Support information:

A Donor-Chromophore-Catalyst Assembly for Solar CO₂ Reduction

Degao Wang,^{1a} Ying Wang,^{1a} Matthew D. Brady,¹ Matthew V. Sheridan,¹ Benjamin D.

Sherman,² Byron H. Farnum,¹ Yanming Liu,¹ Seth L. Marquard,¹ Gerald J. Meyer,¹ Christopher

J. Dares,³ Thomas J. Meyer^{1*}

- Department of Chemistry, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, United States
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States

a: D.W and Y.W contributed equally to this work.

Figure S1. SEM pictures viewed from the top of the prepared NiO film (a and b). Cross-section images of the prepared NiO film (c and d).

Figure S2: XRD pattern for the FTO substrate (black) and FTO-NiO film (red).

k

Figure S3. Absorbance spectrum of the CO₂ catalyst $Re(I)((4,4'-PO_3H_2CH_2)_2-2,2'-bipyridine)(CO)_3Cl$ methanol.

Peak	Туре	Position BE (eV)	FWHM (eV)	Raw Area (cps eV)	RSF	Atomic Mass	Atomic Conc %	Mass Conc %
Ru 3d	Comp	284.991	0.737	1114.8	4.273	101.069	0.48	2.30
C 1s	Comp	286.614	1.397	7319.8	0.278	12.011	48.55	27.60
Re 4f	Reg	41.640	1.019	1418.1	3.961	186.210	0.71	6.25
P 2p	Reg	132.540	1.699	996.2	0.486	30.974	3.95	5.79
N 1s	Reg	399.940	1.092	1530.2	0.477	14.007	5.71	3.78
O 1s	Reg	529.040	1.010	13260.2	0.780	15.999	28.97	21.94
Ni 2p	Reg	853.540	3.331	30880.9	4.044	58.702	11.64	32.34

Figure S4: XPS measurements and elemental analysis for the assembly NiO|-DA-RuCP₂²⁺-Re(I).

Figure S5: Spectroelectrochemical measurements of *nano*ITO|-DA (E' (DA^{+•/0}) = 0.71 V vs. NHE) (a), *nano*ITO|-RuCP₂²⁺ (E' (RuCP₂^{2+/+}) = -1.20 V vs. NHE) (b), and *nano*ITO|-Re(I) (E'

 $(\text{Re}(I)^{-\bullet/0}) = -1.19 \text{ V vs. NHE})$ (c). The delta extinction coefficient spectra for DA^{+•} (blue), RuCP₂²⁺ (red), and Re(I)^{-•} (green) in argon-sparged 0.1 M LiClO₄ acetonitrile are shown in (d). Based on the data, DA displayed a reversible one-electron oxidation and RuCP₂²⁺ also displayed a reversible one-electron reduction with a characteristic red-shift of its low energy absorption band consistent with the one-electron reduction of Ru polypyridyl complexes. The *E*' (Ru^{2+*/+}) excited-state reduction potential for RuCP₂²⁺ was estimated as *E*' (Ru^{2+*/+}) = *E*' (RuCP₂^{2+/+}) + ΔG_{ES} , where ΔG_{ES} is the Gibbs free energy stored in the excited state. A $\Delta G_{ES} = 2.10 \text{ eV}$ value was estimated from a linear extrapolation of the higher energy side of the corrected PL spectrum of RuCP₂²⁺ sensitized to ZrO₂, resulting in *E*' (Ru^{2+*/+}) = 0.90 V vs. NHE. The Re(I) catalyst exhibited a quasi-reversible one-electron reduction and a delta extinction coefficient spectrum with a magnitude approximately 4× smaller than the other complexes.

Figure S6: Cyclic voltammograms obtained for DA and $RuCP_2^{2+}$ -Re(I) surface-bound to nanoITO in 0.1 M NaClO₄ acetonitrile electrolyte. (A) shows the response of *nano*ITO|-DA and (B) shows that for *nano*ITO- RuCP_2^{2+}-Re(I). All CVs were collected at a scan rate of 50 mV/s.

Figure S7: PL spectrum of $RuCP_2^{2+}$ bound to ZrO_2 for ΔG_{ES} calculation.

Figure S8: Linear scan voltammograms for the assembly NiO|-DA-RuCP $_2^{2+}$ -Re(I) performed under N₂ and CO₂ saturated acetonitrile with 0.1 M NaClO₄. All LSVs were collected at a scan rate of 50 mV/s.

Figure S9: Linear scan voltammograms for the assembly $NiO|-RuCP_2^{2+}-Re(I)$ performed under dark and light conditions in CO₂ saturated acetonitrile with 0.1 M NaClO₄. All CVs were collected at a scan rate of 50 mV/s.

Figure S10. IPCE spectrum for NiO|-DA-RuCP $_2^{2+}$ -Re(I) under an applied bias of -0.54 vs. NHE in CO $_2$ saturated acetonitrile with 0.1 M NaClO $_4$.