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Abstract

In this paper, we introduce energy harvesting into a cognitive radio sensor network to power the network with renewable energy
sources so as to achieve self-sustainability of energy-limited sensors. In our work, the cognitive radio technology enable sensors
access to the underutilized spectrum for the purpose of coping with the spectrum-scarcity problem in the unlicensed band. Using
centralized cooperative spectrum sensing, a set of cognitive sensors is chosen from candidate sensors with different received
primary users’ signal powers and energy-arrival rates. After detecting the state of a primary channel, we also need to determine
which cognitive sensor can get to access the primary channel as well as the power level to be used upon the transmission. The
above sensing-access design problem is formulated as an infinite-horizon partially observable Markov decision process, in which
the primary goal is to maximize the long-term expected throughput. Through using a value iteration approach, we propose an
optimal sensing-access policy. At last, numerical results are presented to verify the superiority of our proposed policy to the
existing policy.
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1. Introduction

A wireless sensor network (WSN), which is capable of performing event monitoring and data gathering, has been
applied to various fields, including environment monitoring, military surveillance, patient monitoring and smart homes
[1, 2]. Currently, most WSNs operate on unlicensed fixed spectrum for data transmission. Due to the coexistence of
various emerging networking standards, particularly IEEE 802.11, Bluetooth (IEEE 802.15.1), and WSN itself, the
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unlicensed spectrum has become saturated [3]. Cognitive Radio (CR) [4, 5, 6, 7, 8], which enables the secondary
(unlicensed) users (SUs) to exploit the unused spectrum resource left by the primary (licensed) users (PUs), provides
a promising path to realize dynamic spectrum access and enhance the wireless spectrum efficiency. It is therefore
imperative to employ CR in WSNs to mitigate the spectrum-scarcity problem in the unlicensed band, which gives
birth to CR sensor networks (CRSNs) [9, 10, 11].

In addition to bring above potential benefits by implementing CR in WSNs, many new issues have also been intro-
duced. Specifically, in CRSNs, in order to utilize the idle spectrum and provide incumbent protection for the primary
transmission, SUs need to continuously perform periodical spectrum sensing together with decision-makings on the
availability of primary spectrum. Although battery replacing or recharging can extend the functioning time of SUs
to a certain extent, such techniques usually afford high cost and involve inconvenient or even impossible operations
in some cases [12]. One emerging technique targeting energy-constrained communication systems is energy harvest-
ing (EH) [13, 14, 15]. Energy from renewable energy sources can recharge the sensor nodes’ battery and enable the
CRSNs to potentially operate perpetually without the need for external power cables or periodic battery replacements
[16]. Therefore, incorporating EH in CRSN makes sustainable and environment-friendly sensor networks possible.

There have been many research studies on CR networks with energy harvesting capability. In [17], the authors
introduce a stochastic formulation of the network utility optimization problem for EH CR sensor networks, and pro-
pose an online and low-complexity algorithm. [18] investigates an energy harvesting cognitive radio network with the
save-then-transmit protocol, the authors mainly study the joint optimization of saving factor, sensing duration, sens-
ing threshold and fusion rules to maximize the achievable throughput. In [19], for a single-user multichannel setting,
jointly considering probabilistic arrival energy, channel conditions and the spectrum occupancy state of the primary
network, the authors propose a channel selection criterion. In this research, we investigate EH CR sensor networks
in which each cognitive sensor (i.e. SU) is equipped with a finite-capacity battery and powered by energy harvesting.
The main contributions are summarized as follows:

1. Allowing for the sensing errors, channel condition variation as well as the fluctuation of harvested energy, we for-
mulate the spectrum sensing-access problem as an infinite-horizon partially observable Markov decision process
(POMDP), in which the primary goal is to maximize the long-term expected throughput.

2. We propose an optimal spectrum sensing-access policy through applying the value iteration approach in the
POMDP, where the sensing strategy specifies the set of SUs for cooperative spectrum sensing, while the access
strategy specifies which an SU gets to access the channel along with the transmission power.

3. We provide numerical results to evaluate the performance of our proposed policy and show that a significant gain
is achieved by our proposed policy over the existing policy.

The rest of the paper is organized as follows. In Section 2, we present the EH CR sensor network model. Section 3
formulates the design of sensing-access within the POMDP framework. In Section 4, we propose the optimal sensing-
access policy. Numerical results are provided in Section 5. Finally, Section 6 concludes our work.

2. Network Model

In this paper, we consider the primary network is comprised of a licensed channel occupied by a PU transmitter,
and employs the synchronous slotted communication protocol with duration T . For time slot i, we use θi ∈ Θ �
{0(busy), 1(idle)} denotes the status of the channel occupancy. The traffic of the primary network is modeled as a
time-homogeneous discrete Markov process as assumed in [20], where the channel occupancy state randomly changes
between idle and occupied according to a discrete Markov process. The state transition probability Pr(θi = c�|θi−1 =

c) is denoted by Pc�c, where c�, c ∈ Θ. The stationary probabilities of channel being idle and busy are given by
π1 =

P01
P10+P01

and π0 =
P10

P10+P01
, respectively.

Assume there are N cognitive sensors, which are also called SUs, that cooperate in channel sensing and access.
We consider that the SUs do not have a fixed power supply and is solely powered by energy scavenged from the
ambient environment. The energy arrival process at the nth SU {Eh

n,i} is assumed to be a sequence of independent
random variables with Bernoulli distribution [19]. In each time slot, SUs can harvest energy eh with probabilities
ph = [ph,1, ph,2, · · · , ph,N]. Therefore, the average harvested energy rate of the nth SU is PEH,n = ph,neh. In order to
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unlicensed spectrum has become saturated [3]. Cognitive Radio (CR) [4, 5, 6, 7, 8], which enables the secondary
(unlicensed) users (SUs) to exploit the unused spectrum resource left by the primary (licensed) users (PUs), provides
a promising path to realize dynamic spectrum access and enhance the wireless spectrum efficiency. It is therefore
imperative to employ CR in WSNs to mitigate the spectrum-scarcity problem in the unlicensed band, which gives
birth to CR sensor networks (CRSNs) [9, 10, 11].

In addition to bring above potential benefits by implementing CR in WSNs, many new issues have also been intro-
duced. Specifically, in CRSNs, in order to utilize the idle spectrum and provide incumbent protection for the primary
transmission, SUs need to continuously perform periodical spectrum sensing together with decision-makings on the
availability of primary spectrum. Although battery replacing or recharging can extend the functioning time of SUs
to a certain extent, such techniques usually afford high cost and involve inconvenient or even impossible operations
in some cases [12]. One emerging technique targeting energy-constrained communication systems is energy harvest-
ing (EH) [13, 14, 15]. Energy from renewable energy sources can recharge the sensor nodes’ battery and enable the
CRSNs to potentially operate perpetually without the need for external power cables or periodic battery replacements
[16]. Therefore, incorporating EH in CRSN makes sustainable and environment-friendly sensor networks possible.

There have been many research studies on CR networks with energy harvesting capability. In [17], the authors
introduce a stochastic formulation of the network utility optimization problem for EH CR sensor networks, and pro-
pose an online and low-complexity algorithm. [18] investigates an energy harvesting cognitive radio network with the
save-then-transmit protocol, the authors mainly study the joint optimization of saving factor, sensing duration, sens-
ing threshold and fusion rules to maximize the achievable throughput. In [19], for a single-user multichannel setting,
jointly considering probabilistic arrival energy, channel conditions and the spectrum occupancy state of the primary
network, the authors propose a channel selection criterion. In this research, we investigate EH CR sensor networks
in which each cognitive sensor (i.e. SU) is equipped with a finite-capacity battery and powered by energy harvesting.
The main contributions are summarized as follows:

1. Allowing for the sensing errors, channel condition variation as well as the fluctuation of harvested energy, we for-
mulate the spectrum sensing-access problem as an infinite-horizon partially observable Markov decision process
(POMDP), in which the primary goal is to maximize the long-term expected throughput.

2. We propose an optimal spectrum sensing-access policy through applying the value iteration approach in the
POMDP, where the sensing strategy specifies the set of SUs for cooperative spectrum sensing, while the access
strategy specifies which an SU gets to access the channel along with the transmission power.

3. We provide numerical results to evaluate the performance of our proposed policy and show that a significant gain
is achieved by our proposed policy over the existing policy.

The rest of the paper is organized as follows. In Section 2, we present the EH CR sensor network model. Section 3
formulates the design of sensing-access within the POMDP framework. In Section 4, we propose the optimal sensing-
access policy. Numerical results are provided in Section 5. Finally, Section 6 concludes our work.

2. Network Model

In this paper, we consider the primary network is comprised of a licensed channel occupied by a PU transmitter,
and employs the synchronous slotted communication protocol with duration T . For time slot i, we use θi ∈ Θ �
{0(busy), 1(idle)} denotes the status of the channel occupancy. The traffic of the primary network is modeled as a
time-homogeneous discrete Markov process as assumed in [20], where the channel occupancy state randomly changes
between idle and occupied according to a discrete Markov process. The state transition probability Pr(θi = c�|θi−1 =

c) is denoted by Pc�c, where c�, c ∈ Θ. The stationary probabilities of channel being idle and busy are given by
π1 =

P01
P10+P01

and π0 =
P10

P10+P01
, respectively.

Assume there are N cognitive sensors, which are also called SUs, that cooperate in channel sensing and access.
We consider that the SUs do not have a fixed power supply and is solely powered by energy scavenged from the
ambient environment. The energy arrival process at the nth SU {Eh

n,i} is assumed to be a sequence of independent
random variables with Bernoulli distribution [19]. In each time slot, SUs can harvest energy eh with probabilities
ph = [ph,1, ph,2, · · · , ph,N]. Therefore, the average harvested energy rate of the nth SU is PEH,n = ph,neh. In order to
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Fig. 1. Illustration of the transmission process.

opportunistically exploit the primary channel without interfering the primary transmission, each time slot is mainly
comprised of sensing phase, the acquisition phase, and the transmission phase, as shown in Fig. 1. At the beginning of
a time slot, the central controller (CC) broadcasts the information regarding the selected sensing SUs. In the sensing
phase, each of the SU selected by the CC senses the status of the primary channel with duration τs, consuming energy
es = psτs where ps is the sensing power. In the acquisition phase, the sensing SUs send 1−bit sensing decisions and
all the SUs send information respecting the harvested energy with 1−bit to the CC [21]. We assume each SU reports
the information in a time-division multiple-access (TDMA) network, and the time duration cost by each SU is τ. In
the transmission phase, CC chooses an SU to access the primary channel with a certain transmission power level.

At the beginning of time slot i, the available energy of SUs Ei = [E1,i, E2,i, · · · , EN,i] is known to the CC. Referring
the available energy Ei, the CC first makes a sensing decision xi = [x1,i, x2,i, · · · , xN,i], where the available sensing
action xn,i ∈ Xn,i(En,i) of the nth SU depends on its available energy. Specifically, if En,i ≥ es, then Xn,i(En,i) = {0, 1}
where 1 indicates the nth SU is chosen to sense the channel, while 0 indicates the nth SU stays in idle in the sensing
phase; if En,i < es, then Xn,i(En,i) = {0}. The sensing SUs then send the sensing outcomes to the CC, which makes
the final decision on the channel status based on the OR fusion rule [21]. Define the sensing result of the ith time slot
as Oi ∈ {−1, 0, 1}, where “−1”, “0”, “1” represent no sensing, busy channel and idle channel, respectively. The false
alarm probability (Qf i) and the detection probability (Qdi) of the cooperative CR system are given by [22]:

Q f i(xi) = 1 −
N∏

n=1

(1 − p f n,i xn,i), Qdi(xi) = 1 −
N∏

n=1

(1 − pdi xn,i), (1)

where p f n,i and pdi are probability of false alarm and the probability of detection respecting the nth SU. The proba-
bility of the false alarm event by assuming the complex-valued PU signal and circularly symmetric complex Gaussian
(CSCG) noise is given by [23]:

p f n,i = Q(
√

2βn + 1Q−1(pdi) +
√
τs fsβn), (2)

where βn means the received primary signal-to-noise ratio (SNR) at the nth SU, fs is the sampling frequency and
Q(x) = (1/

√
2π)
∫ ∞

x exp(−t2/2)dt. After sensing the primary channel, the CC chooses an SU among the sensing
SUs to access the primary channel according to an access decision φi ∈ Φn,i(Oi, En,i). Define Φn,i(Oi, En,i) = 0 for
Oi ∈ {−1, 0}, and Φn,i(Oi, En,i) = {0, {nIEn,i≥es |xn,i = 1}} for Oi ∈ {1}. For the nth SU, the available energy En,i takes
values from a finite setB � {0, 1, 2, · · · B}. Then the available energy evolves as En,i+1 = min(En,i−Ec

n,i+Eh
n,i, B), where

Ec
n,i = esxn,i+Iφi=nEt(pt,i). Et(pt,i) = (T−τs−Nτ)pt,i represents the energy consumption in the data transmission phase,

where pt,i indicates the transmission power. Let Gn,i denote the channel power gain from the nth SU to the receiver at
time slot i. The channel fading process of the nth SU {Gn,i} is assumed to be a time-homogeneous Finite-State Markov
Chain (FSMC) [24] with the one-step transition probability given by Pgg�,n = Pr(Gn,i+1 = g�|Gn,i = g), g, g� ∈ G.
G is a finite set of discretized channel gains. It is assumed that at the beginning of slot i, the CC obtains the perfect
knowledge of channel gains Gi = [G1,i,G2,i, · · · ,GN,i], as assumed in [25]. We use N0 denotes the noise power at the
receiver, and τtr = T − τs − nτ. If the channel state is θi = 1 and the access decision is φi = n, then the throughput of
time slot i is

r(pt,i,Gn,i) = τtr log(1 +
pt,iGn,i

N0
). (3)

3. Problem Formulation

We first introduce the state space, the action space, the observation space, the observation probability, the state
transition probability, and the reward function. At the beginning of time slot i, the CC obtains the available energy Ei
and the channel state information Gi which are fully observable and known exactly. However, the current spectrum
occupancy state of the primary network θi cannot be directly observed due to the presence of sensing errors or a
potential energy depletion. The CC can infer the spectrum occupancy state based on all its past actions and observation
history Hi � {av,Ov}i−1

v=1, where av indicates the action regarding the sensing decision as well as the access decision
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at slot v. As shown in [26], a sufficient statistic for the spectrum occupancy state θi is encapsulated by a belief
bi � Pr(θi = 1|Hi) ∈ Ω which denotes the probability of the primary channel being idle in slot i, conditioned on
the complete action and observation history Hi. Ω indicates the belief space. Therefore, the system state S i of time
slot i can be defined by a three tuple as S i = (bi,Ei,Gi) ∈ S = Ω × BN × GN . Based on the system state S i, the
CC first makes a spectrum access decision xi ∈ Xi = X1,i(E1,i) × X2,i(E2,i) × · · · × XN,i(EN,i), where Xi denotes the
admissible sensing action set. Based on the sensing result Oi, the CC then determines the access decision φi along
with the transmission power pt,i. Denote the P(φi) as the action set of transmission power when the spectrum access
decision is φi. If φi = 0, we have P(0) = {0}. If φi = n ∈ [1,N], then P(n) = {0,Δ, 2Δ, · · · , Lmax

n,i Δ)}, where Δ denotes
the step size of the transmission power, and Lmax

n,i Δ is the maximum transmission power of the nth SU. Considering

the energy consumption for transmission should be no greater than the available energy, we have Lmax
n,i Δ ≤

[En,i−es]+

τtr
,

where [x]+ = max{0, x}. In this paper, we set Δ = 1/τtr, corresponding to consuming one unit of the energy quantum
during the transmission phase, and Lmax

n,i = [En,i − es]+. The admissible action ai can be represented as ai ∈ A =�
(xi, φi, pt,i)|xi ∈ Xi, φi ∈ [0,N], pt,i ∈ P(φi)

�
. After performing the action ai = (xi, φi, pt,i), the receiver broadcasts

an acknowledge (ACK) ψi on the error-free common control channel. Define the observation at the ith time slot as
Zi : (Oi, ψi), which is defined as follows: (1)Zi = 1 : (Oi = −1, ψi = 0): the CC does not carry out the spectrum sensing
since the available energy is not sufficient to perform channel sensing or other reasons; (2)Zi = 2 : (Oi = 1, ψi = 1):
the channel is sensed to be idle, the CC accesses the channel, and the ACK is received; (3)Zi = 3 : (Oi = 1, ψi = 0):
the channel is sensed to be idle, but no ACK is received either because the CC does not access to the channel due
to the energy shortage for transmission, or because of a miss detection; (4)Zi = 4 : (Oi = 0, ψi = 0): the channel is
sensed to be busy, the CC does not access the channel, and received nothing. Given the S i and ai, the observation Zi
is:

Pr(Zi |θi = c,Ei = E, ai) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1·xi=0, Zi = 1,

I1·xi�0Iφi�0Q f i(xi)c, Zi = 2,

I1·xi�0[Qdi(xi)c+Iφi=0Q f i(xi)c], Zi=3,

I1·xi�0(Q f i(xi)c + Qdi(xi)c), Zi = 4,

(4)

where y = (1−y). Based on the Bayes’ rule, the CC then updates its belief bi+1 = T (bi, Zi, ai) according to the current
belief state bi, the observation Zi as well as the action ai as follows

bi+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ(bi), Zi = 1,

P11, Zi = 2,

Γ(
Iφi=0Q f i(xi)bi

Qdi(xi)(1 − bi)+Iφi=0Q f i(xi)bi
), Zi = 3,

Γ(
Q f i(xi)bi

Q f i(xi)bi + Qdi(xi)(1 − bi)
), Zi = 4,

(5)

where the operator Γ(·) is defined as Γ(y) = yP11 + (1 − y)P01. At the end of time slot i, the system state then
switches from S i to a new state S i+1. The state transition probability from S i = (b,E,G) to the next system state
S i+1 = (T (b, Zi, ai),E�,G�) is given by

Pr(S i+1 = (T (b, Zi, ai),E�,G�)|S i = (b,E,G), ai,Zi) = Pr(E�|E, ai)Pr(G�|G), (6)

where Pr(E�|E, ai) =
�N

n=1 PEnE�n . PEnE�n indicates the transition of the available energy of the nth SU, and can be
calculated by

PEnE�n =

⎧⎪⎪⎨⎪⎪⎩
phn, En = min(En,i − Ec

n,i + eh, B),

1 − phn, En = En,i − Ec
n,i.

(7)

Pr(G�|G) indicates the evolvement of the channel states of SUs, which can be calculated by Pr(G�|G) =
�N

n=1 PGnG�n ,
where PGnG�n denotes the channel state transition from Gn to G�n of the nth SU. The EH CR sensor network gains an
immediate reward if one SU accesses the primary channel and successfully receives an acknowledgement from the
receiver (i.e. Zi = 2), otherwise no reward is received. The immediate reward is defined as the achieved throughput in
a single time slot, which can be expressed as R(ai, Zi) = r(pt,i,Gn,i) if I1·xi�0φi pt,i � 0, Zi = 2. Otherwise, R(ai, Zi) = 0

4. Optimal Policy

The optimal sensing-access policy for maximizing the expected total throughput of the EH CR sensor network can
be formulated as a POMDP. Define a sensing-access policy Π = [π1, π2, · · · , πT ] : S → A, where πi maps the system
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Fig. 1. Illustration of the transmission process.

opportunistically exploit the primary channel without interfering the primary transmission, each time slot is mainly
comprised of sensing phase, the acquisition phase, and the transmission phase, as shown in Fig. 1. At the beginning of
a time slot, the central controller (CC) broadcasts the information regarding the selected sensing SUs. In the sensing
phase, each of the SU selected by the CC senses the status of the primary channel with duration τs, consuming energy
es = psτs where ps is the sensing power. In the acquisition phase, the sensing SUs send 1−bit sensing decisions and
all the SUs send information respecting the harvested energy with 1−bit to the CC [21]. We assume each SU reports
the information in a time-division multiple-access (TDMA) network, and the time duration cost by each SU is τ. In
the transmission phase, CC chooses an SU to access the primary channel with a certain transmission power level.

At the beginning of time slot i, the available energy of SUs Ei = [E1,i, E2,i, · · · , EN,i] is known to the CC. Referring
the available energy Ei, the CC first makes a sensing decision xi = [x1,i, x2,i, · · · , xN,i], where the available sensing
action xn,i ∈ Xn,i(En,i) of the nth SU depends on its available energy. Specifically, if En,i ≥ es, then Xn,i(En,i) = {0, 1}
where 1 indicates the nth SU is chosen to sense the channel, while 0 indicates the nth SU stays in idle in the sensing
phase; if En,i < es, then Xn,i(En,i) = {0}. The sensing SUs then send the sensing outcomes to the CC, which makes
the final decision on the channel status based on the OR fusion rule [21]. Define the sensing result of the ith time slot
as Oi ∈ {−1, 0, 1}, where “−1”, “0”, “1” represent no sensing, busy channel and idle channel, respectively. The false
alarm probability (Qf i) and the detection probability (Qdi) of the cooperative CR system are given by [22]:

Q f i(xi) = 1 −
N∏

n=1

(1 − p f n,i xn,i), Qdi(xi) = 1 −
N∏

n=1

(1 − pdi xn,i), (1)

where p f n,i and pdi are probability of false alarm and the probability of detection respecting the nth SU. The proba-
bility of the false alarm event by assuming the complex-valued PU signal and circularly symmetric complex Gaussian
(CSCG) noise is given by [23]:

p f n,i = Q(
√

2βn + 1Q−1(pdi) +
√
τs fsβn), (2)

where βn means the received primary signal-to-noise ratio (SNR) at the nth SU, fs is the sampling frequency and
Q(x) = (1/

√
2π)
∫ ∞

x exp(−t2/2)dt. After sensing the primary channel, the CC chooses an SU among the sensing
SUs to access the primary channel according to an access decision φi ∈ Φn,i(Oi, En,i). Define Φn,i(Oi, En,i) = 0 for
Oi ∈ {−1, 0}, and Φn,i(Oi, En,i) = {0, {nIEn,i≥es |xn,i = 1}} for Oi ∈ {1}. For the nth SU, the available energy En,i takes
values from a finite setB � {0, 1, 2, · · · B}. Then the available energy evolves as En,i+1 = min(En,i−Ec

n,i+Eh
n,i, B), where

Ec
n,i = esxn,i+Iφi=nEt(pt,i). Et(pt,i) = (T−τs−Nτ)pt,i represents the energy consumption in the data transmission phase,

where pt,i indicates the transmission power. Let Gn,i denote the channel power gain from the nth SU to the receiver at
time slot i. The channel fading process of the nth SU {Gn,i} is assumed to be a time-homogeneous Finite-State Markov
Chain (FSMC) [24] with the one-step transition probability given by Pgg�,n = Pr(Gn,i+1 = g�|Gn,i = g), g, g� ∈ G.
G is a finite set of discretized channel gains. It is assumed that at the beginning of slot i, the CC obtains the perfect
knowledge of channel gains Gi = [G1,i,G2,i, · · · ,GN,i], as assumed in [25]. We use N0 denotes the noise power at the
receiver, and τtr = T − τs − nτ. If the channel state is θi = 1 and the access decision is φi = n, then the throughput of
time slot i is

r(pt,i,Gn,i) = τtr log(1 +
pt,iGn,i

N0
). (3)

3. Problem Formulation

We first introduce the state space, the action space, the observation space, the observation probability, the state
transition probability, and the reward function. At the beginning of time slot i, the CC obtains the available energy Ei
and the channel state information Gi which are fully observable and known exactly. However, the current spectrum
occupancy state of the primary network θi cannot be directly observed due to the presence of sensing errors or a
potential energy depletion. The CC can infer the spectrum occupancy state based on all its past actions and observation
history Hi � {av,Ov}i−1

v=1, where av indicates the action regarding the sensing decision as well as the access decision
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at slot v. As shown in [26], a sufficient statistic for the spectrum occupancy state θi is encapsulated by a belief
bi � Pr(θi = 1|Hi) ∈ Ω which denotes the probability of the primary channel being idle in slot i, conditioned on
the complete action and observation history Hi. Ω indicates the belief space. Therefore, the system state S i of time
slot i can be defined by a three tuple as S i = (bi,Ei,Gi) ∈ S = Ω × BN × GN . Based on the system state S i, the
CC first makes a spectrum access decision xi ∈ Xi = X1,i(E1,i) × X2,i(E2,i) × · · · × XN,i(EN,i), where Xi denotes the
admissible sensing action set. Based on the sensing result Oi, the CC then determines the access decision φi along
with the transmission power pt,i. Denote the P(φi) as the action set of transmission power when the spectrum access
decision is φi. If φi = 0, we have P(0) = {0}. If φi = n ∈ [1,N], then P(n) = {0,Δ, 2Δ, · · · , Lmax

n,i Δ)}, where Δ denotes
the step size of the transmission power, and Lmax

n,i Δ is the maximum transmission power of the nth SU. Considering

the energy consumption for transmission should be no greater than the available energy, we have Lmax
n,i Δ ≤

[En,i−es]+

τtr
,

where [x]+ = max{0, x}. In this paper, we set Δ = 1/τtr, corresponding to consuming one unit of the energy quantum
during the transmission phase, and Lmax

n,i = [En,i − es]+. The admissible action ai can be represented as ai ∈ A =�
(xi, φi, pt,i)|xi ∈ Xi, φi ∈ [0,N], pt,i ∈ P(φi)

�
. After performing the action ai = (xi, φi, pt,i), the receiver broadcasts

an acknowledge (ACK) ψi on the error-free common control channel. Define the observation at the ith time slot as
Zi : (Oi, ψi), which is defined as follows: (1)Zi = 1 : (Oi = −1, ψi = 0): the CC does not carry out the spectrum sensing
since the available energy is not sufficient to perform channel sensing or other reasons; (2)Zi = 2 : (Oi = 1, ψi = 1):
the channel is sensed to be idle, the CC accesses the channel, and the ACK is received; (3)Zi = 3 : (Oi = 1, ψi = 0):
the channel is sensed to be idle, but no ACK is received either because the CC does not access to the channel due
to the energy shortage for transmission, or because of a miss detection; (4)Zi = 4 : (Oi = 0, ψi = 0): the channel is
sensed to be busy, the CC does not access the channel, and received nothing. Given the S i and ai, the observation Zi
is:

Pr(Zi |θi = c,Ei = E, ai) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1·xi=0, Zi = 1,

I1·xi�0Iφi�0Q f i(xi)c, Zi = 2,

I1·xi�0[Qdi(xi)c+Iφi=0Q f i(xi)c], Zi=3,

I1·xi�0(Q f i(xi)c + Qdi(xi)c), Zi = 4,

(4)

where y = (1−y). Based on the Bayes’ rule, the CC then updates its belief bi+1 = T (bi, Zi, ai) according to the current
belief state bi, the observation Zi as well as the action ai as follows

bi+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ(bi), Zi = 1,

P11, Zi = 2,

Γ(
Iφi=0Q f i(xi)bi

Qdi(xi)(1 − bi)+Iφi=0Q f i(xi)bi
), Zi = 3,

Γ(
Q f i(xi)bi

Q f i(xi)bi + Qdi(xi)(1 − bi)
), Zi = 4,

(5)

where the operator Γ(·) is defined as Γ(y) = yP11 + (1 − y)P01. At the end of time slot i, the system state then
switches from S i to a new state S i+1. The state transition probability from S i = (b,E,G) to the next system state
S i+1 = (T (b, Zi, ai),E�,G�) is given by

Pr(S i+1 = (T (b, Zi, ai),E�,G�)|S i = (b,E,G), ai, Zi) = Pr(E�|E, ai)Pr(G�|G), (6)

where Pr(E�|E, ai) =
�N

n=1 PEnE�n . PEnE�n indicates the transition of the available energy of the nth SU, and can be
calculated by

PEnE�n =

⎧⎪⎪⎨⎪⎪⎩
phn, En = min(En,i − Ec

n,i + eh, B),

1 − phn, En = En,i − Ec
n,i.

(7)

Pr(G�|G) indicates the evolvement of the channel states of SUs, which can be calculated by Pr(G�|G) =
�N

n=1 PGnG�n ,
where PGnG�n denotes the channel state transition from Gn to G�n of the nth SU. The EH CR sensor network gains an
immediate reward if one SU accesses the primary channel and successfully receives an acknowledgement from the
receiver (i.e. Zi = 2), otherwise no reward is received. The immediate reward is defined as the achieved throughput in
a single time slot, which can be expressed as R(ai, Zi) = r(pt,i,Gn,i) if I1·xi�0φi pt,i � 0, Zi = 2. Otherwise, R(ai, Zi) = 0

4. Optimal Policy

The optimal sensing-access policy for maximizing the expected total throughput of the EH CR sensor network can
be formulated as a POMDP. Define a sensing-access policy Π = [π1, π2, · · · , πT ] : S → A, where πi maps the system
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state S i to the prescribed action ai ∈ A in slot i. The objective is to develop the optimal stationary policy Πopt to
maximize the expected total throughput of the EH CR sensor network through cooperative sensing and access over
an infinite horizon (T → ∞), which is equivalently to maximize the expected total rewards over an infinite horizon.
Given an arbitrary system state S i and a policy Π, the expected total discounted rewards, also termed as the value
function, is given by

VΠ(S i) = EΠ
{ ∞∑

q=i

λqR(aq, Zq)|S i
}
, S i ∈ S, aq ∈ A. (8)

It is known that for an arbitrary system state S ∈ S = (b,E,G), the optimal value function achieved by the optimal
policy Πopt satisfies the following Bellman optimality equation [27]:

VΠopt (b,E,G) = max
a∈A

b
4∑

k=1

Pr(Zk |1,E, a)U(b,E, a|Zk) + (1 − b)
4∑

k=1

Pr(Zk |0,E, a)U(b,E, a|Zk), (9)

where
U(b,E, a|Zk) = R(a, Zk)︸���︷︷���︸

immediate reward

+ λ
∑
E�

∑
G�

Pr(E�|E, a)Pr(G�|G)VΠopt (T (b, Zk , a),E�,G�)

︸��������������������������������������������������������������������︷︷��������������������������������������������������������������������︸
expected future reward

. (10)

U(b,E, a|Zk) can be interpreted as the conditional maximum expected reward for a given observation Zk, which is

Algorithm 1: Algorithm for the Optimal policy
Input: Error bound � → 0
Output: Optimal policy Πopt

1 Initialization: At i = 0, let V0(s) = 0 for all S ∈ S;
2 Repeat
3 for each S ∈ S do
4 Compute:
5 Vi+1(S ) = max

a∈As

{
b
∑4

k=1 Pr(Zk |1,E, a)Ui(b,E, a|Zk) +(1 − b)
∑4

k=1 Pr(Zk |0,E, a)Ui(b,E, a|Zk)
}
, where

6 Ui(b,E, a|Zk) = R(a, Zk) + λ
∑

E�
∑

G� Pr(E� |E, a)Pr(G� |G)Vi(T (b, Zk , a),E�,G�).
7 Update:
8 i = i + 1;
9 end

10 Until max
S∈S
|Vi+1(S ) − Vi(S )| < �(1 − λ)/2λ.

11 Πopt(S ) = arg max
a∈A

{
b
∑4

k=1 Pr(Zk |1,E, a)Ui+1(b,E, a|Zk) +(1 − b)
∑4

k=1 Pr(Zk |0,E, a)Ui+1(b,E, a|Zk).

comprised of two parts: the first term represents the immediate reward of the current slot defined in (7), while the
second term is the (discounted) expected future reward accrued starting from the current time slot with the updated
system state. The optimal policy can be found by the value iteration method shown in Algorithm 1. The algorithm
utilizes the fixed-point iteration method to solve the Bellman optimality equation with a stopping criteria. If we let
� → 0, then the algorithm returns the optimal policy Πopt [27].

5. Numerical Results

We present numerical results to evaluate the performance of the proposed policy in this section. The unit of energy
quantum is eu = 1 mJ, the battery capacity is 6 mJ. The channel state can be “B=Bad”, or “G=Good”, and the state
transition probabilities as follows: Pgg� = {PB,B = 0.3, PB,G = 0.7, PG,B = 0.7, PG,G = 0.3}. The channel power gains
at the “Bad”, and “Good” states equal to 0.2 and 1.5, respectively. The PU channel state transition probabilities are
P11 = 0.8 and P01 = 0.4. The probable arrival energy is eh = 3mJ. We assume there are three SUs, and the energy
harvesting probabilities are ph = [ph,1 = 0.8, ph,2 = 0.6, ph,3 = 0.4]. The primary SNRs received at the SUs are
β1 = −17dB, β2 = −16dB, β3 = −15dB. The initial channel state is G = [“Good”,“Good”,“Bad”], and the initial
belief is bi = 0.4. We set T = 100ms, τs = 10ms, and the sampling frequency is 1MHz. The information transmission
duration is τ = 1us. We assume te default sensing power is ps = 100mW, and pdi = 0.9. We set λ = 0.99, and the
normalized SNR by 1mw is 1/N0 = −5 dB. We compare the proposed optimal spectrum sensing-access policy with a
benchmark policy proposed in [21] to evaluate the performance. The benchmark policy allows the SU to explore the
channel diversity, but it adopts a fixed transmission power. We assume the fixed transmission power is Δ = eu/τtr.
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Fig. 2. (a) Expected total reward vs. channel idle belief; (b) Expected total reward vs. probable arrival energy;(c)Expected total reward vs. Energy
harvesting probability of SU 1.

Fig. 2(a) compares the expected total reward of the optimal policy and the benchmark policy with different settings
of belief. First, it can be seen that the performance of two policies strictly increases with bi. This is because a higher
bi indicates the CC believes the primary channel is idle with a higher probability, therefore the expected total reward
can be improved. Besides, we can also observe that the performance of the optimal policy outperforms the benchmark
policy for all settings of bi. This is because the optimal policy jointly considering the spectrum sensing as well as
the transmission power allocation, while the benchmark policy unable to adjust the transmission power to the belief.
Fig. 2(b) compares the expected total reward of the optimal policy and the benchmark policy with different settings
of probable arrival energy. First, it can be seen that the performance of the optimal policy monotonically increasing
with the eh, and finally achieves a saturation effect. This is because as to the lower region of eh, the available energy
increases as eh grows, and the SU is able to allocate more energy for channel sensing as well as the data transmission.
When eh is sufficient high, the total available energy is limited by the finite energy capacity B. Besides, we observe that
the performance of the benchmark policy slightly increases as eh grows. This is owing to that the benchmark policy
employs a fixed transmission power, and failed to efficiently utilize the higher available energy. Fig. 2(c) shows the
expected total reward of the optimal and the benchmark policy with different settings of energy harvesting probability
of SU 1. It can be seen that the performance of the optimal policy strictly increases with ph,1. This is because as
ph,1 grows, the optimal policy can exploit more energy for either spectrum sensing or data transmission to improve
performance. However, as to the benchmark policy, the performance is almost remains unchanged as ph,1 increases.
This is owing to that the benchmark policy can not utilize the adaptive transmission power.

6. Conclusion

In this research, we have investigated the optimal sensing-access policy for an EH CR sensor network, where the
sensing strategy specified whether to sense the spectrum as well as the set of sensing SUs, while the access strategy
specified which SU should access the spectrum along with the transmission power. Aiming to maximize the long-term
expected throughput, the design of the optimal sensing-access policy was formulated as an infinite-horizon POMDP,
in which the central controller dynamically adapts the sensing strategy together with the access strategy to the system
states comprised of the channel idle belief, available energy and channel quality. Through using the value iteration
approach in the POMDP, we derived the optimal sensing-access policy. Finally, numerical results were provided to
evaluate the performance of our proposed policies and it was shown that a significant gain was achieved by our
proposed policy over the existing policy.
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state S i to the prescribed action ai ∈ A in slot i. The objective is to develop the optimal stationary policy Πopt to
maximize the expected total throughput of the EH CR sensor network through cooperative sensing and access over
an infinite horizon (T → ∞), which is equivalently to maximize the expected total rewards over an infinite horizon.
Given an arbitrary system state S i and a policy Π, the expected total discounted rewards, also termed as the value
function, is given by

VΠ(S i) = EΠ
{ ∞∑

q=i

λqR(aq, Zq)|S i
}
, S i ∈ S, aq ∈ A. (8)

It is known that for an arbitrary system state S ∈ S = (b,E,G), the optimal value function achieved by the optimal
policy Πopt satisfies the following Bellman optimality equation [27]:

VΠopt (b,E,G) = max
a∈A

b
4∑

k=1

Pr(Zk |1,E, a)U(b,E, a|Zk) + (1 − b)
4∑

k=1

Pr(Zk |0,E, a)U(b,E, a|Zk), (9)

where
U(b,E, a|Zk) = R(a, Zk)︸���︷︷���︸

immediate reward

+ λ
∑
E�

∑
G�

Pr(E�|E, a)Pr(G�|G)VΠopt (T (b, Zk , a),E�,G�)

︸��������������������������������������������������������������������︷︷��������������������������������������������������������������������︸
expected future reward

. (10)

U(b,E, a|Zk) can be interpreted as the conditional maximum expected reward for a given observation Zk, which is

Algorithm 1: Algorithm for the Optimal policy
Input: Error bound � → 0
Output: Optimal policy Πopt

1 Initialization: At i = 0, let V0(s) = 0 for all S ∈ S;
2 Repeat
3 for each S ∈ S do
4 Compute:
5 Vi+1(S ) = max

a∈As

{
b
∑4

k=1 Pr(Zk |1,E, a)Ui(b,E, a|Zk) +(1 − b)
∑4

k=1 Pr(Zk |0,E, a)Ui(b,E, a|Zk)
}
, where

6 Ui(b,E, a|Zk) = R(a, Zk) + λ
∑

E�
∑

G� Pr(E� |E, a)Pr(G� |G)Vi(T (b, Zk , a),E�,G�).
7 Update:
8 i = i + 1;
9 end

10 Until max
S∈S
|Vi+1(S ) − Vi(S )| < �(1 − λ)/2λ.

11 Πopt(S ) = arg max
a∈A

{
b
∑4

k=1 Pr(Zk |1,E, a)Ui+1(b,E, a|Zk) +(1 − b)
∑4

k=1 Pr(Zk |0,E, a)Ui+1(b,E, a|Zk).

comprised of two parts: the first term represents the immediate reward of the current slot defined in (7), while the
second term is the (discounted) expected future reward accrued starting from the current time slot with the updated
system state. The optimal policy can be found by the value iteration method shown in Algorithm 1. The algorithm
utilizes the fixed-point iteration method to solve the Bellman optimality equation with a stopping criteria. If we let
� → 0, then the algorithm returns the optimal policy Πopt [27].

5. Numerical Results

We present numerical results to evaluate the performance of the proposed policy in this section. The unit of energy
quantum is eu = 1 mJ, the battery capacity is 6 mJ. The channel state can be “B=Bad”, or “G=Good”, and the state
transition probabilities as follows: Pgg� = {PB,B = 0.3, PB,G = 0.7, PG,B = 0.7, PG,G = 0.3}. The channel power gains
at the “Bad”, and “Good” states equal to 0.2 and 1.5, respectively. The PU channel state transition probabilities are
P11 = 0.8 and P01 = 0.4. The probable arrival energy is eh = 3mJ. We assume there are three SUs, and the energy
harvesting probabilities are ph = [ph,1 = 0.8, ph,2 = 0.6, ph,3 = 0.4]. The primary SNRs received at the SUs are
β1 = −17dB, β2 = −16dB, β3 = −15dB. The initial channel state is G = [“Good”,“Good”,“Bad”], and the initial
belief is bi = 0.4. We set T = 100ms, τs = 10ms, and the sampling frequency is 1MHz. The information transmission
duration is τ = 1us. We assume te default sensing power is ps = 100mW, and pdi = 0.9. We set λ = 0.99, and the
normalized SNR by 1mw is 1/N0 = −5 dB. We compare the proposed optimal spectrum sensing-access policy with a
benchmark policy proposed in [21] to evaluate the performance. The benchmark policy allows the SU to explore the
channel diversity, but it adopts a fixed transmission power. We assume the fixed transmission power is Δ = eu/τtr.
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Fig. 2. (a) Expected total reward vs. channel idle belief; (b) Expected total reward vs. probable arrival energy;(c)Expected total reward vs. Energy
harvesting probability of SU 1.

Fig. 2(a) compares the expected total reward of the optimal policy and the benchmark policy with different settings
of belief. First, it can be seen that the performance of two policies strictly increases with bi. This is because a higher
bi indicates the CC believes the primary channel is idle with a higher probability, therefore the expected total reward
can be improved. Besides, we can also observe that the performance of the optimal policy outperforms the benchmark
policy for all settings of bi. This is because the optimal policy jointly considering the spectrum sensing as well as
the transmission power allocation, while the benchmark policy unable to adjust the transmission power to the belief.
Fig. 2(b) compares the expected total reward of the optimal policy and the benchmark policy with different settings
of probable arrival energy. First, it can be seen that the performance of the optimal policy monotonically increasing
with the eh, and finally achieves a saturation effect. This is because as to the lower region of eh, the available energy
increases as eh grows, and the SU is able to allocate more energy for channel sensing as well as the data transmission.
When eh is sufficient high, the total available energy is limited by the finite energy capacity B. Besides, we observe that
the performance of the benchmark policy slightly increases as eh grows. This is owing to that the benchmark policy
employs a fixed transmission power, and failed to efficiently utilize the higher available energy. Fig. 2(c) shows the
expected total reward of the optimal and the benchmark policy with different settings of energy harvesting probability
of SU 1. It can be seen that the performance of the optimal policy strictly increases with ph,1. This is because as
ph,1 grows, the optimal policy can exploit more energy for either spectrum sensing or data transmission to improve
performance. However, as to the benchmark policy, the performance is almost remains unchanged as ph,1 increases.
This is owing to that the benchmark policy can not utilize the adaptive transmission power.

6. Conclusion

In this research, we have investigated the optimal sensing-access policy for an EH CR sensor network, where the
sensing strategy specified whether to sense the spectrum as well as the set of sensing SUs, while the access strategy
specified which SU should access the spectrum along with the transmission power. Aiming to maximize the long-term
expected throughput, the design of the optimal sensing-access policy was formulated as an infinite-horizon POMDP,
in which the central controller dynamically adapts the sensing strategy together with the access strategy to the system
states comprised of the channel idle belief, available energy and channel quality. Through using the value iteration
approach in the POMDP, we derived the optimal sensing-access policy. Finally, numerical results were provided to
evaluate the performance of our proposed policies and it was shown that a significant gain was achieved by our
proposed policy over the existing policy.
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