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1 Introduction

Algebraic geometry is the study of geometric objects that arise from solutions to poly-
nomial equations over a field, such as curves, surfaces and their higher dimensional ana-
logues. One of the major themes in algebraic geometry is to classify these objects based
on certain invariants. In particular, the classification of algebraic space curves based on
their degrees and genera has been one of the most fruitful branches of research at least
from the later half of the nineteenth century [15H17]. As a subject algebraic geometry
went through many revolutions and each generation had its own language and perspec-
tive. Until the first half of the twentieth century the notion of curves was restricted to
what we now call varieties of dimension 1. Even if we restrict ourselves to this definition,
geometric objects that are not varieties arise naturally as limits of families of curves
and also via liaison theory [28]. Not knowing what to do with such objects, algebraic
geometers tended to avoid such structures. In a desire to include these natural objects
in the main frame of study and to unify all earlier developments of algebraic geometry,
Alexander Grothendieck came up with his notion of schemes around 1957 [10, VIII]. In
this dissertation we use the language of scheme theory to deal with the classfication of

multiplicity structures on nonsingular connected curves in P3.

1.1 Multiplicity structures on curves in P?

Let P3 = Proj S, where S = k[z,y, z,w] and k is an algebraically closed field. If X C P?
is a closed subscheme we denote its ideal sheaf and total ideal by Zx and Iy respectively.

The homogeneous coordinate ring of X is the quotient ring S/Ix of S and is denoted



by Sx. We use the abbreviations CM for Cohen-Macaulay and 1.c.i. for locally complete
intersection. A curve in P? is a closed subscheme of dimension 1. In this dissertation we
will mainly focus on locally CM curves, i.e., curves having no embedded or isolated points,
but which may have multiplicities along their supports. Let Y C P? be a nonsingular
connected curve. A multiplicity structure on Y is a closed subscheme Z C P? such that
Supp Z = Supp Y. The multiplicity of Z is defined to be the ratio deg Z/degY and is
denoted by mult(Z). In Proposition @We will prove that if Y is nonsingular connected

and Z is CM, then mult(Z) is a positive integer.

Example 1.1.1. Let Y C P? be the line with Iy = (z,w). Let Z; C P be the closed
subschemes with Iz, = (2* — tyz,w), where ¢ € k. Then Z; is a nonsingular conic
whenever ¢t # 0. We have I, = (2%, w) and Sz, = k[z,vy, z]/(2?). Notice Zy is not a
variety, since x is a nilpotent element in Sy,. On the other hand, Z; is supported on Y.
Moreover, every point of Y comes twice in Z;. We call Z; a double structure on Y. In
fact, Z, is the simplest kind of multiplicity structures in P3. Finally since Z, — Z, as

t — 0, Zy arises as a limit of a family of nonsingular connected curves in P3.

Multiplicity structures also arise naturally in the study of liaison theory [28.33]. For
example, every smooth connected rational quintic curve in P23, not lying in a quadric
surface, is linked by a complete intersection of two cubic surfaces to a quadruple line [31,
Proposition 3.2]. Therefore even if one is primarily interested in the nicest kind of curves,
i.e., nonsingular connected curves, multiplicity structures can be crucial and unavoidable.

A natural question that arises and leads to a wide open territory of research is as follows.



Problem 1. Let Y C P? be a nonsingular connected curve.

(a) Classify all CM multiplicity structures on Y.

(b) Find the minimal free resolutions of the total ideals of such structures.

(c) Find the Rao modules of such structures.

(d) Describe the nature of general surfaces containing such a structure.

(e) Describe the irreducible families of such structures.

1.2 Previous work on Problem 1

The systematic study of multiplicity structures on nonsingular connected curves in P3
began with the pioneering work of Ferrand [12]. In this paper he showed that given
a lci. curve Y C P3, there exists a bijection between the set of CM double struc-
tures on Y and the set of surjections vy — L, where vy is the conormal bundle of Y
and £ € PicY. Then Banica and Forster [3] generalized his method to study higher
multiplicity structures. More precisely, they showed a way to construct quasi-primitive
multiplicity structures (CM curves with generic embedding dimension 2) by introducing

the notion of Cohen-Macaulay filtration and an invariant of such extension, called its type.

The total ideals of double lines in P? were known to folklore [14,25]. But their classi-
fication has been done by Nollet [29, Proposition 1.4]. The classifications of triple and
quadruple lines in P? have been done by Nollet [29], and by Nollet and Schlesinger [32]

respectively. Manolache [24] and Banica and Manolache [4] studied double conics in



connection with the moduli space of stable rank two vector bundles on P with Chern
classes ¢y = —1,¢o = 2 and ¢; = —1,¢y = 4 respectively. Finally, Vatne [34] studied
CM double structures on twisted cubics in P* and gave examples of such curves for all

possible arithmetic genus, assuming that char k # 2.

1.3 Dissertation summary

In this dissertation, we deal with Problem 1 for conics in P2. More precisely, we give a
complete solution to parts (a)-(d) of Problem 1 for double conics and a partial solution to

parts (a)-(b) of Problem 1 for triple conics, which are complicated due to new behaviors.

In Chapter 2, we state and prove some results about modules over noetherian rings and

finitely supported coherent sheaves in P3.

In Chapter 3, we carefully prove some well-known results about curves in P?. In partic-
ular, we give three equivalent definitions of CM curves and prove their equivalence. We

also prove some nice properties of such curves.

In Chapter 4, we extend the theory of Banica and Forster [3] from complex analytic three
manifolds to P} over an arbitrary but algebraically closed field k. In particular, we give
rigorous proofs of their main statements and theorems. Let Z be a multiplicity structure
on a nonsingular connected curve Y C P3. According to Bénica and Forster, mult(Z) is

the rank of r,0Oyz, where r : Z — Y is a holomorphic retraction and Oy is the structure



sheaf of Z. But such a holomorphic retraction does not exist on schemes due to the
coarse nature of Zariski topology. So we define mult(Z) as the ratio deg Z/degY and
show in Proposition [£.2.5 that these two definitions yield the same number. We define
quasi-primitive extensions on nonsingular connected curves in P* and show that each such
extension has an invariant, called its type. At the end of this chapter we describe the
singularities and class groups of general surfaces containing a quasi-primitive multiplicity

structure, following the works of Brevik and Nollet [6].

In Chapter 5, we prove the following classification theorem for CM double conics in P3.
Theorem Let C C P3 be a conic and let £ > —4 be an integer such that { # —3.
Then each surjection v : Lo /T2 — Ocll] defines a CM double conic Z on C with Hilbert
polynomial Pz(n) = 4n+(+2 by Iy = Keryow, where w : Lo — Lo /L2 is the canonical
surjection. Conversely, every CM double conic on C' arises from this construction.

We describe the invariants of double conics, namely their total ideals, Rao modules and
minimal free resolutions of their total ideals. We give criteria for two double conics of the
same support to be linked by a complete intersection. In particular, we give a criterion
for double conics to be self-linked, which extends a well-known theorem of Migliore [27]
on self-linkage of double lines to double conics. We also give the criterion for a double
conic to be contained in a nonsingular surface. In particular, we show that a double conic
of arithmetic genus —1 — ¢ < —5 is contained in a nonsingular surface if and only if ¢
is even. At the end of this chapter we show that a Zariski general surface containing a
double conic is normal and the number of its singular points is determined by its degree

and the arithmetic genus of the double conic contained in it.



In Chapter 6, we prove the following classification theorem for CM triple conics in P3.
Theorem Let Z be a CM double conic on C of type £, where £ > —4 is an integer
such that £ # —3. Let ¢ : Tz/ZcTyz — Oc[2¢ + ¢ be a surjection, where ¢ > 0 is an
integer. Then 1 defines a CM triple conic W on C with Hilbert polynomial Py (n) =
6n+30+c+3 by Iy =Kerpom, where n : Ly — L7 /LTy is the canonical surjection.
Conversely, every CM triple conic W on C' arises from this construction.

In particular, we determine the range of ¢ and ¢ for which there exists a quasi-primitive
triple conic of type (¢, ¢). We give explicit maps which yield the thick triple conics, i.e.,
triple conics having embedding dimension 3 at each point. For the rest of Chapter 6 we
computed total ideals of quasi-primitive triple conics. Let W be a quasi-primitive triple
conic on C' that arises from a surjection Zy/ZcZ; — O¢l2¢ + ¢|. Then W is of type
(¢,c) and has Z as its 284 CM filtrant. If £ is even and ¢ > 3 then we show that Iy has
a nice description. In fact, Iy /IcIz is cyclic in this situation. The classification gets
complicated when ¢ > 0 is even and 0 < ¢ < 2. For example, if (¢,¢) = (2a,0), where
a > 0, then Iy can have 7,8 or 9 generators. This shows that the cohomology groups
jump in the Hilbert scheme of triple conics in P2, which is not known for any other family
of multiplicity structures classified so far. We give criteria to determine Iy, for this range
of (¢,c). The classification of triple conics of type (¢, ¢) is still open whenever ¢ is odd.
The main obstacle here is the non-splitting nature of the Sg-module I; ® S, which we

wish to resolve in our future work.



2 Background

In this chapter we state and prove some well-known results about modules over noetherian
rings and finitely supported coherent sheaves in P? that we are going to use throughout

this exposition.

2.1 Algebraic results

All rings here are assumed commutative with identity. Based on the themes, we split

this section into three subsections.

2.1.A. Associated primes

In this subsection we state two important results about associated primes. We prove

Lemma [2.1.6 which will be used in Proposition |3.3.6.

Definition 2.1.1. Let A be a noetherian ring and a be an ideal in A. Let a = N}, q; be
a primary decomposition of a and let p; = \/g;. Then the set {p;};-, is independent of
the particular decomposition of a by [2, Theorem 4.5]. The prime ideals p; are called the

associated primes of a. The minimal elements of the set {p;}, are called the minimal

primes of a and the others are called the embedded primes of a.

Definition 2.1.2. Let A be a ring and M be an A-module. A prime ideal p of A is
called an associated prime of M if p is the annihilator of some element m € M. The
set of associated primes of M is denoted by Ass(M). The minimal elements of Ass(M)
are called the isolated associated primes of M and the others are called the embedded

associated primes of M.



Remark 2.1.3. Notice the associated primes of a as an ideal in A are not the same as
the associated primes of a as an A-module, rather they are the same as the associated

primes of the A-module A/a.
Proposition 2.1.4. Let A be a noetherian ring and M be a nonzero A-module.

(a) Every maximal element of the family of ideals F' = {ann(m)|0 # m € M} is an

associated prime of M, and in particular Ass(M) # &.
(b) The set of zerodivisors for M is the union of all the associated primes of M.
Proof. 26, Theorem 6.1]. O

Proposition 2.1.5. Let a is a decomposable homogeneous ideal in a graded ring A.

Then the associated primes of a are homogeneous.
Proof. |35, Corollary, p. 154] or [5, IV, § 3, Proposition 1] ]

Lemma 2.1.6. Let A be a noetherian ring having no embedded associated primes. If [

is an ideal in A such that I, = 0 for all minimal primes p of A, then I = 0.

Proof. Suppose on the contrary that I £ 0. Then there exists a nonzero element = € I.
Let py,---,p, be the minimal primes of A. Then [,, = 0 for 1 < i < n. Hence there
exist s; € A\ p; such that s;z = 0. Let J = (s1,--+,,). Then J Z p; for all i, and hence
J & U p; by the prime avoidance lemma [2, Proposition 1.11 (i)]. Let s € J \ U p;.
Then there exist a; € A such that s = >°" | a;5;,. Notice sz = > " a;s,¢ = 0, ie.,

s € ann(x). Since A is noetherian, by Proposition [2.1.4 (a), there exists an associated

prime p of A such that ann(x) C p. Notice p U™, p;, since s € p \ U, p;. Hence again



by the prime avoidance lemma [2, Proposition 1.11 (i)], p € p; for all i. Therefore p is

an embedded associated prime of A, which is a contradiction. Thus I = 0. O

2.1.B. Regular sequence, depth and deviation

The goal of this subsection is to define Cohen-Macaulay and complete intersection rings.

Definition 2.1.7. Let M be an A-module. An element a € A is said to be M-regular if
ar = 0 for some z € M = x = 0. In other words, a is M-regular if it is a nonzerodivisor
on M. A sequence d = ay, - ,a, of elements in A is an M-regular sequence (or simply

an M-sequence) if the following two conditions are satisfied:

1. a;is M/(ay,--- ,a;—1)M-regular for 1 <i <n and

2. M/aM # 0, where aM =" | a; M.

Lemma 2.1.8. Let A be a ring and let f,g € A. Then {f, g} is a regular sequence in

A< {f,g+~f} is a regular sequence in A for all v € A.

Proof. Let {f, g} be a regular sequence in A. Then f is regular in A. Notice g+ ~vf # 0
in A/(f), for otherwise g = 0 in A/(f) which contradicts the regularity of g in A/(f).
Suppose u(g +vf) = 0 in A/(f) for some v € A. Then ug = 0 in A/(f) and hence
u € (f), since g is regular in A/(f). Therefore {f, g+ vf} is a regular sequence in A for
all v € A. Conversely, if {f, g+ vf} is a regular sequence in A for all v € A, then taking

v = 0 we see that {f, g} is a regular sequence in A. O



The following lemma will be heavily used in Chapters 5 and 6.

Lemma 2.1.9. Let A be a quotient of a graded polynomial ring such that A is an integral
domain with dim A = 2. Let f,g € A be nonconstant homogeneous polynomials. Then

the following statements are equivalent.

(a) {f, g} is a regular sequence in A.

(b) 2(f)nZ(9) = 2.
(c) A/(f,g) has finite length.

Proof. (a)=-(b): Let {f, g} be a regular sequence in A. Then ht(f,g) > depth(f,g) =2
by |7, Proposition 1.2.14]. Let p be a homogeneous prime ideal in A containing (f, g).
Then htp > ht(f, g) > 2. Since dim A = 2, p is the irrelevant maximal ideal in A. Hence
2(5)n 2(g) = &

(b)=(c): Let Z(f)N Z(g9) = @. Let a = (f,g) and let A = S/I for some graded poly-
nomial ring S with irrelevant maximal ideal m. Notice Z(a) = @ and hence Spec A/a =
{m}. Thus dim A/a = 0. Hence A/a is Artinian by [2, Theorem 8.5]. Therefore A/a has
finite length by [11, Theorem 2.13].

(¢c)=(a): Let A/(f,g) have finite length. Suppose {f, g} is not a regular sequence in
A. Then depth A/(f,g) > 1. Let u be a regular element of A/(f,g). Then wu is not
nilpotent and hence --- C (u") C --- C (u) C A/(f, ¢) is an infinite chain of submodules

of A/(f,g). Therefore A/(f,g) has infinite length, which is a contradiction. O

Let A and M be as in Definition (2.1.7) and let I be an ideal in A such that M /IM # 0.
An M-sequence in I is maximal if it cannot be extended to another M-sequence by

10



adding more elements from I. Notice if A is noetherian then a maximal M-sequence in [
must have finite length. Moreover, if M is finitely generated over A then every maximal

M-sequence in [ has the same length by [26, Theorem 16.7].

Definition 2.1.10. Let (A, m, k) be a noetherian local ring and let M # 0 be a finitely
generated A-module. The depth of M is the length of any maximal M-sequence in m

and is denoted by depth M.

Definition 2.1.11. Let A be a noetherian ring and M be a finitely generated A-module.
Then M is called a Cohen-Macaulay (CM henceforth) module if M # 0 and depth M, =

dim M, for all p € Spec A, or if M = 0.

Definition 2.1.12. Let (A, m, k) be a noetherian local ring with embdim A = n. Let ¥ =
x1,- - ,x, be aminimal basis of m and let £, = Kz be the Koszul complex corresponding
to the regular sequence . Then FE, is uniquely determined by A up to isomorphism. Let
H,(FE,) denote the p™ homology group of E,. Then H,(FE,) is a k-vector space, since
mH,(E,) = 0 by [26, Theorem 16.4]. The p'" deviation of A is defined to be the dimension

of the k-vector space H,(F,) and is denoted by €,(A).

Remark 2.1.13. Notice if A is regular then 7 is an A-sequence and hence H,(E,) = 0,
i.e., €,(A) = 0 for all p > 0 by [26, Theorem 16.5 (i)]. Conversely, if ¢;(A) = 0 then 7' is an
A-sequence and hence A is regular by |26, Theorem 16.5 (ii)]. Hence A is a regular local

ring if and only if €;(A) = 0. Thus € (A) measures how far A deviates from regularity.

Definition 2.1.14. Let A be a noetherian local ring. Then A is called a complete

intersection ring if €;(A) = embdim A — dim A.

11



Corollary 2.1.15. Every regular local ring is a complete intersection ring.

Proof. Let A be a regular local ring. Then embdim A = dim A4, i.e., embdim A —dim A =
0. On the other hand, ¢, (A) = 0 by Remark[2.1.13] Therefore ¢;(A) = embdim A—dim A

and hence A is a complete intersection ring. O]

Theorem 2.1.16. Let A be a noetherian local ring. If R is a regular local ring such

that A = R/a for some ideal a in R, then the minimum number of generators of a is

dim R — embdim A + € (A).
Proof. |26, Theorem 21.1]. O

Corollary 2.1.17. Let A be a noetherian local ring. If A is a complete intersection and
if R is a regular local ring such that A = R/a for some ideal a in R, then the minimal

number of generators of a is dim R — dim A.

Proof. Since A is a complete intersection, — embdim A + €;(A) = — dim A. Therefore by

Theorem [2.1.16, the minimal number of generators of a is dim R — dim A. O

2.1.C. Free resolutions

In this subsection we state two important theorems regarding free resolutions of modules

over noetherian rings.

Definition 2.1.18. Let A be a noetherian ring and let ¢ : I’ — G be a homomorphism
of free A-modules such that rank F' = n and rank G = m. Then ¢ is given by an m x n

matrix U with respect to the bases of F' and G. Let I,(U) denote the ideal generated by

12



t x t minors of U. We define I;(y) as follows:

(

A, if t <0,

L(#) = 4 L(U), if 1 <t<min{m,n}

0, if t > min{m,n}.

\

Then rank ¢ = max {r|.(¢) # 0}. We denote Lrank () by ().

Remark 2.1.19. In 1936, Fitting |13] proved that the ideals [;(U) in Definition [2.1.18
depend only on the module Coker ¢ and hence are independent of the choice of bases of
F and G. These ideals are now called the Fitting ideals of ¢ or the Fitting invariants of

Coker ¢. See [11}, Corollary-Definition 20.4] for a modern proof of this fact.

Theorem 2.1.20 (Buchsbaum-Eisenbud). Let A be a noetherian ring and let

0= F, 2 F, - > F (1)

be a complex of free A-modules. Then is exact if and only if
(a) rank Fj, = rank ¢y + rank 51 and
(b) depthI(pk) >k
for 1 <k <n.
Proof. [8], |11, Theorem 20.9] or 7, Theorem 1.4.13]. O

Remark 2.1.21. Here we use the convention that the unit ideal has infinite depth.
Hence if I(py) = A then condition (b) in Theorem [2.1.20|is automatically satisfied.

13



Theorem 2.1.22 (Hilbert-Burch). Let A be a noetherian ring and let

0—-FR 2R 25 A AT -0 (2)

be a complex of A-modules.

(a) If is exact, Fy is free and F; =& A" with n > 1, then F, = A" and there
exists a nonzerodivisor u € A such that I = ul,(¢s). In fact, the i*" entry of the
matrix for ¢, is (—1)"u times the minor obtained from ¢, by leaving out the ‘!

row. Moreover, depth I,,(¢2) = 2.

(b) Conversely, given any (n + 1) X n matrix @ such that depth I,,(p2) > 2 and a
nonzerodivisor u, the map ¢, obtained as in part (a) makes ([2)) into a free resolution

of A/I, with I = I,,(¢2).

Proof. In 1890 Hilbert [19] proved this theorem for graded ideals of codimension 2 in a
polynomial ring. Then in 1968 Burch [9] proved the general case. For a modern proof

see [11, Theorem 20.15] or |7, Theorem 1.4.17]. O

2.2 Finitely supported coherent sheaves in P?

Let k& be an algebraically closed field, S be the graded polynomial ring k[z, y, z, w] and m
be the irrelevant maximal ideal (x,y, z, w) in S. In this section we prove that the Hilbert
polynomial of a finitely supported coherent sheaf in P is constant, where P? = Proj S.

We also prove that every graded S-module of finite length sheafifies to 0.

14



Lemma 2.2.1. If F is a finitely supported coherent sheaf in P, then F = F(n),Vn € Z.

Proof. 1f Supp F = @ then F is the zero sheaf and hence F = F(n) for all n € Z. So
without loss of generality, we may assume that Supp F # @. Let M = H°F. Then M is
a finitely generated graded S-module with Supp M # @. Notice if m is a minimal prime
of M, then Supp M = {m} by [26, Theorem 6.5] and hence Supp F = @&. So we may
assume that m is not a minimal prime of M.

Let Supp F = {P,---, P} and let P € P be a closed point such that P ¢ Supp F.
Let m be the projection 7 : P2\ {P} — P2 Let Q € P?\ U/_;7(P;). Notice, 7~ 1(Q) is
a line in P2. Let 7 be the projection 7 : P?\ {Q} — P!. Define ¢ = 7 om. Then ¢ is
a projection from the line 771(Q) to P'. Let p; = ¢(P;). Choose p € P\ {p1,---,p,}.
Let H = ¢~ '(p). Then H C P? is a plane such that P, ¢ H for all i. Let Iy = (h) for
some h € m. Notice h is not contained in any associated prime of M, since P; ¢ H for
all i. Hence by Proposition [2.1.4 (b), h is a nonzerodivisor for M. So we have the exact
sequence

0— M(=1) 2 M — M/hM = 0. (3)

Sheafifying we get the exact sequence

0—>]—"(—1)i>]-"—>g—>0,

—_—

where G = M/hM. Since M is finitely generated, we have Supp M = V(ann M) and
Supp M/hM = V(ann M/hM). Also V(ann M/hM) = V((h) 4+ ann M) by |2, Exercise

3.19 (vii)], hence Supp M/hM = V((h) 4+ ann M). Since F is finitely supported and

15



m is not a minimal prime of M, we have dim Supp M = dim V' (ann M) = 1 in Spec S.
Since h is not contained in any associated prime of M, h ¢ ann M. Hence ht ann M <
ht((h) + ann M). Thus dimV((h) + ann M) < dimV(annM) —1 =1—-1 = 0, i.e.,
dim V' ((h) + ann M) = 0 in Spec S. Therefore Supp M/hM is either @ or {m}. Hence
Supp G = @, i.e., G is the zero sheaf. Therefore F(—1) =2 F. Thus F = F(1) and hence

F = F(n) for all n € Z. O

Corollary 2.2.2. Let F be a finitely supported coherent sheaf in P2. Then the Hilbert

polynomial of F is constant.

Proof. Let P(z) € Q[z] be the Hilbert polynomial of F. Then xF(n) = P(n) for all
n € Z. Since F is finitely supported, xF(n) = xF(0) for all n € Z by Lemma [2.2.1.

Thus P(n) = P(0) for all n € Z. Hence P(n) and therefore P(z) is constant. O

Lemma 2.2.3. Let F be a simple graded S-module of length 1. Then E = (S/m)(n)

for some n € Z.

Proof. Since F is a simple module of length 1, it is generated by a single nonzero element,
say e € N. Let ¢ : S — E be the map given by 1 +— e. Then ¢ is surjective. Notice
Ker ¢ = ann(e). Let P = ann(e). We have the chain 0 C S/m C S/P of submodules of
S/P. Since S/P has length 1, we have S/m = S/P, i.e., P = m. Therefore £ = (S/m)(n)

for some n € Z. [
Lemma 2.2.4. Let M be a graded S-module. Then M has finite length < M = 0.

Proof. Let M have finite length and let 0 = My C M; C --- C M,, = M be a composition
series of M, where n is the length of M. Then each M;/M;_; is a simple graded S-module
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of length 1. Therefore by Lemma [2.2.3, M;/M;_, = (S/m)(n;) = k(n;) for some n; € Z.

By [18| II, Proposition 8.13], we have the exact sequence

0 — Qps — Ops(—1)* = Ops — 0, (4)

where Qps is the sheaf of differentials of P3. Taking the long exact cohomology sequence

in we get the exact sequence

0— HQps — S(—1)* % . (5)

Let {e;}4, be a basis of S(—1)*. Then ¢ is given by e; — 2,5 — v, e3 — z and e4 — w.
=1

Thus Coker ¢ = S/m = k and hence we get the exact sequence

0— H'Qps — S(—1)* 5S>k —0 (6)

from . Sheafifying @ we get the exact sequence . Therefore k = 0. Since k is a

finitely supported coherent sheaf on P3, k %(n) for all n € Z by Lemma [2.2.1. Hence
M;/M;_y = k(n;) = k(n;) =0

for all 1 <7 < mn. We have the short exact sequece of S-modules

00— M,_1 —> M; — Mi/Mifl — 0. (7)
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Sheafifying we get the short exact sequence of sheaves

—_——

0—>]\/4:_/1—>]\Z—>Mi/Mi_1—>0.

—_—

Since M;/M;_1 = 0, we have ]\AjZ = ]\/4:_/1 for all i. Therefore M = ]T/[\:l >~ ]\Afo =0.
Conversely, let M = 0. If M = 0 then it has length 0. So let’s suppose M # 0. Since
M = 0, we have Supp M = {m} and hence Ass(M) = {m}. Thus m = ann M. Since

S/ann M = S/m = k is an Artinian ring, M has finite length by [11, Corollary 2.17].
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3 Curves in P?

Let P3 = Proj S, where S = k[z,y, z,w] and k is an algebraically closed field. If X C P?
is a closed subscheme we denote its ideal sheaf and total ideal by Zx and Ix respectively.
The homogeneous coordinate ring of X is defined to be the quotient ring S/Ix of S and
is denoted by Sx. A curve in P? is a closed subscheme of dimension 1. In this chapter

we carefully prove some well-known results about curves in P3.

3.1 Preliminaries

Let X C P3 be a curve. Then X is a complete intersection if the total ideal Ix of X is
generated by 2 elements. We say that X is a locally complete intersection if the ideal

sheaf Zy of X is generated by 2 elements at every point.

Proposition 3.1.1. Let X C P? be a complete intersection curve with Ix = (F,G).

Then
G
—F (F G)
0—=S(-d—e) ——= S(—d)® S(—e) ———= Ix =0 (8)

is a minimal S-resolution of Iy, where d = deg F' and e = deg (.

G
Proof. Let ¢ = . Then rank ¢ = 1 and hence I(p) = (F,G). Since {F,G} is a

—F
regular sequence in S, depth I(p) = 2. Therefore by the Hilbert-Burch theorem [2.1.22]

is an S-resolution of Ix. Since none of the entries of ¢ and (F,G) is a unit, (8) is a

minimal S-resolution of Ix. O

19



Lemma 3.1.2. Let X and X’ be curves in P? with the same Hilbert polynomial. If

X' C X then X' = X.

Proof. Since X' C X, we have Ix C Ixs and hence Zxy C Zx:. Therefore we have the

canonical surjection & : Ox — Oxs. Set F := Ker&. Then we have the exact sequence

0—=F—0Ox — Ox —0. (9)

Twisting by n and taking the Euler characteristics of the sheaves in @D we see that
xF(n) = xOx(n) — xOx/(n). Since X and X' have the same Hilbert polynomial, we
have YOx(n) = xOx/(n) for all n € Z. Therefore xF(n) = 0 for all n € Z. Hence F = 0,

ie., Ox = Ox and therefore X = X’. O

Proposition 3.1.3. Let X C P? be a curve. If H C P? is a plane that does not contain
any component of X then deg X = (X N H), where {(X N H) denotes the length of the

scheme X N H.

Proof. Let Ix = Mj_;q; be a primary decomposition of Iy and let p; = /g; be the
associated primes of Iy. By Proposition [2.1.5, each p; is a homogeneous ideal in S. Let
H C P3 be a plane not containing any component of X. Let Iy = (h), where h is some
linear homogeneous polynomial in S. Then h ¢ p;, Vi. Hence by Proposition [2.1.4 (ii), h

is not a zerodivisor in Sy. Therefore Ix = [Ix :5 h|. So we have
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Also by [2| Proposition 2.1 (ii)] we have

Ix + (h) Ix
(h) Ix N (h)

I

Therefore we have the isomorphism

Ix + (h) ~ Ix
" hIx
and hence the exact sequence
h Ix +(h)

0= Ix(—1) = Ix — 0

Sheafifying we get the exact sequence

0— Ix(—l) —h> Ix — I(XOH)|H — 0.

Twisting by n and taking the Euler characteristics of the sheaves in (L1 we get

XI(XmH)|H(n) =xIx(n) — xZx(n —1).

Also from the exact sequence

O—>Ix—)0p3—>0)(—>0

— 0.

(10)

(11)
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we have xZx(n) = xOps(n) — xOx(n). Hence

XZxnmya(n) = XOps(n) — xOps(n — 1) — [xOx(n) — xOx(n — 1)].

Since X is a curve, xOx(n) = (deg X)n+1—p,(X), hence xOx(n)—xOx(n—1) = deg X.
Therefore

XZxnmya(n) = XOps(n) — xOps(n — 1) — deg X. (12)

We also have the exact sequence

1 h
0—>(h)—>lx+(h)—>%)()—>0. (13)
Sheafifying we get the exact sequence
0— Op3(—1) — Ixnyg — I(XﬂH”H — 0. (14)

Twisting by n and taking the Euler characteristics of the sheaves in (14]) we get

XZxnu(n) = XZxnm)u(n) + xOps(n — 1). (15)

Combining and we get

XOps(n) — xZxng(n) = deg X.
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Finally, from the exact sequence

O-)IXQH—)OIPB —>OXQH—>O

we see that xOxng(n) = xOps(n) —xZxnu(n). Therefore xOxnp(n) = deg X and hence
is independent of n. Since X N H is a zero dimensional scheme, xOxnpy is the length of

X N H. Therefore deg X = (X N H). O

3.2 Vector bundles on curves in P3

In this section we prove two lemmas regarding the Hilbert polynomials of vector bundles

on curves in P3.

Lemma 3.2.1. Let £ be a line bundle on a reduced curve Y C P3. Then there exists a

constant ¢ € Z such that

xL(n) =ndegY + ¢, Vn € Z.

Proof. Let Y; be the irreducible components of Y, where 1 < ¢ < r. Since Y is reduced,
Y; is integral. Therefore SingY; is a proper closed subset of Y; by [18, I, Corollary 8.16].
Choose P; € Y; such that P, ¢ Y; and P; ¢ SingY;. This is possible since both SingY;
and U;{Y; NY;} are finite sets of points. Let m be a positive integer such that £(m) is
generated by global sections. Then there exist global sections s; € H°(Y, £(m)) such that
s; generates the stalk of £L(m) at P;. Hence s; @ k(P;) # 0 in L(m) @ k(F;) = k(P;) = k,

since L(m) ® k(P;) is a one dimensional vector space. Multiplying by suitable scalars we
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may assume that s; ® k(P;) = 1 for all 7. Set a;; := s; ® k(F;). Notice a;; = 1. Let
7 : k" — k" be the map given by the matrix M = (a;;)j,;—;. Let s = Y77 bis;, where
b; € k. Then s is a global section of £(m). Let L; be the linear forms ay ;x1 + - - - a,. 2,
for 1 <1 < r. Notice L; # 0, since a;; = 1. Hence each Z(L;) is a hyperplane in AJ.
Notice s @ k(P;) = 0 < (by,---,b.) € Z(L;). Since k is algebraically closed and since
each Z(L;) C Aj is a hyperplane, U/_, Z(L;) € A}. Let (by,---,b.) € AL\ U_,Z(L;).

Then s ® k(P;) # 0, i.e., s ® k(P) is a unit for all i. Define the map ¢ : Oy = L(m).

Let K = Ker ¢ and C = Coker ¢. So we have the exact sequence

0—=K—= 0Oy > Lm)—=C—0. (16)

Since s ® k(P;) is a unit for all i, ¢p, is an isomorphism for all i. Hence Kp, = Cp; = 0,
i.e., K and C are not supported on {F;}/_,. Thus Supp K and SuppC are proper closed
subsets of Y. Therefore K and C are finitely supported on Y. Hence by Corollary [2.2.2,
there exist constants cj,co € k such that xK(I) = ¢; and xC(l) = ¢ for all | € Z.

Twisting by n — m and taking the Euler characteristics of the sheaves in we get

XL(n) = xOy(n—m)+xC(n—m) —xK(n—m) = (degY)(n—m)+1—p,(Y)+c2—c.

Set ¢ := —mdegY + 1 —p,(Y) + o — ;. Then xL(n) =ndegY + ¢,Vn € Z. O]
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Lemma 3.2.2. Let £ be a vector bundle on a nonsingular connected curve Y C P3.

Then there exists a constant ¢ € Z such that

XL(n) = n(rank £)degY + ¢, Vn € Z.

Proof. Let n be the generic point of Y and let m € N be such that £(m) is generated by

global sections. Then at the stalk at  we have the isomorphism

O;’,n :> E"? (m)a

where r = rank £. Hence there exist global sections {s;}/_; of £(m) such that {s;,}/_;
generate £, (m). Therefore {s;}/_, defines a map ¢ : Oy — L(m). Let K = Ker¢ and

C = Coker ¢. Then we have the exact sequence

0K =004 £im)—C—0. (17)

Notice ¢, is an isomorphism, hence K and C are not supported at the generic point of Y.
Therefore K and C are finitely supported on Y. Hence xX(n) and xC(n) are constants
by Corollary[2.2.2. Twisting by n —m and taking the Euler characteristics of the sheaves
in we get

XL(n) = rxOy(n —m) +xC(n) — xK(n).
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Since xOy (n —m) = (n —m)degY + 1 — p,(Y), we have

xL(n) = n(rank £)deg Y + ¢,

where ¢ = xC(n) — xK(n) —r(mdegY — 1+ p,(Y)) € Z is a constant. O

3.3 Cohen-Macaulay curves

In this section we give three equivalent definitions of Cohen-Macaulay curves and prove
their equivalence. We also prove some nice properties of such curves. In particular, we
show that every extension by locally free sheaves of a Cohen-Macaulay curve, having an

integral support, is also a Cohen-Macaulay curve of the same support.

Definition 3.3.1. Let X C P3 be a curve. The graded S-module H!Zx is called the

Rao module of X and is denoted by Mx.

Proposition 3.3.2. Let X C P? be a curve. The following conditions are equivalent.
(a) X has pure dimension 1, i.e., X has no embedded or isolated points.
(b) Ox.p is CM of dimension 1 for all closed points P € X.
(¢) My has finite length.

Proof. (a)=-(b): Suppose X has pure dimension 1. Let P € X be a closed point. Then
dim Ox p = 1, and hence depthOx p < 1. If depthOx p = 0 then Ox p has no regular
element. Hence every nonzero element in myx p is a zerodivisor. Let pi,---,p, be the

associated primes of Ox p. Let x € mx p. Then there exists an element u € mx p such
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that u # 0 but zu = 0, i.e., z € ann(u). Since Ox p is noetherian, by Proposition @
we have ann(u) C p; for some ¢. Thus = € p; and hence my p C U ,p;. Hence by the
prime avoidance lemma [2, Proposition 1.11 (i)] we have mx p C p;, i.e., my p = p; for
some ¢. Thus mx p is an associated prime of Ox p. Since dimOx p = 1, mx p is not a
minimal prime. Therefore mx p is an embedded associated prime of Oy p, i.e., P is an
embedded point of X, which is a contradiction. Therefore depthOx p = 1 and hence
Ox p is CM of dim 1 for all closed points P € X.

(b)=-(a): Conversely, let Ox p be CM of dimension 1 for all closed points P € X. Then
P is not an isolated point of X, for otherwise dim Ox p = 0. Suppose P is an embedded
point of Ox p. Then there exist u € Ox p such that u # 0 and ann(u) = mx p. But
then every element of my p is a zerodivisor, i.e., Ox p has no regular element. Therefore
depth Ox p = 0, which contradicts the fact that Ox p is CM of dimension 1. Thus P
is not an embedded point and hence X has no embedded or isolated points, i.e., X has
pure dimension 1.

(a)=-(c): Suppose X has pure dimension 1. Since Zx is a coherent sheaf on X, by Serre’s
theorem (18, III, Theorem 5.2 (b)] we have H'Zx(n) = 0 for n > 0. So it remains
to show that H'Zx(n) = 0 for n < 0. Notice proj dim Sx < 4 by the Hilbert Syzygy

Theorem [11, Corollary 19.7]. Hence proj dim Iy < 3. Let

0—Ls—>Ly— L1 —>Ly>Ix—0 (18)

be a minimal free resolution of Ix and let £ = Ker7. From we get the exact
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sequence

0—-F—Ly— Ix —0. (19)

Sheafifying we get the exact sequence

0—>E&—Ly—ZIx—0, (20)

where € = E and £y = 270. Localizing at a closed point P € X we get the exact
sequence

0—>(€p—>£07p—>IX,p—>0. (21)

By the Auslander-Buchsbaum Theorem [26, Theorem 19.1] we have

proj dim Ox p + depth Ox p = depth Ops p. (22)

Notice both Ops p and Ox p are CM rings. Hence depth Ops p = dim Ops p = 3 and

depth Ox p = dim Ox p = 1. Therefore proj dim Ox p = 2. We have the exact sequence

0—>IX,P_>O]P’3,P_>OX,P_>O~ (23)

Let N be an Ops p-module. Applying Hom(—, N) to we get the long exact sequence

oo — Ext*(Ops p, N) — Ext*(Zx p, N) = Ext*(Ox.p,N) = --- . (24)

Since proj dim Ox p = 2, Ext*(Ox p, N) = 0 by [26, § 19, Lemma 2]. On the other hand,
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Ops p is free and hence projective. Therefore Ext?(Ops p, N) = 0 by [20, Proposition
7.2]. Thus we get Ext?(Zx p, N) = 0 and hence proj dimZx p < 1 by [26] § 19, Lemma
2]. Similarly, applying Hom(—, N) to and using the fact that proj dimZyx p < 1,
we have projdim&p = 0, ie., Ep is a free Ops p-module. Hence & is locally free by
[18, II, Exercise 5.7 (b)]. Therefore by the Serre Duality Theorem [18 III, Theorem
7.6 (b)(ii)], H*(P*,E(n)) = 0 for n < 0. Twisting by n and taking the long exact
cohomology sequence of ([20), we get H'(P3 Zx(n)) = H?(P3,&(n)) for all n. Hence
HY(P3,Zx(n)) = 0 for n < 0. Therefore M has finite length.

(c)=-(a): Suppose M has finite length. Let Y be the largest subcurve of X having pure
dimension 1, i.e., Y is obtained by removing all the embedded and isolated points of X.
We will show that Y = X, i.e., X has pure dimension 1. Suppose on the contrary that

Y C X. Let Zy|x be the ideal sheaf of Y in X. Then we have the exact sequence

0—>IX —>Iy—>Iy|X—)O. (25)

Twisting by —n and taking the long exact cohomology sequence in we get the exact
sequence

HZy(—n) — H'Zyx(—n) = H'Ix(—n) = H'Iy(—n) — 0. (26)

Since Y has pure dimension 1, My has finite length and hence H'Zy-(—n) = 0 for n > 0.
On the other hand, H?Zy is the total ideal Iy of Y. Hence H°Zy(—n) = 0 for n > 0.
Therefore from (26) we see that HZyx(—n) = H'Zy(—n) for n > 0. Since Zy|x is

supported on a finite set, Zy|x(—n) = Zy|x by Lemma|2.2.1. Therefore H°Zy|x(—n) # 0
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for n > 0. Hence H'Zx(—n) # 0 for n > 0, which contradicts the fact that My has

finite length. Therefore Y = X and hence X has pure dimension 1. O]

Definition 3.3.3. A curve in P? is called Cohen-Macaulay (CM henceforth) if it satisfies

any one of the three equivalent conditions in Proposition (3.3.2.

Example 3.3.4. Let m > n be integers and let W C P3 be the closed subscheme given by
the total ideal Iy = (x,y, 2)™ N (x,y™). Notice (x,y, z) is an embedded associated prime
of Iy. Hence (z,y, z)™ defines an embedded point on W at (0, 0,0, 1) of multiplicity m.
Hence W is not a CM curve by Proposition [3.3.2. Throwing away these embedded points
we get a CM curve Z C P3 with total ideal I; = (z,y"). Notice, Z is the largest CM
curve contained in W. This is an example of a Cohen-Macaulay filtration which we will

see in Section 4.2.

Lemma 3.3.5. Let Y C P? be an integral curve, F be a locally free sheaf on Y and Z
be a CM curve such that SuppZ =Y. If W C P? is a closed subscheme such that the
sequence

0—>Zw —-Z;—F —0 (27)

is exact, then W is a CM curve with SuppW =Y.

Proof. From we get the commutative diagram

0 Tw Ops Ow 0 (28)

L]

0 IZ OIPB OZ 0

|

]I'
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Applying the snake lemma to (28) we get the exact sequence

0—=F —Ow— Oz —0.

Let P € P2 be a closed point. Then at the stalk at P we get the exact sequence

0—>FP—>OW7P—>OZ7P—>O. (29)

Notice Supp F =Y/, since F is locally free on Y. Therefore Owp # 0 < Ozp # 0, ie.,
SuppW =SuppZ =Y.

Now let P be a closed point of Y. Since Y is integral, it is CM. Hence depth Oy p = 1.
Let z € Oy p be a regular element. Since Z is supported on Y, 7y p C Zy p and hence
there exists a surjection Ozp — Oy p. Let u € Ozp be such that v — 2z under this
surjection. Notice if u = 0 then z = 0, which contradicts the regularity of z in Oy p.
Hence v # 0. Now if u is a zerodivisor in Oz p then there exists a nonzero element
a € Ogzp such that au = 0 in Oz p. Since Y is integral, Zy p is a prime ideal in Ops p.
Hence Zz p is Zy p-primary, since \/IZT = Ty p. Since au € Iyp but a ¢ Iy p, we
therefore have u" € 7, p for some n € N. Thus u is nilpotent in Oz p and hence z is
nilpotent in Oy p, which contradicts the regularity of z in Oy p. Therefore u is regular
in Oz p. From we have the surjection Owp - Ozp. Let v € O p be such that

v +— u under this surjection. Notice if v = 0 then u = 0, which contradicts the regularity
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of u in Oz p. Therefore v # 0. From (29) we get the commutative diagram

0—)./—'.p—>OW7p OZJD 0 (30)
R
O—)Fp—>0mp Osz O,

where ¢p is the restriction of the map -v on Fp. Notice Ker(-u) = 0, since u is regular in
Oz p. Also v is not the zero map, since v # 0. Since F is locally free on Y, there exists

an integer r € N such that Fp = OF p. Then ¢p is given by the r x r diagonal matrix

z 0 0
0 z - 0
00 z

Hence det pp = 2". Since z is regular in Oy p, det op = 2" # 0 and hence Ker ¢p = 0.
Applying the snake lemma to we therefore have Ker(-v) = 0. Thus if vw = 0 for
some w € Ow p then w = 0. Therefore v is regular in Oy, p and depth Ow,p > 1. Since
depth Oy, p < dim Oy p = 1, we have depth Oy, p = 1. Thus Oy,p is CM of dimension
1. Since P € Y was arbitrary, W is a CM curve by Proposition [3.3.2. Thus W is a CM

curve with SuppW =Y. n

Proposition 3.3.6. Let X C P be a CM curve. If Z is an ideal sheaf in Ox that is not

supported at any generic point of X, then Z = 0.

Proof. Let Y be the closed subscheme of X defined by the ideal sheaf Z. Then we have
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the exact sequence

0—-7Z—0x = 0y —0.

Let P € X be a closed point. At the stalk at P we get the exact sequence

O—)Ip — OX,p — Oy’p — 0.

Since X is CM, Ox p is a CM ring of dimension 1. Set [ := Zp and A = Ox p. Since T
is not supported at any generic point of X, I, = 0 for all minimal primes ¢ of A. Since A
is CM, it has no embedded associated prime. Hence by Lemma[2.1.6, I =0, i.e., Zp =0

for all closed points P € X. Therefore Z = 0. O

Corollary 3.3.7. Let X C P? be an irreducible CM curve. If U is an open set such that

X NU is nonempty, then X = X NU.

Proof. Let Y = X NU. Then Y is a closed subscheme of X. Notice Y is dense in X,
since X NU # @. Hence X \ Y consists of finitely many points, since X is irreducible.
Let Z be the ideal sheaf of Y in X. Then Supp(Z) C X \Y, i.e., Z is not supported at the

generic point of X. Hence Z = 0 by Proposition [3.3.6. Therefore X =Y =X NU. [

Corollary 3.3.8. Let X, X’ C P? be irreducible CM curves. Then X = X’ if and only

if X NU = X'NU for some open set U such that X NU and X' N U are nonempty.

Proof. If X = X' then of course X NU = X' N U for all open sets U. Conversely, let U

be an open set such that X N U and X' N U are nonempty with X N U = X’ NU. Then

by Corollary3.3.7 X =X NU =X'NU = X'. O
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4 Multiplicity structures on curves in P?

In this chapter we describe general behaviors of multiplicity structures on nonsingular
connected curves in P? having generic embedding dimension 2. In Sections 4.1 — 4.3
we extend the theory of Banica and Forster 3] from complex analytic three manifolds
to P} over an arbitrary but algebraically closed field k. In particular, we give rigorous
proofs of their claims and statements. In Section 4.4 we give an independent proof of
Ferrand’s construction of doubling a locally complete intersection curve in the context
of nonsingular connected curves in P2. We also prove that every Cohen-Macaulay dou-
ble structure on nonsingular connected curves in P? arises from this construction. In
Section 4.5 we describe the singularities and class groups of general surfaces containing

multiplicity structures, following the works of Brevik and Nollet [6].

4.1 Primitive extensions

In this section we describe multiplicity structures on nonsingular connected curves in P?

having embedding dimension at most 2 at every point.

Definition 4.1.1. Let Y C P? be a nonsingular connected curve. A multiplicity structure
on Y, or an extension of Y, is a CM curve Z C P? such that SuppZ = SuppY. The
multiplicity of Z is defined by deg Z/degY and is denoted by mult(Z). We say Z is
a multiplicity m-structure on Y or an m-extension of Y if mult(Z) = m. If Z is a

l-extension of Y, i.e., if Y = Z, then we say Z is a trivial extension of Y.

Example 4.1.2. Let Y C P? be the line with Iy = (z,y) and Z C P? be the closed
subscheme with Iy = (z,y"™) for some n € N. Then Z is a multiplicity n-structure on Y.
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Lemma 4.1.3. Let Y C P? be a nonsingular curve and let P € Y be a closed point.
Then there exists a regular system of parameters {z, y, 2} in Ops p such that Zy p = (z,y).
Moreover, if there exists a regular element @’ € Ops p such that 2’ € Ty p but 2/ ¢ m2; 5,

then there exists a regular system of parameters {2, y, 2} in Ops p with Zy p = (2/,y).

Proof. We have the exact sequence

0— Iy7p — OPSJD — OYJD — 0. (31)

Since Y is nonsingular, Oy, p is a regular local ring and hence a complete intersection ring
by Corollary [2.1.15] Therefore by Corollary the minimal number of generators of
Zyp is dimOps p — dim Oy p = 3 — 1 = 2. Let k(P) = Ops p/mps p be the residue field
at P. Then dimZy p ® k(P) = 2 by Nakayama’s lemma [2, Proposition 2.8]. From (31)

we get the exact sequence

0— Iy7p — Mp3 p — My,p — 0. (32)

Tensoring with k(P) we get the exact sequence

Ty,p @ k(P) — mps p/mgs p — my,p/mi p — 0. (33)

Let Kp = Ker(mps p/m3; , — my p/mi ). Since is exact in the middle, Kp is equal
to the image of Zy p @ k(P). Hence there exists a surjection pp : Zy p@k(P) — Kp. Since

Y is nonsingular, dim my,p/m3, p = 1 and hence dim Kp = 2. Thus pp is a surjection of
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~Y

two-dimensional vector spaces, hence is an isomorphism and therefore Zy p ® k(P) = Kp.

Hence is left exact. Combining and we get the commutative diagram

Mga p m]%P 0 (34)
0 Iyp mps p My, p

l l i

0——Zyp @ Kk(P) —>mpsyp/m§37p—>mxp/m§/,},—>0.

Let {z,y,z} be a regular system of parameters in Ops p. Then {z,y, z} is a basis of
Mps p/MZs p, Where I, 7,2 are the images of z,y,z in mps p/mg; , respectively. By a
change of basis of mps p/ mﬁm’ p if necessary, we may assume that Z is a basis of my p/ m%c P
Then z generates my p by Nakayama’s lemma [2, Proposition 2.8]. Let ¢p denote the
map mps p — Wy p in (32). Then ¢p(x) = az,¢p(y) = bz and ¢p(z) = z for some

a,b € Ops p. Let 2/ = 2 —az,y = y—bz. Let &, ¢ be the images of 2,y in mps p/mz; p.

Then
T T 1 0 —a
Algl=|y |  whereA= [0 1 —p
z z 00 1

Notice A is invertible and hence {7, ¥, Z} is a basis of m]p37p/m]%37P, ie, {2,y 2z} is a
regular system of parameters in Ops p. Making this change of basis we therefore have
op(2') = ¢p(y') = 0. Thus («/,y’) C Zyp and hence 7',y € Zy p ® k(P). Since 7’ and 3/’
are linearly independent and since dimZy p ® k(P) = 2, {Z/, ¢’} is a basis of Zy p ® k(P).

Therefore {2,y'} is a minimal basis of Zy p by Nakayama’s lemma [2, Proposition 2.8].
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Hence Zy p = (2/,y'). Denoting 2’ by z and ¢’ by y we get Zy p = (x,y).

Now suppose 2z’ is a regular element in Ops p such that 2’ € Zy p but 2’ ¢ m[%,g’ p- Let
z’ be the image of 2’ in mps p /m]%?,’ p- Then 2’ # 0. Hence 7’ is a basis element of
Ker(mgs p/mg; , — my p/mi p) in . Let ¢/, z € mps p be such that {Z/, 7'} is a basis
of Ker(mps p/mis , — myp/mi p) and Z is a basis of my p/mi. p, where §' and Z are
the images of y' and 2 in mps p/mg; ,. Then {7, ¢, 2} is a basis of mps p/m; , and
hence {2',y’, 2} is a regular system of parameters in Ops p. Let ¢p denote the map
mps p — myp in (32). Then ¢p(z’) = 0,¢p(y') = cz and ¢p(z) = z for some ¢ € Ops p.
Let y = ' — cz. Then by the same argument in the previous paragraph, {z’,y, z} is a

regular system of parameters in Ops p with Zy p = (2/,y). ]

Corollary 4.1.4. Let Y C P? be a nonsingular curve and let P € Y be a closed point.
If Zy p = (z,y) for some 7,y € Ops p then there exist an open affine neighborhood U of

P and z,y € Oy such that Zyy = (z,y) and xp = 7,yp = .

Proof. Let V' = Spec A be an open affine neighborhood of P and let p be the prime ideal
in A corresponding to P. Let m, denote the maximal ideal in A,. Then 7,y € m,. So
there exist z,y € A and a,b € A\ p such that T = x/a and § = y/b. Let ¢ : A2, — Lyy,
be the map given by the matrix (ac y)v where V,;, = Spec Ay, Let C' = Coker . Then
C, = 0, since 9, is a surjection. Let {c1,--- , ¢} be a generating set for C. Then there
exist s1,---,s, € A\ psuch that s;c; = 0 for 1 <4 < r. Hence ¢, : A%, — Ly|y,,, is a
surjection, where s = II7_;s; and Vs = Spec Agps. Let U = V. Then Zy iy = (z,y).

Moreover, xp =z, = and yp =y, = ¥. ]
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Definition 4.1.5. Let Z be a multiplicity structure on a nonsingular connected curve

Y. Then Z is a primitive extension of Y if embdimp Z < 2 for all closed points P € Y.

Lemma 4.1.6. Let Z C P? be a curve and let P € Z be a closed point. Then
embdimp(Z) < 2 if and only if there exists a regular system of parameters {z,vy,z}
in Ops p such that * € Z; p. Moreover, in that case there exists an open affine neighbor-
hood U of P such that z € Oy and the ideal (x) defines a nonsingular surface F* C U

with IF = (l’) C IZ\U-

Proof. We have the commutative diagram

mgs p my p 0 (35)
0 Izp mps p mzp 0
0 Kp Mps p/M3; p, —— Mz p/m7 p——0,

where Kp = Ker(mps p/m3s , — mzp/mj p). Let embdimp(Z) < 2. If embdimp Z = 1
then Oy p is a regular local ring of dimension 1. Hence by Lemma, there exists a regular
system of paramenters {z,y, 2} in Ops p such that 7, p = (x,y) and hence x € Z p. Now
suppose embdimp Z = 2. Let {z,y, 2z} be a regular system of parameters in Ops p. Then
{Z,y,z} is a basis of mp37p/m12P,3’P, where Z, 7, zZ are the images of x,y, z in mp37p/mI2P37P
respectively. By a change of basis of mps p /mﬂigvp, if necessary, we may assume that
{y,2} is a basis of my p/m% p. Then y and z generate my p by Nakayama’s lemma |2,
Proposition 2.8]. Let ¢p denote the map mps p — myp in . Then there exist
a,b € Ops p such that ¢p(z) = ay + bz, ¢p(y) =y and ¢p(2) = 2. Let 2/ =z — ay — bz.
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Let 7’ be the image of ' in mps p/m2; . Then

T i 1 —a —b
Algl=1|y | whereA=1[0 1 0
z z 0 0 1

Notice A is invertible and hence Z/, 7, Z is a basis of mp37p/m12P>37P, ie., {2/ y, 2z} is a regular
system of parameters of Ops p. Making this change of basis we see that ¢p(z") = 0. Hence
x' € Iz p. Denoting 2’ by = we get x € Iz p.

Conversely, let {z,y, 2} be a regular system of parameters in Ops p such that x € 7y p.
Let  be the image of x in mps p /m§37 p- Notice T ¢ mfw’ p and hence T is a nonzero
element of Kp. Therefore dim Kp > 1 and hence embdimp(Z) = dim mZ’p/mQZP < 2.
Let V = Spec A be an open affine neighborhood of P. Let p be the prime ideal in A
corresponding to the point P. Let m, be the maximal ideal in the local ring A,. Let
embdimp(Z) < 2. Then x € I, p and hence there exist a € Zz(V) and £ € A\ p such

that © = a/¢. Let E C Vg be the surface defined by the ideal (). Then ZTp = (z). We

have the commutative diagram

0 IE,p mps p mg p 0 (36)

l l

2 2
mp37P/mP3,P ’ mE,P/mE,P —0.

Let Z be the image of x in mps p/m3; . Since g p = (2), Z — 0 € mp p/m7, p. Therefore

dimmg p/mj p = 2 and hence E is nonsingular at P. By [18, II, Corollary 8.16], there
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exists an open dense set V' C V¢ such that £ NV’ is nonsingular. Let U = V' and

F=EnNV' Then F C U is a nonsingular surface with Zp = (z) C Zzu. O

The following lemma has been taken from a series of lectures given by Scott Nollet at

our algebraic geometry seminar in TCU.

Lemma 4.1.7. Let Y C Z C F be such that I’ is a nonsingular affine surface, Y is a
nonsingular connected curve and Z is a multiplicity n-structure on Y. Then I, = I for

some d € N, where Iy and Iz denote the ideals of Y and Z in F' respectively.

Proof. Let F' = Spec A. Notice Y is a c.i., since it is nonsingular. Hence [y is generated
by codim(Y, F') = 1 element. Let Iy = (f) for some f € A. Let I = (aq,- - ,as), where
a; € A. Since Iy C Iy, f | a; for all i. Let d be the largest integer such that f¢ | a; for all
i. Then f4*1 4 a; for some i. Without loss of generality we may assume that f4¢! { a;.
Let a; = f%,;. Then Iy = (f%)b, where b = (by,--- ,b,). Notice f { b;. We will show
that b = A. Suppose on the contrary that b # A. Then 1 ¢ b and hence f¢ ¢ I,. Let
Iz = N%_,q; be a primary decomposition of Iz. Since Z is CM, Iz has no embedded
associated prime. Therefore ,/q; = (f) for all j, since Supp Z =Y and Y is connected.
Since fib, € Iy but f¢ & I, there exists jo such that fib, € g, but f? ¢ q;,. Since g;,
is primary we therefore have 0" € g;, for some m € N. Hence b; € (f), since /g;, = (f).

But then f | by, which is a contradiction. Therefore b = A and hence I = (f¢) =I¢. O

Proposition 4.1.8. Let Z be a multiplicity n-structure on a nonsingular connected
curve Y C P3. Then Z is a primitive extension of Y if and only if for each closed point
P €Y there exist an open affine neighborhood U of P and z,y € Oy such that the ideal
(x) defines a nonsingular surface F' C U with Zp = (), Zyjy = (z,y) and Iz = (x,y").
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Proof. Let Z be a primitive extension of Y and let P € Y be a closed point. Hence
embdimp(Z) < 2. By Lemma @, there exists a regular system of parameters {z,y’, 2’}
in Ops p such that x € Z; p. Moreover, there exists an open affine neighborhood U; of
P such that © € Oy, and the ideal (z) defines a nonsingular surface F’ C U; with
Ip = () C Iz, We have x € Iyp, since Zyp C Zyp. Notice z ¢ mﬂig,’P, since
{,y,2'} is a regular system of parameters in Ops p. Therefore by Lemma [£.1.3, there
exists a regular system of parameters {z,y, 2} in Ops p such that Zy p = (z,y). Hence by
Proposition [4.1.4, there exists an open affine neighborhood U, of P such that z,y € Oy,
and Zyy, = (#,y). Let U = UyNUy and F = F'NU. Then Zyy = (z,y) and F C U is a
nonsingular affine surface with Zp = (z) C Zzy. It remains to show that Zyy = (z,y").
Let Zy|r and Zz|r denote the ideal sheaves of Y and Z in F' respectively. Then Zy p = (v)
and hence Ty = (y?) for some d € N by Lemma @ Therefore Zy; = (z,y%). Since
U is a nonempty open set, Y N U is dense in Y. Hence Y \ (Y NU) has finitely many
points. Therefore a general plane will miss every point of Y \ (Y NU). Let H C P3
be a plane such that Y N H = {Q;}_, C U and H intersects Y transversely at each
Qi. Let Q € {Qi}_,. Then Zy g = (h) for some h € Opy. Notice {z,y,h} is a regular
sequence in Ops g since H intersects Y transversely at (). We have Zyqy g = (x,y, h)

and Zznpo = (z,y% h). Therefore Zynp g has the filtration

Tzomg = (z,y%h) C (29" h) C - C (2,y,h) = Tyrmo
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and hence we have the exact sequences

(33, ym’ h) OP3,Q OIPS,Q

0
T @y Lh) g @y b

— 0, (37)

where 1 < m < d—1. Notice mg annihilates (z,y™, h)/(x,y™**, h), where mg = (z,y, h)
is the maximal ideal in Ops . Hence (z,y™, h)/(z,y™ " h) is a k(Q)-vector space,
where k(Q) = Ops g/mg is the residue field at Q. Also notice (x,y™, h)/(z,y™ ', h)
is generated by a single element, i.e., by the image of y™ in Ops o/(z,y™ ", h). There-
fore dim(z,y™ h)/(z,y™* h) = 1 for all m. Since Ops o/(z,y,h) = k(Q), we have
dim Ops /(z,y, h) = 1 and hence dim Ops o/ (2, y%, h) = d by induction on m. Therefore

(ZNH) Zdlm f“;sdQ;L Zd le—dZdlm fpy,@ =d-I(YNH),

where [(Z N H) and [(Y N H) denote the lengths of Z N H and Y N H respectively.
Therefore deg Z = d - degY by Proposition @ Since mult(Z) = n, we have d = n.
Thus Zy\y = (z,y) and Iy = (z,y").

Conversely, let for each closed point P € Y there exist an open affine neighborhood U
of P and z,y € Oy such that the ideal (z) defines a nonsingular surface F' C U with
Ir = (), Zyw = (x,y) and Zzy = (,y"). Then x € Z; p and hence embdimp(Z) < 2

by Lemma 4.1.6. Therefore Z is a primitive extension of Y. ]

Remark 4.1.9. From Proposition 4.1.8 we see that every primitive extension of a non-

singular connected curve in P? is a locally complete intersection.
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Corollary 4.1.10. Let Z be a primitive n-extension of a nonsingular connected curve
Y C P? and let Z; C Z be a multiplicity j-structure on Y. Then for each closed
point P € Y there exist an open affine neighborhood U of P and z,y € Oy such that

Iz, = (z, y’). Moreover, Z; is the unique multiplicity j-structure on Y contained in Z.

Proof. Let P € Y be a closed point. Since Z is a primitive n-extension of Y by
Proposition [4.1.8) there exist an open affine neighborhood U of P and z,y € Oy
such that Zp = (z), Zyjy = (x,y) and Zzy = (x,y"). Since Y C Z; C Z, we have
(z,y") € Iz;v € (z,y) and hence v € Zzy. Therefore Z; is a primitive j-extension
of Y by Lemma @ and hence T,y = (,%’) by Lemma {.1.8. Now if Z} is an-
other multiplicity j-structure of Y contained in Z then by the same analysis we get
IZ;,|U = (z,y) = Iz,v, ie, Z;NU = Z;NU. Therefore Z; = Z; by Corollary @

Hence Z; is the unique multiplicity j-structure of ¥ contained in Z. O]

Remark 4.1.11. From Corollary [4.1.10| we see that if Z is a primitive n-extension of
a nonsingular connected curve Y C P2, then Z has a unique filtration by the primitive

Jj-extensions Z; C Z of Y.

4.2 Cohen-Macaulay filtrations

Although primitive extensions are the nicest extensions, most multiplicity structures are
not primitive. To deal with general kinds of extensions Banica and Forster introduced
the notion of Cohen-Macaulay filtration, which we describe next.

Let Z be a CM multiplicity structure on a nonsingular connected curve Y C P3. Let Y0

be the j™-infinitesimal neighborhood of Y, where Zy) = I{'/. Then Z,~vo) =1z + I{,
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is the ideal sheaf of the intersection Z N'YV). Let N™_,Q; be a primary decomposition
of Z,+yv. Let P, = \/Q; be the associated primes of Z,~y). Notice, ZNY V) has an
embedded point if and only if P; is an embedded prime for some 7. Throwing away all the
embedded primary components of Z,y;) we obtain a unique ideal Z;, by [2, Corollary
4.11]. Let Z; be the subscheme defined by the ideal sheaf Z;. Then Z; has no embedded
or isolated point and hence is CM by Proposition [3.3.2. By construction, Z; is the largest
CM curve contained in ZNY ¥ and hence is uniquely determined by the j*P-infinitesimal
neighborhood Y of Y. Now if Z; C Z for all j € N then deg Z > deg Z; > jdegY > j
for all 7 € N| i.e., deg Z = oo, which is impossible. Hence there exists a positive integer

n such that Z; = Z for all j > n. Thus we get a flitration of Z by CM curves as follows:

Y=2ZC---CZy=72 (38)

Definition 4.2.1. We call the Cohen-Macaulay (CM henceforth) filtration of Z.

Notation 4.2.2. Let I'; denote the set of embedded points in ZNY . Then dimT'; = 0

and Z; = ZNYY on Y\ T;. In other words, Iy, = I +Z} on Y\T. Set I := Ui

Example 4.2.3. Let Y be the line with total ideal Iy = (z,y) and let Z be the multi-
plicity n-structure on Y with total ideal I = (z,y"). If Z; is the ;" CM filtrant of Z,

then I, = (x,97).

Example 4.2.4. Let Y C P? be the line given by Iy = (z,w). Let Z C P? be the curve
given by I = (2% yz — w?). Notice Ty C Zy, hence \/Z; C /Iy = Zy. On the other

hand, z € VZ, since 22 € Z;. Therefore w € \/Z,, hence Iy C /I, i.e., VIz; = Ly.
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Notice Z is CM, since it is a complete intersection. Thus Z is a CM multiplicity 4-
structure on Y.

We have Zy + I3 = (22, yz — w?, w®) C anb, where a = (y, 2%, w), b = (yz — w?, 2w, 2?)
are primary ideals. Let Z3 be the subscheme defined by the total ideal Iz, = b. Then

Iz, has the S-resolution

z 0

w2

—y —w (yz—w2 2w 22>
3

0— S(—3) 2 5(-2)

y Iz, — 0. (39)

From we see that Z3 is ACM and hence CM. Sheafifying and augmenting by

Ops, we get the exact sequence

0 — Ops(—3)? = Ops(—2)* = Ops — Oz, — 0. (40)

Twisting by 1 and taking the Euler characteristics of the sheaves in we get xOz, (1) =
XOps (1) —3xOps(—1) +2xOps(—2). Similarly, xOz, = xOps —3xOps(—2) + 2xOps (—3).
Notice n < 0 = h°Ops(n) = 0 and n > —3 = h*Ops(n) = 0. Hence xOgz (1) =
h°Ops(1) = 4 and xOz, = h°Ops = 1. Therefore deg Z3 = xOz,(1) — xOz, = 3. Hence
Zs3 is a CM triple structure on Y contained in Z. Since CM filtration is unique, Z3 is the
3'4 CM filtrant of Z. Notice a yields an embedded point at the origin since v/a = (y, z, w).
Similarly, Zy +Z2 = (yz, 2%, zw,w?) C pNq, where p = (v, z,w)?, q = (2, w?) are primary

ideals. As above, p yields an embedded point at the origin since /p = (y, 2z, w). Let Z,
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be the curve defined by the total ideal Iz, = q. Then Z, is a complete intersection and
hence CM. Also Z, is supported on Y with deg Z, = 2. Therefore Z, is the 24 CM

filtrant of Z and hence Y = 2, C Z, C Z3 C Z, = Z is the CM filtration of Z.

Proposition 4.2.5. Let Z be a CM multiplicity structure on a nonsingular connected
curve Y C P3 with the CM filtration Y = 2, € --- C Z, = Z. Set I; = Iz, for

1<j<nandL;:=7;/Tjj; for 1 < j <n—1. Then L; is a quotient sheaf on Z;;1,Vj.

(a) Z,Z; C Z;+; and each £; can be considered as an Ogz-module. In particular, for

¢ =1 we have ZyZ; C Z;,, and each £; can be considered as an Oy-module.
(b) Each L, is torsion free as an Oy-module, hence a vector bundle on Y.

(c) The sequence

0—=L; =0z, >0z —0
is exact for all j.
(d) The multiplicity of Z is given by

n—1
mult(Z) =1+ Zrankﬁj.

J=1

(e) There exist natural maps £; ® £; — L;4; forall 1 <i,j <n —1.

PTOOf. (a) Set Fij = Pl U Fj and ’Cij = (IZIJ +Ii+j)/Ii+j- Apart from Fij we have

TT = Iz +To) Iz +T)) C Iy + T,

46



So the statement holds in Y \ I';; and Supp K;; C T';;. Thus K;; is an ideal sheaf in

Oy,

++;» which is not supported at the generic points of Z;;;. Since Z;; is a CM curve,

we have K;; = 0 by Proposition @ Therefore Z,7; C Z;,;. Since Z;; € Z;44, each L;
is annihilated by Z; and hence can be considered as an Oz,-module.

(b) Let F; be the torsion subsheaf of £; on Y. lLe., F; is the sheaf associated to the
presheaf

U — Tor L;(U),

where U is an open subset of Y and Tor £;(U) is the torsion submodule of £;(U). Then
Supp F; is a closed subset of Y. Let n be the generic point of Y. Then L, , is a finitely
generated module over Oy,,. Since Y is integral, Oy, is a field. Hence L;, is a finite
dimensional vector space over the field Oy,. Thus F;, = (TorL;), = TorL,;, = 0.
Hence F; is supported on a proper closed subset of Y. Hence F; is an ideal sheaf in

0y,

.., which is not supported at the generic points of Z;;;. Since Z;,; is CM, we have
F; = 0 by Proposition @ Therefore each L; is torsion free on Y.

Let P € Y be a closed point. Then Oy p is a DVR and hence a PID, since Y is nonsingu-
lar. Hence £; p is a finitely generated module over a PID. Now every finitely generated
module over a PID is a direct sum of its torsion submodule and a free submodule [21, The-
orem 3.10]. Therefore £;p = G; p ® F; p, where G, p is a free Oy p-module and Fj p is
the stalk at P of the torsion subsheaf F; of £;. But F; = 0 from the previous paragraph
and hence £; p is a free Oy p-module. Therefore each £; is locally free on Y and hence a

vector bundle on Y, since there exists a one-to-one correspondence between locally free

sheaves and vector bundles on a scheme |18, II, Exercise 5.18].
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(c) We have the commutative diagram

0 Zi Ops Oz, 0 (41)
0 Z; Ops Oz, 0.
L;
Applying the snake lemma to we get the exact sequence
0— Ej — OZj+1 — Ozj — 0. (42)

(d) Twisting by n and taking the Euler characteristics of the sheaves in we get

XOZj+1 (n) = XOZj (n) + Xﬁj (n)v

and hence
n—1
xXOz(n) = xOy(n) + Z XLj(n). (43)
j=1
By Lemma |3.2.2 we have
xL;j(n) =n(rank £;) degY + ¢;, (44)

where ¢; € k is some constant. Combining and we get

n—1 n—1
XOz(n) = xOy(n) + n(z rank £;) degY + Z cj.
j=1 j=1
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Therefore

n—1 n—1
ndegZ +1—p,(Z) =n(l+ Zrank[,j) degY +1—p.(Y) + ch. (45)
=1 =1

Equating the coefficients of n in (45)) we see that

n—1
degZ = (1+ Zrankﬁj) deg?,

i=1

and hence mult(Z) =1+ Z;le rank £;.
(e) Let U be an open affine subset of Y. Set I; := Z;(U). Then L;(U) = I;/1;11. We

define the maps ¢i,j : £Z<U) X EJ(U) — Ii+j/]i+j+1 by

(CL + ]i+17 b+ Ij+1) — ab + ]z'+j+1;

where a € I;,b € I;. The map is well defined. To show this, suppose (a+I;+1,0+ ;1) =
(@' 4+ 1ix1, 0+ 1;41). Thena—a € L4, 0=V € I;1y. Now a(b—0V') € I;1;11 C I;1j4+1 and
(a—a)b' € I111; C 1441 by part (a). Therefore ab—a't' = a(b—V')+ (a—a" )V’ € Liyj1
and the map is well-defined. Again by part (a), we have the inclusion maps [;I; C I;4;
and hence the inclusion maps 7, ; : L1; /111 < Livj/Litj1. Let ¢, j = 7,50 ¢; ;. Then
Yij o Li(U) x L;(U) = L;4+j(U) are bilinear maps and hence factor through the tensor
products £;(U) ® L;(U). Therefore we get the maps £;,(U) ® L;(U) — L;4;(U) given by
(@+Iiz1) @ (b4 Ijp1) = ab+ Iy, where a € I; and b € I;. Gluing these maps we get

the maps £z X ,Cj — Li-l—j- Il
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Remark 4.2.6. From Proposition 4.2.5 (d), we see that if Z is a CM multiplicity struc-

ture on a nonsingular connected curve Y C P2, then mult(Z) is a positive integer.

Notation 4.2.7. Let Y, Z and £; be as in Proposition4.2.5. Set £ := £y and £7 := L%,

where £%7 denotes the j* tensor power of £ as an Oy-module.

Corollary 4.2.8. Let Z be a primitive extension of a nonsingular connected curve Y.

Let £; be the vector bundles on Y as in Proposition 4.2.5.
(a) Each £; is a line bundle on Y.

(b) Let £7 be as in (4.2.7) and let Z, be the 2" CM filtrant of Z. Then

L= L, =T T, T

Proof. (a) Let P € Y be a closed point and let Z; be the j™ CM filtrant of Z. By
Corollary [4.1.10] there exist an open affine neighborhood U of P and z,y € Oy such that
Iy = (z,y) and Z, )y = (2,3’). Hence L£;(U) is generated by a single element, namely
7/, where g/ is the image of 3/ in O . Therefore £; is a line bundle on Y.

(b) Let ¢;(U) : LI(U) — L;(U) be the map given by 4%/ — 7. Notice ¢;(U) is surjective.
Gluing these maps we get a map of line bundles 1; : £7 — £;. At the stalk at P we
get the map v, p : £§; — L; p. Notice 9; p is surjective, since U is a neighborhood of
P and 9;(U) is surjective. Since L;p and Lp are line bundles on Y, L7, o Oy.p and
Lip = Oyp. Hence 9; p takes the form Oy,p N Oy,p for some b € Oyp. Since ¥;p
is surjective, b is a unit in Oy p. Therefore 1 p is an isomorphism. Since P € Y is
arbitrary, ¢; is an isomorphism and therefore £7 = L.
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Let & = I{}/ZZ2I§_1. Let P and U be as above. Then I{}'U is generated by a7y

and y/, where 0 < [ < j — 1. Notice 277!y € IZQ‘UIgUl but ¢/ ¢ IZ2|UI{/\_U1' Therefore
E;(U) is generated by the class of y/. Let ¢;(U) : L;(U) — &;(U) be the map given
by 7 — 3 + IZzIUI{/TUl' Notice ¢;(U) is surjective. Glueing these maps we get a map
¢; + Lj — &;. At the stalk at P we get the map ¢;p : L;p — &;p. Notice ¢;p is
surjective, since U is a neighborhood of P and ¢;(U) is surjective. Since £, p is a line
bundle on Y, ¢; p takes the form Oy p 5 & p for some ¢ € Oy p. Notice ¢ # 0, since
¢;,p is surjective. Therefore ¢ is not a zerodivisor, since Oy, p is an integral domain. Thus

¢; p is injective and hence an isomorphism for all closed points P € Y. Therefore ¢; is

an isomorphism and £; = &;. Thus £7 = £; = ;. O

4.3 Quasi-primitive and thick extensions

Let Y, Z and L; be as in Proposition @ Let £7 be as in @ Then £ = Ty /Iy,.
Since 72 C I, we always have the surjection vy — L, where vy = Iy /% is the
conormal bundle of Y. Thus rank £ < rankry = 2. If rank £ = 0 then £ = 0, hence
Iy =1y, ie.,Y = Z. Therefore for nontrivial extensions we must have 1 < rank £ < 2.

Notice if rank £ = 2 then vy = L, i.e., Z> = Tz, and hence Y® C Z.

Definition 4.3.1. Let Z be a CM multiplicity structure on a nonsingular connected
curve Y C P3. Let £ be the vector bundle on Y as above. Then Z is a quasi-primitive

extension of Y if rank £ = 1. On the other hand, if rank £ = 2, i.e., if Y® C Z then Z

is a thick extension of Y.
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Corollary 4.3.2. Let Z be a CM double structure on a nonsingular connected curve

Y C P3. Then Zy /Z7 is a line bundle on Y and Z is a primitive extension of Y.

Proof. Let L = Zy /T. Notice Y C Z is the CM filtration of Z. Hence by Proposition
4.2.5, L is a vector bundle on Y with rank £ = mult(Z) —1=2—-1=1, i.e.,, L is a line

bundle on Y. By Proposition [4.2.5 (c), we get the exact sequence

0—-L—->0; =0y —0.

Let P € Y be a closed point. Then at the stalk at P we have the exact sequence

O-);CP—)OZ7P—>OY7P—>O

and hence the commutative diagram

0—>mp£p mz p my p 0

)

| l i

2 2 2

Now dimmy,p/mj, p = 1, since Y is nonsingular. Also dimmpLp/mpLp = 1, since L is

a line bundle on Y. Therefore dimmy p/ m2Z, p < 2 and hence Z is primitive. [

In the following proposition we give a criterion for a multiplicity structure to be a quasi-

primitive extension based on its generic embedding dimension.
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Proposition 4.3.3. Let Z be a nontrivial CM multiplicity structure on a nonsingular
connected curve Y C P3. Let I be as in (4.2.2). Then Z is a quasi-primitive extension
of Y if and only if Z \ T' is a primitive extension of Y \ T, i.e., embdimp Z = 2 for all

closed points P € Y \ T, i.e., Z has generic embedding dimension 2.

Proof. Let Z be a nontrivial quasi-primitive extension of Y. Let Zy be the 2" CM
filtrant of Z with the ideal sheaf Zz,. Then ZZ C Zg,, since rank £L = 1. Therefore
Zy is a CM double structure on Y. Since Y is nonsingular, Z, is a primitive extension
of Y by Corollary [4.3.2. Therefore by Proposition [4.1.8, given a closed point P € Y
there exist an open affine neighborhood U of P and z,y € Oy such that the ideal ()
defines a nonsingular surface F' C U with Zp = (), Zyjy = (z,v), Zz,v = (x,y?), where
z,y € Oy. Now if P ¢ T then Zz, ;v = Iyp +I§|U. Since x € Tz, v but = ¢ If/‘U, we
must have x € Ty, i.e., Zr C Iz y. Therefore we have the surjection Op — Oz and

hence the surjections Opp — Oz p, mpp — mz p and finally

mF,P/m%:’p — mz,p/mQZJ_—,,

where mpp and my p are the maximal ideals in Opp and Oz p respectively. Notice
dimmpg p /m% p = 2, since F is nonsingular at P. Thus dimmyp/ m2Z’ p < 2. Notice
dimmy, p/m%, p = 2, since Z, is a double structure on Y. Therefore dimmy p/m p > 2
and hence dimmg p/m? p = embdimp Z = 2 for all P € Y\ T', i.e., Z\ T is a primitive
extension of Y\ I'.

Conversely, let Z \ T be a primitive extension of Y\ T". Let P € Y\ T be a closed point.
Then by Proposition [4.1.8, there exist an open affine neighborhood U of P and x,y € Oy
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such that Zy|y = (z,y) and Zyy = (x,y"), where n = mult(Z). Let Z, be the 2°¢ CM
filtrant of Z. Then Zz,; = (x,y*) by Corollary [4.1.10L Therefore rank L|y = 1, ie.,

rank £ = 1, hence Z is quasi-primitive. n

Corollary 4.3.4. Let Z be a CM multiplicity structure on a nonsingular connected curve

Y C P3. Then Z is a thick extension of Y < embdimp Z = 3 for all closed points P € Y.

Proof. Z is a thick extension of Y if and only if Z is not a quasi-primitive extension of

Y if and only if embdimp Z > 2, i.e., embdimp Z = 3 for all closed points P € Y. O]

Proposition 4.3.5. Let Z be a quasi-primitive extension of a nonsingular connected
curve Y C P3. Let L; be the vector bundles on Y as in Proposition 4.2.5. Set £ := £,

and £’ := L% where L% denotes the ;' tensor power of £ as an Oy-module.
(a) The maps £; ® L£; — L;1; defined in Proposition [4.2.5 (e) are surjective on Y \ I'.
(b) Each £; is a line bundle on Y, and hence each map £/ — £; is injective.

(c) There exist effective Cartier divisors D; on Y such that £; = £7(D;) with D; =0

Proof. (a) By Proposition @, Z\T is primitive extension of Y\ I'. Hence £7 = L; on
Y'\T by Corollary [4.2.8. Therefore £; ® L; = L'®@ L7 = L;4; = L;; on Y \ T and hence
the maps £; ® L£; — L;4; are surjective on Y \ I".

(b) L is a line bundle on Y by definition of quasi-primitive extension. Hence each £/ is
a line bundle on Y. The maps £ — L; are generically surjective by part (a). Therefore
each £; is a line bundle on Y. Let P € Y be a closed point. Then at the stalk at P the
map £/ — L; takes the form Oy p N Oy.p, where b is some nonzero element of Oy p.
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Notice Ker(-b) = 0, since b # 0 and Oy p is a regular local ring, hence an integral domain.
Thus the map £§3 — L p is injective for all P € Y. Hence the map £7 — L, is injective.

(c) Let F; be the cokernel of the map £7 — £;. Then we have the exact sequence

0— L — L; — F; —0. (46)

Tensoring with £;1 we get the exact sequence

0= LQL =0y = FQL —0. (47)

The sequence 1} is exact on the left since Y is nonsingular and ,Cj_l is a line bundle on Y.
Notice £7 ®£;1 is an ideal sheaf in Oy. Let D, be the subscheme of Y defined by the ideal
sheaf £/ ®£j’1. Notice Supp D; = Supp F; ®£;1 and hence D; C I', i.e., D; is supported
on a finite subset of Y. Since Y is nonsingular, Oy p is a regular local ring for all closed
point P € Y. Therefore Oy p is a DVR and hence a PID. Hence every closed subscheme
of Y is locally principal, i.e., an effective Cartier divisor. Therefore D; is an effective
Cariter divisor on Y for all j. Since Zp, = Oy (—D,), we have £/ ®£j_1 = Oy (—Dj) and
hence £7 ® L;1(D;) = Oy, ie., L; = LI(D;). Notice Dy = 0, since £; = L = L.

The maps £; ® L; — L;; are surjective on Y \ I' by part (a). By the same token, these
maps are injective and the cokernels have finite support which yield effective Cartier
divisors E;; on Y. Hence L;y; = L; ® L;(E;;), and therefore by the paragraph above
we have L(D;y;) = L™(D; + D; + Ey;). Thus D;y; = D; + D; + E;; and hence

Di + D] S DiJrj, since EZ] 2 0. ]
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Remark 4.3.6. For ¢ < j we have D; < Dj, since D; = D;+(j—1)D; < D; and D; = 0.

Definition 4.3.7. Let Y C Z C P? be a quasi-primitive extension and let £; be the line
bundles on Y, where 7 =1,--- ,n — 1. By Proposition 4.3.5 there exist effective Cartier
divisors D; on Y such that £; = £7(D;), where £ = £; and Dy = 0. Set d; := deg D;.

We call (L, ds,ds,- -+ ,d,_1) the type of the extension.

Example 4.3.8. Let Y C P? be the line with total ideal Iy = (z,y). Let Z and W be
curves in P? with total ideals I, = (z,%?) and Iy = (22, zy,y>, y?2 — w?z). Then W
is a quasi-primitive triple structure on Y of type (Oy(—1),2), having Z as the 224 CM

filtrant. See [29, Proposition 2.1] or [30, Example 2.17] for details.

4.4 Construction of Cohen-Macaulay double structures

In this section we describe the construction of CM double structures on nonsingular

connected curves in ]P)3.

Theorem 4.4.1 (Ferrand). Let Y C P? be a l.c.i. curve and vy = Zy-/ZZ be its conormal
bundle. Let £ be a line bundle on Y and 3 : vy — L be a surjection. Then Ker 8 = Z,/Z%
for a CM double structure Z on Y. Moreover, if Z is given by some other line bundle £’

on Y and some surjection 3’ : vy — L', then there exists an isomorphism ¢ : £ = £’

such that g’ = ¢ o .
Proof. |12, Proposition 2]. O

Remark 4.4.2. The converse of Proposition 4.4.1 is false in general. For example,

let Iy = (25,4%) and Iy = (2%,9°). Then Y is a complete intersection and Z is a
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double structure on Y. But Z doesn’t arise from Ferrand’s construction, since Z¢ ¢ Z.
This example was given by Manaresi [23|. In that paper she proved that if ¥ is a
l.c.i. codimension 2 analytic subspace of a complex manifold with embdimY < dimY +1,
then every l.c.i. double structure on Y arises by Ferrand’s construction. Banica and
Forster [3, § 1] stated without proof that every CM double structure on a nonsingular

connected curve in complex three manifold can be obtained by this construction.

Next we give an independent proof of Theorem [4.4.1 for nonsingular connected curves in

P3. We also prove that its converse holds in this situation.

Theorem 4.4.3. Let Y C P? be a nonsingular connected curve and let vy = Iy /I%
be its conormal bundle. Then the set of CM double structures on Y are in one-to-
one correspondence with the set of pairs (£, ), where L is a line bundle on Y and
p : vy — L is a surjection, modulo the equivalence relation: (L£,3) ~ (L', 5’) if there

exists an isomorphism ¢ : £ — L’ such that ' = ¢ o f.

Proof. Let Z be a CM double structure on Y. Set L := Zy /Z,. Then L is a line bundle

on Y by Corollary [4.3.2. We have the commutative diagram

0——72 — T, — —T,/72 ——0 (48)

0 Ilz/ IY vy 0.
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Applying the snake lemma to (48) we get the exact sequence

0727/ vy — L —0. (49)

Let 8 be the surjection in . Then Ker 8 = Z;/Z¢ and hence the pair (£, 3) defines
the CM double structure Z on Y. If Z is given by some other pair (£, '), where L’
is a line bundle on Y and 3’ : vy — L' is a surjection, then we have the commutative

diagram

0——T,/T2 vy c 0 (50)

O—>Iz/1'32/ Vy ,C/ 0.

Applying the snake lemma to we see that £ = £'. Hence there exists an isomorphism
¢: L= L' such that B’ = ¢o B, ie., (L,5) ~ (L, F).

Conversely, let £ be a line bundle on Y and 3 : vy — L be a surjection. Then Ker 5 has
the form Z/Z%, where Z is an ideal sheaf in Ops. Let Z be the closed subscheme defined

by the ideal sheaf Z. Then Z, = 7 and we have the exact sequence

0—-Z;, Iy - L—0. (51)

Therefore Z is a CM multiplicity structure on Y by Lemma[3.3.5. From we get the

58



commutative diagram

0 z, Ops Oy 0 (52)

0 IY OIPB O Y O .
L

Applying the snake lemma to we get the exact sequence

0—=L—0; = 0Oy —0. (53)
Twisting by n and taking the Euler characteristics of the sheaves in (53]) we get
(54)

xOz(n) = xOy(n) + xL(n).

Now xOz(n) =ndeg Z+1—p.(Z),xOy(n) =ndegY +1—p,(Y) and by Lemma[3.2.1,

xL(n) =ndegY + ¢, where ¢ € k is some constant. Hence from we get

ndegZ +1—pu(Z) =2ndegY +c+ 1 — p,(Y). (55)

Equating the coefficients of n in we get deg Z = 2degY. Therefore Z is a CM

double structure on Y induced by the pair (£, 5). Finally, let Z’ be a double structure
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on Y induced by some pair (L', ') ~ (L, 8). Then we have the commutative diagram

0— T, /T2 w2 r 0 (56)
| |
0_>IZ’/I}2/ Vy v L:/ O,

where ¢ : £ = £’ is an isomorphism such that 5’ = ¢ o 5. Therefore Ker 3 = Ker 3'.

Thus Zz/Z% = I,/ /T% and hence Iy = Ty, ie., Z = Z'. O

4.5 Surfaces containing quasi-primitive extensions

In this section we describe the singularities and class groups of general surfaces containing

quasi-primitive extensions of nonsingular connected curves in P3.

Lemma 4.5.1. Let F be a surface containing a nonsingular connected curve Y C P3.

Then Sing F' D Y if and only if Zp C Z2.

Proof. Let Sing F' O Y. Then embdimp(F') = 3 for all closed points P € Y. Suppose on
the contrary that Zp ¢ ZZ. Let W C P? be the closed subscheme defined by the ideal
sheaf Zyy = Zr +Z%. Then W is a curve supported on Y. Throwing away the embedded
points of W we get a well-defined CM multiplicity structure Z on Y. Notice Z ¢ Y®
and hence Y C Z is the CM filtration of Z. Let L = Zy /Z;. Then L is a vector bundle
on Y by Proposition 4.2.5 (b). We have the surjection vy — L, where vy = Iy /T
is the conormal bundle of Y. Now if Z is a thick extension then vy = £ and hence
I¢ =TIy But then ¥ =7, D Irp + 1% D I}, ie., Ip C Z2, which is a contradiction.

Therefore Z is a quasi-primitive extension. Thus rank £ = 1 and hence mult(Z) = 2 by
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Proposition @ (d). Therefore Z is a primitive extension of Y by Proposition @
Hence embdimp(Z) = 2 for all closed points P € Y. Let I" be the set of embedded points
thrown away in the process of CM filtration of Z. Let @ € Y\ T be a closed point. Then
Z70=TIrq+ I%Q. Let mps o be the maximal ideal in Ops . Since embdimg(F) = 3,
we have Zpo C mgs . On the other hand, I, C m3; . Hence Zzq C mg;,, ie.,
embdimg(Z) = 3, which is a contradiction. Therefore Zp C Z2.

Conversely, let Zp C Z%. Let P € Y be a closed point. Then we have the exact sequence

0 _>IF,P — Mp3 p — Mpp — 0

and hence the commutative diagram

0 Ipyp mps p Mg p 0 (57)
0 Kp mPS’p/még’PLmF7p/m%v7p—>o,

where Kp = Ker ¢p. Since Zp C Z%, from |D we get Zpp C Iy p C m3; p. Therefore
Kp =0, ie., mps p/m3s , = mpp/mf p, hence dimmpp/m% p = 3. Thus F' is singular

at every closed point P € Y. Hence Sing FF D Y. O]

Lemma 4.5.2. Let Z C P be a curve such that Zz(d—1) is generated by global sections.
Let 6 C |[H°Ops(d)| be the incomplete linear system corresponding to the vector space

HZz(d). Then § separates points and tangent vectors of X, where X = P3\ Z.
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Proof. Let P € X be a closed point. Then Oz p = 0. Hence from the exact sequence

0— IZJD — O]pS’p — OZ,P —0

we get Zy p = Ops p and therefore 7y p(d — 1) = Ops p(d — 1). Hence for each closed
point P € X there exists an element s € HZ;(d — 1) such that sp — 1 € Ops p(d — 1),
since Zy(d — 1) is generated by global sections. Let o be the complete linear system
corresponding to the vector space H’Ops(1). Since Ops(1) is very ample, o separates
points and tangent vectors of P2. Notice st € HZz(d) for all s € HZz(d — 1) and
t € H'Ops(1), since Zz(d) 2 Zz(d — 1) ® Ops(1).

Let Q € X be a closed point distinct from P. Since o separates points of P2, there
exists t € HOps(1) such that tp € mp but tg ¢ mg. Let s € H'Zz(d — 1) such that
s + 1, where 1 is the generator of Ops o(d — 1). Then st € H°Z,(d) and (st)p € mp
but (st)g ¢ mg. Hence 0 separates points of X.

Since o separates tangent vectors of P3, the set {t € H°Ops(1)|tp € mp} spans the
vector space mp/mp. Let s € HZ,(d — 1) be such that sp +— 1 € Ops p(d — 1). Then
st € H'Z4(d). Moreover, (st)p = sptp € mp < tp € mp, since sp is a unit in Ops p. Also
for the same reason the sets {t € HOps(1)|tp € mp} and {st € H'Z,(d)|(st)p € mp}

span the same vector space, i.e., mp/m%. Therefore § separates tangent vectors of X. [J

Corollary 4.5.3. Let Z C P3 be a curve such that Zz(d — 1) is generated by global
sections. Let § C |Ops(d)| be the incomplete linear system corresponding to the vector

subspace V = H°Zz(d). If F € § is general, then Sing F' C Supp Z.

Proof. Notice Z is the base locus of § since Zz(d) is generated by global sections. Let
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X =P\ZY =PV and ¢ : X — Y be the map corresponding to . Let z € X and
y = ¢(x) € Y. At the level of stalks we have the ring homomorphism ¢7 : Oy, — Ox,.
Let mx , and my,, be the maximal ideals of Ox, and Oy, respectively. Since Z,(d — 1)
is generated by global sections, ¢ separates points and tangent vectors of X by Lemma
@ Thus ¢ (my,) generates the Zariski cotangent space my,/m% , of X, and hence
generates my, by Nakayama’s lemma [2, Proposition 2.8]. Therefore my, - Ox, =
my .. Finally, k(z) is a separable algebraic extension of k(y), since k(z) = k(y) = k.
Therefore ¢ is unramified. Let F' € § be general. Then F' is nonsingular on X by Bertini
theorem [22, Proposition 6.3 (2)], since X is nonsingular and ¢ is unramified. Therefore

Sing F' C Supp Z, since X =P3\ Z. ]

Proposition 4.5.4. Let Z be a quasi-primitive multiplicity structure on a nonsingular
connected curve Y C P? such that Z(d — 1) is generated by global sections. Let F be a

Zariski general surface of degree d containing Z. Then
(a) Sing F' C Y is finite and F' is normal.
(b) If Z’ C F is a multiplicity structure on Y with mult Z’ = mult Z, then 2’ = Z.

(c) If char k = 0 and F' is very general in the linear system |Zz(d)|, then Cl1 F' is freely

generated by Y and Op(1).

Proof. (a) Let § C |Ops(d)| be the linear system corresponding to the vector subspace
V = H°Zz(d). Let F' € § be general. Since Zz(d — 1) is generated by global sections,
Sing F' C Supp Z = Y by Corollary 4.5.3. Hence Sing F' is a closed subscheme of Y. If

Sing F' # Y then Sing F' is a proper closed subset of Y, i.e., is a finite set of points. Hence
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F is regular in codimension 1. Therefore F' is normal by [18| II, Proposition 8.23].

Now suppose Sing F =Y. Let W = HZZ(d) N H°Zz(d) and let ¢’ be the linear system
corresponding to W. Since Z is a quasi-primitive extension, Z \T" is a primitive extension
of Y\ T' by Proposition @ Let P € Y \T be a closed point. Then there exist an open
affine neighborhood U of P and a nonsingular surface £ C U such that ZNU C E by
Proposition 4.1.8. If necessary, we can replace E by EFE’, where E’ is some surface not
vanishing along Y, so that Zg C Zz(d). Since F is nonsingular along Y NU, Zr ¢ Z2(d)
by Lemma [4.5.1. Thus E € 6\ &, i.e., & # 6. Let F' € §\ & be Zariski general. Then
Zr ¢ T¢ and hence Sing ' 2 Y by Lemma @ Therefore Sing F/ C Y by Bertini
theorem [22, Theoreme 6.3 (2)]. Replacing F’ by F we get a c.i. which is regular in
codimension 1. Therefore F' is normal by [18, II, Proposition 8.23].

(b) Let mult(Z) = n and let Z' C F be a multiplicity structure on Y with mult Z’ = n.
Let P € Y \ (Sing FUT'). Then F is nonsingular at P and hence there exists a regular
system of parameters {z,y, 2z} in Ops p such that Zpp = () and Zy,p = (z,y). Notice,
Z\ (SingFNTI) and Z’\ (Sing F NI') are primitive extensions of Y \ (Sing #* N T).
Therefore by Proposition [4.1.8, there exists an open affine neighborhood U of P such
that Z,y = (z,y") = Zzw. Thus ZNU = Z'NU and hence Z = Z' by Corollary @

(¢) |6, Theorem 1.1]. O
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5 Double Conics in P

Let P? = Proj S, where S = k[x,y, z,w| and k is an algebraically closed field. In this
chapter we describe all CM double structures on conics in P2. In Section 5.1 we show
that each conic in P has a canonical form after a change of coordinates. In Section 5.2
we describe the classification of double conics. In Section 5.3 we describe the invariants
of double conics, namely their total ideals, Rao modules and minimal free resolutions of
their total ideals. In Section 5.4 we give criteria for two double conics of the same support
to be linked by complete intersection. In particular, we give a criterion for double conics
to be self-linked. Finally in Section 5.5 we describe singular loci and class groups of

general surfaces containing double conics.

5.1 Conics in P?

In this section we show that every conic in P? is, after a suitable change of coordinates,

a nondegenerate plane section of the quadric cone in P3.
Definition 5.1.1. A conic in P? is a degree 2 integral curve.
Proposition 5.1.2. Every conic in P? is planar.

Proof. Let C C IP? be conic and P € C be a closed point. Let ' C P? be a plane that
intersects C transversely at P. Since degC' = 2, F' intersects C' at exactly one other
point, say @, with multiplicity one by Bézout’s theorem [18, I, Theorem 7.7]. Therefore
CNF={P,Q}. Let Rc C\ {P,Q}. Now if PQ = QR then we must have R € C N F,

which is a contradiction. Therefore PQ # QR. Let H be the plane spanned by PQ and
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QR. Now if C ¢ H then C'N H must consist of 2 points, counting with multiplicities,
by Proposition |3.1.3. But this contradicts the fact that C' " H contains at least three

distinct points, namely P, @, R. Therefore C' C H, i.e., C' is planar. n

Proposition 5.1.3. Let g € k[y, z| be irreducible of degree 2. Then up to a change of

coordinate g = y?> — z or yz — 1.

Proof. Let g = ay® + byz + cz®> + dy + ez + f, where a,b,c,d,e, f € k. Denote the
homogeneous quadratic part of g by G, ie., G = ay® + byz + cz?. Notice G # 0, since
deg g = 2. First we show that G factors into linear terms. If a = 0 then G = z(by + ¢z)
and we are done. Now suppose a # 0. Then we can write G = 22, where Q = au®+bu-+c
and u = y/z. Since @ € k[u] and k is algebraically closed, we must have @) = [I’, where
[,I' € k[u] are linear polynomials. Therefore G = (Iz)(I'z), i.e., G factors into linear
forms. Let G = LL', where L, L’ € kly, z| are linear forms. Then g = LL' +dy + ez + f.
Suppose L and L’ are independent. Then we can make a change of coordinates by
mapping y — L and z — L'. Let’s denote L and L’ by Y and Z respectively. Then we
have g=YZ+DY +EZ+ f=(Y+E)(Z+ D)— (DE — f) for some D, E € k. Notice
DE — f # 0, since g is irreducible. Taking Y/ = (DE — f)(Y + E) and Z' = Z + D we
see that g takes the form Y’Z’ — 1 up to scalar.

Now suppose L and L’ are dependent. Let L = ay + Sz and L' = pL, where o, B, 1 € k
and p # 0. Then g = pL? +dy + ez + f. TakingY = \/uL and Z = —dy — ez — f we

see that ¢ takes the form Y? — Z. O
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Proposition 5.1.4. Let C' C P? be conic. Then up to a change of coordinate I = (z, q),

where ¢ = yz — w?.

Proof. By Proposition @, C C H, where H is some plane in P3. By a change of
coordinate we may assume that Iy = (z), i.e., H & P? = Proj k[y, z,w|. Let U C P? be
the open affine Spec kly, z]. Then C' N U is given by an irreducible polynomial g € k[y, 2]
of degree 2. By Proposition [5.1.3, g = y? — z or yz — 1. Homogenizing g we get 3% — zw
or yz —w?. Interchanging the variables y and w we see that y* — zw becomes —(yz —w?).

Therefore up to a change of coordinate we have I = (z,q), where ¢ = yz — w?. O

Let P! = ProjT, where T = k[s,t]. Let i : P! < P? be the composition of the 2-uple

embedding P! < P? and the inclusion P? C P? as a plane.

Proposition 5.1.5. The image of the closed immersion i is a conic in P2. Conversely,

every conic in P arises in this way up to automorphisms of P3.

Proof. Let P? = Projk[y,z,w| and let py : P! < P? be the 2-uple embedding given
by (s,t) — (s%t%, st). Let v be the inclusion of P? into P? as the plane {z = 0}. Let
1 =wvopgandlet 6 : S — T be the map of graded rings corresponding to ¢, i.e., 0 : S — T
is given by x + 0,y — s% z — t? and w — st. Then (z,q) C Ker 6, where ¢ = yz — w*.
Notice S/ Ker 6 = k[s?, st,t?] is an integral domain. Hence Ker 6 is a prime ideal in S.
Since dim S = 4 and dim Im 6 = dim k[s?, st, t*] = 2, we have ht Ker§ = 2. On the other
hand (z,¢) is a height 2 prime ideal in S. Therefore Ker 6 = (z, q). By Proposition [5.1.4,
Ker 6 is the total ideal of some conic C' C P?. Therefore Im(i) is a conic in P?.

Conversely, let C' C P3 be a conic. By Proposition [5.1.4, up to an automorphism of P?

the total ideal C has the form I = (z,q), where ¢ = yz —w?. Let 6 : S — T be the map
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given by z + 0,y — s%, 2z — 1?2 and w > st. Then Ker = Io. Let ¢ : P! — P3 be the
map corresponding to 6. Then ¢ is an embedding of C' with the desired property, since 4
factors through P? as (s,t) — (52,12, st) — (0,52, 1%, st). O

Corollary 5.1.6. Let C' C P3 be a conic with total ideal Ic = (z, ), where ¢ = yz — w?,

and let 7 : P! < P3 be an embedding of C.

(a) C' > P! and hence is nonsingular.

(b) PicC = (i.0pm (1)) 2 Z.

(¢) i*Ops(1) = Op (2).

(d) S¢ = T¢, where T¢ = k[s?, st,t?] C T is the even subalgebra.

(e) Ic/I: = Sc(—1) @ Sc(—2) and I /ZE = Oc(—1) & Oc(—2).
Proof. Since i : P' < P?3 is an embedding of C, we have C' = P!, Hence C' is nonsingular
and PicC' = PicP! = (Opi(1)) = Z . Thus PicC is generated by i.Opi(1). By Propo-
sition [5.1.5, 7 : P! — P3 is given by (s,t) — (0,52, 2, st). In other words, 7 is given by
the line bundle Op:(2) of P! and its sections i*z = 0,i*y = s%,i*z = t? and *w = st.
Therefore i*Ops (1) = Op1(2). Let 6 : S — T be the morphism of rings corresponding to
the embedding i of C. Then by Proposition [5.1.5, Ker§ = I and hence S¢ = Im 6 = T*,

where T consists of the even degree pieces of T, i.e., T® = k[s?, st,t?]. Finally, since C

is a complete intersection with I = (x, q),

q
- - o
0—=9(-3) —=S5(-1)®S(-2) —=1c—0 (58)
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is a minimal S-resolution of I by Proposition |3.1.1. Tensoring with So we get

Ie/18 = So(—1) ® So(-2). (59)

Sheafifying we get Zo/ZE = Oc(—1) & Oc(—2). O

Notation 5.1.7. For the rest of this exposition we fix a conic C' C P? with total ideal
Ic = (z,q), where ¢ = yz—w?. We denote the embedding of C' by 7 and the corresponding
map of graded rings by #. Then 6 defines an injective map 0 : S¢ — T. We have
Io/I% = Sc(—1) & Sc(—2) by Corollary @ (e). Therefore # induces the inclusion

Ic/13 = So(—1) ® Sc(—2) = T(—2) & T(—4). We denote this inclusion by j.

Notation 5.1.8. Let £ € PicC. Then £ = i,Op (£) for some ¢ € Z, by Corollary [5.1.6
(b). We use the notations O¢|[f] and S¢[¢] to denote i, Op: (¢) and H2i, Op1 ({) respectively.
If ¢ is even, say ¢ = 2a, then by Corollary [5.1.6 (c), Oc[2a] = i,Op(2a) = 4,i*Ops(a) =
Oc(a). Thus S¢[2a] = Sc(a). If £ is odd, then Sc[¢] = T°(¢) as graded k-vector spaces,

where T consists of the odd degree pieces of T'.

Definition 5.1.9. Let m, n,l € Z. We define the sets A, . B, .Cl .. D.  as follows:
AL, = {¢ € Homg,, (Sc[m] & Sc[n], Sc[l])] Coker ¢ has finite length},
B, = {1 € Home, (Oc[m] & Oc[n], Oc[l])|1t is a surjection},

Ch.n = {e € Homo,, (Op1(m) @ Op1(n), Opi1 (1)) e is a surjection},

Dl = {7 € Homp(T(m) & T(n),T(I))| Coker T has finite length}.
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Lemma 5.1.10. Let A!  BL . C.  D.  be the sets defined in (5.1.9). Then A, =

m,n) ~mmn ~¥mmn

B ~Cl  ~D assets.

Proof. Let ¢p € AL N = Kert and M = Coker. Then we have the exact sequence

0— N — Se[m] & Scln] 2 Scll] = M — 0. (60)

Since M has finite length, M =0 by Proposition [2.2.4. Hence sheafifying we get

the short exact sequence

0= N — Oclm] ® Ocln] % Oc[l] — 0, (61)

where N = N. Therefore if ¢ € AL, then v e B, Let: Al — B, . be the map

given by 1) — 1; Now let € Bﬁnm and N = Ker u. Then we have the exact sequence
0— N — Oc[m] @ Ocln] & Oc[l] — 0. (62)
Applying H? to (62) we get the exact sequence
0= N = Solm] @ Scln] 22 Sl — HN, (63)

where N = HN. Sheafifying we get the exact sequence . Therefore Coker H

must have finite length, since p is a surjection. Hence if € B, , then Hlu € Al .
Let H) : B}, — Al,, be the map given by p — H?uu. By the functoriality of H? and
~ we have H) "=1id 4 and HO = idg . Hence Al =B, . Similatly, C}, , = D], .
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Finally, let i, : B! = — Cfn)n be given by p + i, and let i* : C! =~ — B,fn’n be given

m,n m,n
by € = i*e. Since C' = P! we have i*i, = idg  and i.i* = idg . Hence B}, , = Cj, ..

Therefore AL, , =B, ,=C. =D . -

5.2 Classification of double conics

Let C' be the conic as in (5.1.7). According to Theorem [4.4.3, giving a CM double
structure on C'is equivalent to giving a line bundle £ on C and a surjection Zo — L. Let

Z be a CM double conic on C' corresponding to £. We have the short exact sequence

0—-Z;, —Zc — L —0. (64)

Tensoring with O¢ we get the commutative diagram

0 I Tc ﬁ 0 (65)

| b

I7/TcTy——ZTc/TE — L——0,

where 7 : Zo — I /T2 is the canonical surjection. Thus every surjection Zo — L factors
through the conormal bundle Zp/Z% of C. Therefore every CM double conic Z on C
arises from a surjection Z¢/Z% — L. Since L is a line bundle on C, £ = O¢[{] for some

¢ e Z by (5.1.8). We call Z a CM double conic on C' of type /.

71



By Corollary [5.1.6 (e) we have

Hom(Zo/Z2, Oclf]) = Hom(Oc(~1) & Oc(~2), Oclf])

I

Hom((’)[pu (—2) D Opt (—4), Opt (ﬁ))

12

HOm(OPI, OPI <£ + 2)) ) HOH](OPI, O[p:l (f + 4))

12

HO(PY, Op1 (€ + 2)) @ HO(P', Opa (€ + 4)).

Let 7 : T(—=2) @ T'(—4) — T'(¢) be a map. Then 7 = (f,g), where f and g are homo-
geneous polynomials in 7" with deg f = ¢+ 2 and degg = ¢ + 4. By Lemma [2.2.4, 7
sheafifies to a surjection if and only if Coker 7 has finite length. Also by Lemma [2.1.9,
Coker 7 has finite length if and only if f and g have no common zeros. Therefore defining
a surjection Z¢ /Z% — O¢[l] is equivalent to giving a map 7 = (f, g), where f and g are
homogeneous polynomials in 7" with deg f = ¢+ 2 and deg g = ¢ 4 4, having no common
zeros. Notice if £ < —4 then 7 is the zero map and hence cannot sheafify to a surjection.
Also notice if £ = —3 then f = 0 and g is linear. Thus every zeros of g is also a common
zero of f and ¢g. Hence ¢/ = —3 = Coker 7 has infinite length. Therefore to define a

surjection Z¢ /Z% — O¢[¢] we must have £ > —4 and ¢ # —3.

Theorem 5.2.1. Let C' C P? be a conic and let £ > —4 be an integer such that ¢ # —3.
Then each surjection ¢ : Z¢ /Z% — Oc[f] defines a CM double conic Z on C' with Hilbert
polynomial Pz(n) = 4n+(+2 by Z, = Keryon, where 7 : Zo — Z/ZZ is the canonical

surjection. Conversely, every CM double conic on C' arises from this construction.
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Proof. Let ¢ : I — O¢[l] be the surjection ¢ = ¢ o w. Then by Proposition [4.4.1,
Kervy = I7/7%, i.e., Kerp = Ty for some CM double structure Z on C. By Proposition

4.3.2, Z is a primitive extension of C'. Thus we have the exact sequence

by Proposition|4.2.8 (4). Twisting by n and taking the Euler characteristics of the sheaves

in we get

Pz(n) =x0Oz(n) = xOc(n) + xOclf](n) = xOc(n) + xOp1(2n 4+ £) = dn + £ + 2.

Conversely, let Z be a CM double conic on C' with Hilbert polynomial Pz(n) = 4n +
¢+ 2. Since C is nonsingular, by Theorem [4.4.3] there exists a line bundle £ on C' and
a surjection ¢ : Zo/Z% — L such that Kerv = Z;/Z¢. Hence Z; = Kert o w. Since
L € PicC, there exists ¢’ € Z such that £ = O¢[¢] by [5.1.8. By Proposition [4.3.2, Z is

a primitive extension of C. Hence by Proposition [4.2.8 (4) we have the exact sequence

0— Oc[g/] — OZ — OC — 0. (67)

Twisting by n and taking the Euler characteristics of the sheaves in (67) we see that

Py(n) =4n + ¢' + 2. Therefore £ = (', O

Remark 5.2.2. If Z is a double conic on C' of type ¢ then p,(Z) =1 — Pz(0) = -1 —¢,

since Pz(n) = 4n + ¢ + 2 by Theorem [5.2.1.
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5.3 Invariants of double conics

In this section we compute the total ideals and Rao modules of double conics. We also
compute minimal free resolutions of their total ideals.

Let C' C P2 be a conic and let £ > —4 be an integer such that ¢ # —3. Let f,g € T be
homogeneous polynomials with deg f = ¢+ 2 and deg g = ¢+ 4, having no common zeros.
Let 7:T(—2) & T(—4) — T'(¢) be the map given by 7 = (f, g). Then Coker 7 has finite
length by Lemma [2.1.9. Let ¢ : Sc(—1) ® Sc(—2) — Sc[] be the map corresponding
to 7 as in Lemma Define ¢ = 1 o m, where 7 : I —» I¢/I% is the canonical

surjection. Then we have the commutative diagram

Ker ¢ Ie ¢ Self] (683)

lﬂ

Ker ¢ Io/I2 2 So(=1) @ Sc(~2) —— Sc[(]

J

Ker7e— T (-2) e T(—4) ———T(0),
where j is the inclusion S¢(—1) @ S¢(—2) — T(—2) ® T(—4) as in (5.1.7).

Theorem 5.3.1. In the setting of Diagram , ¢ defines a CM double conic Z on C'

of type ¢, with I; = Ker ¢ = IZ + (w0 j) "' Ker 7 and H!Z; = Coker ¢.

Proof. By construction, Coker ¢ has finite length. Hence ¢ sheafifies to the surjection
¢ : Ic — Oc¢|l] by Lemma [2.2.4. Therefore Ker ¢ defines a CM double conic Z on C' of

type £ by Theorem [5.2.1. We have the exact sequence

0—=>Z; —Zc— Ocll] = 0. (69)
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Notice H!Zs = 0, since C is a complete intersection. Therefore taking the long exact

cohomology sequence on we have
0
0 — HT, — HT, % HYO.[0) — H'T, — 0.

Since H Zy = 1o, H'O¢[l] = Sclf] and HYp = ¢, we have I, = H’Z; = Ker ¢ and
H!Z; = Coker ¢. Notice (Ker ¢)/I2 = Kery = j~' Ker 7. Therefore I;/I% = j~' Kerr,

e, I;=1I%+ (moj) ' Kerr. O

5.3.A. Double conics of odd genus

In this subsection we describe the invariants of double conics on C' of odd genus, i.e.,
of type 2a, where a > —2. By Theorem [5.3.1, such a double conic arises from a map
T :T(=2)®T(-4) — T(2a) given by 7 = (f,g), where f and g are homogeneous
polynomials in 7" with deg f = 2a + 2 and deg g = 2a + 4, having no common zeros. Let
F and G be homogeneous polynomials in S such that 6(F) = f and 0(G) = ¢g. Then
deg FF = a+1and deg G = a+2. Let ¢ = (F,G). Notice F' and G have no common zeros
along C' and hence Coker has finite length by Lemma [2.1.9. Define ¢ = ¢ o 7, where

7 : Ic — Io/I% is the canonical surjection. Then we have the commutative diagram

Ie Sc(a) (70)

y |

Ie/I2 = Se(—1) & So(—2) — Se(a).
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Proposition 5.3.2. In the setting of Diagram , ¢ defines a CM double conic Z on

C of type 2a. Furthermore:
(a) Iz = (I¢, Fq— Gx).

(c) If {F',G'} defines another double conic Z" on C' of type 2a, then Z’ = Z if and

only if /" = aF mod I and G' = aG mod I for some a € k*.

Proof. By Theorem [5.3.1, ¢ defines a CM double conic Z on C of type 2a. Moreover,
Iz =I%+ 7' Kert. Since F' and G have no common zeros along C, Ker ¢ is generated
by the Koszul relation Fey — Gey, where ey, ey are the generators of Sg(—1) @ Sc(—2)
and F, G are the images of F, G in S¢ respectively. Since I /13 = Sco(—1) ® Sc(—2), we
can identify Z with e; and g with e,, where Z, 7 are the images of z, ¢ in I/ IZ. Therefore
Ker ) is generated by Fq — Gr. Hence I, = (I3, Fq — Gx). Also H}Z, = Coker ¢ by
Theorem [5.3.1. Notice Coker ¢ = Coker . Since F' and G have no common zeros along
C, we have Coker = (S/(z,q, F,G))(a). Therefore H'Z; = (S/(z,q, F,G))(a).

Finally, let Z’ be another double conic on C of type 2a defined by the map ¢/ = (F',G").
Then 7' = Z & Iy = Iz & I7/13 = I/I%. Notice I/I% can be considered as a sub-
module of S¢(—1) & Sc(—2) via the inclusion I /I3 C Io/I3 = Sc(—1) & Sc(—2). Since
Ic/13 = So(—1)®Sc(—2) and since I/ 1% is generated by Z and ¢, where Z and g are the
images of z and ¢ in S/I%, we can identify {Z, g} as a basis of S¢(—1)®Sc(—2). Therefore
I7/1% is generated by the vector (F, —G) as a submodule of S¢(—1) @ Sc(—2). Similarly,

Iz /1% is generated by the vector (F’, —G') as a submodule of S¢(—1) & Sc(—2). Hence
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Iz /13 = I;/1% < there exists an element o € k* such that (F', —G') = o(F,G) mod I¢.

Therefore 7' = 7 & F' = aF mod I~ and G' = oG mod I~ for some « € k*. O

Corollary 5.3.3. Let Z be a double conic on C of type —4. Then Iz = (z,¢*) and

I;/Ic1; = Se(—1) ® So(—4).

Proof. In this case deg F' = —1 and deg G = 0. Hence F' = 0 and G is a unit. Therefore

Iz = (2%, 2q,¢% x) = (x,¢*) by Proposition|5.3.2, i.e., Z is a complete intersection. Hence

—q
w - o)
0—S(=b5) —=S(-1)®eS(—4) ————= 1, —0 (71)

is a minimal S-resolution Iz by Proposition [3.1.1. Tensoring with S we get
Iz7/1cl; = Sc(—1) ® Sc(—4). O

Corollary 5.3.4. Let Z be a double conic on C of type —2. Then I = (22, q — Gx),

where G € S is some linear form. Moreover, I;/IcI; = So(—2)2.

Proof. In this case deg F' = 0 and deg G = 1. So we may assume that F' = 1. Hence by
Proposition 5.3.2, we have Iy = (I%,q — Gz) = (2% g — Gz), where G € S is some linear

form. Therefore Z is a complete intersection and hence by Proposition (3.1.1

—q+ Gz

x? <x2 q-— G:r)
2

0— S(—4) ~——25 5(—2)

is a minimal S-resolution of Iz. Tensoring with S we get Iz/Iclz = Sc(—2)%. [
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Remark 5.3.5. Notice in Corollary [5.3.4, if G € I then G = px for some 8 € k*, since

deg G = 1, hence I = (22, q — Bz?) = (22, q).

Proposition 5.3.6. Let Z be a double conic on C' of type 2a, where a > 0, with total

ideal I; = (I3, Fq — Gz). Then I has minimal S-resolution

0= Ny 2N, BN, 21,50 (73)

where N1 = S(=2)® S(-=3)® S(—4) @ S(—a—3), No=5(—4)® S(-5) ® S(—a—4) @

S(—a—75), N3y = S(—a—6) and ¢;’s are S-module homomorphisms given by the matrices

g 0 G 0 G

- q —-F G —F
pr=\a2*> zq ¢> Fq—Gx ), $2= y P83 =

0O —2z 0 -—F —q

0 0 x q z

Moreover, I7/Ic1; = So(—a —3) & (F,G)?*(2a) and Zz/ZcZz; = Oc(—a — 3) & Oc(2a).

Proof. By an easy calculation we see that ¢ 0 @9 and @9 0 3 are zero maps. Hence

is a complex. Now is exact if and only if the complex

is exact, where Ny = .S. We use Buchsbaum-FEisenbud criterion [2.1.20|to prove that
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is exact. Notice rank ¢3 = rank ¢; = 1, since x and x? are nonzero elements in S. Now

det pp = =q|l—x 0 —F|+*%|—2 0 —F|>

ie., det py = q{qFx + x(—Fq — Gz)} + 2%¢G = —1*qG + 2%qG = 0, hence rank ¢, < 3.

Let M; and M, be the 3 x 3 submatrices of ¢y given by

—x q —F qg 0 0
Mi=|o0 —2 o |andM=]|_n ¢ G| (75)
0 0 x 0 0 ¢

Notice det M; = 2® # 0, hence rank ¢, = 3. Thus rank N; = rank ¢; + rank ¢, ,;, where
i = 1,2,3. It remains to show that depth I(p;) > i for i = 1,2,3. We have 22 € (),
which is regular in S. Hence depth I(¢1) > 1. From we see that a3, ¢> € I(ps)
since det M; = 2 and det My = ¢3. Since {z, ¢} is a regular sequence in S, {23, ¢*} is
also a regular sequence in S by [26, Theorem 16.1]. Therefore depth I(¢y) > 2. Finally
r,q,F € I(p3). Since {z, ¢} is a regular sequence in S and F is regular in S¢, {x,q, F} is
a regular sequence in S. Hence depth I(¢3) > 3. Therefore is exact by Buchsbaum-

Eisenbud criterion [2.1.20 Thus is exact and hence a minimal S-resolution of .
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Tensoring by S¢ yields the exact sequence

No ® S 22%¢ Ny @ Se — 1/ 101, — 0,

where Ny ®S¢c = SC(—Q)EBSC(—3)@50(—4)@50(—G—3), No®Sc = Sc(—4)@3(j(—5)@

Sc(—a —4) ® Sc(—a —5) and ¢y ® S¢ is given by the matrix

00 @G 0

00 —F @&
Y2 ® So =

00 0 -F

00 O 0

Thus Se(—4) ® Sc(—5) € Ker(ps ® Se) and Im(ps @ Se) C Se(—2) & Sc(—3) & Sc(—4).

Let ¢ be the restriction of po ® S¢ on So(—a —4) @ So(—a — 5). Then ¢ is given by

the matrix
G 0
p=|-F G
0o -F

and we have the exact sequence

0= Se(—a—4) @ Seo(—a —5) 2 56(—2) & Se(—3) ® So(—4) “ Se(2a).

By the Hilbert-Burch theorem [2.1.22 Im p is the twist of an ideal in S¢, generated by

the 2 x 2 minors of ¢}. Therefore Coker ¢}y = Impu = (F?, FG,G?)(2a) = (F,G)*(2a)
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and hence

I7/Icl; = Sc(—a — 3) @ Coker ¢}, = Se(—a — 3) @ (F, G)*(2a),

where 72, 7q and g2 are identified with F?, FG and G? respectively. Making this identi-

fication, we have the inclusion

L: IZ/[C[Z C Sc(—a - 3) D Sc(Qa).

Then Cokert = (S¢/(F, G)?)(2a) and we have the short exact sequence

0= Iy/IcI; % Sc(—a —3) @ Se(2a) — (Se/(F,G)?)(2a) — 0. (76)

By [26, Theorem 16.1], {F?,G?} is also a regular sequence in Sg, since {F,G} is a
regular sequence in Sc. Hence S¢/(F?,G?) has finite length by Lemma [2.1.9. There-
fore S¢/(F,G)? has finite length, since Sc/(F,G)? is a quotient of S¢/(F?,G?). Hence

Sc/(F,G)? sheafifies to 0 by Lemma|2.2.4. Thus sheafifying we get the isomorphism

Iz/ICzZ = OC(—a - 3) ) OC(QCL)

Hence Z;/ZcZy is freely generated by F'q— Gz and an element e of degree —2a such that

eF? =72 eFG =7zq and eG? = 2. O

Proposition 5.3.7. If Z is a double conic of type 2a, where a > 0, then h'ZoZz(a+5) = 0

and WM ZcZz(a+4) < 1.
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Proof. We have IcI; = (23, 2%q,2¢*, ¢*, 2(Fq— Gz),q(Fq— Gx)) and hence the complex

0— Ny 2 Ny, B N, 55 101, — 0, (77)

where

Ny = S(=3)®S(—4) & 5(=5) ® S(—6) ® S(—a — 4) ® S(—a — 5),
Ny = S(-5)@S(-6)®S(-7)® S(—a—5)DS(—a—6)>®S(—a—17),

Ny = S(—a—T7)® S(—a—28)

and 1, (9, @3 are given by the matrices

-G 0
g 0 0 G 0 0 0

F -G
- ¢q 0 —-F G 0 0

0 F

0 0 0 x q 0 q
0 —x
0 0 0 0 0 q -
0 —q
Notice is exact if and only if
0= Ny 25 Ny 2Ny = Ny =0 (78)
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is exact, where Ny = .S. We use Buchsbaum-FEisenbud criterion [2.1.20|to prove that
is exact. Notice rank ¢; = 1 and rank ¢3 = 2. By an easy calculation we can show that
all the 6 x 6 minors of py are zero. Let M; and M; be the 5 x 5 submatrices of g given

by

—x q 0 —-F 0 q 0 0 0 O
0 —z g 0 0 —-r qg 0 G 0
Mi=lo 0 -z 0 o|adM=[0o -z ¢ -F G| (79)
0 0 0 T q 0 0 0 ¢q O
o 0 0 0 -z 0O 0 0 0 ¢

Then det M; = x° # 0 and hence rank p, = 5. Therefore rank N; = rank ¢; + rank ¢; 1
for i =1,2,3. Now 2 € I(ip;), which is regular in S. Hence depth I(p;) > 1. From ((79)
we see that x5, ¢° € I(ips), since det M7 = z° and det My = ¢°. Since {x, ¢} is a regular
sequence in S, {2°,¢°} is also a regular sequence in S by [26, Theorem 16.1]. Therefore
depth I(py) > 2. Finally z?%,¢%, F? € I(p3). Since {z,q} is a regular sequence and F is
regular in S¢, {x, ¢, F'} is a regular sequence in S. Therefore {2?, ¢*, F?} is also a regular
sequence in S by [26, Theorem 16.1]. Hence depth I(y3) > 3. Therefore is exact by
Buchsbaum-Eisenbud criterion . Thus is exact, hence an S-resolution of I-15.

Let E be the kernel of ¢;. Then we have the short exact sequences

0—>FE— N —Icl;—0 (80)
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and

0— N3 — Ny — E —0. (81)

Sheafifying and we get the short exact sequences

O—>5—>N1—>Iczz—>0 (82)

and

0> N; >Ny = E—=0. (83)

From we have the long exact cohomology sequence

o> HIN, —» H' T T, — H2E — H?N - - - .

Since N is a direct sum of line bundles on P3, we have H!A; = H2N; = 0 and hence

HIZ-T, = H2E. Taking the long exact cohomology sequence on (83)) we get

oo = H2Ny — H2E — H3N3 — -+ .

Again since N, is a direct sum of line bundles in P?, H2AN; = 0 and so we have the

inclusion H!ZoZ, = H2E — H2N3. Now

H3N3(a +5) = H3Ops(—2) @ H*Ops(—3) L H°Ops(—2) @ H'Ops(—1) =0
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and

H3Ns(a+4) = H*Ops(—3) @ H*Ops(—4) L H°Ops(—1) ® HOps = k.

Therefore h'ZcZz(a+5) = 0 and h'ZeZz(a +4) < W3Ns(a +4) = 1. O

5.3.B. Double conics of even genus

In this subsection we describe the invariants of double conics on C' of even genus, i.e., of
type ¢ = 2a+1, where a > —1. By Theorem [5.3.1, such a double conic arises from a map
T:T(=2)®T(-4) = T(2a + 1) given by 7 = (f,g), where f and g are homogeneous
polynomials in T" with deg f = 2a + 3 and deg g = 2a + 5, having no common zeros. But
there do not exist F,G € S such that §(F) = f and 0(G) = g, since deg f and deg g are

odd. To circumvent this issue we introduce the notion of admissible pair of sequences.

Definition 5.3.8. Let C' be the conic as in (5.1.7). Let Fi, Gy, Fy, G5 be homogeneous
polynomials in S such that F1Gs = FoGymod I¢. Then {Fy,G1}, {F3, G5} is said to be

an admissible pair of sequences on C'if there exist two distinct points P, () € C' such that
1. FNG, =P,
2. NGy =Q,
3. i+Q=F5+P,
4. G1+Q =Gy + P.

Here E, @ denote the effective divisors on C' induced by F;, G; for i = 1, 2.
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Definition 5.3.9. Let P, ) € C be distinct points and let M p g be the set of equivalence
classes of admissible pairs of sequences { F1, Gy }, { F», G2} on C' corresponding to P and @),
under the equivalence relation given by {Fy, G1}, {F2, Ga} ~ {\F1, \Gy }, {uFs, pGa}, for
all \, u € k*. Let VV be the set of equivalence classes of regular sequences { f, g} in T with

deg f and deg g odd, under the equivalence relation given by {f, g} ~ {af, ag}, Vo € k*.

Proposition 5.3.10. Let Mpg and N be the sets as defined in (5.3.9). Then there

exists a bijection between Mpg and N.

Proof. Let i : P! — P? be the embedding of C' in P as in (5.1.7). Let p = i*P and
G = i*Q. Notice p and ¢ are distinct points in P!, since P and @Q are distinct. Let
p=(a,b) and § = (¢,d). Let l; = bs — at and Iy = ds — ct. Then (l;)o = p and (l2)p = 4,
where (I;)o denotes the effective divisor on P! induced by I;.

Let {F1,G1}, {F2, G2} be an element of Mpg. Let 0(Fy) = f; and 6(G1) = g1, where 0
is the map as in @) By definition @, there exist P;, Q; € C and a;,b; € Z>( such
that F; = > a;P;+ P and G, = >.b0,Q; + P. Let p; = i*P, and ¢; = i*Q);. Therefore
(fi)o = >_aip; +p and (g1)0 = Y bjq; + ¢, where (f1)o and (g1)o denote the effective
divisors on P! corresponding to f; and g;. Notice > a;p; and Y b;q; are effective divisors

on P!. Hence there exist homogeneous polynomials f, g € T such that (f)o = > a;p; and

(9)o = >_bjq;. Therefore

(f1)o= (o + (l)o = (L f)o

Hence f, = Bly f for some § € k*. Similarly, g; = ~l,g for some v € k*. Since FiNG, = P,
(f1)o N (g1)o = p = (l1)o. Therefore (f)o N (g)o =0, i.e., Z(f,g) = @ and hence {f, g} is
a regular sequence in T by Lemma [2.1.9. Notice {f, g} € N, since deg f and deg g are
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odd. Finally, if {F1, G}, {Fy, Go} ~ {\F1, A\G1}, {uFs, uGs} then up to the equivalence
relation on A, we get the same regular sequence {f, g} in T.

Conversely, let {f, g} be a regular sequence in T such that deg f and deg g are odd. Then
(I1.f)o and (I1g)o are effective divisors on P* and hence on C. Since degl; f and deglyg
are even, there exist homogeneous polynomials Fy,G; € S such that /Fvl = (l1f)o and
évl = (l19)o. Similarly, we can choose Fy, G5 € S such that E = (I2f)o and évg = (l29)o-
Notice, §(F)) = Bl f and 0(G1) = vlyg for some (3,7 € k*. Also notice, we can choose
F,, Gy € S such that 0(Fy) = Blof and 0(Gs) = vlag. Therefore 0(F1Gy — F»G1) = 0 and
hence F1Gy = FyGymodIo. Also Fi NGy = () = P,Fa NGy = ()= Q. Fy + Q =
Fy+ P and Gy + Q = Gy + P. Thus {F1,G4}, {F2,Gs} is an element of Mpg. Finally,
if {f,g} ~ {af,ag} then up to the equivalence relation on Mpg, we get the same

admissible pair of sequences {Fy,G1}, {F2, Gy} on C. O

Example 5.3.11. Let F} = y,G; = 2w, F5, = w and Gy = 22, Then fﬁ’;ﬂ 671 =P
and Fy N Gy = @, where P = (0,0,1,0) and @ = (0,1,0,0). Notice P o= 2P, since
Ipne = In + Ic = (y) + (z,yz — w?) = (z,y,w?). On the other hand, F, = P + Q.
Thus /FI +Q = /]5; + P. Similarly we can show that évl = P+ 30, /GV(Q = 4(), and hence
Gy + Q= Gy + P. Therefore {F1,G1}, {F», Gy} is an admissible pair of sequences on C

and it yields the regular sequence {s,t*} in T.

Let a > —1 be an integer and let 7 : T'(—2) & T(—4) — T(2a + 1) be a map given by
T =(f,9), where {f, g} is a regular sequence in 7" with deg f = 2a+3 and deg g = 2a+5.
Let ¢ : So(—1) ® Sc(—2) — Sc[2a + 1] be the map corresponding to 7 as in Lemma

5.1.10L Define ¢ = 9 o m, where 7 : I — I¢/I% is the canonical surjection. Then we
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have the commutative diagram

Ker ¢¢ Io

Ker ¢y o /T2 = So(—1) @ Se(—2) —— Sc[2a + 1]

! |

Ker 7 T(—2) & T(—4) — 2 7(2q + 1),

50[20, + 1] (84)

where j is the inclusion S¢(—1) & Se¢(—2) — T'(—2) @ T(—4) as in (5.1.7).

Proposition 5.3.12. In the setting of Diagram , ¢ defines a CM double conic Z on
C of type 2a + 1 with Iy = (I3, Fiq — Gz, Fyq — Gox), where {Fy, G}, {F,, G2} is an
admissible pair of sequences on C' corresponding to { f, g}. Moreover, if {F], G}, {F}, G4}
is an admissible pair of sequences on C' that defines some double conic Z’ on C' of type
2a + 1, then Z' = Z < there exists an M € GL(2, k) such that

F F| F F
=M mod .

G, G G1 Gs
Proof. By construction, Coker ¢ has finite length and hence ¢ defines a CM double conic
Z on C of type 2a + 1 with total ideal I; = I + (7 o j)"!Ker7 by Theorem @
Let é; and é; be the generators of T'(—2) & T'(—4). Since {f, g} is a regular sequence
in T, Ker 7 is generated by the Koszul relation n = fé; — gé;. But j71(n) = @ since
degn = 2a + 7, which is odd. Notice j7'(sn), 7 (tn) € Sc(—1) & Sc(—2), since deg sn
and degtn are even. Hence (j71(sn),j7(tn)) C i~ ! Ker 7. Conversely, let u € j~! Kerr.

Then j(u) € (n) and hence there exists A € T such that j(u) = An. Notice deg A\
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is odd, since degj(u) is even and degn is odd. Hence there exist p,v € T such that
A = pus + vt. Therefore j(u) = usn + vin and hence u € 67 (p)j 7 (sn) + 071 (v)5 7 (tn).
Thus j~' Kerr C (j7'(sn),j 1(tn)) and hence j~' Ker = (j71(sn), i 1(tn)). Therefore
j 1 Ker 7 is generated by j~'(sn) and j~1(tn).

Let {F1, G}, {F», G2} be an admissible pair of sequences on C' corresponding to {f, g}.
Since sn = sféy — sgé1,0(Fy) = sf and 0(G,) = sg we have j7'(sn) = Fiq — G.
Similarly, j71(tn) = Foq — Gax. Therefore (7o j)~! Ker 7 is generated by Fiq — Gz and
Fyq — Gozxmod I%. Hence I = (I, Fiq — Giz, Foq — Gax).

Let {F], G}, {Fy, G5} be another admissible pair of sequences on C' that defines a CM
double conic Z' on C of type 2a + 1. Then Z' = Z & Iz = Iz & I /13 = I/13.
Notice Iz/I% can be considered as a submodule of S¢(—1) @& Sc(—2) via the inclusion
Iz/123 C Ic/I% = Sc(—1) & So(—2). Since I¢/I% =2 Sc(—1) @ Sc(—2) and since I /12
is generated by T and ¢, where Z and ¢ are the images of z and ¢ in S/IZ, we can
identify {z,q} as a basis of S¢(—1) @ Sc(—2). Therefore I,/I2 is generated by the
vectors (I}, —G1) and (Fy, —G3) as a submodule of S¢(—1) & Sc(—2). Similarly, I/ /I%
is generated by the vectors (F|, —G") and (F3, —GY) as a submodule of S¢(—1) @ Sc(—2).

Therefore I,/ /1% = I/I% < there exists an N € GL(2, k) such that

F R P B
=N mod I¢.
-G, -G, -G —Gy
a a -
Let N = and M = . Then det M = det N. Hence N € GL(2,k) <
v o —y 0
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M € GL(2,k). Moreover,

F| F| I Iy F| F| o F,
=N mod I & =M mod I.

—G -G —Gy —Gy el Gy Gy

Therefore Z' = Z < [/ /1% = I;/I% < there exists an M € GL(2, k) such that

Q
&2
@
$

O

Remark 5.3.13. Let Z be a double conic on C' of type 2a+1, where a > —1, given by the
regular sequence {f, g} in 7. Then deg f = 2a + 3 and deg g = 2a + 5. Notice deg f > 1
and degg > 3, since a > —1. So there exist fi, f2, 91,92 € T such that f = sf) +tfo
and g = sg; + tgs. Notice deg f; and deg g; are even. Let Fiy, Fis,G11,G12 € S such
that 0(F11) = f1,0(F12) = f2,0(G11) = g1 and 0(G1a) = go. Let {F1,G1}, {F2, Ga} be
an admissible pair of sequences on C' corresponding to {f,g} such that 6(F;) = sf,
0(G) = sg,0(Fy) = tf,0(Gy) = tg. Then Fy, = yFj; + wkFys, since sf = s*f; + st fo.
Similarly, we have Fy = wFi; + 2F2, G1 = yG11 + wGo and G = wGyy + 2G1s. Notice
we can choose Fy, Fia,G11,G1o from So. We can express these relations in a matrix

form as follows:

Gy Yy o w Fii Gu

Fy, Gy w2 Fia Gio
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Proposition 5.3.14. Let Z be a double conic on C of type 2a + 1, where a > —1, with

total ideal Iy = (I3, Fiq — Giz, Faq — Gax). Let Fyy, Fia, G11, G12 € Sc be homogeneous

polynomials that satisfy the relations in . Then Iz has minimal S-resolution

where Ny = S(—2) ® S(=3) ® S(—4) ® S(—a — 4)?, N,

N3 = S(—a —6)* and ¢, = (22, 2q,¢*, Fiq — Gyz, Fbq — Gax),

Y2 =

0—>N3£>N2£>N1£>]Z—>O,

Proof. From (85) we get the relations:

Fy = yF +wFia, Gy = yGiy + wGhg, Fy = wFy + 2F1g, Gy = wG 4 2Ghe.

Y3 =

(86)

S(—4) @ S(—5) @ S(—a — 5)*,

—Gu G
Fin —Fip
z w
—w -y
- 0
0 x

(87)

Let C; denote the i® column of ¢,. Using the relations in (87) we can show that o;-C; = 0

for all 7. For example,
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01-Cs = Guaq— Fu¢* + 2(Fiq — Giz) — w(Fyq — Gox)
= Gurqg— Fug® + 2Fiq — 2Gix — wFyq + wGax
= Gurq— Fu¢® + 2(yFuy +wFo)q — 2(yGry + wGio)r — w(wFiy + 2F13)q
+w(wGy + 2G12)x
= Guzq—Fu¢® + (yz — w’)Fig — (yz —w?)Gnz

= Guzq— Fu¢® + Fug® — Gizg, since ¢ = yz — w®.

Hence ¢ 0 1 is the zero map. Similarly, 3 o ¢y is also the zero map. Thus is a

complex. Notice is exact if and only if the complex

O%NgﬁNgﬁNlﬂ)No (88)

is exact, where Ny = .S. We use Buchsbaum-Eisenbud criterion [2.1.20| to prove that
is exact. Notice rank¢; = 1, since 22 # 0 in S. Let M be the 5 x 5 submatrix of ¢,

obtained by deleting its first column, i.e.,
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Then using the relations in we see that

det M

G

0

—2qG1(wFy + 2F12) + 2qGa(yFiy + wFs)

—.%'Gl

—{L‘QFQGl + I’qFlGQ + qugGl + ZL‘2G1 <UJG11 + ZGlg) — I’qFlGQ

Go

X

—F,
0

X

—w

Gll

—w

G12
—w

Y

—$2G2(yG11 + ZG12)

IZGlGQ — JI2G1G2

+ .CEGQ

—F

xZ

0

G12

_F12

—F,

Gll

—w

GlQ

Y
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Similarly, we can show that all the 5 x 5 minors of ¢, are zero. Hence rank ¢, < 4. Let

My and M; be the 4 x 4 submatrices of ¢, given by

0 -z 0 0 —r q¢ Gun G

M1: and M2: (89)
0 0 T 0 0O 0 =z —w
0 0 0 T 0 0 —w y

then det M; = z* and det My = ¢3. Thus ¢, has some nonzero 4 x 4 minors and hence
rank @9 = 4. Similarly we can show that rank ¢35 = 2. Thus rank N; = rank ¢; +rank ¢; 4
for i = 1,2,3. It remains to show that depth I(yp;) > i. We have 2% € (), which is
regular in S. Hence depthI(¢;) > 1. From we see that z%,¢®> € I(yp9), since
det M; = z* and det M, = ¢®. Since {z,q} is a regular sequence in S, {2*, ¢} is also a
regular sequence in S by [26, Theorem 16.1]. Hence depth I(ps) > 2. Finally, let 71, T3

and T5 be the 2 x 2 submatrices of 3 given by

Then 22,q, Fy € I(p3), since detT} = —x* detTy = —q and detT3 = —F;. By con-
struction Fy € 67 '(sf), where f € T is some regular element. If F; € (z,q) then
0(Fy) = sf = 0, which contradicts the regularity of f. Hence F; ¢ (z,q). Suppose
UF, € (x,q) for some U € S. Set u := 0(U). Then (UF,) = usf =0in T. Since sf is

regular in 7" we must have u = 0. Thus U € (x,q) and F} is regular in S/(z,q). Hence
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{z,q, F1} is a regular sequence in S. Therefore {z?, ¢, F1} is also a regular sequence in S
by |26, Theorem 16.1]. Hence depth I(p3) > 3 and therefore is exact by Buchsbaum-

Eisenbud criterion [2.1.20, Thus is exact and hence a minimal S-resolution of I;. [

Proposition 5.3.15. If Z is a double conic on C' of type 2a + 1, where a > —1, then

T7/TcTy = Oc(2a+ 1) & Oc|—2a — 1).

Proof. Let Z be given by the regular sequence {f,g} in 7. Then deg f = 2a + 3 and

deg g = 2a + 5. We have the commutative diagram

0———Ty/T% [Qj Io)T: ———i,.0pi(2a+ 1) —— 0

l f l (f 9> l

0 —— Op1(—2a — 7) ~—25 Op1 (=2) & Op1 (—4) ——% Op1 (20 + 1) —— 0.

Notice, the last two vertical maps are isomorphisms. Therefore Z/Z2 = i,Opi(—2a — 7)
by the snake lemma. On the other hand, Z2/ZcZ; = (Z¢/Z7)®* by Corollary |4.2.8
(b). Since Z¢ /Ty = i.Opi (2a + 1), we therefore have Z2/ZcZ; = i,Opi(4a + 2). Since

ZL; CZIc, we have o1y C I% and hence the commutative diagram
0—12¢/IcTy — Tz/TcT; — I7)T¢ — 0. (90)
Notice

Exto, (Z7/12,1¢/IcI;) = Extp, (1.0p1(—2a — 7),1,0p (4a + 2))

I

Exte,_, (Op1(—2a — 7), Opi (4a + 2))

I

H'(P*, Op1(6a + 9))
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by [18, III, Proposition 6.3 (c)]. Now h'Opi(6a + 9) = h°Opi(—6a — 11) by [18} III,
Theorem 5.1 (d)]. Since a > —1, —6a — 11 < —5 and hence h°Opi(—6a — 11) = 0.
Therefore Exty, (Z7/Z2,12/TcIz) = HY(P',Op (6a + 9)) = 0 and hence is split

exact. Thus Zy /ZcZy = i.Opi (da+2) B i,0pi (—2a—T7) = Oc(2a4+1) & Oc[—2a—7]. O

Corollary 5.3.16. If 7 is a double conic on C' of type ¢, then proj dim Sy =3 < ¢ > —1.

In particular, Z is not ACM < ¢ > —1.

Proof. By Corollaries [5.3.3, [5.3.4 and Propositions |[5.3.6, [5.3.14{ we have proj dim .Sy = 3

if and only if £ > —1. Therefore Z is not ACM < ¢ > —1. O]

5.4 Linkage of double conics

In this section we give criteria for double conics of the same support to be linked by a

complete intersection. In particular, we give a criterion for double conics to be self-linked.

Definition 5.4.1. Let Y, Y’ and X be curves P? such that X is a complete intersection
curve with Iy C Iy N Iy.. Then Y is (algebraically) directly linked to Y’ by X if and
only if [Iy : Iy] = Iy» and [Ix : Iy/| = Iy. If Y is linked to Y’ by X, we write Y ~ Y’ by

X. IfY is linked to itself by X, we say Y is self-linked by X.

Proposition 5.4.2. Let Y, Y’ C P be CM curves. If Y ~ Y’ by a complete intersection

X with Iy = (F,G), then
(a) degY + degY’ = deg X and
(b) pa(Y) —pa(Y') = %(degF +deg G — 4)(degY — degY”).

Proof. 25| III, Proposition 1.2] or |28, Corollaries 5.2.13 and 5.2.14]. O
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Corollary 5.4.3. Let Z and Z’' be double conics on C of types ¢ and ¢ respectively. If

Z ~ 7 then { =1.

Proof. Since deg Z = deg Z', we have p,(Z) = p.(Z') by Proposition [5.4.2 (b). Also

pa(Z) = =1 =L and p,(Z') = =1 — ' by Theorem [5.3.1. Hence ¢ = /'. O

Lemma 5.4.4. Let Z and Z’ be double conics on C of type ¢ > —1. If Z ~ Z' by a

complete intersection X then Iy = (22, axq + ¢*) for some linear form a € S.

Proof. By Proposition [5.4.2 (a), deg X = degZ + degZ’ = 8. Let Ix = (A, B). Then

A, B are homogeneous polynomials in I, such that deg A - deg B = deg X = 8. By

Propositions [5.3.2 and [5.3.12 I has no linear term and the only qudratic term in I is

x?. Hence deg A and deg B can be either 2 or 4. Let deg A = 2 and deg B = 4. Since the
only quadratic form in I, is 2%, we may assume that A = 2%, It remains to show that
B = axq + ¢* for some linear form a € S.

First suppose ¢ = 2a, where a > 0. Then I, = (I3, Fq — Gx) by Proposition @
Notice deg(Fq — Gz) = a + 3. Thus if @ > 2 then deg(Fq — Gz) > 5 and hence B € I3.
So we can take B = axq + B¢* for some linear form o € S and 3 € k. Now suppose
0 <a<1. Then B = axq+ ¢*>+~v(Fq— Gz), where degy=4— (a+3)=1—a < 1.

Since Z ~ Z' by X, we must have Supp X = C, i.e., Z(A, B) = Z(x,q) where Z(A, B)
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means the common zero locus of A and B. Since

Z(A,B) = Z(2* axq+ B¢* +~v(Fq— Gx))
= Z(z,axq+ B¢ +~v(Fq— Gx))
= Z(z,(Bg+~F)q)

= Z(z,q)U Z(z, Bq + ~F),

we must have Z(z, B¢ +~F) = Z(z,q), hence \/(z, Bq +vF) = \/(x,q) = (x,q). There-
fore (z, Bg+~vF) C (z,q), hence g+ ~F € (z,q), i.e., YF € (x,q). Since F is regular in
Sc = S/(x,q), we must have v € (z,q). Now if a = 1, i.e., degy = 0 then we have v =0
and B = azq + B¢*. If a =0, i.e., degy = 1 then v = v for some v € k*. Replacing o
by a + vF we see that B = azq + 8¢*> — vGx?. Hence Iy = (22, axq + B¢*). Therefore
we can take B = axq + 8¢* whenever £ = 2a > 0. Notice if 8 = 0 then {A, B} is not
a regular sequence in S and hence X fails to be a complete intersection. Thus we must
have 3 # 0. Hence we can assume that 3 = 1. Therefore Ix = (2%, axq + ¢°).

Now suppose £ = 2a+ 1, where a > —1. Then I = (12, F1q— Gz, F,q— Gyx) by Propo-
sition . Notice deg(F;q — Gijz) = a + 4. Hence if a > 1 then deg(F;q — Gix) > 5
and hence B € I2. So we can take B = axq+ (¢* for some linear form o € S and 3 € k.
Now suppose —1 < a < 0. Then B = axq + 8¢* + v(F1q — G1z) + §(Faq — Gax), where

degy=degd =4 — (a+4) = —a < 1. Since Z(A, B) = Z(x,q) and since
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Z(A,B) = Z(2* axq+ B¢* +v(Fig — G1z) + 0(Faq — Gax))
= Z(z,0mq+ Bq* + y(Fiq — Gix) 4+ 6(Faq — Gax))
= Z(x,(Bg+F +0F3)q)

= Z(x,q) U Z(x,Bq+F| + 6F),

we must have Z(z, Bq + vFy + 0Fy) = Z(z,q), hence \/(z, Bq +vFy + 6F,) = (z,q).
Therefore (z, Bg+vF1+0Fy) C (z,q), hence fg+~yFi+0F; € (x,q), i.e., yF1+0F; € (x,q).
Hence (s + 0t)f = 0 in T, where 7,9 are the images of 7, in T under the map 6 as in

(5.1.7) and f € T is a regular element such that 0(Fy) = sf,0(F,) = tf. Therefore

s + 6t = 0. (91)

First suppose @ = 0. Then degy = degd = 0, hence deg¥ = degd = 0 Therefore from
we see that ¥ = § = 0. Hence v = 6 = 0 and B = axq + f¢>. Finally, let a = —1.
Then degy = degd = 1. Hence degd = degd = 2. From we see that ¥s = —dt.
Hence s | § and ¢ | 4. So there exist a, b, ¢,d € k such that = ast+bt? and § = cs?+dst.
Using we have st[(a + ¢)s + (b + d)t] = 0. Hence (a + ¢)s + (b + d)t = 0 since st

is a nonzerodivisor in 7. Thus a +c¢ =b+d = 0, i.e., c = —a and d = —b. Hence
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5 = ast 4+ bt?,§ = —(as® + bst) and therefore v = aw + bz,§ = —(ay + bw), i.e.,

-6l )

Notice

Fig -Gz F, Gy q
v(Fiqg — Giz) + §(Faqg — Gox) = (7 5 — <7 5)

Fyq — Gayx F, Gs —x
(93)
From (85) we have
F Gy Yy w Fii Gn
= (94)
F, Gy w =z Fio Gio

Combining , and we get

wo -y y w Fi Gu q
(Fig - Gua) +3(Fg — Ga) = (a 1)
P Wz Fiy Gio —T
0 —¢q Fi, Gn q
= (1)
qg 0 Fio Gio —Z
—Fiys —Gio q2
= (1)
i Gn —xq

= (GGlg — bGn)xq + (bFH — GF12>q2.
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Therefore

B = axq+ B¢ +y(Fiq — Giz) + §(Faq — Gaox)

= (Oé —+ CLG12 — bGH)JIQ + (5 + bFll - aF12>q2‘

Replacing o+ aG1a — bG11 by a and 3+ bFy; — aFis by 3 we get B = axq+ B¢>. Notice
if B = 0 then {A, B} is not a regular sequence in S, hence X fails to be a complete

intersection. Hence 3 # 0. We can assume that 3 = 1. Therefore Ix = (22, axq+¢?). O

Proposition 5.4.5. Let Z, Z’ be a double conics on C' of type ¢ = 2a, where a > 0. Let
Iz = (I3, Fq — Gx) and let X be the complete intersection with Ix = (22, azq + ¢°),

where @ € S is a linear form. Then Z ~ Z' by X <= [, = (I3, Fq+ (G + aF)z).

Proof. Let Y C P? be the closed subscheme with total ideal Iy = (I, Fq+ (G + aF)z).
Since {F, G} is a regular sequence in S¢, {F, —(G+aF)} is also a regular sequence in S¢
by Lemma [2.1.8. Therefore Y is a double conic on C' of type 2a by Proposition [5.3.2. So
it suffices to prove that Z ~ Z’ by X < Z’ =Y. Notice, (Fq+ (G+ aF)z)(Fq— Gz) =
—(G* + FGa)x? + F?*(axq + ¢°) € Ix. Similarly, we can show that uv € Iy, for all
u € Iy and v € Iz. Hence IyIly C Ix, ie., Iy C [Ix : Iz]. Now if Z ~ Z’ by X then
Iy =|[Ix : Iz]. Hence Iy C Iz, ie., Z' CY. Notice Z’ and Y are double conics on C' of
type 2a and hence they have the same Hilbert polynomial by Theorem [5.2.1. Therefore

7' =Y by Lemma|3.1.2. In particular, Z ~Y by X. Hence Z ~ Z'by X & Z' =Y. O
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Proposition 5.4.6. Let Z and Z’ be double conics on C' of type ¢ = 2a + 1, where
a>—1. Let I = (I%,qu — Gz, Foq — Gax) and let X be the complete intersection

with Iy = (2%, axq + ¢*), where o € S is a linear form. Then

Z~7 be <~ Iy = (]g,qu—i‘ (G1 + Fla)x, ng—i— (GQ + FgOé)l’).

Proof. Let {f, g} be a regular sequence in T induced by the admissible pair of sequences
{F1,G1}, {F»,G5}. Then 0(Fy) = sf,0(G1) = sg,0(F,) = tf and 6(G2) = tg. Hence
0(—(G1 + aFy)) = —s(g + af) and 0(—(Gy + aFy)) = —t(g + af), where & = 6(«).
By Lemma 2.1.8, {f,—(g + af)} is a regular sequence in 7" for all @ € T and hence
{F,—(G1 + aF)},{F>, —(Gy + aF3)} is an admissible pair of sequences on C for all
linear forms o € S. Let Y C P3 be the closed subscheme defined by the total ideal
Iy = (I}, Fiq + (G1 + Fia)x, Foq + (Go + Fya)z). By Proposition , Y is a double
conic on C of type 2a + 1. So it suffices to show that Z ~ Z' by X & Z' =Y. Notice,
(Fiq+ (G + Fia)x)(Fig— Gix) = —(F1Gia+ G2 + FE(axq+ ¢?) € Ix. Similarly, we
can show that uv € Iy, for all uw € Iy and v € Iz. Hence IyI; C Ix, ie., Iy C [Ix : Iy].
Now if Z ~ Z' by X then Iz = [Ix : Iz]. Hence Iy C Iy, ie., Z' CY. Notice Z’ and Y
are double conics on C' of type 2a + 1 and hence they have the same Hilbert polynomial
by Theorem [5.2.1. Therefore Z’ = Y by Lemma [3.1.2. In particular, Z ~ Y by X.

Hence Z ~ 7' by X & Z' =Y. O
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Corollary 5.4.7. Let Z be a double conic on C' of type £ > —1. Then Z is self-linked

if and only if char k = 2.

Proof. First suppose /¢ is even. Let Z ~ Z by a complete intersection X. Then by
Lemma @, Ix = (2% azq + ¢*) for some linear form o € S. Hence by Proposition
b.45, G+ aF = —Gmod o = aF = —2G in S¢ = oF =01in S¢/(G) = a =01in Sc,
since {F, G} is a regular sequence in S¢ and « is a linear form. Hence Z ~ Z = G = -G
in Soc = 2G =01in Sg = 2 = 0, since G is nonzero in S¢ = char k = 2. Conversely, let
char k = 2. Then Iy = (13, Fq — Gx) = (1%, Fq + Gz). Therefore by Proposition [5.4.5,
Z ~ Z by the complete intersection X', where Iy = (22, ¢%).

Now suppose ¢ is odd. Let {f, g} be a regular sequence in T' corresponding to Z. Then
by Proposition 5.4.6, Z ~ Z = G+ aFy = —G; in S¢ = 2G; + aF} = 0 in S¢
= s(29+af) =01in T, where & is the image of v in T under 6. Since s is regular in T,
s2¢g+af)=0inT=2g+af=0inT=af=-2¢ginT=a=0inT, since {f, g}
is a regular sequence in 7' = 2g = 0 in 7' = 2 = 0, since g is nonzero in 1" = char k = 2.
Conversely, let char k = 2. Then I; = (I%, Fiq— Gz, Foq— Gox) = (I3, Fiq+ Gz, Fhq+

Gsx). Therefore by Proposition |5.4.6, Z ~ Z by X', where Iy, = (22, ¢%). ]

Remark 5.4.8. Double conics of types —4 and —2 are self-linked over any algebraically

closed field k, since they are complete intersections by Corollaries [5.3.3 and |5.3.4.

Remark 5.4.9. Corollary @ extends a well-known theorem of Juan Migliore [27,
Theorem 4.4] which says that a double line of arithmetic genus less than —1 is self-linked
if and only if char k = 2. Luis Aguirre [1, Corollary 4.3.2] also extended Migliore’s
theorem to extremal p-lines in 3, where p is a prime.
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Proposition 5.4.10. Let Z be a double conic on C of type 2a + 1, where a > —1, with
total ideal Iy = (I%, Fiq — Gyx, Foq — Gax). Let My be the Rao module of Z and let
Fi1, F1o,G11, G2 € S be homogeneous polynomials that satisfy the relations . Then

My has S-presentation
S(=2)@ S(-1) @ S(a—1)* 3% S(a)? = My — 0, (95)
where
GH FH z —w —x 0
-G —Fip w -y 0 x

Proof. Let Z' be a double conic on C of type 2a + 1 such that Z ~ Z’ by the complete

intersection X, where I'x = (22, ¢?). Let Mz be the Rao module of Z’ and let
0Ly 2 Ly — Ly — L1 — Ly — Mz — 0 (96)

be a minimal free resolution of M. Dualizing we get the exact sequence
LY 25 LY 5 Ext 4(My, S) — 0 (97)

by [25, 11, § 2]. Since Z ~ Z' by X, we have M, = Exts(Mz/, S)(—6) by [?, 2.1]. Hence

we get the exact sequence

Vv
04

Ly(—6) = Ly(—6) = Mz — 0. (98)
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By Proposition @, we have Iz = (I, Fiq + Gz, Fhq + Gox), ie., Z' is given by
the admissible pair of sequences {Fi, —G1},{Fs, —G2}. Let F},, F|,,G, G5 € S be
homogeneous polynomials that satisfy the relations for {F1,—G1},{F2, —G2}. Then
F|, = F1, F|y = F13,G|; = —G11, G5 = —G1a. Therefore by Proposition I has
minimal S-resolution

O%NggNgﬁNlﬂ)]Z/—)O, (99)

where N, = S(—2) @ S(—3) @ S(—4) ® S(—a — 4)%, Ny = S(—4) @ S(—5) & S(—a — 5)*,

N3 = S(—a — 6>2 and oy = (372; xq,¢*, Fiq + Giz, Faqg + Gox),

G —Gi
q 0 —Gl —G2 0 0

Fi —Fp
- q —F —F -G -G

z w

P2 = 0 —=x 0 0 —F1 —Fip | ¥3 =

—w -y
0 0 T 0 z —w

—x 0
0 0 0 T —w Y

0 T

On the other hand, applying Rao’s theorem [?, Theorem 2.5] to we see that I, has

a minimal resolution of the form

(04,0

0= Ly 2% Lo (@0 ,S(—1)) — &7, S(—e;) — Iz — 0. (100)

Compairing and (100) we see that Ly = N3, Ly = Ny and o4 = ¢3. Let 0 = ¢2.

Then gives the S-presentation of My. O]
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5.5 Surfaces containing double conics

In this section we prove some properties of general surfaces containing a double conic. In
particular, we show that such a surface is normal and the number of its singular points

is determined by its degree and the genus of the double conic contained in it.

Proposition 5.5.1. Let Z be a double conic on C' of type ¢. If Z is contained in a

nonsingular surface F of degree d > 0, then ¢ = 2d — 6.

Proof. Let Z¢|p and Zzg be the ideal sheaves of C' and Z in E respectively. Then we
have the exact sequence

Applying Euler characteristics to the sheaves in (101]) we get

X0z = xOp — xZzk- (102)

Since E is nonsingular, C' is an effective divisor on E. Hence Z¢|g is an invertible Og-
module and Zz g = Ig|E. Thus we have the isomorphism /\/g‘E = Zcie/Izp, where

Ngl 5 =2ce /Iél  is the conormal bundle of C' in . Hence we have the exact sequence

0= Zzp = Zeyp — Neyg — 0. (103)

Applying Euler characteristics to the sheaves in (103 we get

XZzie = XZoie — XNeje- (104)
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We also have the exact sequence

0= Zeyp — Op — Oc — 0. (105)

Applying Euler characteristics to the sheaves in ([105]) we get

XOr = xZcie + xOc. (106)

Combining (102), (104), (106) and using the fact that xO¢ = 1, we get

XOz =1+ XN (107)

Since E' is nonsingular and C' is a nonsingular closed subscheme of E, we have the exact
sequence

by [18, II, Theorem 8.17]|. Taking the highest exterior powers of the sheaves in (108) we
get

N (Q5 ® O¢) = NN E @ NQe = Ngip ® Qc (109)

by [18, II, Exercise 5.16 (d)]. Also by [18, II, Example 8.20.3], we have Q¢ = we =
Oc(—1) and wgp = Og(d — 4), where d = deg E. Thus A%(Qr ® O¢) = wp @ O¢
Oc(d — 4) and hence Ny, = Oc(d — 4) ® Oc(1) = Oc(d — 3) by . Therefore
XNgp = 2(d = 3) + 1 and hence xOyz = 2(d — 3) + 2 = 2d — 4 by (107). On the other

hand, xOy = 1—pa(Z) = {42 by Theorem[5.2.1. Thus (+2 = 2d—4, i.e., { = 2d—6. [
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Theorem 5.5.2. Let Z be a double conic on C of type ¢ > 4. Then Z is contained in a

nonsingular surface if and only if ¢ is even.

Proof. Let E be a nonsingular surface containing Z with deg £ = d. Then ¢ = 2d — 6,
i.e., £ is even, by Proposition [5.5.1. Conversely, let £ = 2a, where a > —2. Then by
Proposition @, I = (I3, Fq— Gz), where deg ' = a+1,deg G = a+2 and F, G have
no common zeros along C'. Set E := Fq— Gz and d := deg E/. Notice d = a + 3. Let Jg
denote the Jacobian of F, i.e., Jgp = (Ex E, E. E’w)’ where E,, E,, F., E, are the

partial derivatives of E with respect to x,y, z, w respectively. Then

JE:<qu—GxI—G Fy+Fz:—-Gua Fq+Fy—G.x qu—QFw—wa)-

Let P € C be a closed point. Then we get

If G(P) # 0 then rank Jg(P) = 1 and Z(F) is nonsingular at P. On the other hand,
if G(P) = 0 then F(P) # 0, since I' and G have no common zeros along C. Therefore
Je(P) =0= y(P) = z(P) = 0. But then [w(P)]* = y(P)z(P) =0, i.e., w(P) = 0. Thus
Jg(P) =0« P = (1,0,0,0), which is a contradiction since (1,0,0,0) ¢ C. Therefore
Sing Z(E) N C = &, where Z(F) is the surface {E = 0}.

Let Uy = {G € H"Z;(d)|Z(G) is nonsingular along C'}. Then U, is an open subset of
PHZ;(d) by an application of Elimination Theory [18, I, Theorem 5.7A]. Notice E € Uy,

since Z(F)NC = &. Hence U; is a nonempty open subset of PHZ;(d). Let § C |Ops(d)|
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be the incomplete linear system corresponding to the vector subspace V = HZ2(d) and
let D € ¢ be general. Notice d = a+3 > 5, since £ = 2a > 4. Hence Z2(d—1) is generated
by global sections and therefore Sing D C C' by Lemma [4.5.3. Let Uy be a nonempty
open subset of {D € 4| Sing Z(D) C C'}. Then U; NUy C PHZ4(d) is a nonempty open

dense set. Hence Z(D) is a nonsingular surface containing Z, for all D € U; N Us. ]

Proposition 5.5.3. Let Z be a double conic on C' of type ¢ and let Z(E) be a general

surface containing Z of degree d > f”78-| Then Z(F) is normal. Moreover,
(a) |Sing Z(E)| =2d — { — 6.

(b) If char k = 0 and E is very general in the linear system |Zz(d)| then Cl1Z(FE) is

freely generated by Ozg(1) and C.

Proof. Since d > [%8], T,(d — 1) is generated by global sections. Hence E is normal by
Proposition @ (a). We have Iy = (E). Let Jz(g)c be the Jacobain of E restricted
on C. First suppose ¢ = 2a. By Proposition @, we have I; = (I3, Fq — Gz), where
degF'=a+ 1,degG = a + 2 and F,G have no common zeros along C. Since E € [,

there exist a, 3,7, A € S such that F = az? + fzq + v¢*> + A(Fq — Gx). Therefore

Jzm)c = (—Ag AFz AFy —2AFw)-

Let P € Sing Z(E) N C. Then Jz@g)c(P) = 0. Notice, if A(P) # 0 then we must have
G(P) = 0 and hence F(P) # 0. Thus y(P) = z(P) = 0. But then P = (1,0,0,0) ¢ C.
Therefore we must have A(P) = 0. Thus Sing Z(E) = Z(A)NC. Since deg A = d—a—3,
we have |Sing Z(E)| =|ANC|=2(d—a—3)=2d—{—6.
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Now suppose £ = 2a + 1. Then by Proposition [5.3.12 I; = (I3, Fiq — Gy, Foq — Gox),
where deg F; = a + 2,degG; = a + 3 and {F},G1},{F3, G2} is an admissible pair of
sequences on C. Then E = az? + fxq + v¢> + A(Fiq — G1z) + B(Fyq — Gox) for some

a,B,v, A, B € S. Hence

JZ(E)\C = <—<AG1 -+ BGQ) (AFl + BFQ)Z (AFl + BF2>y —2<AF1 + BFQ)UJ) .

Let Jg(E)w denote the representation of J;(gyc in T and let 0(A) = a,0(B) = b. There-

fore

TzE)c = (—(as +0t)g (as+bt)ft*> (as+0bt)fs* (as+ bt)fst> ;

where {f, g} is a regular sequence in 7" induced by the admissible pair of sequences
{F,G1},{F2, Go}. Let P € SingZ(E) and p = i*(P). Then Jj (p) = 0. No-
tice if (as 4 bt)(p) # 0 then we must have g(p) = 0, and hence f(p) # 0. But then
p = (0,0) ¢ P'. Therefore Sing Z(E) is in one-to-one correspondence with the set of
zeros of as + bt. Since k is algebraically closed, we have |Sing Z(E)| = deg(as + bt) =
2d—a—4)+1=2d—(—6.

Finally, if char £ = 0 and E is very general in the linear system |Z;(d)| then by Proposi-

tion|4.5.4 (c), C1Z(E) is freely generated by Oz (1) and C. O
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6 Triple conics in P?

In this final chapter we describe triple conics in P2, In Section 6.1 we prove a theorem
regarding the existence and constructions of triple conics. In Sections 6.2, 6.3 and 6.4 we
give total ideal descriptions of triple conics whose underlying double conics are planar,

complete intersections of two quadrics, and have negative odd genus respectively.

6.1 Classification of triple conics

In this section we prove the classification theorem of triple conics in P3. In particular, we

give the range of (¢, c) for which there exists a quasi-primitive triple conic of type (¢, ¢).

Proposition 6.1.1. Let Z be a double conic on C' of type ¢. Then

Z7/TcTy = Oc|—t — 6] & Oc[2(]. (110)

Proof. By Corollaries |5.3.3, |5.3.4 and Propositions [5.3.6, [5.3.15| we have

(
Oc(—1) & Oc(—4), if0=—4
0%(-2), ife =-2
Z7)TcT; = (111)
Oc(—a—3)@00<2a), ifﬁIQCLZ 0
Oc[—2a -7 0c(2a+1), ifl=2a+1>-1
(

and hence ([110)). O
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Corollary 6.1.2. Let Z be the double conic on C' of type —4. Then there exists a

surjection ¢ : Zz/ZcZ; — Oc[—8 + ¢] if and only if ¢ = 0 or ¢ > 6.

Proof. Let ¢ : Tz/ZcT; — Oc[—8 + ¢| be a surjection, where ¢ > 0. By Proposition

6.1.1, we have 7 /ZcZ; = Oc|—2] @ O¢[—8] and hence the commutative diagram

Oc[—2]€900[— ]HOC 8+C (112)
Opl(—2)@0p1(— )—»O]pl 8+C

where 7 @ Op1(—2) & Op1(—8) — Opi(—8 + ¢) is the map corresponding to ¥ as in
Lemma . Then 7 = (p,r), where p and r are homogeneous polynomials in 7" with
degp = ¢ — 6 and degr = c. Since 7 is a surjection, p and r have no common zeros.
Now degp < 0 & ¢ < 6. Hence p = 0 & ¢ < 5. But if p = 0 then r must be
a constant, otherwise p and r will have some common zeros. Therefore we must have
degr = ¢ = 0. Thus for 1 < ¢ < 5 there does not exist any surjection 7 and hence .
Conversely, let ¢ =0 or ¢ > 6. If ¢ =0 then 7 = (0, 1) defines a surjection. Now suppose
c>6. Let 7 : T(-2) ® T(—8) — T(—8 + ¢) be the map given by 7 = (p,r), where

c—6

p = s“° and r = t°. Notice degp > 0, since ¢ > 6. Therefore p and r have no common
zeros by construction. Hence Coker 7 has finite length by Lemma [2.1.9. Therefore T
sheafifies to a surjection 7 : Opi(—2) ® Op1(—8) — Op1(—8 + ¢) by Lemma [2.2.4. Let
Y Oc[—2] & Oc[—8] = Oc[—8 + ] be the map corresponding to 7 as in Lemmal[5.1.10]

Then ¢ : Z7/IcZz; — Oc[—8 + (] is a surjection. O
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Corollary 6.1.3. Let Z be a double conic on C' of type £ > —2. Then there exists a

surjection ¢ : Zy/TcZy; — Oc[20 + ¢ for all ¢ > 0.

Proof. By Proposition[6.1.1, Z,/ZcZ; = Oc[—(—6]60O¢[2(]. Let ¢ > 0 be an integer and
let 7: T(—¢ —6) @ T(2() — T(2¢ + c) be the map given by 7 = (p,r), where p = s3¢+¢t6
and r = t°. Notice, 3(+c+6 > ¢ > 0, since £ > —2. Hence degp > 0. Therefore p and r
have no common zeros by construction. Hence Coker 7 has finite length by Lemma [2.1.9.
Therefore 7 sheafifies to a surjection 7 : Opi(—€ — 6) @ Op1(20) — Op1(2( + ¢) by Lemma
2:2.4. Let ¢ : Oc[—€ — 6] ® Oc[2¢] - Oc[2¢ + ¢] be the map corresponding to 7 as in

Lemma [5.1.10, Then ¢ : Z;/ZcZ; — Oc[20 + ¢] is a surjection. O

Proposition 6.1.4. Let W be the thick triple conic on C, i.e., Zyy = Z2. Then Iy, = I3.

Moreover, W can be obtained from either of the following maps.

(a) Iw is the kernel of the map Iy — Iz/Iclz = Sc(—1) @ Sc(—4) N Sc(—1), where

Z is the double conic of type —4 and ¢ = (1,0).

(b) Iy is the kernel of the map I; — Iz/Icl; = Sc(—2)? 5 Sc(—2), where Z is a

double conic of type —2 and & = (0, 1).

Proof. We have the complex

0— S(—4)®S(—5) > S(—2) ® S(-3) ® S(—4) — I% =0, (113)
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where ¢ is given by the matrix

q 0
Y=\ —-x q
0 —=z

Notice rank ¢ = 2 and I(p) = I2. Since {, ¢} is a regular sequence in S, {22, ¢*} is also
a regular sequence in S by [26, Theorem 16.1]. Hence depth I(y) > 2. Therefore ((113) is
exact and hence an S-resolution of IZ by the Hilbert-Burch theorem [2.1.22| Sheafifying

(113) we get the exact sequence

Applying H? to (114) we get the exact sequence

0— S(—4) @ S(~5) > S(—2) ® S(—3) ® S(—4) — Iy — 0, (115)

since H}(P?, Ops(—4) @ Ops(—5)) = 0 by [18, III, Theorem 5.1]. Compairing the exact

sequences ((113) and (115 we see that Iy = I2.

Let Z be the double conic of type —4. Then I, = (z,¢*) and I /117 = Sc(—1)®Sc(—2)

by Corollary [5.3.3. Let ¢ : I; — Sc(—1) be the map ¢ = om, where w: [ — I5/Ic1y
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is the canonical surjection. Then we have the commutative diagram

00— Kero¢ Iy —0
0——Ker¢/Icl; — I5/Icl; = So(—1) ® So(—4) —— So(—1) —— 0.

Let e, ey be the generators of Se(—1) @ S¢(—4). Since Iz/Iclz = Sc(—1) & Sc(—4),
we can identify Z with e; and @® with ey. Notice, Ker is generated by @>. Therefore
Ker ¢ = (Iclz,q¢%) = (2%, 2q,2¢°, %, ¢°) = (2*,2¢,¢°) = Iw.

Now suppose Z is a double conic of type —2. Then I, = (22, ¢ — gx), where g € S is a
linear form, and I7/IcI; = Sc(—2)% by Corollary [5.3.4. Let ¢ : Iz — Sc(—2) be the
map ¢ = £ om, where 7w : Iy — I;/Io1; is the canonical surjection. Then we have the

commutative diagram

0— Kero¢ I 2)——0
0——Kero/Icl; — I/ 1ol =2 So(—2)2 — Se(—2) —— 0.

Let e, ey be the generators of So(—2)2. Since I7/IcI; = Sc(—2)%, we can identify 72

with e; and ¢ — gz with e,. Notice, Ker is generated by 2. Therefore

Ker¢ = (Iclz,2*) = (2*,2q — g2*,2°q, ¢* — gzq,2°) = (2°,2q,¢*) = L.
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Theorem 6.1.5. Let Z be a CM double conic on C' of type ¢, where ¢{ > —4 is an
integer such that ¢ # —3. Let ¢ : Zz/ZcZ; — O¢[20 + ] be a surjection, where
¢ > 0 is an integer. Then v defines a CM triple conic W on C' with Hilbert polynomial
Py(n) =6n+30+c+ 3 by Zyy = Kery om, where 7w : T, — Z,/ZcZ is the canonical

surjection. Conversely, every CM triple conic W on C' arises from this construction.

Proof. Let ¢ : T7/TcT; — Oc[2¢ + ¢| be a surjection, where ¢ > 0 is an integer. Let
0 : Iy — O¢[20 + ] be the surjection ¢ = 1 o 7. Then Ker ¢ has the form Zy, /ZcZy,

where W C P3 is a closed subscheme. We get the exact sequence

0—=Zw — Iz — Ocl20 + ] — 0. (116)

By Lemma [3.3.5, W is a CM multiplicity structure on C'. From ((116)) we get the com-

mutative diagram

0 If Ops Ow 0 (117)
0 Z-Z O]PS OZ 0.
Oc[2€ + C]

Applying the snake lemma to (117) we get the exact sequence

0— O¢l2l+¢c] = Ow — Oz — 0. (118)
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Twisting by n and taking the Euler characteristics of the sheaves in (118]) we get

Pw(n) = xOw(n) = xOz(n)+xOc[2( +c|(n)
= xOz(n)+ xOp1 (20 + ¢ + 2n)

= 6n+30+c+3.

Hence deg W = 6 and therefore W is a triple conic on C'.

Conversely, let W be a CM triple conic on C'. If W is a thick extension then by Proposition
[6.1.4, W arises by this construction. Now suppose W is a quasi-primitive extension. Let Z
be the 224 CM filtrant of W. Set L := Z¢/Zz and Ly := T /Ty Notice, L is a line bundle
on C' by Proposition [4.3.2. Hence £ = O¢[f] for some ¢ € Z. Moreover Ly = L2(Ds) for
some effective divisor Dy on C' by Proposition [4.3.5. Therefore Lo = O¢[2( + ¢] where
¢ = deg Dy > 0. Moreover the map Z, — O¢[2¢ + ¢| factors through Z,/ZcZy, so W

arises from this construction. O

Corollary 6.1.6. Let W be the thick triple conic on C. If W arises from a surjection

Y :Tz/TcTy; — Oc20 + c] as in Theorem [6.1.5, then (¢,¢) = (—4,6) or (—2,0).

Proof. We have Iy, = Z2. Since C' C W is the CM filtration of W, we get the exact

sequence

0= Zo/Iw = Lo /T = Oc(—1) @ Oc(—2) — Oy — O — 0 (119)

by Proposition|4.2.5 (3). Twisting by n and taking the Euler characteristics of the sheaves
in (119) we get Py (n) = xOw(n) = xOc(n) + xOc(n — 1) + xOc(n — 2) = 6n — 3.
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Let ¢ : Iz/ZcT; — Oc[20 + ] be a surjection that defines W. Then by Theorem [6.1.5,
Py (n) = 6n + 30 4+ ¢+ 3. Therefore 1) defines the thick triple conic on C' if and only if
6n+30+c+3 =6n—3,i.e., 3(+c+6 = 0. Notice, if £ > —1 then 3/+c+6 > 0. Therefore
we must have ¢ = —4 or —2, since ¢ > —4 and ¢ # —3. Hence the only solutions to the

equation 3¢ + ¢+ 6 = 0 are (—4,6) and (—2,0). O

Proposition 6.1.7. Let Z be a double conic on C' of type 2a, where a > —2. Then

there exists a canonical inclusion

t:1;,® S0 C Sc(—a — 3) S5 Sc(2a> (120)

such that Coker . has finite length.

Proof. From Corollaries [5.3.3, [5.3.4 and Proposition [5.3.6 we have

(

Sc(—l) D SC(—4), ifa=-2

I;® S0 4 g, (-2)?, ifa—=—1 (121)

Sc(—a—3)® (f,9)*(2a), ifa>0.

\

Let ¢ be the isomorphisms in (121) if @ = —2,—1 and the inclusion S¢(—a — 3) @&
(f,9)?(2a) C Sc¢(2a) if a > 0. Notice Cokert = 0 if @ = —2, —1. Finally, if @ > 0 then
Coker ¢ has finite length by Lemma [2.1.9, since the images of f and g form a regular

sequence in Sc. Therefore we get ((120)). O
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Let Z be a double conic on C' of type 2a, where a > —2. Let 7 : I; - I; ® S¢ be the
canonical surjection and let ¢ : I;®S¢ C Sc(—a—3)®Sc(2a) be the canonical inclusion as
in Proposition[6.1.7. Let ¢ > 0 be an integer and let ¢ : Sc(—a—3)®Sc(2a) — Sc[20+]
be a map such that Coker has finite length. Define ¢ = ¢ o v om. Let 7 be the map

corresponding to ¢ as in Lemma [5.1.10, Then we have the commutative diagram

Iz

lw

]Z X SC(—L> Sc(—a - 3) D Sc(QCL) L) Sc[4a + C]

b |

T(—2a —6) & T(4a) —— T'(4a + ¢)

Sclda + (122)

where j is the inclusion as in (5.1.7).

Theorem 6.1.8. In the setting of diagram (|122)), Ker ¢ is the total ideal of a CM triple

conic W on C. Moreover, Iyy = Iclz + (jorom) ! Ker(7).

Proof. By construction, Coker ¢ has finite length. Hence by Lemma [2.2.4, ¢ shealfifies to
the surjection ¢ : Zy — O¢lda + c|, where ¢ = (Z Therefore by Theorem [6.1.5, Ker ¢ is

the ideal sheaf of a CM triple conic W on C. We have the exact sequence

0—Zw — Iz — Oclda+ ] — 0. (123)

Applying H? to (123) we get the exact sequence

0
0 Iy — Iy =5 Selda+d — H'W — H'Z.
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Since H2p = ¢, we have Iy = Ker ¢. Therefore Ker ¢ is saturated. Finally let 7 = (p,r),
where p and r are homogeneous polynomials in 7" having no common zeros such that
degp = 6a + ¢+ 6 and degr = c. Then Ker7 is generated by the Koszul relation
n = pey — rey, where e; and ey are the generators of T'(—2a — 6) @ T'(4a). Therefore

Ker¢ = Iclz+ ((jorom)™H(n)) =Icly + (jorom) t Ker(r). O

Remark 6.1.9. Let W be a triple conic as in Theorem [6.1.8. If W is a quasi-primitive

extension of C' then it is of type (¢,c) and has Z as its 2°¢ CM filtrant.

6.2 Triple conics arising from planar double conics

In this section we describe triple conics that arise from planar double conics. Let Z be
a planar double conic on C. Then Z is of type —4. Also Iz = (z,¢*) and Iz/Io1; =

Sc(—1) & Sc(—4) by Corollary [5.3.3.

Proposition 6.2.1. Let Z be the planar double conic on C. Let W be a triple conic on

C defined by a surjection Z/ZcZz — Oc(b — 4), where b > 0.
(a) If b= 0 then Iy = (z,¢%), i.e., W is a complete intersection.

(b) If b > 3 then Iy = (Iclz, P¢* — Rx), where P and R are homogeneous polynomials

in S of degrees b — 3 and b respectively, having no common zeros along C'.
Moreover, W is a thick triple conic < b =3 and R € I.

Proof. We have I; = (z,¢*) and Iz/IcI; = Sc(—1) @ Sc(—4) by Corollary [5.3.3. By
Corollary 6.1.2, there does not exist any triple conic if b = 1,2. Let b =0or b > 3
and let ¢ : I7/IcI; — Sc(b— 4) be a map such that Coker ) has finite length. Then

120



1 = (P, R), where P, R are the images of homogeneous polynomials P, R € S in S¢ with
deg P = b — 3 and deg R = b, having no common zeros along C. Let ¢ : I; — Sc(b—4)

be the map defined as follows

Iz

J»

Sc(b—4)
I/1c1; 2 So(—1) & Se(—4) — Se (b — 4)

where 7 is the canonical surjection. Then by Theorem[6.1.8, ¢ sheafifies to the surjection
¢ : Iy — Oc(b —4) and defines a CM triple conic W on C' with Iy = Ker¢ = Iol, +
7 'Kert. Since P and R have no common zeros along C, Ker1 is generated by the
Koszul relation Pey — Reyq, where e; and eq are the generators of So(—1)® Sc(—4). Since
Iz/Iclz =2 So(—1) @ Sc(—4), we can identify e; with # and and ey with g, where Z,q
are the images of z, ¢ in S respectively. Therefore Ker 1) is generated by P¢2 — Rz and
hence by Theorem @, Iy = (IcIz, P¢> — Rx). This proves part (b) of the proposition.
Now suppose b = 0. Then deg P = —3 and deg R = 0. Hence P = 0 and R is a unit.
Hence Iy = (Iclz,—Rx) = (2%, zq, 2¢%, ¢*, — Rz) = (x,¢?), since R is a unit. Hence W
is a complete intersection. This proves part (a) of the proposition.

Finally, let W be a thick triple conic. Then b # 0 by part (a) above. Hence b > 3.
By Proposition [6.1.4, Iy = IZ. Hence ¢*> € Iy = (Iclz, P¢*> — Rz) and therefore
Rx € Iy = I%. Let Rx = az? + Bxq + v¢*, where o, 8,7 € S. Then z | . Let v = +/z.
Thus R = az+Bq++'¢> € (x,q) = I¢, i.e., R = 0. Since P and R have no common zeros
along C', P must be a constant. Therefore degP = b — 3 = 0, i.e., b = 3. Conversely,

let b = 3 and R € Is. Then deg P = 0 and hence P is a unit. Replacing the map
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1 by P71 we get the same triple conic. Therefore we can assume that P = 1. Thus
Iy = (Ic1lz,¢* — Rx) = (2%, 2q,¢%,¢* — Rx). Since R € I¢ there exist a, 3 € S such that
R = ax + Bq. Hence Rz = ax? + fxq and therefore Iy = (22, 2q,¢*) = I%, ie., W is a

thick triple conic on C. O

Let Z be the double conic on C of type —4. By Corollary @, we have I = (z,¢%)
and Iz/Icl; = Sc(—1) ® Sc(—4). Let b > 3 be an integer and let 7 : T'(—2) @ T'(—8) —
T(2b — 7) be the map given by 7 = (p,r), where {p,r} is a regular sequence in 7" with
degp =2b— 5 and degr = 2b+ 1. Let ¢ : Sc(—1) ® Sc(—4) — Sc[20 — 7] be the map
corresponding to 7 as in Lemma Define ¢ = ¢pom, where 7 : I; — Iz /1c17 is the

canonical surjection. Then we have the commutative diagram

cl2b — (124)

I/Icl; 2 So(—1) @ So(—4) —2 Se[2b — 7

g "

T(-8) ——T(2b—7)

S ETN

T(—

where j is the inclusion as in (5.1.7). Notice, Coker 7 has finite length by Lemma [2.1.9.
Therefore Coker vy and hence Coker ¢ have finite lengths. Also notice, since degp and
degr are odd, {p,r} does not lift to a regular sequence in Sg, rather it lifts to an

admissible pair of sequences on C.
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Proposition 6.2.2. In the setting of diagram (124)), 7 defines a triple conic W on C' of

type (—4,2b+ 1), having Z as the 2°¢ CM filtrant. Moreover,

Iy = (Iclz, Pi¢* — Riz, Pyg® — Rox),

where { Py, R}, { P2, Ry} is an admissible pair of sequences on C' corresponding to {p,r}.

Proof. By Theorem @, ¢ sheafifies to the surjection 5 : Iz — O¢[2b — 7] and defines
a CM triple conic W on C with Iy, = IcIz + (j o m) ' Ker7. Since {p,r} is a regular
sequence in 7', Ker 7 is generated by the Koszul relation n = pés — ré;, where é; and
¢y are the generators of T(—2) @& T'(—8). Notice j71(n) ¢ Sc(—1) & Sc(—4), since
degn = 2b+ 3, i.e., degn is odd. Hence j~! Ker 7 is generated by j~!(sn) and j~1(tn).
Now sn = spéy — sré, and tn = tpéy — tré,. Therefore j='(sn) = Pies — Rie; and
j7X(tn) = Pyey — Ryeq, where e; and ey are the generators of So(—1) @ Sc(—4). Since
Iz/Icl; = Sc(—1) & Sc(—4), we can identify e; and e; with T and g respectively,
where T and ¢ are the images of x and ¢ in S¢ respectively. Therefore (j o 7)™ Ker 7 =
(Pi¢*> — Ry, Pyq*> — Rox) and hence Iy = (I¢lz, Pq* — Riz, Pag* — Ryx). Since 2b + 1

is odd, W is not a thick extension by Corollary |6.1.6. Hence W is a triple conic on C of

type (—4,2b+ 1), having Z as the 2°¢ CM filtrant. ]
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6.3 Triple conics arising from a complete intersection of quadrics

In this section we describe triple conics that arise from double conics which are complete

intersections of two quadrics.

Proposition 6.3.1. Let Z be a double conic on C of type —2 with I = (2%, q — gz),
where g € S is a linear form. If W is a triple conic on C' defined by a map ¢ : Iz/Ic1; —

Sc(—2), then ¥ = (A, 0) for some A, ¢ € k such that (A, ) # (0,0). Moreover,
(a) If A # 0 then Iy = (23, ¢ — gx — 62?), i.e., W is a complete intersection.
(b) If A =0 then W is the thick triple conic.

Proof. We have I7/Icl; = Sc(—2)? by Corollary [5.3.4. Hence I/Icl; = Sc(—2)%.
Therefore ¢ = (A, 0), where \,§ € k. Notice (A, d) # (0,0), for otherwise ¢ is the zero
map and hence does not define any triple conic on C. Let ¢ : I; — Sc(—2) be the map
defined as follows

¢ I, 5 Iy/Tcl, 2 Se(—2)2 % So(—2),

where 7 is the canonical surjection. Then ¢ sheafifies to the surjection ¢ : Ty - Oc(—2),
where © = ¢, and Ker ¢ = Zy,. By Theorem IM, Iy = Il + w1 Kert. Since \ and
0 have no common zeros along C, Ker1 is generated by the Koszul relation \es — deq,
where e; and ey are the generators of Sc(—2)%. Since Iz/Icl; = Sc(—2)%, we can
identify e; and e, with 72 and ¢ — gz respectively; where Z,q — gx are the images of
xr,q — gx in S¢ respectively. Therefore Ker 1) is generated by )\m — 622 and hence
Iy = (IcIz, \q — gz) — 622).

Now if A # 0 then replacing ¢ by A™11) we get the same triple conic. Hence we can assume
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that A = 1. Therefore Iyy = (IcIz,q— gv —02?) = (23, 2(q — gx), 2%q, q(¢ — gx), ¢ — gx —
dz?%). Notice 62> + x(q — gz — d2*) = x(q — gz) and dz*q + q(q — gz — dx*) = q(q — gx).
Hence Iy = (23, 2%q, ¢— gz —2?). Finally, (¢+0x)2®+2%(q¢— gx — 062?) = x2q. Therefore
Iy = (23, q — gx — 6x?) and hence W is a complete intersection.

Now suppose A = 0. Then § # 0. Replacing 1) by 6 4 we get the same triple conic.

Hence we can assume that § = 1. Therefore

Iy = (Iclz,2%) = (2*,2(q — g2),2%q,q(q — gz),2°) = (2*,2q,2%) = I}

and hence W is the thick triple conic. O

Corollary 6.3.2. Let W be the thick triple conic on C'. Then W arises from a surjection
VY :Ty/TcTy; — Ocl20+c] asin Theorem|6.1.5 if and only if (¢, ¢) = (—4,6) and ¢ = (1,0)

or ({,¢) =(—2,0) and ¢ = (0,1).

Proof. By Corollary[6.1.6, we have (£, c) = (—4,6) or (—2,0). Now if (/,¢) = (—4,6) then
¥ is the surjection Zz/ZcZz; — Oc(—1), where Z is the double conic on C of type —4.
Therefore by Proposition @, ¥ defines a thick triple conic if and only if ¢» = (1,0). On
the other hand, if (¢,¢) = (—2,0) then v is the surjection Z;/ZcZ; — Oc(—2), where
Z is a double conic on C' of type —2. Therefore by Proposition [6.3.1, ¢ defines a thick

triple conic if and only if ¢ = (0, 1). O

Corollary 6.3.3. Let & = {(—4,0)} U {(—4,¢)lc > 6} U{({,c)|¢ > —2andc > 0} C

Z x Z.. Then there exists a quasi-primitive triple conic W on C' of type (¢,¢) < (¢,¢) € &.

Proof. This follows from Corollaries [6.1.2,16.1.3,16.3.2 and Propositions [6.2.1,6.3.1. [J
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Proposition 6.3.4. Let Z be a double conic on C' of type —2. Let b > 1 be an integer
and let P, R be homogeneous polynomials in S of degree b, having no common zeros
along C. Let 1 = (P, R), where P, R are the images of P, R in S¢ respectively. Then
1 defines a CM triple conic W on C of type (—2,2b), having Z as the 2°¢ CM filtrant.

Moreover, Iy = (IcIz, P(q — gx) — Rx?).

Proof. We have I; = (2%,q — gx) and I/Icl; = Sc(—2)% by Corollary [5.3.4. Since P
and R have no common zeros along C', Coker has finite length by Lemma [2.1.9. Let

¢ : Iz — Sc(b— 2) be the map defined as follows

61,5 Iy/Icl; = Se(—2)° % Sa(b—2),
where 7 is the canonical surjection. By Theorem [6.1.8, ¢ sheafifies to the surjection
¢ : Iz — Oc(b—2), where ¢ = gg Moreover, Ker ¢ is the ideal sheaf of a CM triple
conic W on C with Iy = IcI; + 7' Kert. Notice, {P, R} is a regular sequence in
Sc. Hence Ker 1 is generated by the Koszul relation Pe; — Req, where e; and e, are the
generators of Sc(—2)% Since Iz/Ic1; = Sc(—2)?, we can identify e; and e, with % and
q — gx respectively, where T and g — gx are the images of  and ¢ — gz in S¢ respectively.
Therefore Ker ¢ is generated by P(q — gz)— Rz? and hence Iy, = (I, P(q—gz)— Ra?).
By Corollary [6.3.2, W is not a thick extension, since b > 1. Therefore W is of type

(—2,2b) and Z is the 224 CM filtrant of W. O

Let Z be a double conic on C of type —2. Then I;/Ic1; = Sc(—2)? by Corollary [5.3.4.

Let b € Z>o and let 7 : T(—4)? — T(2b—3) be the map given by 7 = (p,r), where {p, r} is
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a regular sequence in T' with degp = degr = 20+ 1. Let ¢ : Sc(—2)* — Sc[2b— 3] be the
map corresponding to 7 as in Lemma [5.1.10} Define ¢ = ¢ o 7w, where 7w : I — Iz /Ic1y

is the canonical surjection. Then we have the commutative diagram

I,—— . Sc[2b—3 (125)

X B

I2/IcI; = Se(—2)% — Sc[2b — 3]

| |

T(—4)2 — T T(2b—3)

where j is the inclusion as in ((5.1.7). Notice, Coker 7 has finite length by Lemma [2.1.9.
Therefore Coker and hence Coker ¢ have finite lengths. Also notice, since degp and
degr are odd, {p,r} does not lift to a regular sequence in S¢, rather it lifts to an

admissible pair of sequences on C'.

Proposition 6.3.5. In the setting of diagram ((125)), 7 defines a triple conic W on C' of

type (—2,2b+ 1), having Z as the 24 CM filtrant. Moreover,
Iy = (Iclz, Pi(q — g) — Ry2?, Py(q — gx) — 325132)7

where { Py, Ry },{ P>, Ry} is an admissible pair of sequences on C' corresponding to {p,r}.

Proof. By Theorem[6.1.8, ¢ sheafifies to the surjection 5 : Tz — O¢[2b— 3] and defines a
CM triple conic W on C with Iy = Ker ¢ = I¢lz+(jom) ! Ker 7. Since {p, r} is a regular
sequence in T', Ker 7 is generated by the Koszul relation n = pés —ré;, where é; and é; are

the generators of T'(—4)%. Then Ker 7 is generated by 7. Notice j71(n) ¢ Sc(—2)?, since

127



degn = 2b + 5, i.e., degn is odd. Hence j~! Ker 7 is generated by j~'(sn) and j~!(¢n).
Now sn = spéy — sré; and tn = tpéy — tré;. Therefore j=1(sn) = Pie; — Rie; and
j7Y(tn) = Pyes — Rye1, where e; and ey are the generators of S¢(—2)2. Since I/Icl; &
Sc(—2)?%, we can identify e; and e, with 72 and ¢ — gz respectively, where Z and ¢ — gx
are the images of x and ¢g— gz in S¢ respectively. Therefore (jor) ™! Kert = (P (q—gz)—
Ri2?, Py(q — gx) — Rox®) and hence Iy = (Iclz, Pi(q — gx) — Rix?, Po(q — gx) — Rax?).
Since 2b + 1 is odd, W is not a thick extension by Corollary [6.3.2. Hence W is a triple

conic on C' of type (—2,2b+ 1), having Z as the 2°4 CM filtrant. ]

6.4 Triple conics arising from double conics of negative odd
genus

Let Z be a double conic on C of type 2a, where a > 0. Then I, = (I3, fq — gz)
by Proposition [5.3.2, and I/IcI; = Sc(—a — 3) @ (f, g)*(2a) by Proposition [5.3.6.
Let b > 0 be an integer. Let P and R be homogeneous polynomials in S of degrees
3a + b+ 3 and b respectively, having no common zeros along C. Let ¢ : Sc(—a — 3) &
Sc(2a) = Sc(2a + b) be the map given by ¢ = (P, R), where P and R are the images
of P and R in S¢ respectively. Then Coker has finite length by Lemma [2.1.9. Let
L Se(—a—3)®(f,9)*(2a) = Sc(—a — 3) & Sc(2a) be the canonical inclusion as in

Proposition[6.1.7. Define ¢ = ¢orom, where 7 : I, — I5/I-17 is the canonical surjection.
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Then we have the commutative diagram

Iz

|

Iy/Ic1,~ Se(—a — 3) ® Sc(2a) —— Sc(2a + b).

Sc(2a +b) (126)

Proposition 6.4.1. In the setting of diagram ((126]), ¢ defines a triple conic W on C' of
type (2a, 2b) with Iyy = Ker ¢ = IoI; + (o) ' Ker ), having Z as the 2°¢ CM filtrant.
Moreover, Iy /IcIz is cyclic & P € (f,g)*>mod Io. In particular, if P € (f, g)*> mod I

then there exist a, 3,7 € S such that Iy = (Iclz, ax® + Brq + v¢* — R(fq — gx)).

Proof. By Theorem @, ¢ sheafifies to the surjection qz : Tz — Oc(2a + b) and defines
a CM triple conic W on C with Iyy = Ker ¢ = IoIz+ (tom) ! Ker. Since a >0, W is a
quasi-primitive triple conic on C' of type (2a,2b) by Corollary @ Hence Z as the 274
CM filtrant of . Since P and R have not common zeros in S¢, Ker 1) is generated by the
Koszul relation = Pey— Re;, where e; and ey are the generators of So(—a—3)® Sc(2a).
Since Iz/Icl; = So(—a — 3) @ (f, 9)*(2a), we can identify 72,7, > and fq — gz with
12, fg, g% and e; respectively. Then e, f? = #2, eafg = 7§ and eyg®> = @*. Since fq—gx €
Iz,07Y(n) € Iz/IcIzif and only if P € (f, g)* mod Ic. Hence Iy /Icl; = (tom) ™! Ker ) is
cyclic & P € (f,g)*mod I¢. Finally, let P € (f,g)*>mod Ic. Then there exist a, 3,7 € S

such that P = af? + ffg + 7¢%, where &, 3,7 are the images of a, 3,7 in Sc. Thus

n = (af?> + Bfg + 7g*)es — Re; and hence 17 '(n) = az?+ Brq+v¢® — R(fq — gx).

Therefore Iy = (Iclz, ax® + Bxq +v¢® — R(fq — gx)). ]
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2Gn+ 1)+ 1, if n> I
Proposition 6.4.2. If C' C P? is a conic then dim S¢(1), =

0, otherwise
where [, n € Z.
Proof. Since S¢(1), = Sc(n+1) = H(P?,Oc(n +1)) = H(P', Op: (2n + 21)), we have

2(n+10)+1, if n>-I
dim Sc(1), = h°(PY, Op: (2n + 21)) = O

0, otherwise.

Proposition 6.4.3. Let C' C P? be a conic and let f, g € S be homogeneous polynomials
with deg f = d,deg g = e. If the images of f and g in S¢ form a regular sequence, then

dim(S¢/(f, g))n = 0, whenever n > d + e.

Proof. The sequence

-9

f )

0— Sc(—d — 6) e Sc(—d) &P Sc(—e) e SC — Sc/(f, g) — 0

is exact, since the images of f and g in S form a regular sequence. Hence by Proposition

6.4.2 and some dimension counting, we have dim(S¢/(f, g)), = 0, whenever n > d+e. [

Proposition 6.4.4. Let C C P? be a conic and let f, g € S be homogeneous polynomials

with deg f = d < degg =e. If {f, g} is a regular sequence in S¢, then the sequence

Se(=2d — €) ® Sp(—2e — d)—2= Se(—2d) ® Se(—d — ) ® Se(—2e) 2= Se (127)
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g 0
with ¢, = (f,9)% and p, = —f g | is exact, hence right exact in degrees > 2e + d.
0 —f
Proof. Notice ¢y is generated by the 2 x 2 minors of po. Since {f, g} is a regular se-
quence in S¢, {f?, ¢} is also a regular sequence in S¢ by [26, Theorem 16.1]. Thus

depth I5(p2) > 2. Therefore by the Hilbert-Burch theorem [2.1.22] the sequence

Sc(—2d — e) & So(—2e — d)—2 Se(—2d) & Se(—d — ) ® S (—2e) 25 (f, g)?
(128)
is exact. Thus is exact. Now from (128) we have dim(f, g)2 = dim Sc¢(n — 2d) +
dim S¢(n —d — e) + dim S¢(n — 2e) — dim S¢(n — 2d — e) — dim S¢(n — 2e — d). Notice
if n > 2e + d then n > 2d,d + e, 2e,2d + e, since by hypothesis d < e. After a brief
calculation using Proposition[6.4.2 we see that dim(f, g)2 = 2n+1 = dim(S¢),,, whenever

n > 2e + d. Hence ([127) is right exact in degrees > 2e + d. O

Corollary 6.4.5. Let C' C P? be a conic and let f,g € S be homogeneous polynomials
with deg f = a + 1,degg = a + 2; where a > 0. Let M = S¢/(f, )% If the images of f

and g in S¢ form a regular sequence then

0, ifn>3a+5
1, if n=3a+4
dim M, =
3, ifn=3a+3anda=0

4, ifn=3a+3 and a > 1.
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Proof. Noitce M is the cokernel of the map

2
Se(—2a —2) @ Se(—2a — 3) ® So(—2a — 4) L% 5.,
Hence if the images of f and ¢ in S¢ form a regular sequence then by Proposition [6.4.4,
the map (f, g)? is surjective in degrees > 2deg g + deg f = 3a + 5. Hence dim M,, = 0, if
n > 3a+5. Using (128) and Proposition|6.4.2 we have dim(f, g)3,,, = 6a + 8 and hence

dim M3, 4 = 1. Similarly we have

4, ifa =0, 3, ifa =0,
dim M3a+3 = dim(SC)3a+3—dim(f, g)§a+3 = 6a+7— =

6a + 3, ifa>1 4, ifa > 1.

]

Corollary 6.4.6. Let W be a triple conic on C' of type (2a,2b), where a > 0 and b > 2,
given by the map 1 = (P, R) as in Proposition [6.4.1. Then there exist a, 3,7 € S¢ such

that Iy = (Iclz, ax® + Brqg +v¢* — R(fq — gx)).

Proof. Notice in these cases deg P = 3a + b+ 3 > 3a + 5. Hence by Corollary [6.4.5,

P € (f,g)% Therefore by Proposition |6.4.1 Iy takes the form above. O

Therefore for triple conics of type (2a,2b) it remains to consider the cases a > 0 and
0<b<1,but P¢(f g)*modIc. To deal with these cases we introduce two invariants

of homogeneous polynomials P € S¢/(f,9)*
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Definition 6.4.7. Let M be the module Sc¢/(f,g)? as defined in Corollary [6.4.5 and
let P € S be a homogeneous polynomial. Set Np := Ker(M L M). Notice (Np); is
a vector subspace of (S¢);. We define vp to be the dimension of (Np); as a k-vector
space, i.e., vp = dim Ker(M; i Mitaeg p). We define op to be the length of a maximal

Sc-sequence contained in (Np);.

Remark 6.4.8. Notice vp < 3 and op < 2 by construction.

Lemma 6.4.9. Let P € S be a homogeneous polynomial of degree d.
1. If d > 3a + 4 then vp = 3.

2. If d =3a+ 3 then vp > 2.

0, ifn>3a+5
Proof. Notice dim M; = 3. By Corollary (6.4.5, we have dim M,, =

1, if n=3a+4.
Henced > 3a+4=vp=3andd=3a+3=vp > 2. O

Remark 6.4.10. Notice P € (f,g)?mod Ic = vp = 3. But the converse is not true in
general. For example, if f = y,g = 2% and P = yzw then [P € (f,g)*mod I for all

linear forms [ € S, hence vp = 3 and yet P ¢ (f, g)? mod I¢.

Proposition 6.4.11. Let W be a triple conic on C' of type (2a,2b), where a > 0 and

0<b<1. If Wis given by a map ¢ = (P, R) such that P ¢ (f,g)? mod I but vp = 3,

then there exist Hy, Hy, H3 € I% such that

Iy = (IcIz, H — yR(fq — gx), Hy — 2R(fq — gx), Hs — wR(fq — gx)).
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Proof. Since P ¢ (f,g)?, by Proposition @ we have Iy /IcIz is not cyclic, and hence
1™Y(n) & Iz/Ic1z, where 7 is the Koszul relation Pey— Re;. But since vp = 3, [P € (f, 9)?
for all linear forms [ € S. Therefore Iy /Iclz is generated by ¢~'(yn),. ' (zn) and
v Y(zn). Now since yP € (f,g)>mod I, there exist ay, (1,71 € S such that yP =
arf? 4+ Bifg + mg?mod Ip. Hence t~'(yn) = a2 + 132G + 11§ — JR(fq — gx). Let
Hy = aqz® + prizq + 11¢>. Then Hy € I and o (gn) = Hy — §R(fq — g). Similarly
vY(2n) = Hy — ZR(fq — g) and v~ (wn) = Hs — wR(fq — gz) for some Hy, Hy € I2.

Hence Iy takes the form above. O

Corollary 6.4.12. If W is a triple conic on C of type (2a,2), where a > 0, given by a

map ¢ = (P, R) such that P ¢ (f, g)*mod I, then there exist Hy, Hy, H3 € I% such that

Iy = (IcIz, Hi —yR(fq — gx), Hy — zR(fq — gx), Hy — wR(fq — gx)).

Proof. In this case deg P = 3a + 4 and hence by Lemma [6.4.9, vp = 3. Therefore by

Proposition 6.4.11] Iy, takes the form above. O

Therefore for triple conics of type (2a, 2b) it remains to consider the cases (2a,0), where

a>0and vp = 2.

Proposition 6.4.13. Let W be a triple conic on C of type (2a,0), where a > 0, given

by a map ¢ = (P, 1) such that vp = 2.

1. If op = 2 then there exist Hy, Hy € IZ such that

Iwv = (Iclz, Hy — LR(fq — gz), Hy — LR(fq — gx)),
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where {l1,l5} C (Np); is a regular sequence in Sg.

2. If op = 1 then there exist Hy, Hy, H3 € IZ such that

Iy = (Iclz, H — LR(fq — gx), Hy — lbR(fq — gx), Hs — ER(fq — gx)),

where {1, 15} is a basis of (Np); and I3 spans (M/(l1,12));.

Proof. First suppose op = 2. Then there exist linear forms lj,lo € (Np); such that
{l1,15} is a regular sequence in Sc. Hence l; and I, are linearly independent. Since
vp =2, {l1,1l5} is a basis of (Np);. On the other hand, dim(S¢/(l1,12)), = 0,¥n > 2 by
Proposition @ Therefore {ly,l3} generates Np and hence Iy /IcI is generated by
v~ (Iim) and +7*(lyn). Thus Iy takes the form (1) above.

Now suppose op = 1. Let {l1,l5} be a basis of (Np);. Since dim(S¢); = 3, we can
extend {l1,l2} to a basis {li,ls, (3} of (S¢)1. Notice if n > 2 and h € (S¢), then
we have deg(hP) = 3a +mn + 3 > 3a + 5 and hence hP € (f,g)* by Corollary @
Therefore h € (Np), for all h € (S¢),, whenever n > 2. Thus (Np)y is spanned
by {12,12,12, 11y, 1113,15l3}. Notice [2 is not in the span of {l;,lo}, hence I3n cannot
be generated by [y and lyn. Therefore Iy /IcI; is generated by ¢~ (I1n), ™ (lon) and

t71(I2n). Thus Iy takes the form (2) above. O

Example 6.4.14. Let Z be the double conic on C' with total ideal Iy = (I%, fq — gx),
where f = y and g = 2% Let W be a triple conic on C of type (0,0), having Z as
the 2°¢ CM filtrant. Then W is given by a map ¢ = (P, 1), where P is a homogeneous

polynomial in S of degree 3a + 3 and P is the image of P in S¢.
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1. If P =33 then P € (f,g)% Since P =3 =y-y?> =y - f%, we can identify P with

yz*. Therefore Iy = (IcIz,y2* — (yqg — 2°x)) by Proposition [6.4.1.

2. If P = yzw then P ¢ (f,g)% Since yP,2P,wP € (f,g)? we have vp = 3. Notice
yP = zw - y?> = 2w - f2. Hence we can identify yP with Zwz?. Similarly, we can

identify zZP with wzq and wP with 2222, Therefore by Proposition [6.4.11| we have

Ly = (Ielz, 2wa® — y(yq — 2°x), weq — 2(yq — 2°x), 22* — w(yq — 2°x)).

3. If P =23 then P ¢ (f,g)* Notice vp = 2 since yP, 2P € (f,g)? but wP ¢ (f,g)%
Since yP = y2z® = 2z - yz? = z - fg, we can identify P with zzq. Similarly, we can
identify zP with ¢°. Notice op = 2, since {y, z} is a regular sequence in S¢. Hence

Iy = (Iclz, zzq — y(yq — 2%x),¢* — 2(yq — 2%x)) by Proposition [6.4.13| (1).

4. If P = 2%w then P ¢ (f,g)*. Also vp = 2 since yP,wP € (f,g)*> but 2P ¢ (f,g)°.
Notice op = 1, since {y,w} is not a regular sequence in S¢. Since yP = yz*w =
w-yz? =w- fg, we can identify yP with wzg. Similarly, we can identify wP with

zzq and z2P with wq. Therefore by Proposition [6.4.13| (2) we have

Iy = (Ielz, wrq — y(yq — 2°x), z2q — w(yq — 2°x), wq — 2*(yq — 2°x)).
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Let Z be a double conic on C' of type 2a, where a > 0. Then Iy = (I%, fq — gz) by
Proposition @, and I7/Ic1; = Sc(—a—3)®(f, 9)*(2a) by Proposition@. Let b >0
be an integer. Let 7 : T'(—a—6)® T (4a) — T'(4a+2b+1) be the map given by 7 = (p, 1),
where {p,r} is a regular sequence in T" with degp = 6a + 20 + 7 and degr = 2b+ 1. Let
Y Se(—a—3)® Sc(2a) — Sc[4a+ 20+ 1] be the map corresponding to 7 as in Lemma
5.1.10L Let ¢ : Sc(—a—3)®(f,9)*(2a) — Sc(—a—3)® Sc(2a) be the canonical inclusion
as in Proposition @ Define ¢ = 1y orom, where 7 : Iy — Iz/Ic17 is the canonical
surjection and ¢ : Iz/Icl; = Sc(—a — 3) @& (f,9)*(2a) — Sc(—a — 3) ® Sc(2a) is the

canonical inclusion as in Proposition |6.1.7. Then we have the commutative diagram

I ¢ Sc[4a + 2b+ 1] (129)
I7/Icl;~—— Sc(—a — )@SC(2a)—>SC [4a + 2b + 1]

b |

T(—2a —6)®T(4a) ——T(4a +2b+ 1)

Since {p,r} is a regular sequence in T', Coker 7 has finite length by Lemma [2.1.9. There-

fore Coker v and hence Coker ¢ have finite lengths.

Proposition 6.4.15. In the setting of diagram (129), ¢ defines a triple conic W on
C of type (2a,2b + 1) with Iyy = Ker¢ = Iclz + (j oo m) ' Kerr, having Z as the
204 CM filtrant. Moreover, if {Py, R1},{P,, Ry} is an admissible pair of sequences on

C corresponding to the regular sequence {p,r}, then there exist Hy, Hy € IZ such that

Iy = (IcIz, H — Ri(fq — gx), Hy — Ro(fq — gx)) if and only if P, P, € (f, )%
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Proof. By Theorem @, ¢ sheatfifies to the surjection 5 : Tz — Oc¢l4a+2b+1] and hence
defines a CM triple conic W on C with Iyy = Ker ¢ = IoIz+(joror) ! Ker 7. Since a > 0,
W is a quasi-primitive triple conic on C of type (2a, 2b+1) by Corollary @ Hence 7 is
the 224 CM filtrant of W. Since {p, 7} is a regular sequence in T', Ker 7 is generated by the
Koszul relation n = péy — ré;, where é; and é, are the generators of T'(—2a — 6) ® T'(4a).
Notice j71(n) ¢ Sc(—a —3) & Sc(2a), since degn = 2a+2b+ 7, i.e., degn is odd. Hence
Jj ' Ker 7 is generated by j~'(sn) and 77! (tn). Now sn = spéy —sré; and tn = tpéy —tré;.
Therefore j71(sn) = Pies — Riey and j71(tn) = Pyey — Roey, where e; and ey are the
generators of Sc(—a — 3) @ S¢(2a). Since I7/IcIz = Sc(—a —3) & (f,9)*(2a), we can
identify 72, zq, §* and fq — gz with f2, fg, ¢*> and ey respectively. Then e, f2 = 72, esfg =
Tq and eag® = @*. Since fq—gv € Iz/Iclz, (o) (sn) = Y7 (sn)) € I5)Ic]y, if
and only if P; € (f,g)? Similarly, (jo¢)"!(tn)) € Iz/IcI7 if and only if P, € (f, g)*
Now if P, € (f, g)? then there exist a, 3,7 € S such that P, = af? + Bfg + 792, where

@, 3,7 are the images of a, 3,7 in Sg. Thus j7'(sn) = (af? + Bfg + Yg%)ea — Rey,

hence (j o 1)7!(sn) = ax? + frq+v¢> — Ri(fq— gx). Let Hy = ay2® + Bizq + 1>

Then H; € 1% and (j o) '(sn) = H; — Ri(fq — gx). Similarly, if P, € (f,g)? then

there exists Hy € I% such that (j o :)"!(tn) = Hy — Ro(fq — gz). Therefore we have

Iy = (IcIz,Hy — Ri(fq — gx), Hy — Ra(fq — gx)) if and only if Py, P, € (f,g)* O

Corollary 6.4.16. Let W be a triple conic on C' of type (2a,2b+ 1) as in Proposition

6.4.15 If b > 1 then there exist Hy, Hy € I% such that

Iy = (I¢lz, Hy — Ri(fq — gx), Hy — Ry(fq — gx)).
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Proof. Notice deg P, = 3a + b+ 4 > 3a + 5, since b > 1. Hence by Corollary [6.4.5,

P, € (f,g)? for i = 1,2. Therefore by Proposition [6.4.15 Iy takes the form above. [

Therefore for triple conics of type (2a,2b + 1) it remains to consider the cases (2a,1),

where a > 0 and P; ¢ (f,g)? for at least one i.

Proposition 6.4.17. Let W be a triple conic on C' of type (2a,1) as in Proposition
6.4.15. If P, ¢ (f,g)>mod Iy for some 4, then up to a choice of admissible pair of

sequences corresponding to {p, 7}, Iy has a unique form. More precisely,

Iy = (Iclz, Hy — Ri(fq — gv), Hy — 2Ry(fq — gv))

for some Hy, Hy € I%.

Proof. First suppose P, € (f,g)*mod Iz but P, € (f,g)> mod I-. Then according to the
proof of Proposition (jou) Y (sn) € I7/IcIz but (j o)~ (tn) ¢ I/IcI;. Notice
j ' Ker 7 consists of all j7!(In), where | € T has odd degree. Hence (j ot)~'Kerr is
generated by j71(sn) and j~1(t%n), where d > 3 is some odd integer. Notice t*n = t3pé, —
t3réy, hence j~1(t3n) = z2Pyes — ZRoe,. Since deg(zP,) = 3a+ 5, 2P, € (f,g9)> mod I by

Corollary [6.4.5. Therefore (j ot)™! Ker 7 is generated by (j o)~ !(sn) and (j o)~ (t3n).

Hence there exists Hy € IZ such that (j o )7 (t3n) = Hy — 2Ro(fq — gz). Hence Iy
takes the form above. Now suppose P, € (f,g)?mod Ic but Py ¢ (f,g)*mod Ic. Then
(jou) Xtn) € Iz/IcIz but (joi) Y (sn) ¢ Iz/Ic1z. Interchanging the roles of s and t we
can get back to the previous case. Finally suppose P, P, ¢ (f,g)?>mod Ic. Then P;, Py

are nonzero elements of M, 4, where M = Sc/(f,g)?>. But then P, = AP, mod(f, g)*
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for some \ € k*, since dim Ms,,4 = 1 by Corollary [6.4.5. Therefore P, — AP, € (f,9)*
Thus (j o)™ ((s = At)n) € Iz/IcIz but (jou)™'(tn) ¢ Iz/Iclz. Let {P], R}, {P;, Ry}
be an admissible pair of sequences corresponding to {p,r} such that 0(P]) = (s — \t)p.

Then P] = P, — AP, € (f, g)? and we get back to the original case. O

This completes the total ideal description of triple conics whose 2" CM filtrant is a

double conic of odd genus.
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ABSTRACT

MULTIPLICITY STRUCTURES ON CONICS

by Fazle Rabby, Ph.D., 2019
Department of Mathematics
Texas Christian University

Research Advisor: Scott Nollet, Professor of Mathematics

Let C' C IP? be a conic. A multiplicity structure on C'is a closed subscheme Z C P such
that Supp Z = Supp C'. The multiplicity of Z is defined by the ratio deg Z/ deg C', which
we prove to be an integer. In this dissertation we give complete classification of double
conics on C'. This classification includes descriptions of their of total ideals, minimal
free resolutions of their total ideals, their Rao modules, descriptions of general surfaces
containing such structures and the criterion for two double conics on C to be linked by a
complete intersection, which extends a well-known theorem of Migliore on self-linkage of
double lines to double conics. We also give a partial classification of triple conics on C,
which is complicated by new behaviors such as the jumping of cohomology groups and
the non-splitting nature of the restriction of total ideals of the second Cohen-Macaulay

filtrant of odd genera.
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