the hydrocarbon-rich mudrocks of the Lower

Eagle Ford (Sageman and Arthur, 1994; Denne and Breyer, 2016).
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FIGURE 4. THE EVOLUTION OF THE GULF COAST SHELF DURING THE DEVELOPMENT OF THE WESTERN INTERIOR SEAWAY. A)
LATE ALBIAN/EARLY CENOMANIAN PALEOGEOGRAPHY (99 M.A.). B) MIDDLE CENOMANIAN PALEOGEOGRAPHY (96 M.A).
C) EARLY TURONIAN (93.2 M.A.) PALEOGEOGRAPHY (BLAKEY, 2014).



Stratigraphy

The Buda Limestone overlies the clay-rich Del Rio Formation throughout most of South
Texas with the exception of where it pinches out or is truncated across the south side of the
Stuart City Reef. In East Texas, the Buda overlies the Grayson Formation that is age-equivalent
to the Del Rio in South Texas, and has been subdivided into a mainly white, finely crystalline
limestone that transitions to a more marly limestone near the Buda / Maness contact (Figure 5)
(Sohl et al., 1991; Phelps et al., 2014). In the northern portion of the South Texas producing
region, the Maness Shale overlies the Buda Limestone, where the Buda is typically a white,
moderately hard, non-porous to porous, limestone containing abundant calcispheres (Lozo,

1945; Denne et al., 2016).

The unconformable contact between the Eagle Ford and the Buda has been interpreted
to represent a regional subaerial exposure surface due to a relative sea level drop that affected
the entire Gulf Basin (Hentz et al., 2014; Denne and Breyer, 2016). As noted in Denne et al.
2016, in two cores located in Atascosa and Karnes counties, Texas (Figure 6), the contact
between the Eagle Ford to Buda has different characteristics depending on the presence of the
Maness. Where present in Karnes County, the Buda is relatively untouched by any erosional or
chemical weathering (Figure 7, Karnes County). Where the Maness is absent in Atascosa

County, the limestone appears to have been karsted (Figure 7, Atascosa County).

The Maness Shale was initially described from Shell Oil Company’s Maness Well No. 1,
taken in Cherokee County in East Texas (Figure 8). The Maness No 1. was cored continuously
beginning at the basal Austin Chalk through the Woodbine, Maness, and the top portion of the
Buda, and was considered a nearly perfect core recovery. The cored interval between the base

of the Woodbine and the top of the Buda was named the Maness Shale Formation, and was



described as a bronze or copper-colored to dark gray, partially calcareous, clay shale and
claystone with a change in fauna at the top of the Maness that is not seen in the Woodbine as

an unconformity lies between the two formations. (Bailey et al., 1945).

10
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FIGURE 5. STRATIGRAPHIC COLUMN FOR THIS SEMI-REGIONAL STUDY WITH WHEELER DIAGRAMS FOR SOUTH
AND EAST TEXAS USING AGE MODELS DEVELOPED BY DENNE ET AL. (2016). THE TRANSGRESSIVE-REGRESSIVE

CYCLES ARE BASED ON HARDENBOL ET AL. (1998), ARTHUR AND SAGEMAN (2004), AND DENNE AND BREYER
(2016). (REVISED FROM DENNE AND BREYER, 2016).
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FIGURE 6. MAP OF THE SOUTH TEXAS EAGLE FORD PRODUCING REGION, SHOWING THE EAGLE FORD THERMAL
MATURITY (GREEN = OIL; ORANGE = CONDENSATE; RED = DRY GAS) AND LOCATIONS OF THE CORES SHOWN IN
FIGURE 7.



Atascosa County Core Karnes County Core

)
S o
A Z
> Y A
& 2, @
e
S %
< T @
Q O, o
& % 2
SIS %%
S ¥ - %3
= i Q
%)
>
Q
P
> S
(;9 v
> S
F o
S %
% -
%
O
£}

FIGURE 7. PHOTOGRAPHS OF CORES DISPLAYING THE DIFFERENCES BETWEEN THE EAGLE FORD —BUDA
CONTACTS WITH AND WITHOUT THE IMANESS PRESENT. THE ATASCOSA CORE DOES NOT INCLUDE THE IMANESS
SHALE WHEREAS THE KARNES COUNTY CORE HAS A THIN INTERVAL OF IMIANESS SHALE.

IN THE ATASCOSA CORE, THE BUDA (A) SHOWS SIGNS OF ALTERATION AND LIES UNCONFORMABLY BELOW A
PHOSPHATIC LAG DEPOSIT (B), OVERLAIN BY A LAMINATED MARL (C) AND A BENTONITE LAYER (D).

IN THE KARNES CORE, THE BUDA (A) SHOWS NO SIGNS OF KARSTING AND IS CONFORMABLY OVERLAIN BY A
TRACE OF MANESS SHALE (A.1) OVERLAIN BY A LAMINATED MARL (C) AND A BENTONITE LAYER (D) (DENNE ET
AL., 2016).

13
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In East Texas, the Maness is more clay rich and lacks the calcareous silty sandstones that
are present in the overlying silty shales of the Woodbine (Bailey et al., 1945). The Maness Shale
was originally considered as a part of the upper Washita sub-group and is the only one of the
eight Washita stratigraphic units that does not outcrop (Bailey, et al., 1945; Lozo, 1951), leading
to many misinterpretations and miscorrelations. For example, it was noted by Hudson (2014)
that the Maness Shale is a producing source rock in the Brazos Basin. This correlation is thought
to be inaccurate as it also includes the so-called Lower Woodbine Organic Shale interval of
Adams et al. (2014) that sits stratigraphically on top of the Maness Shale in the Brazos Basin.
The current study area does not include the Lower Woodbine Organic Shale, as this facies does

not extend as far south as the San Marcos Arch.

In the studies of East Texas by Ambrose et al. (2009) and Hentz et al. (2014), the Maness
is represented as an argillaceous, marine shale that is divided into lower and upper intervals.
The lower unit is a fining-upward section, whereas the upper unit is a coarsening upwards
section found throughout the East Texas Basin. These intervals were divided by a high gamma
ray spike marking the transition from a transgressive to a highstand systems track. This high
gamma ray spike is likely the phosphate lag identified at the top of the Maness (Denne et al.,
2016), suggesting that the section described by Ambrose et al. (2009) and Hentz et al. (2014) as
highstand Maness is actually the base of the Woodbine. According to Denne et al., 2016 shows
biostratigraphically the section on top of the phosphate in East Texas is Woodbine Group (Figure
9). Hentz et al. (2014) represent the top of the Maness to be the initial highstand and the
earliest Woodbine deposits, whereas the maximum flooding surface occurs between the lower

and upper Maness intervals.

15
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Using petrophysical logs, the Maness Shale in South Texas is distinguished by a high
gamma ray spike overlying an interval with lower gamma ray and resistivity values than the
overlying Eagle Ford Shale. The Maness is described as an argillaceous mudrock containing an
average of 50% clay as determined by x-ray diffraction (XRD) analyses of core plugs, and is also
devoid of any sandstone (Jennings and Antia, 2013; Denne et al., 2016; Denne and Breyer,
2016). The regional isopach map of Denne and Breyer (2016) (Figure 10) displays a thick Maness
in the Brazos Basin which thins to the southwest near Atascosa County (Denne and Breyer,

2016).

Biostratigraphic studies of subsurface material from the Brazos Basin and the San
Marcos Arch region indicate an Early Cenomanian age for the Maness Shale. Ammonite
impressions found in the Maness Shale from cores taken in Gonzalez County were identified as
Euhystrichoceras adkinsi (Figure 11), a biostratigraphic marker for the Acompsoceras inconstans
Zone from the Early Cenomanian. The planktonic foraminiferal marker Favusella washitensis
and benthic foraminifera species Epistomina lacunosa and Textularia washitensis are found in
the Buda and overlying Maness Shale, but are not found in the Eagle Ford Shale, also indicative
of an Early Cenomanian age. The planktonic foraminiferal assemblage from the Maness is
dominated by the genus Hedbergella, which predominantly inhabited surface waters. This
includes the species Hedbergella planispira, which was tolerant of low salinity waters. The
calcareous nannofossil assemblage contains high abundance of species associated with

eutrophic (high nutrient, low oxygen) surface waters (Denne et al., 2016).
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FIGURE 11. PHOTOGRAPHS OF IMPRESSIONS OF THE AMMONITE EUHYSTRICHOCERAS ADKINSI FROM THE
MANESS SHALE IN GONZALES COUNTY. NOTE GUIDELINES = 0.04 INCH (1MM) INTERVALS (FROM DENNE ET

AL., 2016).
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From the East Texas Basin to the Brazos Basin to the southwest there is a facies change
within the Woodbine Group from the sand-rich Lewisville and Dexter formations to the
prodeltaic shales of the Pepper Shale. The type section of the Pepper in Bell County, south of
Waco, is described as a purplish-black clay with a phosphate-rich zone at the base. The Maness
is absent in this area, as the Pepper Shale sits unconformably on top of the Del Rio (Sohl et al.,
1991). In Brazos and Burleson counties the Maness is present and lies below the portion of the
Pepper Shale that contains the so-called lower Woodbine Organic Rich Shale (Adams et al.,

2014).

In South Texas, the Maness Shale is overlain by the Eagle Ford Group. Deposition of the
Eagle Ford in South Texas was initiated during the Early Cenomanian (97.4 Ma), when the
flooding of the North American continent established a connection between the Texas shelf and
the Western Interior Seaway. The Lower Eagle Ford Formation is a dark gray mudrock with thin,
interbedded limestones and organic-rich marls (calcareous mudrocks) with an average clay
content of less than 35%. The rocks of the Lower Eagle Ford typically have higher gamma ray
and resistivity values than the overlying Upper Eagle Ford Formation due to their higher content
of total organic carbon (TOC) and hydrocarbons. The Upper Eagle Ford consists of interbedded
limestones and marls that are almost entirely made up of pelagic carbonates (Denne and Breyer,
2016). The entire Eagle Ford is thickest in the Maverick Basin; thickness trends parallel to the
Karnes-Gonzales troughs and the Sligo-Stuart City reef trends in a southwest to northeast

direction toward the East Texas Basin, thinning over the San Marcos Arch.
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Unconventional Hydrocarbon Production

Unconventional oil and gas reservoirs are traditionally referred to as low permeability
reservoirs that cannot be produced at economic volumes and rates without stimulation of the
rock using methods like hydraulic fracturing (Orangi et al., 2011). The Eagle Ford has been an
unconventional hydrocarbon producer since the first well was drilled in 2008 (RRC, 2018).
Multiple variables contribute to well production including the abundance of limestones and

marls within the Eagle Ford (Breyer et al., 2015).

In order to understand the total water production from wells, Ikonnikova et al. (2017)
derived an algorithm using pressure data, oil gravity, water saturation, and hydrocarbon pore
volume from petrophysical analyses to estimate water production declines (Figure 12). The
study used 9,873 wells with a minimum of 16 months of production and found that the highest
water production volumes were mainly dependent on well location, depth, and quantity of
hydraulic fracturing fluid injected into wells during the completion stage of the well. Within the
study area outlined in yellow, the first year expected formation water production based on
modeled historical water production data range from <50 Mbbl/well to >250 Mbbl/well. What
this study did not consider in their calculations is the possibility of water production from an

adjacent aquifer or overlying fractured Austin Chalk.

The disposal of flowback and reservoir-produced waters continues to be a financial
burden carried by all Eagle Ford operators. During the first six months of production an
unconventional oil or gas well produces 20% to 50% of the total water production over its
lifetime. Of that production, only 4-8% of the flowback and produced waters are from the
hydraulic fracturing, whereas 92-96% of waters produced are from surrounding formation

(Kondash et al., 2016). Therefore, when a decline in water production does not occur after the
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first six months of production, there is reason to believe that as the well is producing water from

an adjacent aquifer.
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2017)
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Methods and Materials

The purpose of this study is to document the presence and thickness of the Maness
Shale across the study area and to determine if the Maness acts as a fracture barrier given
sufficient thickness. The area of study is the northern part of the South Texas Eagle Ford
producing region, adjacent to the San Marcos Arch (Figure 13). The area includes portions of

Fayette, Lavaca, Gonzales, DeWitt, Karnes, Wilson and Atascosa counties.
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Cores

Conventional cores from two wells provided by Lonestar Resources were utilized for the
study (Table 1). These wells were drilled by Sanchez Oil and Gas Corporation in 2013, near the
San Marcos Arch in Lavaca and Fayette counties. They are each over 150 ft (45.7 m) in length
and contain portions of the Austin Chalk, the entire Eagle Ford and Maness intervals, and the
upper portion of the Buda Limestone. Thin section and X-ray Diffraction (XRD) analyses were
performed on 23 samples from the two cores. When comparing depths from the core gamma
ray to the log gamma ray, the Prost Unit G 5H has a depth shift of -8 ft (-2.5 m) from the core to

the log whereas, the Sante North Unit A 1H has a -20 ft (-6.1 m) from the core to the log.

TABLE 1: DEPTH AND FORMATION THICKNESSES FOR THE TWO CORES UTILIZED IN THE STUDY.

Total Feet of Eagle| Feet of
Well Name and Total Cored i
County, State| Depth (ft/m) Ford (Including Maness
Number Footage (ft/ m)
Maness) (ft / m) (ft/m)
. 10,906 -11,089/

Prost Unit G 5H Lavaca,TX 183 /55.8 115/35.1 30/9.1

3,324 - 3,380

) 11,175 -11,357/

Sante North Unit A 1H| Fayette, TX 182 /55.5 96 /29.3 33/10.1

3,406 - 3,462

Core and Thin Section Descriptions

Representative thin sections of the Maness and the adjacent formations from the Prost
Unit G 5H and Sante North Unit A 1H cores were examined to distinguish microfacies. Locations
of thin sections were selected primarily to sample facies transitions. Twelve oversized 3x2 inch
(7.62 x 5.08 cm) thin sections from the Prost Unit G 5H and 11 from the Sante North Unit A 1H
were made by TPS Enterprises, LLC, in Houston, Texas, to a standard thickness of 20 microns and
analyzed using a standard petrographic microscope under transmitted (brightfield and cross-
polarized) and reflected light. Microfacies were established by distinguishing composition,

stratigraphic features, and appearance changes such as changes in frequency of foraminifera,
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pellets, color, or grainsize. The images represented here were photographed by an Epson
Perfection V600 Photo flatbed scanner under both transmitted and reflected light to identify
specific features such as pyrite, which are black under transmitted light but have a golden shine
under reflected light (Appendix A). Lithofacies were described by viewing the core and core
photographs, and were subdivided by visible changes of lithology, bedding style, and changes in

fossil assemblages, and using the Dunham classification for the carbonate rich zones.

Mineralogy

X-Ray Diffraction (XRD) is a standard method for determining bulk and clay mineral
abundances. The samples were prepared by obtaining 1 to 1.7 ounces (30-50 mL) of
lithologically representative material that were powdered to a grain size of approximately 10 um
(200 mesh) by a mortar and pestle, and then transferred to a steel vial that contained three
steel balls; two with a diameter of 0.275 inch (7 mm) and one with a diameter of 0.118 inch (3
mm). The steel vial was sealed and placed in a SPEX SamplePrep 8000M Mixer/Mill for 10
minutes to be milled to a grain size of <200 mesh. The resulting powder was examined for grain-
size consistency and homogeneity before being placed into the X-ray diffractometer (XRD)

(Shimadzu Center, 2018).

The sample powders were analyzed using the Shimadzu XRD-7000 (Figure 14) in the
Center for Environmental, Forensics, and Material Science at the University of Texas at
Arlington. Approximately 1 to 1.7 ounces (30-50 mL) of lithologically representative rock were
crushed by mortar and pestle, ultimately powdered to a grain size of <200 mesh, which were
then analyzed by the Shimadzu XRD-7000. X-rays are focused toward the sample, bombarding
it with electrons. The X-rays are then diffracted off the crystal lattice of the material (Figure 15)

at varying intensities that alter the wavelength. Wavelengths are characteristic of a specific
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material and can be measured to determine the chemical make-up of different minerals (Poppe
et al., 2018). After the scans were collected, they were processed using the MDI Jade9 software
package. Sample spectra were compared against the ICDD PDF-4+ 2018 XRD reference spectra
database and their modal mineralogy was modelled using the built-in relative intensity ratio

(RIR) method of the Jade9 software (Shimadzu Center, 2018).
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FIGURE 14. THE MAXIMA X XRD X-RAY DIFFRACTOMETER HAS A CONTAINED TESTING AND ASSOCIATED
COMPUTER APPLICATION FOR ANALYSIS (SHIMADZU CENTER, 2014).

Goniometer

¥e-ray Tube

T A e

FIGURE 15. SIMPLIFIED VISUAL OF THE DATA COLLECTION OBTAINED FROM SHIMADZU'S XRD DISPLAYING THE
X-RAY BEING PROJECTED FROM THE GONIOMETER, REFLECTED OFF A SAMPLE AND RECEIVED AT A CERTAIN
DIFFRACTION ANGLE THEN IS ABLE TO HELP IDENTIFY THE MINERALOGY (SHIMADZzU, 2018).
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Geomechanical Analyses

Geomechanical analysis are frequently used in the petroleum industry to develop an
understanding of the mechanical responses of rock formations. Understanding the overburden
pressure of overlying rocks, or confining stress, helps differentiate the stiffness and elasticity of
the rock. In this particular study, rock strength was studies by two independent methods; a
point load penetrometer and a micro-rebound hammer. Alec Burns, a TCU geology
undergraduate student, conducted and recorded all geomechanical tests at the TCU Core

Facility.

The point load penetrometer, also known as the “Dimpler”, tests rock strength by
applying a constant force on a carbide tip. Once the butt end of the cores were cleaned of any
debris, sample tape for the point-load penetrometer data samples were placed in the center of
the core, furthest away from any edges or visible fracture. The sample tape was placed
approximately every six inches (15.24 cm) in the Maness and the first few feet above and below.
The remainder of the Buda and Eagle Ford were tested at one-foot (30.48 cm) intervals
throughout the rest of the core. The tape was 3M tan paper masking tape measuring 0.033 inch
(0.085 cm) in thickness. To perform the exercise, the Dimpler’s carbide tip was dipped into a red
ink pad then placed on the tape. Pressure was applied to the top portion of the Dimpler,
compressing the device onto the tape placed on the core, creating a slight depression, or
dimple, colored in red. Each Dimpler sample was taken by removing the core section from the
core box, and placing it in a box filled with sand to ensure that the pressure applied would have
the same supporting matrix for every data point collected. Three data points were gathered at
each depth after moving slightly for each test to ensure that the same part of the core was not
sampled twice, which might produce an erroneous reading. The section of the core that was

sampled was measured for length as these measurements varied and the height and width did
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not. Once the three dimples were created, the tape was removed from the core and placed on
a transparent paper in preparation for reading the samples (Figure 16 A and B). The dimple
diameter sizes were measured using a lighted graduated surface magnifying glass that has a set
of evenly spaced “ticks’. The measurements were made by counting the number of tick marks
for the diameter of the dimple, with a scale of one tick mark equaling 0.005 inch (0.0127 cm).
Enderlin (2014) outlines the correlation between the diameter (Figure 17) created by the
Dimpler to UCS (psi) from triaxial testing. The tick mark values were converted to unconfined

compressive strength in psi (Ibs/in?) using the following equations:

Tick Average < 5.5: UCS = (154978.9*Tick Average-1.86399)+(-12992.97+(60507.13*Tick

Average)+(-27346.5*Tick Average2)+ (4293.111*Tick Average®)+(- 226*Tick Average*))

Tick Average > 5.5: UCS = 154978.9 * Tick Average-1.86399
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A)

B)

FIGURE 16. A) IMAGE OF DIMPLER BEFORE FORCE IS APPLIED TO THE TOP HANDLE OF THE DEVICE. B)
TICK MARKS.

ARCHIVED DATA SHEET DISPLAYING RED INDENTATIONS, LABELED CORE DEPTH AND A HAND LENS WITH SCALED
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FIGURE 17. THE CORRELATION BETWEEN THE DIAMETER OF THE TICK MARKS READINGS FROM DIMPLER TO
UNCONFINED COMPRESSIVE STRENGTH FROM TRIAXIAL TESTING (ENDERLIN, 2014).
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The Equotip Bambino is a spring loaded, digital, battery operated, micro-rebound
hammer that measures hardness of surfaces by compressing a lever that launches a hard metal
ball indenter, which then rebounds off the surface being tested. The Bambino is a non-
destructive, easily repeatable test that was originally designed for testing of metals, but has

been adopted to the testing of rock strength.

The Bambino tests were conducted at the same depths as the Dimpler readings but
away from the indentations made by the Dimpler. Each core sample’s length was measured,
removed from the core box and placed on a box of sand to ensure the same supporting matrix
for each data point collected. The mechanical process of the Bambino is measured based on the
movement velocity of the metal ball at two times, before and after the impact. The rebound
velocity is converted to Leeb’s Hardness values (L’) (Figure 18 A and B). Leeb’s Hardness is the
ratio of the velocity of the metal ball at impact versus the velocity of the metal ball’s rebound
and is unitless (Daniels et al., 2012). The faster the velocity, the higher the Leeb’s Hardness
value, and therefore the harder the surface being tested. The Leeb’s Hardness values can be
used to derive unconfined compressive strength (UCS) after converting the hardness values

(HLD or L) using several different empirical algorithms.
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The Leeb’s Hardness values are converted to unconfined compressive strength in psi (Ibs/in?)

using the following equations:

psi = 0.0000000746*(0.99725158")*(L’42%1784) (Enderlin, 2017)

psi = (8*%10°5*(L'25))*145.03773801 (Aoki and Matsukura, 2008)

psi = (0.000000683*L'*%)*145.03773801 (Zahm et al, 2014)

Five data point measurements were taken from the Bambino and averaged at each
sample location. Each of the five data points collected at the same depth were moved slightly to
ensure that the same part of the core was not sampled twice, which might produce an
erroneous reading. The Maness data points were collected at six-inch (15.24 cm) intervals and
then modified to one-foot (30.48 cm) intervals in the Buda, Lower Eagle Ford and the Austin

Chalk.

In summary, the rock strength is measured by two independent calculations:

1.) Rock strength is a function of dimple indentation size based on the Dimpler’s
imprint and converted to UCS using the Enderlin algorithm.
2.) Rock stringing is a function of Leeb’s hardness that was measured using a Bambino

hammer and converted to UCS using three different algorithms.

35



Well Logs and Maps

Four horizons, the top of the basal Eagle Ford phosphate lag, top of Maness Shale, top
of intra-Maness limestone, and top of the Buda Limestone, were initially identified in the two
cores, converted to log depth, and then correlated across the study area (Figure 19). These
horizons were picked in 94 wells that contained a robust log suite dataset, including gamma ray,
resistivity, neutron porosity, and density porosity logs. The neutron density log was a key log for
correlations, as an increase in neutron density in unconventional shales generally indicates an
increase in overall clay content. Additional wells with a less robust log data set that included

only gamma ray and resistivity logs were correlated, yielding a total 345 wells for the study.

The phosphate lag zone, marked by a strong gamma ray spike, usually over 200 AP, is
readily identified in core (Figure 20) and is found in the basal Lower Eagle Ford across most of
the study area. The phosphate lag interval contains limestone and shaley zones with abundant
phosphate clasts and moderate amounts of inoceramid fragments and pyrite nodules. The
shales below the pyrite nodule zone are indistinctly laminated mudstones. The lag’s gamma ray
spike is produced by an increase in potassium and uranium (Figure 21). Occasionally there is an
ash bed in addition to the phosphate lag that contributes to the gamma ray spike, which is also

apparent in the neutron porosity log.
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Underlying the phosphate lag is the Maness Shale, which has an average gamma ray
value of about 120 API, 30 API units less than the overlying Eagle Ford. The top of the Maness is
also marked by a reduction in resistivity and an increase in neutron porosity, ranging from 20%
to 30% NPHI (Figure 22). Although correlating the top of the phosphate and Maness sections is
straightforward on the cores in Lavaca and Fayette counties, the top becomes more difficult to
identify southwest of the San Marcos Arch. In core, the top of the Maness Shale is
predominantly made up of black shales that are composed of thinly interbedded dark gray,
massive argillaceous mudstones alternating with light gray, indistinctly laminated mudstones
containing higher concentrations of planktonic foraminifera and recrystallized limestone. Pyrite
nodules are common to abundant, whereas thin, greenish gray ash beds occur sparsely, usually
surrounded by a calcite-rich zone. Additional cores from Karnes and Atascosa counties were
described by Denne et al. (2016). The K-1 core from Karnes County has one inch (2.5 cm) of
Maness, whereas the A-1 core from Atascosa County contains no Maness. The A-1 core has a
gamma ray spike at the contact between the Eagle Ford and the Buda generated by the

phosphate lag.

A nodular limestone, termed here the intra-Maness limestone, is identified within the
Maness in the cores and can be identified on logs in many of the wells in the study area (Figure
22). Where present, it divides the upper and lower Maness sections. The bed has lower API
gamma ray readings, slightly higher resistivity values, and a notable reduction in neutron
porosity, indicating lower clay content. In core, this interval is composed of recrystallized
limestone beds associated with thin ash beds. Pyrite nodules are abundant throughout this

section.
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The Buda Limestone top was picked on a sharp decrease in gamma ray, neutron
porosity, and density porosity along with an increase in resistivity. It is one of the most

diagnostic horizons in the Gulf Basin.

To test the hypothesis that the Maness acts as a fracture barrier from underlying
aquifers, monthly production rate data for several leases were acquired from Lonestar
Resources across the study area. The oil to water ratio is cross plotted with Maness thickness to
determine if there is a correlation. In addition, 2,002 wells with first year cumulative production
data for oil and water were downloaded from Drilling Info. The well list was restricted to only
those wells from the study area producing from the Eagle Ford that were operated by Devon
Energy, EOG Resources, Hunt Qil, Lonestar Resources, Marathon Qil, and Recoil Resources. The
geographic location of these operators creates a wide spread distribution of wells, but limits the
variance in production reporting and completion methods by restricting the number of

operators.
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Results

Cores
Thin Sections

Examination of the 23 thin sections from the Prost Unit G 5H and Sante North Unit A 1H
cores identified six microfacies from the uppermost Buda limestone through the Maness and
into the basal Eagle Ford Shale (Appendix A). The divisions of microfacies are based primarily on
grain type, lamination style, and biotic components. Five of the six microfacies are identified
within the Maness, whereas microfacies e is found only in the Buda Limestone (Table 2; Figure

23-28).

TABLE 2. MICROFACIES OBSERVED IN THIN SECTION.

Microfacies | Name Description

a Massive Argillaceous Mudstone Internally structureless, largely
homogeneous mudstone layer, dark
brown in color, with frequent pyrite
framboids (Ichaso and Dalrymple,
2009)

b Indistinctly Laminated Mudstone Displays parallel, discontinuous
laminations of planktonic
foraminifera, pyrite framboids, fish
debris, inoceramid pieces, and dark
brown clasts.

c Partially Recrystallized Limestone Made up of primarily recrystallized
limestone, with calcite-filled

foraminifera and pyrite framboids;
original bedding mostly preserved

d Fibrous Calcite Calcite “beef” crystals (Cobbold et al.,
2013) ranging up to 0.72 inch (2 cm) in
length usually encasing ash beds

e Calcisphere Packstone Found only in the Buda Limestone, the
fossils are cemented in sparry calcite
and is mottled to massive,
bioturbated, with abundant
calcispheres, agglutinated and
planktonic foraminifera, with rare
ostracods and echinoid spines

f Ash beds Clay rich beds that have no bedding
features
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FIGURE 23. MICROFACIES a - SCANNED IMAGE OF THIN SECTION WITH TRANSMITTED LIGHT DISPLAYING
MASSIVE ARGILLACEOUS MUDSTONE WITHIN THE YELLOW BOX (0.25 IN = 0.64 cm).

FIGURE 24. MICROFACIES b - SCANNED IMAGE OF THIN SECTION WITH TRANSMITTED LIGHT DISPLAYING
INDISTINCTLY LAMINATED MUDSTONE (0.25 IN = 0.64 c™m).

FIGURE 25. MICROFACIES € - SCANNED IMAGE OF THIN SECTION WITH TRANSMITTED LIGHT DISPLAYING
PARTIALLY RECRYSTALLIZED LIMESTONE (0.25 IN = 0.64 CMm).
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FIGURE 26. MICROFACIES d - SCANNED IMAGE OF THIN SECTION WITH TRANSMITTED LIGHT DISPLAYING
FIBROUS CALCITE “BEEF” (0.25 IN = 0.64 cM™m).

FIGURE 27. MICROFACIES € - SCANNED IMAGE OF THIN SECTION WITH TRANSMITTED LIGHT DISPLAYING
CALCISPHERE PACKSTONE (0.25 IN = 0.64 c™m).

FIGURE 28. MICROFACIES f - SCANNED IMAGE OF THIN SECTION WITH TRANSMITTED LIGHT DISPLAYING AN ASH

BED SURROUNDED BY FIBROUS CALCITE (0.25 IN = 0.64 CMm).
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Lithofacies

Examination of the two cores differentiated eight distinct lithological facies (Table 3;
Figure 29) within the Maness Shale and directly adjacent rocks, based on changes in grain type
and bedding, abundance of biota, and dominant mineralogy. In addition to these lithofacies,

pyrite and phosphate nodules also occur within the section.

One or more of the microfacies make up each lithofacies. These lithofacies create the
composition of the lowermost Eagle Ford, Maness, and uppermost Buda, with significant
variance within each formation (Appendix B). The Eagle Ford is composed of lithofacies A, B,
and D, has a higher lithological frequency, and a higher abundance of lithofacies D than the
other rock units. The phosphate lag is also composed of lithofacies A, B, and D, but it is the only
unit with lithofacies G. The Maness is composed of lithofacies A, B, C, and D; lithofacies C is
present only in the Prost G 5H well and is relatively sparse. The Buda is made up of lithofacies E

and F.
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TABLE 3. LITHOFACIES OBSERVED IN CORE.

Lithofacies

Name

Description

A

Massive Argillaceous Mudstone

Black to dark gray, massive to indistinctly
laminated mudstone. Foraminiferal
laminae are sparse to non-existent; if
present, they are very thin (0.2 inch or 0.5
cm). The skeletal fragments include
inoceramids, fish fragments, and ammonite
impressions. The mudstone shows almost
no reaction to 10% HCI. Ash beds occur
intermittently and range in size up to 1 inch
(2.5 cm).

Composed of microfacies a, b and f.

Indistinctly Laminated Mudstone

Thin interbedded beds made of mudstone,
foraminifera laminae, and marls occur in
bed thicknesses no thicker than 0.5 inch
(1.3 cm). Color ranges from almost black
(mudstone) to light gray (marl). Original
bedding is preserved and pyrite occurs
frequently in the forms of both ellipsoidal
nodules and thin bedded layers that are
greenish gray to yellow in color. Both the
shale and limestones are rich in skeletal
fragments of foraminifera, inoceramids, fish
fragments, and ammonite impressions. The
mudstone shows almost no reaction to 10%
HCI. Ash beds occur intermittently and
range in size up to 1 inch (2.5 cm).
Composed of microfacies b and f.

Completely Recrystallized
Limestone

Completely recrystallized limestones with
fibrous calcite extending 0.72 inch (2 cm) in
length and sometimes associated with ash
beds. The recrystallized limestones
sometimes truncate the bed below. Ash
beds occur intermittently and range in size
up to 1inch (2.5 cm).

Composed of microfacies d and f.

Recrystallized Laminated
Limestone

Nodular limestone no thicker than 0.5 foot
(15.3 cm); they are light gray in color;
usually the original bedding is partially
preserved and may pinch out across the
width of the core.

Composed of microfacies c.

Massive Limestone

Completely bioturbated limestone with no
visual bedding; horizontal fractures are
abundant; light gray in color; composed of
microfacies e.
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Nodular Limestone and Shale

Laminated to indistinctly laminated
alternating massive, nodular limestone to
laminated shale; medium gray in color;
some original bedding is intact;
composed of microfacies b and e.

Phosphate Lag

Abundant phosphate clasts within a
winnowed lag deposit;
composed of microfacies b.
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Coreis 3.25” (8.26 cm) wide

FIGURE 29. PHOTOGRAPHS OF REPRESENTATIVE CORE SECTIONS OF EACH LITHOFACIES. A) MASSIVE
ARGILLACEOUS MUDSTONE, B) INDISTINCTLY LAMINATED MUDSTONE, C) COMPLETELY RECRYSTALLIZED
LIMESTONE, D) RECRYSTALLIZED LAMINATED LIMESTONE, E) MASSIVE LIMESTONE, F) NODULAR LIMESTONE
AND SHALE, AND G) PHOSPHATE LAG
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XRD Analyses

Fourteen samples from the Prost G 5H and thirteen samples from the Sante North Unit
A 1H were analyzed using XRD (Appendix D). The samples were taken from four different zones,
the Eagle Ford, phosphate lag zone, Maness, and the Buda Limestone, most of which are from

the same depths as the thin sections.

The average composition of the Eagle Ford marls is 48% calcite, 34% clay, and 12%
quartz, with 6% divided among other minerals, including 2-4% pyrite and 0-22% feldspars
(Figure 30). The average shale composition within the phosphate zone is 40% clay, 30% calcite,
15% quartz, 4-6% pyrite, and 0-3% feldspars. The average shale composition within the Maness
is 50% clay, 18% quartz, 19% calcite, with 13% distributed among minor minerals (Figure 30)
including 3-7% pyrite, and 3-12% feldspars. The Eagle Ford and Maness limestones is made up of
mostly calcite but they do contain carbonate minerals such as ankerite and magnesium
carbonates that are not present in the marls. The Buda averages 90% calcite, 4% quartz, and 4-

6% pyrite (Figure 30).

In general, Eagle Ford marls and the phosphate lag have more calcite than the Maness,
whereas the Maness has more clay (Figure 31). There are data points within the Eagle Ford and
Maness that have greater than 70% calcite; these data points were taken within the nodular
limestones that occur within each formation and are outliers to the rest of the data. The Buda is

composed of mostly calcite.

The predominant clay type identified in the study was illite+mica, which accounts for
~77% of the clays found in the samples that were tested (Figure 32). The two Eagle Ford
samples from the Prost G 5H core averaged 88.5% illite+mica, 7.8% kaolinite, 2.3% chlorite, and

1.4% smectite. The two phosphate lag zone samples averaged 86.4% illite+mica, 10.8% kaolinite,
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and 2.8% smectite, whereas the eight Maness samples averaged 70.7% illite+mica, 27.7%
kaolinite, and 1.7% smectite. For the Sante North Unit A 1H, the Eagle Ford samples averaged
79.7% illite+mica, 13.9% kaolinite, and 6.4% smectite. The phosphate lag sample had 80.7%
illite+mica, 17.8% kaolinite, and 1.5% smectite, whereas the eight Maness samples averaged
76.2% illite+mica, 21.8% kaolinite, and 2.0% smectite. Both cores are located within the Harris
Delta clay wedge (Denne and Breyer, 2016), especially the Sante North Unit A 1H, which explains

the higher than normal clay percentages found within the Eagle Ford.
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PROST - Mineralogy by XRD

Weight Percent (%)

10988' 4" 132 37.6
11024' 7" 1.5 B e 23.7
11042' 10" 12 el I ass . msEmm 26.9
11044’ 9" 9.2 a4 32 lass— 384
11046'0"| 5.2 HENNESE . 331
T [11047' 11" 24 '35 102 | 108 51.4
E 11060’ 1" 21 a4 84 [ 144 52.3
§ 11063 8" 24 ‘42 a4 DEERZEET 453
8| 11065' 5" 23.8 las 7 DA 6.7
11066' 10" 13.8 3.2 7 39.1
11068' 7| o. S 5
11071’ 8" 19.9 157 61 IINNE0EI 37.6
11072 1| 10 G
11072' 9" | 10 S

Silica ® Pyrite u Feldspar- Albite ® Feldspar- Microcline ® Feldspar-Anorthite

m Carbonate - Calcite m Phosphate » Clay - Chlorite Group Total Clays

SANTE - Mineralogy by XRD I

Weight Percent (%)
11257 0" 17.3 22 55 220 3 50.5
11289' 6" 271 20858 | 149 | 48.7
130097 55 2] e St 3.2 412 22
1z0rs” | 6 EEEEHEE e 293 17.7
11305' 9* ue  EEE—— 26.4
& 11308’ 8" 22.6 27 9a [sall 57.5
g 113133 20.8 3.3 2.6 06 4.6 58
a2z ny ISR 7 52
un7re | 106 SN 43.4
11329'0" 20.6 B7 a9 SN 57.8
11329'6" 20.9 38 95 | 102 | 55.5
11334 9" 24 T 50.1
5 1 | s 2 g . 15.2
Silica o Pyrite u Feldspar- Albite ® Feldspar- Microcline ® Feldspar-Anorthite
M Carbonate - Calcite ® Carbonate-Ankerite Carbonate - Mag ® Phosphate Total Clays

FIGURE 30. MINERAL ABUNDANCES AS DETERMINED BY XRD FOR PROST G 5H (TOP) AND SANTE NORTH UNIT
A 1H (BOTTOM). THE CORE DEPTH IS COLOR CODED BY FORMATION (GREEN = EAGLE FORD; RED =
PHOSPHATE; BROWN = MANESS; BLUE = BUDA).
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PROST - Relative Clay Minerals
0% 10% 20% 30% 40% 50% 60% 70% 80% 0% 100%

Core Depth (Ft)

® Kaolinite m lllite+Mica = Smectite = Chlorite

SANTE - Relative Clay Minerals
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

® Kaolinite = lllitetMica = Smectite = Chlorite

FIGURE 31. CLAY MINERAL ABUNDANCES FOR THE PROST G 5H (TOP) AND SANTE NORTH UNIT A 1H
(BOTTOM). THE CORE DEPTH IS COLOR CODED BY FORMATION (GREEN = EAGLE FORD; RED = PHOSPHATE;
BROWN = MANESS; BLUE = BUDA).
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FIGURE 32. TERNARY DIAGRAMS OF THE XRD MINERAL COMPOSITION FOR THE (A) PROST G 5H AND (B)
SANTE NORTH UNIT A 1H CORES.



Geomechanical Analyses

Unconfined compressive strength was evaluated using the Equotip Bambino and point
load penetrometer (“Dimpler”) across both cores. The Prost G 5H has 247 data points, whereas
the Sante North Unit A 1H has 236 data points (Appendix E). A positive correlation between the
Dimpler and Bambino strength is shown in cross plots of these parameters in Figure 33. A
correlation factor of 81.3% was found in the Prost G and 78.1% for the Sante North Unit A 1H.
The data points are subdivided between generic lithology descriptions and formations. The
generic lithologies are chalk, limestone, shale, and recrystallized limestones. The recrystallized
limestones occur within the Eagle Ford and Maness formations, whereas the limestones (as
used here) occur only in the Buda. The marls and shales represent the baseline for the curve
within the Eagle Ford and the Maness, whereas the interbedded limestones represent the

higher values within these formations.

To determine if hardness values are affected by the total volume of the core sections,
core section length and hardness values are cross-plotted (Figure 34). These plots show no
evidence of correlation between core section length and hardness, as indicated by the very low
R% values of 0.08 and 0.14 for the Dimpler and 0.07 and 0.16 for the Bambino. As width and
depth are consistent throughout the core, section length is used as a proxy for core section

volume.
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The point load penetrometer (Dimpler) values of rock strength for each core show significant
variation between formations (Table 4; Figure 35). The average UCS is highest in the Austin Chalk and
Buda Formations and lowest in the Maness Shale. In the Prost G 5H core UCS values for the Maness
Shale range from 1,679 to 6,111 psi (11.6 to 42.1 MPa) with an average of 2,846 psi (19.6 MPa). This is
47.6% less than the average UCS value for the Eagle Ford and 83.0% less than the average for the
underlying Buda Limestone. In the Sante North Unit A 1H core, UCS values for the Maness range from
2,120 to 8,958 psi (14.6 to 61.8 MPa) with an average of 3,505 psi (24.2 MPa), 27.0% less than the

average for the Eagle Ford and 61.7% less than the Buda average.

Three algorithms were initially utilized to convert the Bambino L’ values to unconfined
compressive strength (UCS). As the variances were negligible (Figure 36), creating comparisons using all
three algorithms is redundant, so only the UCS values using the Enderlin (2017) method will be
discussed. Using the Enderlin UCS calculation for psi, the average UCS is highest in the Austin Chalk and
Buda Formations and lowest in the Maness Shale (Table 5; Figure 37). UCS values for the Maness Shale
in the Prost G 5H core range from 520 to 13,549 psi (3.6 to 93.4 MPa) with an average of 3,506 psi (24.2
MPa), 50.5% less than the Eagle Ford average and 78.3% less than the Buda average. In the Sante North
Unit A 1H core UCS values for the Maness Shale range from 356 to 14,575 psi (2.5 to 100.5 MPa) with an
average of 3,515 psi (24.3 MPa), 27.7% less than the Eagle Ford average and 76.5% less than the Buda

average.

Although the variance between the UCS values derived from the point load penetrometer
(Dimpler) and Bambino are marginal (Figure 38), and they show the same overall trends, the Bambino
yielded a greater range of values, with higher UCS values in stiffer rocks and lower UCS values in weaker
rocks. Even with the slight variance, the data still demonstrates that the Maness is weaker than the

surrounding formations.
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TABLE 4. POINT LOAD PENETROMETER MEASUREMENT SUMMARY BY WELL AND FORMATION.

Point Load Penetrometer - Dimpler

Number of

Average UCS Minimum Maximum
Well Formation Samples (psi) UCS (psi) UCS (psi)
- Austin Chalk 21 10,738 2,978 20,091
3 Eagle Ford 144 5,430 2,411 25,748
2 Phosphate 4,023 3,478 4,966
o
£ _
Buda 16,719 6,111 32,380
< Austin Chalk 21 13,814 8,985 20,091
g = Eagle Ford 116 4,800 2,411 20,091
) f Phosphate 5,937 4,121 8,985
e c
©c D
i Buda 9,141 5,493 20,091
TABLE 5. EQUOTIP BAMBINO MEASUREMENT SUMMARY BY WELL AND FORMATION.
Equotip Bambino
Enderlin Enderlin Enderlin
Number of Average UCS Minimum UCS Maximum
Well Formation Samples (psi) (psi) UCS (psi)
- Austin Chalk 21 13,526 3,776 16,160
3 Eagle Ford 144 7,078 2,008 17,730
2 Phosphate 6,067 2,455 12,604
o
g _
Buda 16,135 11,316 18,776
< Austin Chalk 21 14,333 7,550 17,061
2 = Eagle Ford 116 4,862 1,184 17,425
) f, Phosphate 5,101 1,987 12,495
€ c
=]
[7,]

Buda

13

14,933

9,444

18,591
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A PROST - Depth (Feet) VS. Dimpler Average B PROST - Depth (Feet) VS. Dimpler UCS (psi)
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FIGURE 35. GRAPHS OF THE DIMPLER RESULTS FROM THE PROST G 5H AND THE SANTE NORTH UNIT 1H CORES PLOTTED
AGAINST DEPTH. (A) AVERAGED RAW DATA FROM PROST G 5H, (B) DATA CONVERTED TO UCS FROM PROST G 5H, (C)
AVERAGED RAW DATA FROM SANTE NORTH UNIT 1H, AND (D) DATA CONVERTED TO UCS FROM SANTE NORTH UNIT
1H. COLORS INDICATE THE FORMATION OR LITHOLOGICAL UNIT.

60



A .

10,940
10,950
10,960
10,970
10,980
10,990
11,000
11,010

11,020

Depth (Feet)

11,030

11,040

11,050

11,060

11,070

11,080

11,090

PROST - Depth (Feet) VS. UCS (psi)

2 4 6 10 12 14 16 18 20
aI'hcn.|sam:i$
PRy
S ———
~———UCS - Zahm et al 2014 - (psi)
~———UCS - Enderlin (psi)
%—_—ucs- Aoki and Matsukura 2008 (psi)
<

Dimpler UCS (psi)

B 0 2 4 6 8

Depth (Feet)

SANTE - Depth (Feet) VS. Dimpler UCS (psi)

10 .132 14 16 18 20

11,220 Thousand
11,230 r E "E'
11,240
11,250
——UCS - Zahm et al 2014 - (psi)
11,260
——UCS - Enderlin (psi)
11,270 ~———UCS - Aoki and Matsukura 2008 (psi)
11,280
11,290
L0 %
11,310 E
11,320 —
11,330
11,340 ——————
11,350

Dimpler UCS (psi)
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FIGURE 37. GRAPHS OF THE BAMBINO RESULTS FROM THE PROST G 5H (A AND B) AND THE SANTE NORTH UNIT 1H (C
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FIGURE 38. A GRAPH OF ALL STRENGTH VALUE CALCULATIONS FOR BOTH THE DIMPER (POINT LOAD PENETROMETER) AND
BAMBINO VERSUS DEPTH DISPLAYING THE SAME CHARACTER DESPITE A VARIANCE IN VALUES.
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To better understand the geomechanical differences between the marls and shales of the Eagle
Ford, phosphate lag, and the Maness, the data from recrystallized limestones are removed from the
data set. The number of data points is reduced in the Prost G 5H well by 23% in the Eagle Ford and 13%
in the Maness and the Sante North Unit A 1H data points are reduced by 27% in the Eagle Ford and 14%
in the Maness. After removing the data for the recrystallized limestones derived from the point load
penetrometer, the Maness Shale ranges in strength from 1,900 to 3,800 psi (13.1 to 26.2 MPa) with an
average of 2,806 psi (19.4 MPa) (Table 6) for both cores. The Maness is 28.0% weaker than the Eagle
Ford. After removing the data from the recrystallized limestones derived from the Equotip Bambino, the
Maness Shale ranges in strength 438 to 4,604 psi (3.0 to 31.7 MPa) with an average of 2,275 psi (15.7
MPa) (Table 7) for both cores. The Maness is 45.2% weaker than the Eagle Ford. In summary, the
formation averages decrease in UCS (psi) after removing the data for the recrystallized limestones as
expected. The Eagle Ford and phosphate lag rocks both have higher UCS (psi) values than the Maness,

with or without the data from the recrystallized limestones (Figure 39).
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TABLE 6. AVERAGE DIMPLER MEASUREMENT SUMMARY FOR BOTH WELLS AND FORMATION WITH DATA FOR THE
LIMESTONES REMOVED.

Point Load Penetrometer - Dimpler
Enderlin Enderlin Enderlin
Formation Number Of Average UCS Minimum UCS Maximum
Samples (psi) (psi) UCS (psi)
Eagle Ford 181 3,899 2,411 7,239
Phosphate 11 4,202 3,800 4,966

TABLE 7. AVERAGE BAMBINO MEASUREMENT SUMMARY FOR BOTH WELLS AND FORMATION WITH DATA FOR THE
LIMESTONES REMOVED.

Equotip Bambino
Number Of Enderlin Enderlin Enderlin
Formation samples Average UCS Minimum UCS Maximum
(psi) (psi) UCS (psi)
Eagle Ford 181 4,153 1,596 7,730
Phosphate 11 3,779 2,300 4,878
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Dimpler Average UCS (psi ) VS. Bambino UCS (psi)
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FIGURE 39. GRAPH DISPLAYING AVERAGE UCS FOR DIMPLER AND BAMBINO INDICATING THE DIRECTION OF CHANGE
AFTER REMOVING THE DATA FROM RECRYSTALLIZED LIMESTONES.



Mineralogy, Geomechanics and Lithofacies

Cross-plots between UCS values and calcite and total clay volume (Figure 40) show an
inverse relationship between calcite and clay content in relation to strength. Clay volume has a
negative correlation, implying that the higher the volume of clay the lower the UCS value for
both the Dimpler and the Bambino. The opposite relationship holds for calcite, which has a

positive correlation, signifying that an increase in UCS is linked to an increase in calcite volume.

The R? values for strength versus calcite range from 9.7% to 36.0% and range from
32.6% to 37.6% for strength versus clay (Figure 40), which are considered to be poor to
moderate correlations. The Sante Unit A 1H generally has higher correlations than that of the
Prost G 5H well. This is likely due to the larger number of outlier data in the Prost well, which
are an artifact of UCS measurements taken within recrystallized limestones that were paired
with XRD analyses that sampled both the limestone and the adjacent mudstone. The inverse
relationship between calcite and clay with respect to strength is not unexpected, as higher
abundances of brittle minerals such as calcite should produce higher UCS and higher

abundances of ductile clays should produce lower UCS values.

The Eagle Ford Shale and the Buda Limestone are mechanically stronger than the
Maness Shale. The weakness associated with the Maness is due to the increase in ductility,
except for the intra-Maness Limestone which is composed of lithofacies C. The Maness section
of the Prost 5H core is made up of 60.4% lithology A, 22.6% lithology B, 3.8% lithology C, 13.2%
lithology D, and 0% for E, F and G lithofacies as those are only found in the phosphate and Buda
Limestone (Table 8). The Maness portion of the Sante North Unit A 1H core is made up of 58.7%
lithology A, 36.5% lithology B, 0% lithology C, 4.8% lithology D, and 0% for E, F and, G lithofacies.

The Maness has an abundance of lithologies A and B that average a UCS of 2,488 psi (17.15
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MPa) psi for both strength tools (Table 9). The Eagle Ford is the only formation to have A/B as
the laminations of lithology A and B are thin and thus are combined in portions of the core. The
average UCS for lithologies A/B, A, and B for both strength tools within the Eagle Ford is 4,802

psi (33.11 MPa), which is 48.2 % higher than the Maness.

When incorporating the calcite and clay mineralogy, strength values, and lithofacies
(Figure 40), there are a few things to note. The expected trend is that the high calcite (circles)
should have higher UCS, whereas the high clay (triangles) should have low UCS values. In
general, the graphs show these expected trends. As noted above, the XRD and the strength

data are not taken from the exact same intervals, producing a few outliers.
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TABLE 8. TABLE DISPLAYING THE PERCENT OF LITHOLOGY PER FORMATION.

Number of Samples per Lithology
Lithology for Every Sample Aquired

Well Formation A/B A B C D E F G
EE EAGLE FORD 75.2% 2.1% 2.1% 0.0% 20.6% 0.0% 0.0% 0.0%
o PHOSPHATE 0.0% 57.1% 28.6% 0.0% 0.0% 0.0% 0.0% 14.3%
g

a

BUDA 0.0% 0.0% 0.0% 0.0% 0.0% 92.9% 7.1% 0.0%

EAGLE FORD 86.0% 10.5% 0.9% 0.0% 2.6% 0.0% 0.0% 0.0%
PHOSPHATE 0.0% 25.0% 50.0% 0.0% 0.0% 0.0% 0.0%

25.0%

Sante North
Unit A 1H

BUDA 0.0% 0.0% 0.0% 0.0% 0.0% 71.4% 28.6% 0.0%
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TABLE 9. THE AVERAGE UCS (PSI) VALUES PER LITHOFACIES WITHIN SPECIFIC FORMATIONS.

Well

Point Load Penetrometer

Average UGS (psi) per Lithofacies
Formation A B C

D E F G Average
. |encieroro 4,188 4,252 1,890 3,443
& | PHOSPHATE 4,011 3,800 3,478 3,763
g [maness 255 207 28 2404 23]
£ |supa 17,535 6,111 11,823
AVERAGE 3,585 3,553 2,868 2,192 17,535 6,111 3,478 5,617
. EAGLEFORD 3,901 4,966 4,434
§ % | PHOSPHATE 4,966 4,514 4,121 4,534
S |maness 3100 282 33 30|
Q =
5 5 | Buba 9,112 6,929 8,020
AVERAGE 3,992 4,124 3,305 9,112 6,929 4,121 5,264
Equotip Bambino
Average UGS (psi) per Lithofacies
Well Formation A B C D E F G Average
. | ErcteForD 5,711 7,643 2,972 5,442
@ | pHosPHATE 3,616 5,965 4,706 4,762
§ BUDA 16,394 12,769 14,582
AVERAGE 3,832 5,409 2,994 2,497 16,394 12,769 4,706 6,943
< EAGLE FORD 3,943 4,115 4,029
£ 5 | PHOSPHATE 3,425 2,748 4,706 3,626
CF fwees T am owams T am
Q =
5 S | supa 15,680 13,253 14,466
AVERAGE 3,189 3,050 2,716 15,680 13,253 4,706 7,099
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A Bambino UCS - Enderlin (psi) vs Calcite (% Weight) B Bambino UCS - Enderlin (psi) vs Clay (% Weight)
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FIGURE 40. CROSS PLOT OF BAMBNIO STRENGTH VERSUS CALCITE AND CLAY (A AND B) AND OF DIMPLER STRENGTH VERSUS CALCITE AND CLAY (C AND D) CODED BY
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Well logs and mapping

Four horizons are correlated in 345 wells across the study area: the top of the
phosphate lag zone, top of the Maness Shale, top of the intra-Maness limestone, and top of the
Buda Limestone (Figure 13). Two cross sections represent the key wells for correlations for
wells along strike from Atascosa County to Fayette County (Figure 41), and along dip from
Gonzales County, into the Gonzales Trough and South to Dewitt County (Figure 42). These
horizons were used to create a structure map for the top of the Buda (Figure 43), and isopach
maps for five intervals: top of phosphate to top of Buda, top of Maness to top of Buda, top of
phosphate to top of Maness, top of Maness to top of intra-Maness limestone (upper Maness),

and top of intra-Maness limestone to top of Buda (lower Maness) (Figures 44 — 48).

Within the study area the top of the Buda ranges in depth from -5,000 to -13,500 ft (-
1,524 to -4114.8 m) subsea true vertical depth (SSTVD), with the shallowest depths occurring on
the north side and the deepest occurring along the Sligo-Stuart City Reef trend. The two fault
grabens, the Karnes and Gonzales troughs, have throws at the Buda level ranging from a few

feet to >200 ft (1 to >61 m) (Figure 43).

The phosphate lag zone to top of Buda interval has thicknesses ranging from 5 to 45 ft
(1.5-13.7 m) with the thickest section located within the Gonzales Trough (Figure 44). Within
the trough the interval ranges from 30 to 45 ft (9.1-13.7 m), whereas thicknesses outside of the
trough range from 5 to 25 ft (1.5-7.6 m). The thinnest section is in central Wilson County,
where the maximum thickness is 10 ft (3.1 m). In general, the thickest sections are located to

the northeast and thin to the southwest.

The Maness has thicknesses ranging from 0 to 25 ft (0—-7.6 m), with the thickest interval

located within the Gonzales Trough (Figure 45), similar to the phosphate lag to Buda interval.
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Maness thicknesses within the Gonzales Trough are found to be relatively constant at 25 ft (7.6
m). The Maness is found to pinch-out south of southern Karnes County. Overall, the Maness

trends from thickest in the northeast and thins to the southwest.

The phosphate lag zone ranges from 0 to 15 ft (0 — 4.6 m), with the thickest section (15
ft) (4.6 m) located in the Gonzales County Trough. The thicker intervals align with the
orientation of the troughs (Figure 46). The phosphate lag zone is present throughout most of
the study area apart from northernmost Gonzales County and near the Lower Cretaceous reef

margins. The only obvious trend appears to be related to the troughs.

The upper Maness (Maness top to intra-Maness limestone) ranges from 0 to 15 ft (0 -
4.6 m), with the thickest interval located within the Gonzales Trough and pinching out in central
Karnes County (Figure 47). Overall, the thickest intervals are located in the northeastern part of

the study area and thin to the southwest, eventually pinching out.

The lower Maness (intra-Maness limestone top to Buda top) ranges from 0 to 15 ft (0 -
4.6 m) (Figure 48). Its overall trend is almost identical to the upper Maness trend, with the
thickest sections located within the Gonzales Trough and the interval pinching out in central

Karnes County.

The isopach maps all imply a depositional source originating from northeast of the study
area, as the Maness has its greatest thicknesses in this region and thins to the southeast. The
Gonzales-Karnes troughs appear to have been structural lows at the time of Maness deposition,
based on the greater Maness thicknesses found within the troughs in relation to the thinner

sections found in wells adjacent to them.
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Discussion

The results of the geomechanical study demonstrate that the Maness is weaker than the
Eagle Ford and that this is likely due to the higher clay content in the Maness. This difference in
clay content is primarily due to the presence of the clay rich microfacies “a” (massive
argillaceous mudstone) within the Maness, which does not occur within the Eagle Ford.
Microfacies “a” is interpreted to be a fluid mud deposit, as they are internally structureless and
thicker than a typical layer, often over 0.2 inch (>0.5cm) thick. These fluid muds are common on
coastal shelf margins in association with deltaic environments, where they are defined as a
subaqueous body of fine-grained sediment composed of fluvially- sourced organic rich clay and

silt particles (Ichaso and Dalrymple, 2009). This definition supports the interpretation that the

Maness is sourced from a delta to the northeast of the study area.

Together, the geomechanical and mineralogical data suggest that the Maness can act as
a fracture barrier, but does it actually do so? To determine if the Maness acts as a fracture
barrier, two different data sources of water and oil production were collected (Figure 49). One
source was provided by an operator who drilled, completed, and produced the wells. This
dataset has precise production measurements with pilot holes adjacent to the productive wells,
enabling a more precise measurement of Maness thicknesses, whereas the other dataset has
water and oil production data from a public source and the Maness thicknesses are based on

average thicknesses within nearby wells.

Lonestar Resources provided monthly rates of oil and water production for a select set
of their wells within the study area. The oil/water is was correlated to the thickness of the
phosphate lag to Buda and the Maness to Buda intervals (Figure 50 and 51). The cross-plots

below break down the isopach thickness versus months of production. Using the methodology
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of Kondash et al. (2016), the isopach thicknesses are compared to the total first year oil to water
cumulative ratio, the first six months ratio, and the second six months ratio. All graphs indicate
that the thinner isopach values have lower oil/water ratios and, therefore, higher cumulative
water production. The isopach thickness versus first six months of production has the lowest
correlation and the isopach thickness versus the second six months has the strongest
correlation. The linear regression (R?) value for the second six months for the phosphate lag to
Buda interval is 21.5% higher and the Maness to Buda interval is 20.8% higher than the R? values
for the first six months, due to the production of flowback water (water used in the hydraulic

fracturing process) during the first few months of production.

An additional means of analysis was done to see if the geotarget affected water
production. Lonestar Resources has several leases throughout the extent of the Eagle Ford play,
each of which has a different geologically-derived target zone within the Eagle Ford based on
the rock properties within each area. The center of the target zone is known as the geotarget
center, which is a specific lithologic bed denoted by its gamma ray signature. The distance
between the geotarget center and the top of the phosphate lag or the Maness can be measured
(Table 10). While just looking at the Lonestar Resources data, there are two factors affecting
the oil to water ratio; the first being the thickness of the Maness and the other being the
distance from the geotarget center to the top of the phosphate or Maness (Figure 52). The
distance of the geotarget versus the top of the Buda is a critical component when the Maness is
thin or non-existent. Generally speaking, the areas that have a thin layer of phosphate lag and
or Maness section (areas G and P) have the lowest oil to water ratios, regardless of the distance
above the Buda that the well was drilled. For example, area G was targeted 75 ft (22.9 m) above

the phosphate zone due to the Maness being absent and the oil to water ratios were still low.
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There is a slight increase in oil to water ratio when the distance is more than tripled (area G),

but not to the same level as those wells drilled with sizeable phosphate and Maness thicknesses.
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TABLE 10. TABLE DISPLAYING ISOPACH THICKNESSES AND GEOTARGET CENTER RELATIVE TO THE DISTANCE
ABOVE THE FORMATION OF INTEREST.

Geotarget Center - Thickness and Depth to Formation Top

Isopach Values (ft / m) Distance (ft / m)
Phosphate to Maness to Buda| Distance above Distance above Distance Above

Area | Buda Thickness Thickness the Phosphate  the Maness the Buda

C 23/7.0 16/4.9 15/ 4.6 21/6.4 35/10.7

G 6/1.8 0/0 75/22.9 N/A 81/24.7

H 23/7.0 18/5.5 20/6.1 25/7.6 43/13.1

K 15/4.6 10/3.0 23/7.0 28/8.5 38/11.0

P 9/2.7 0/0 21/6.4 N/A 30/9.1
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Phosphate to Buda Thickness
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Maness to Buda Thickness
Maness - Buda Thicknes (FT) VS. Oil Water Ratio (First Year)
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The public data set has cumulative first year water and oil production data included over
2,000 horizontal wells from the study area. For these wells, Maness thicknesses are estimated
for each well depending on the well’s location within the isopach map. Each well is assigned a
thickness based on Maness thickness and within those assigned thickness groups, the oil to
water ratio is averaged creating one data point per isopach contour interval. Regression analysis
found a 91.7% (Figure 53) correlation between Maness thickness and oil/water ratios, indicating
a strong correlation between Maness thickness and water production, and therefore suggesting
that the Maness may be acting as a fracture barrier within the region. This analysis also found a
50% increase in oil/water ratios between Maness thicknesses of 5 to 10 ft (1.5 to 3.1 m),
suggesting that a minimum of approximately 10 ft (3.1 m) is needed for the Maness to
effectively act as a fracture barrier. Both the private and public data sets suggest that the
threshold of thickness necessary for the Maness to act as a fracture barrier is minimum of 10

feet (3.1 m) (Figure 53).
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FIGURE 53. PUBLIC DATA SET CROSS-PLOT COMPARING MANESS THICKNESS TO CUMULATIVE (1 YEAR) OIL-TO-
WATER RATIOS AVERAGED OVER 5 FT INTERVALS. OIL TO WATER RATIOS INCREASE BY MORE THAN DOUBLE
FROM WHERE THE MIANESS IS 5FT TO WHERE THE MANESS IS 10FT.
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Summary and Conclusions

The present study of the Lower Cenomanian Maness Shale in the vicinity of the San
Marcos Arch of South Texas was conducted to better understand the mineralogic and
geomechanical properties that contribute to instability issues associated with the Maness while
drilling horizontal wells, and to determine if the presence of the Maness acts as a fracture
barrier between hydraulically fractured Eagle Ford wellbores and the underlying Buda

Formation.

In the vicinity of the San Marcos Arch in South Texas, the Maness forms the basal
member of the Eagle Ford Shale. The Maness mineralogic and geomechanical properties are
established through petrology, x-ray diffraction (XRD), and geomechanical (point load
penetrometer and micro-rebound hammer) analyses. The data was collected from two industry
cores taken in the vicinity of the San Marcos Arch that sampled the section from the uppermost

Buda, Maness, Eagle Ford, and the lower Austin Chalk.
The hypotheses tested were:

1. Maness Shale is geomechanically weaker than the Eagle Ford Shale.

2. Maness Shale has a higher clay and lower calcite content than the Eagle Ford
Shale.

3. The Maness acts as a fracture barrier between the Eagle Ford and the

underlying water wet formation.

The geomechanical studies measuring rock strength were performed utilizing the point
load penetrometer (Dimpler) and the micro-rebound hammer (Bambino) demonstrate that the
Maness is significantly weaker than the other formations, supporting hypothesis 1. After
converting the raw geomechanical data to unconfined compressive strength (UCS), average UCS
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values derived from the penetrometer for the Maness are 32% lower than those for the Eagle
Ford and 75% lower than the Buda. Similarly, average Bambino UCS values for the Maness are
36% lower than the Eagle Ford and 77% lower than the Buda. When the two types of
geomechanical data are averaged, the Maness has an average UCS of 2,646 psi (18.2 MPa)
compared to the Eagle Ford with an average UCS of 4,337 psi (29.9 MPa), which is 61.0% higher

than the Maness.

XRD analyses reveal that an average Maness sample is composed of 45.5 % clay,
whereas the average Eagle Ford sample contains 31.7 % clay, 13.8 % less than the Maness,
supporting hypothesis 2. The difference in clay content is primarily due to the presence of the
clay-rich microfacies “a” (Massive argillaceous mudstone) within the Maness, which does not

occur within the Eagle Ford.

The isopach map trends suggest a clay-rich deltaic source to the northeast was active
during the time of deposition of the Maness, but was not a significant source of clay during the
time of deposition of the Eagle Ford. The thickest Maness intervals occur within the Gonzales
and Karnes counties troughs, which suggests that the troughs were relative lows during the time

of deposition of Maness.

A comparison of oil to water ratios to Maness thicknesses showed a strong correlation
between the two variables; as Maness thicknesses decreased, oil to water ratios also decreased,
for both the private and public production data sets suggesting that the Maness is acting as a
fracture barrier, supporting hypothesis 3. The threshold of thickness necessary for the Maness

to act as a fracture barrier is 10 ft (3.1 m).

In summary, the results of this study suggest that the Maness was deposited by a

separate depositional system than the overlying Eagle Ford based on differing depositional
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trends and mineralogy. Due to its higher clay content, the Maness is more ductile than the

Eagle Ford, enabling the Maness to act as a fracture barrier.
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APPENDIX A — Thin Section Scans

Prost Unit G SH 044
| T,

11044’9"- recrystallized laminated limestone; laminated mudstone with high abundances of
planktonic foraminifera with a phosphate nodule
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11046’0”- recrystallized laminated limestone with fibrous calcite; pyritized ash bed; laminated
mudstone with abundant inoceramid fragments and foraminifera
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ProstUmit GSH ~ ¢ 0 no4.l

11047'11"- massive argillaceous mudstone (1.5 cm) interbedded with indistinctly laminated
mudstone
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ProstUnit G SH . 1060.)

11060’1”- <1mm winnowed lag; multiple (1.5 cm) massive argillaceous mudstone; indistinctly
laminated mudstone few inoceramid fragments
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11063’8”- very thin winnowed lag; indistinctly laminated mudstone; thin massive argillaceous
mudstones
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ProsT Unt G SC1 1065.5

11065’5”- recrystallized limestone truncating indistinctly laminated mudstone and interbedded
massive argillaceous mudstones
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>

11066'10"- fibrous calcite encasing ash bed; recrystallized laminated limestone

104



ProstUnit &4 SH e

11068’7”- 2 fibrous calcite “beef” — top individual totally recrystallized blades are up to 2 cm in
length; recrystallized laminated limestone with inoceramids and planktonic foraminifera and
evidence of brown clasts; olive green ash bed with pyrite rhombs; indistinctly laminated
mudstone with abundant minute planktonic foraminifera and pyrite
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11071’8”- indistinctly laminated mudstone with abundant minute planktonic foraminifera and
pyrite
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Prost Unit G SH * mwy2's™

11072’9”- massive limestone, mottled to massively bioturbated with calcispheres,
benthic/agglutinated foraminifera, ostracods, and echinoid spine
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11072’11”- massive limestone, mottled to massively bioturbated with calcispheres,
benthic/agglutinated foraminifera, ostracods
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SANTE NORTH UNIT A 1H Thin Section Descriptions

(Sante North Unit IH (300"

11300’9”- laminated mudstone; recrystallized laminated limestone
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Prost Unit G SH 1t301°s"

11301’5”- recrystallized laminated limestone; indistinctly laminated mudstone with inoceramid
pieces
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11305’9”- recrystallized laminated limestone with fibrous calcite; indistinctly laminated
mudstone with abundant inoceramid and fish pieces; massive argillaceous mudstone
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11308’5”- alternating massive argillaceous mudstone (1.5 cm) interbedded with indistinctly
laminated mudstone
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Sonte Novih Unik W

11313’3”- large (1.5 cm) pyrite nodule within massive argillaceous mudstones and thin
indistinctly laminated mudstones; taken under reflected light.
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11322’0”- recrystallized laminated limestone; large (1cm) fibrous calcite; ash bed
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11327’6”- recrystallized laminated limestone with fibrous calcite; indistinctly laminated and
massive argillaceous mudstone; ash bed
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Sante Nocth Unit IH

11329’0”- recrystallized laminated limestone with winnowed lags; indistinctly laminated
mudstone; few thin massive argillaceous mudstone
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Sarte Norih Vait \W w329tV

11329’6”- alternating massive argillaceous mudstone interbedded with indistinctly laminated
mudstone
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Sante North Unik W 334.9

11334’9”- alternating massive argillaceous mudstone interbedded with indistinctly laminated
mudstone with sizeable pyrite nodules with a thin ash bed and inoceramids. Taken under
reflected light.

118



Prost Unit G 5t

11335’1”- massive Limestone, mottled to massively bioturbated with calcispheres,
benthic/agglutinated foraminifera, ostracods
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APPENDIX B — Core Descriptions
PROST G 5H
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PROST G 5H

CORE

CORE
DEPTH(FT) DEPTH(FT)
Hoes Lithofacies A 11071 L ...continued
Lithofacies B
Lithofacies C
11067 Lithofacies A 11072 Maness-Buda Contact
Lithofacies E
Lithofacies B
Lithofacies A
11068 11073
Lithofacies F
Lithofacies C Lithofacies E
Lithofacies D
11069 Lithofacies A 2074
Lithofacies B
11070
Lithofacies B/C
11071

123



SANTE NORTHUNITA 1H
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SANTE NORTHUNITA 1H
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APPENDIX C — Microscope Images

PROST G 5H

11044’9" - phosphate nodule within indistinctly laminated mudstone with inoceramid fragments
and calcite filled foraminifera; taken with cross-polarized light.
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100 pm

11063’8” - indistinctly laminated mudstone with calcite filled foraminifera; taken with cross-
polarized light.
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200 pm

e

11063’8” - indistinctly laminated mudstone with calcite filled foraminifera; massive argillaceous
mudstone; taken with cross-polarized light.
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11063’8” - indistinctly laminated mudstone with calcite and pyrite filled foraminifera; taken with
cross-polarized light.
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200 pm

11068’7” - fibrous calcite; ash bed with pyrite; taken with quartz plate under cross-polarized
light.
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11072’11” - calcisphere packstone, with abundant calcispheres, and planktonic foraminifera;
taken with cross-polarized light.
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Sante North Unit A 1H

11301’5” - Recrystallized limestone with calcite filled foraminifera; taken with cross-polarized
light.
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11301’5” - indistinctly laminated mudstone with calcite filled foraminifera; taken with cross-
polarized light.
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11305’9” - recrystallized limestone and ash bed; taken with quartz plate under cross-polarized
light.
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11308’5” - massive argillaceous mudstone; taken with cross-polarized light.
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11313’3” —large (1.5 cm) pyrite nodule with calcite cement; taken with quartz plate under
cross-polarized light.
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11322’0” - recrystallized laminated limestone; taken with cross-polarized light.
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6” - fibrous calcite; ash bed with pyrite; taken under cross-polarized light

11327

141



11327’6” - fibrous calcite; ash bed with pyrite; taken with quartz plate under cross-polarized
light.
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11334’9” - calcite-filled benthic foraminifera within a massive argillaceous mudstone; taken with
cross-polarized light.
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11334’9” - calcite-filled benthic foraminifera within a massive argillaceous mudstone; taken with
cross-polarized light.
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11334’9” - ostracod within a massive argillaceous mudstone; taken with cross-polarized light.
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11335’1” - Maness/Buda contact with alternating calcisphere packstone and foraminifera-rich
indistinctly laminated mudstone; taken with cross-polarized light.
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11335’1” - Maness/Buda contact with alternating calcisphere packstone and indistinctly
laminated mudstone; taken with cross-polarized light.
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APPENDIX D — X-ray Diffraction
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ABSTRACT

THE MANESS SHALE: A COMPARISON OF THE GEOMECHANICAL AND MINERALOGICAL
PROPERTIES WITHIN THE LOWER EAGLE FORD FORMATION, SOUTH TEXAS

By Samantha Patterson, M.S., 2018
Department of Geology
Texas Christian University

Thesis Advisor: Richard Denne, Hunter Enis Chair in Petroleum Geology

The Maness Shale is a clay-rich mudrock that has been correlated to the basal Lower Eagle Ford
in South Texas. Where present, the Maness may prove beneficial, acting as a fracture barrier
between hydraulically fractured Eagle Ford wellbores and underlying aquifers. Geomechanical
studies demonstrate that the Maness is 34% weaker than the Eagle Ford and 76% weaker than
the Buda. XRD analyses found that the samples from the Maness contain an average of 10%
more clay than the Eagle Ford.

A regression analysis established a 91.7% correlation between Maness thickness and oil/water
ratios, which are based on cumulative first year oil and water production, indicating that the
Maness may be acting as a fracture barrier in the region. This analysis also found a 50%
decrease in oil/water ratios between Maness thicknesses of 5 to 10 ft (1.5 to 3.1 m), suggesting
that a minimum of 10 ft is needed for the Maness to effectively act as a fracture barrier.



