Supporting Information

Plant-Derived Tandem Drug/Mesoporous Silicon Micro-Carrier Structures For Anti-Inflammatory Therapy

Jhansi R. Kalluri,[†] Julianna West,[‡] Giridhar R. Akkaraju,[‡] Leigh T. Canham,[§] Jeffery L. Coffer*[§]

[†]Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX, 76129, USA

^{*}Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA

[§]Nanoscale Physics, Chemistry, and Engineering Research Laboratory, University of Birmingham, Birmingham, B15 2TT UK

Corresponding Author

Email: j.coffer@tcu.edu

List of Supplemental Figures:

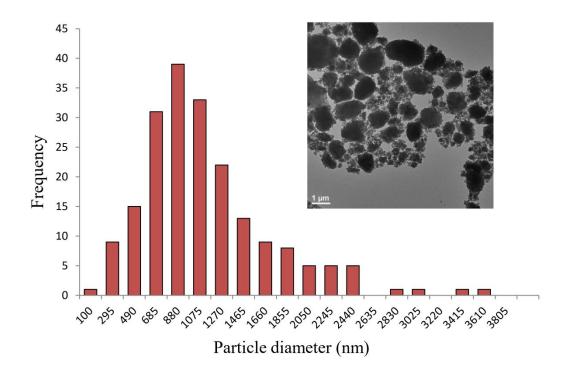
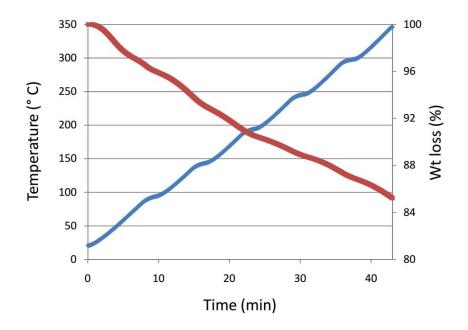
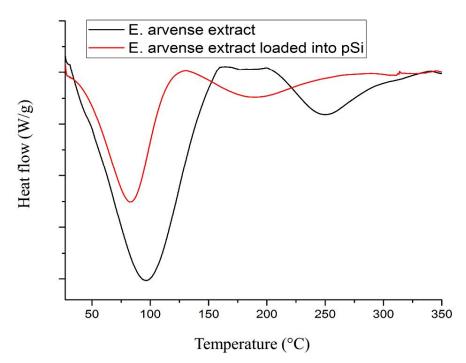
Figure S1. TEM image and corresponding size distribution of pSi powder.

Figure S2. TGA analysis of *E. arvense* extract loaded pSi particles by solution loading method.

Figure S3. Overlay of DSC thermograms of *E. arvense* extract and this extract loaded into pSi.

Figure S4. Standard curve for extract activity developed by measuring the anti-

inflammatory activity of known conc. of *E. arvense* ethanol extract by luciferase assay.

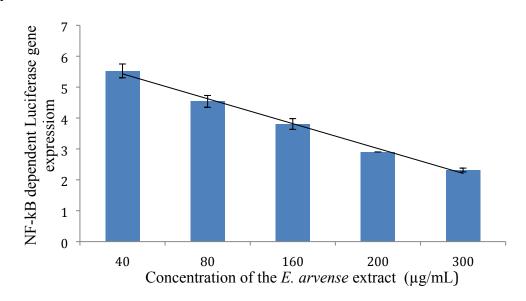

Figure S1. TEM image and corresponding size distribution of pSi powder.

Figure S2. TGA analysis of *E. arvense* extract loaded pSi particles by solution loading method.

Figure S3. Overlay of DSC thermograms of *E. arvense* extract and this extract loaded into pSi.

Figure S4. Standard curve for extract activity developed by measuring the antiinflammatory activity of known conc. of *E. arvense* ethanol extract by luciferase assay.