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CHAPTER I. INTRODUCTION 

 

Diamonds possess many key physical properties; including exceptional hardness, 

wear resistance, and high thermal conductivity.1,2  This makes them attractive for industrial 

applications.  However, large diamonds are very expensive.  Smaller diamonds, crystals 

with diameter sizes of micrometers and smaller, are relatively cheap, but individual 

diamonds this tiny would be impractical for industrial applications.  Using these diamond 

powders to produce compacts and composites is an alternative.  The large volume 

composites and compacts would be widely usable while still maintaining the exceptional 

properties of diamonds.  In order to produce diamond composites, frequently SiC is used as 

a binding phase.  These composites and compacts are produced under high pressure and 

high temperature conditions.  These extreme conditions can vastly effect the individual 

crystal’s microstructure.  Therefore it is important to study their structure under various 

sintering conditions. 

 

Crystals are collections of atoms or molecules that repeat in three dimensions.  The 

arrangement of these atoms affects the charge distribution in the crystals.  The mechanical, 

electrical and magnetic properties of the crystal are dependent on the charge distributions 

and depend on the crystallographic structure of the crystals.3-6  Therefore, it is important to 

study their structure.  Although it is essential to know the unperturbed structure, it is 

equally necessary to understand the atomic arrangement after stress and strain are 

introduced in the form of defects such as planar faults and dislocations.  One of the most 

effective tools in measuring the structure of crystals is X-ray diffraction. 
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Figure 1 – An arbitrary two dimensional crystal structure.  The dots represent possible 
lattice points, the triangles and squares are motifs, the shaded region is a possible lattice, 
and the vector r ̻ is the position vector from the origin of the lattice to the square motif. 

  

Before discussing structure, it is important to define the nomenclature used in 

crystallography.  Each crystal consists of a motif.  The motif can consist of a single atom or 

ion up to a complex molecule.  Each motif must be identical in makeup, layout, and 

alignment.  With each motif is associated a lattice point.  The neighborhood of each lattice 

point must be in all ways identical to the neighborhood of every other lattice point.  The 

lattice points are arranged in a three dimensional, parallel, repetitious pattern to compose 

the lattice.  A unit cell is a parallelepiped, which when translation operations are applied 

can replicate the volume of the lattice.3-6  For a two-dimensional example of a motif, lattice 

points, and unit cell see Figure 1.  A primitive cell is a unit cell with the smallest possible 

volume and is defined by three crystallographic axes, a1, a2, and a3.  The volume of the cell 

is 

1 2 3V = ×a a ai .                                 (1-1) 
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The translation from one cell to the mth cell is defined as 

1 1 2 2 3 3p p p p= + +T a a a        (1-2) 

where m1, m2, and m3 are integers.  If atoms in a cell are numbered 1, 2, 3…n the position 

to them from the origin of that cell are defined by the vectors r1, r2, r3… rn.  The distance 

to the nth atom in the mth unit cell from the lattice origin is thus 

n
p p n= +R T r            (1-3) 

where Tp is defined in Equation (1-2).3-7 

 
 For reasons which will become clearer later it is important to discuss a particular 

type of crystallographic planes, hkl.  These planes are equidistant from each other and 

parallel to each other.  The first plane passes through the origin of the lattice and the next 

plane intercepts the three axes, a1, a2, and a3, at a1/h, a2/k, and a3/l, respectively, see Figure 

2.  The three integers h, k, and l are commonly called the Miller indices.3-7 Hereafter the 

symbols hkl will refer to Miller indices, when in italics they will be referring to the Miller 

planes, and when bracketed by < > they will indicate a direction. 

 
Figure 2 – An arbitrary lattice with a highlighted plane with Miller indices h, k, and l. 
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A vector Hhkl which is perpendicular to the planes and with a magnitude which is 

the reciprocal of the distance between the planes will now be introduced.  Just as we 

defined the crystallographic axes a1, a2, and a3, we can define three reciprocal vectors b1, 

b2, and b3 by: 

1 2 3 / V,= ×b a a   2 3 1 / V,= ×b a a   3 2 2 / V= ×b a a                       (1-4) 

where V was defined by Equation (1-1).  There is an orthonormal relationship between the 

crystallographic axes and the reciprocal axes, that is7: 

1
0i j

i j
i j
=⎧

= ⎨ ≠⎩
a bi  .              (1-5) 

 

 The vector Hhkl can be defined using the Miller indices and the reciprocal axes: 

hkl 1 2 3h k l= + +H b b b .     (1-6) 

To show that Hhkl is perpendicular to the crystallographic planes it is sufficient to verify 

that it is perpendicular to two vectors which are parallel to that plane.  One can use the two 

vectors: 1 2

h k
−

a a  and 32

k l
−

aa .  In order to demonstrate the normality of those vectors one 

must confirm that the dot product is zero by using the orthonormal relationship in Equation 

(1-5).7 

 

To show that the magnitude of Hhkl is the reciprocal to the spacing we must notice 

that the spacing between adjacent planes is: 

1 1d cos
h hhkl φ= = ⋅
a a n

,     
(1-7) 
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where dhkl is the spacing between planes, n is a unit vector normal to the planes, and φ is 

the angle between the a1 axis and the vector n.  Since Hhkl is normal to the planes we can 

use it to define n, that is /hkl hkl=n H H .  Using the definition of Hhkl in Equation (1-6) and 

the orthonormal relation in Equation (1-5) it is easy to see that7: 

1dhkl
hkl

=
H .         

(1-8) 

 

 

Figure 3 – The diamond crystal structure. Note, the black spheres represent carbon atoms 
on the corners, the red spheres represent interior carbon atoms, and the blue spheres 
represent carbon atoms on the surface.  The grey lines connect the four nearest neighbors. 

  

The lattice of a diamond is face-centered cubic.  A face-centered cubic has an 

eighth of a lattice point at each corner of a cube and half of a lattice point centered at each 

face.  The diamond structure has two identical face-centered cubics with lattices anchored 

at (0,0,0) and (¼,¼,¼).  The primitive cell is chosen such that it has eight carbon atoms.  

The locations of the carbon atoms are: (0,0,0), (1/2,1/2,0), (1/2,0,1/2), (0,1/2,1/2), 
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(1/4,1/4,3/4), (1/4,3/4,1/4), (3/4,1/4,1/4), and (3/4,3/3,3/4).  That is one at the corner, one in 

the middle of three of the sides, and four inside the cube, see Figure 3.  Each carbon atom 

has a tetrahedral binding to its four nearest atoms.  It has twelve next nearest atoms.  The 

carbon atoms are covalently bound to each other.  The diamond structure is mostly empty 

with a maximum packing space of hard spheres being 34%.6 

 

 
Figure 4 – The diamond structure can be considered as two face-centered cubic structures, 
one offset from the other by ¼ of the length of each lattice vector.  The color lines exist to 
help lead the eye. 

 

The diamond structure is composed of two face-centered cubic structures displaced 

by a quarter of the length of each axis, see Figure 4.  If instead of having identical atoms in 

both of these face-centered cubic structures there were two different motifs associated with 

each face centered cubic lattice then it would be the zincblende structure, see Figure 5.  

This is the structure that the SiC forms in the production of diamond-SiC composites.  The 

cubic form of SiC is face-centered cubic, with the motif of each lattice point consisting of a 

carbon atom and a silicon atom.  There are four molecules of SiC per unit cell.  The lattice 
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points are found at (0,0,0), (1/2,1/2,0), (1/2,0,1/2) and (0,1/2,1/2).  There is a lattice point in 

the corner and one in the middle of 3 of the faces.  Each atom has four nearest neighbors of 

the opposite variety.4,6  SiC can also form in a hexagonal structure, but that was not found 

in any of the samples I prepared, which was confirmed by X-ray diffraction analysis. 

 
 

 
Figure 5 – The SiC structure.  Each red sphere represents a silicon atom and each black 
sphere represents a carbon atom. 

 
 
 Plastic deformation occurs in crystals in the form of slips.  A slip is when part of a 

crystal moves along a bordering part of the crystal.  The surface of the slip is called the slip 

plane and the direction of motion is known as slip direction.  Because slips cause the 

rearrangement of atoms, slips are anisotropic and depend on the lattice structure. 

 If the displacement of the atoms after a slip is equal to a translation vector the 

overall structure of the crystal will remain unchanged.  However, in face-centered cubic 

crystals if the displacement is not equal to the translation vector a stacking fault is formed.  

The lattice points can be represented by closed packed spheres.  A plane of these closed 
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packed spheres can be assembled centered over an arbitrary point called A, see Figure 6.  

The next layer of closed packed spheres can be assembled centered over the same point A, 

or over one of two saddle points between the spheres, called B and C.  A crystal is created 

with a repeated stacking sequence.  For a face-centered cubic lattice the stacking sequence 

is ABCABC…. However, due to partial displacements sometimes there are errors in these 

sequences.  To help better visualize stacking faults the Shockley notation will be 

introduced.  A step from A B→ , B C→ , or C A→  is represented with a Δ , whereas a 

step from A C→ , C B→ , or B A→  is represented with a ∇ .  The face-centered cubic 

structure can then be represented by ΔΔΔ ….4 

 

 
Figure 6 – Left: The closed packed packing sequence viewed from the top.  The first row of 
closed packed spheres is placed over A, the next row is placed over B, and the third row 
can be placed over A, top, which is the hexagonal closed packed structure or over C, 
bottom which is the face-centered cubic structure. Right: A side view of the ABC stacking 
sequence in the <111> direction. 

 
  
 A stacking fault can be formed one of three ways: a) One set of planes can slip 

between its original saddle point to a different saddle point, for example a plane centered 

over B can slip to C.  Then each plane to one side of the slip would be in a new location, A 

to B, B to C, and C to A.  The stacking sequence would then be ABCACAB or ΔΔΔ∇ΔΔ . 

b) A plane can be removed and the subsequent gap closed.  For example if a B plane was 

removed the stacking sequence would be ABCACAB which is the same as example (a).  
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These two examples are called intrinsic stacking faults. c) An additional plane can be 

placed between two success planes.  For example an A plane can be placed between a B 

and C plane to get ABCABACA or ΔΔΔΔ∇∇Δ .  This example is known as an extrinsic 

stacking fault.4 

  

Twinning is when a partial displacement occurs on successive neighboring planes, 

see Figure 7.  For example a face-centered cubic crystal with 8 planes would have a 

stacking sequence of 1 2 3 4 5 6 7 8A B C A B C A B .  (Note the subscripts are only to distinguish 

between layers of the crystal.)  If a partial displacement which causes the fifth layer to slip 

from B to C were to occur the new stacking sequence would be 1 2 3 4 5 6 7 8A B C A C A B C  or 

ΔΔΔΔ∇ΔΔΔ .  Next, if a similar partial displacement were to occur at the sixth plane the 

stacking sequence would be 1 2 3 4 5 6 7 8A B C A C B C A  or ΔΔΔΔ∇∇ΔΔ .  If this pattern of partial 

slips would continue to happen along each successive plane the final stacking sequence 

would be 1 2 3 4 5 6 7 8A B C A C B A C  or ΔΔΔΔ∇∇∇∇ .  This is twinning.  Note that the ABAB 

sequence is the hexagonal close-packed stacking sequence.  Both stacking faults and 

twinning introduce a fault that mimics the hexagonal stacking sequence.4 

 

 
Figure 7 – The sequence from left to right of stacking faults which will lead to a twinned 
face-centered cubic crystal. 
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 One can envision a coherent glide between two adjacent atomic planes.  If the 

distance between the planes is a and the instantaneous difference between planes is x, the 

stress, σ, will be a periodic function of x with period of b, the distance between atoms in the 

direction of the glide.  A simple equation for the stress in terms of the shear modulus which 

satisfies the periodicity requirements and Hooke’s law is: 

sin 2
2

b x
a b

μσ π
π

=
.
             (1-9) 

The stress necessary for a glide would be on the order of µ/2π.  By this approximation a 

nickel wire with a cross sectional area of 1 mm2, with a shear modulus of about 8×1010 

N•m-2, would be able to suspend a 1400 kg mass without permanent damage.  From 

practice we know this is not even close to true.  The enormous difference in measured 

shear stress and calculated stress found from Equation (1-9), lies in the assumption that 

adjacent planes coherently glide.  Instead, atomic movement through the lattice takes place 

by way of the propagation or glides of dislocations.6,8 

  

Dislocations unlike stacking faults, which are planar or two dimensional defects, 

are linear defects.  There are two types of dislocations to consider, screw and edge.  The 

screw dislocation is when the dislocation is parallel to the slip vector, see Figure 8.  One 

can picture the ramp in a parking garage to visualize a screw dislocation.  One can also 

imagine partially cutting a crystal in half with a knife, the cut being perpendicular to the 

edge of the crystal.  A shear stress applied parallel to the cut would produce a screw 

dislocation.  An edge dislocation is perpendicular to the slip vector, see Figure 9.  It can 

also be considered as adding a half plane of atoms above the slip plane.  The dislocation 
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would then be along the edge of where the plane ends.  A dislocation can also be a 

combination of edge and screw.6,8 

 

 
Figure 8 – The figure on the left shows a slip that produces a screw dislocation.  The figure 
on the right is a possible arrangement of atoms that can produce a screw dislocation.  The 
open circles represent atoms out of the page while the closed circles represent atoms in the 
page. 

 
 

 
Figure 9 – The figure on the left shows a slip that produces an edge dislocation.  The 
middle figure shows an approximate arrangement of the atoms.  The figure on the left 
illustrates how an edge dislocation can be created by adding a partial plane in-between two 
other planes. 

 
 

Outside the core of the dislocation the force to compress the atoms or stress falls off 

at 1/r, where r is the distance to the dislocation.  Therefore it is hard to additionally 
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compress atoms very near to a dislocation and the effects of the dislocation are minimal 

further away.  Integrating the stress gives the energy of the dislocation as a function of 

ln(r).  Because the stress around the dislocation decreases with distance as 1/r there needs 

to be an inner limit or an inner cut-off radius for the stress, otherwise the equation would 

approach infinity as r approaches 0.  Likewise if there were no outer limit or outer cut-off 

radius, to find the total energy of a dislocation one would integrate ln(r) over infinity which 

would give infinite energy.6,8 

 

In order to see how slips can propagate through the movement of dislocations, see 

Figure 10.  In Figure 10 (a) an edge dislocation was created by adding a half plane of atoms 

for the arrangement found in the top.  The line dislocation is located directly beneath the 

half plane of atoms and is coming out of the page.  If a stress is applied it can cause an 

atomic rearrangement like that found in (b).  Now the dislocation is in-between the two 

adjacent half planes.  The arrangement in (b) is not stable so the atoms may rearrange 

themselves into the stable pattern found in (c).  Investigation of the image shows that from 

the top image to the bottom image the half plane of atoms and thus the dislocation have all 

moved one interatomic distance to the right.  Instead of requiring coherent glide among 

planes deformation can be brought about by the movement of line defects. 
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Figure 10 – From top to bottom: glide in a crystal brought about from the movement of an 
edge dislocation. 

 

A convenient way of classifying dislocations is with the Burgers vector.  A Burgers 

vector is created by drawing what should be a closed loop around the dislocation.  Because 

the loop surrounds a dislocation it will not finish where it started.  The vector that connects 

the beginning of the loop and the end is the Burgers’ vector.  In an edge dislocation the 

Burgers vector is perpendicular to the dislocation line.  In a screw dislocation the Burgers 

vector is parallel to the dislocation.6,8 
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CHAPTER II. THEORETICAL FRAMEWORK 

 

X-ray diffraction is a significant tool in analyzing the microstructure of the crystals.  

X-ray diffraction uses the wave nature of light.  Differences in path length will lead to 

differences in phases.  Differences in phases lead to the change in the amplitude of the 

reflected beam.  The amplitude of the reflected beam is dependent on whether the 

differences in path length are integer multiples of the wavelength, which will lead to total 

constructive interference, or whether they are not which will lead to destructive 

interference.  The amplitude of the reflected beam will be at a maximum if there is total 

constructive interference and at a minimum when there is total destructive interference. 

  

The periodic arrangement of atoms in a crystal implies that each set of the 

previously discussed hkl planes in the crystals will be equally spaced.  W. L. Bragg 

assumed that these planes acted like silver mirrors and the X-rays reflected specularly, that 

is the incident angle is equal to the diffracted angle.  This led to the equation which is 

named after him: 

n 2d sinhklλ θ=            (2-1) 

where, n is an integral multiple, λ is the wavelength, dhkl is the spacing between the hkl 

planes, and θ is the incident angle.  In Figure 11 one can see that 2d sinhkl θ  is the 

difference in path length between two adjacent planes.  We know that there is total 

constructive interference only if the path difference is equal to an integral multiple of the 

wavelength.  Bragg’s equation assumes that there is elastic collision between the atoms and 

the X-ray radiation and that each plane only partially reflects the incident radiation.4,5,7  
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Since there is equivalence between the first order 2h2k2l plane and the second order hkl 

planes, etc, the n is often dropped in Bragg’s equation.  Also note that sin 1θ ≤ .  This 

implies that 2dhklλ ≤ .  Since dhkl is on the order of angstroms for a typical crystal, the 

wavelength must also be on the order of angstroms.  Bragg’s equation would not work for 

visible light on most crystals. 

 

 

Figure 11 – The path difference between the top wave and bottom wave is 2dsinθ. 

 
 
 The distance between the origin and a plane is d=n ri , where n is a unit vector 

normal to the plane, which was already defined as /hkl hkl=n H H and r is a vector from the 

origin to the plane.  The r vector for a cube with side length of a is 

( )1 2 2a 1/ h 1/ k 1/ l= + +r a a a . Using the orthonormal relationship defined in Equation (1-

5), one can see that:7 

( )1/22 2 2

ad
h k l

hkl =
+ +

           

(2-2). 
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 Bragg’s equation can also be written in vector form, that is 0
hklλ

−
=

s s H , where s 

and s0 are the unit vectors in the direction of the incident beam and reflected beam.  

Ewald’s sphere or the sphere of reflection is a way to represent Bragg’s equation 

graphically.  The vector s0/λ is drawn parallel to the incident beam and terminates at the 

origin of reciprocal lattice.  A sphere of radius 1/ λ is drawn around the point where the 

vector s0/λ originated.  Any point where the sphere intersects a point hkl represents a set of 

hkl planes which satisfy Bragg’s equation.  The vector from the origin to hkl is Hhkl.  The 

diffracted beam will be in the direction of the vector s/λ which originates where s0/λ 

originates and terminates where Hhkl terminates, thus satisfying Bragg’s equation, see 

Figure 12.7 

 
Figure 12 – An example of a two dimensional Ewald sphere.  The incident beam is directed 
along the vector s0/λ, Hhkl is the reciprocal vector which terminates on hkl, s/λ is the vector 
directed along the reflected beam, O is the origin of the reciprocal lattice, and P is the 
center of the sphere.  
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 Because this study involves small crystals it would be impractical to measure 

individual crystals.  Instead, powder diffraction techniques were used.  The sphere of 

reflection would demonstrate points where a single crystal would reflect a beam.  However, 

multiple crystals, with random orientations, were measured.  The crystals would then be 

randomly rotated about the origin.  This would cause the points of reflection to be rotated 

about an axis.  This would in turn create a diffraction pattern with a circular shape.  This 

explains why crystal alignment did not need to be performed before measurement. 

 

The scattering of X-rays is done by the electrons surrounding the atoms.  It is 

therefore important to compare the arrangement of the atoms in the lattice to see what path 

differences arise, see Figure 13.  These path differences will determine the intensity of the 

beam.  This phase difference is expressed by the structure factor Fhkl, which is the ratio of 

the amplitudes scattered by the atoms in the cell to that of a single electron.  This number 

can be expressed in complex form as: 

n

n N
2 i

n
n 0

F f ehkl
π

=

=

= ∑ r Hi

                              
(2-3) 

where, fn is the atomic scattering factor, 2 niπ r Hi is the phase angle, and rn is the position 

of the nth atom.  If the arrangement of the atoms in the lattice causes the structure factor to 

be zero for a certain set of hkl indices there will be no diffracted beam even if Bragg’s 

equation is satisfied.6 
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Figure 13 – A crystal with atomic scattering of fo in some hkl plane.  There is another atom 
with atomic scattering of f1 a distance r1 away.  The path difference between the two 
reflected beams is AB-CD. 

 
 
 Using Equation (2-3) and the position of the atoms in the diamond structure one can 

see that the structure factor is, 

( ) ( ) ( ) ( )i h k i h l i k l i /2 h k 3lF 1 e e e ehkl
π π π π+ + + + += + + + +  
( ) ( ) ( )i /2 h 3k l i /2 3h k l 3i /2 h k le e eπ π π+ + + + + ++ + + .            (2-4) 

 
Unless h, k, and l are all odd or all even and h + k + l = 4n, Equation (2-4) will be zero and 

no reflected beam will be observed.  Similarly, the selection rules for SiC require that h, k, 

and l be either all odd or all even.6  Even though the diamond structure and the SiC 

structure are both face-centered cubic with lattice constants of the same magnitude, 

because the arrangement of the atoms in the crystal diamond has stricter selection rules less 

diffraction peaks can be found in the diamond’s diffraction patterns than in SiC’s pattern.  

The more restrictive selection rules for diamond limit the number of reflections for a given 

wavelength.  In order to increase the number of peaks it is necessary to use an X-ray source 

with a smaller wavelength. 
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 It might be expected that X-ray diffraction patterns consist of strong delta like 

functions that exist only at angles that satisfy Bragg’s equation.  In practice it is quickly 

seen that this is not the case.  The peaks have broadening which can be due to the finite size 

of the crystallites, crystal defects, including stacking faults and dislocations, internal stress 

in the crystals, a non-monochromatic beam, and instrumental broadening.4,5,7 

  

Most X-ray tubes use a metal anode, frequently it is copper.  Copper emits two 

strong characteristic X-ray wavelengths, 
1

Kα  and 
2

Kα .  The two wavelengths have similar 

values and therefore have similar Bragg angles.4,5,7  If broadening from other sources is 

limited, for example if the crystals are relatively large, there will be enough separation 

between the peaks and the interference they cause each other can be eliminated 

numerically.  Also, the effects of 
2

Kα  can be limited by thoroughly filtering the source.  

This however could greatly reduce the intensity of 
1

Kα .  One way to increase the intensity 

would be to increase the power supplied to the anode.  Increased power, could overheat the 

anode.  To avoid overheating, a rotating anode which can be cooled more effectively is 

often used.  Another solution is to use a synchrotron light source, which is a very intense 

light source which can be strongly filtered leading to an almost monochromatic beam. 

  

As was mentioned before, the powder diffraction patterns are circular.  The radius 

is small for small angles of incidence.  A rectangular detector measuring circular 

diffraction patterns does lead to instrumental broadening which is typically asymmetrical 

with respect to the diffraction angle.  The measured intensity is a convolution of the 

instrumental function with the real band shape function.  When the instrumental 
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broadening is known, the real band shape can be found by the deconvolution Fourier 

transform method. 

  

Near the Bragg angle, the plane that destructively interferes with the first plane is 

deep within the crystal.  The plane that destructively interferes with the second plane is 

even deeper within the crystal.  If the crystallite is small, not all of the planes inside the 

crystal will have another plane that destructively interferes with them.  This leads to only 

partial destructive interference and the broadening of the diffracted peak.  The smaller the 

crystallite is the more planes that lack an out of phase counterpart there will be.  Therefore 

the broadening will be more pronounced.5 

 

One way of estimating the crystallite size is by using the Scherrer method.  In a 

crystal with length t and m planes there will be an angle θB which satisfies the Bragg 

equation, see Figure 14.  There are two limiting angles θ1 and θ2 such that any incident 

angle greater than θ2 and less than θ1 will not have total destructive interference.  The 

surface plane destructively interferes with the middle plane.  So, a ray incident on the 

surface at an angle of θ1 will be (m 1)+  wavelengths out of phase with ray incident on the 

last plane, m.  Likewise a ray incident on the surface at an angle of θ2 will be (m 1)−  

wavelengths out of phase with a ray incident on the last plane.  Bragg’s equation is 

satisfied for these two angles if:   

12t sin (m 1)θ λ= +              (2-5) 

22t sin (m 1)θ λ= −              (2-6) 
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The Scherrer formula can be derived using Equations (2-5) and (2-6) and some algebraic 

manipulation: 

B

0.9t
Bcos

λ
θ

=
         

(2-7) 

where ( )1 2
1B
2
θ θ= − .  B is the full width at half maximum (FWHM) of the peak which 

has a maximum at θB.  For reference suppose that θB = 40o, λ = 0.154 nm, and d = 0.1 nm.  

A crystal 0.5 mm in diameter would have 5×106 parallel lattice planes and an estimated, 

using Equation (2-7), FWHM value of 2×10-5 o, which is immeasurable.  By contrast, a 

crystal that is 30 nm in diameter would only have 300 parallel lattice planes and an 

estimated FWHM value of 0.3o, which is easily detectable.5 

 

 
Figure 14 – The primed letters represent diffracted beams.  In this incidence θB is the angle 
at which Bragg’s equation is satisfied.  The diffracted beam B’, D’ and F’ will all be in 
phase with each other and constructively interfere. 
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 The Scherrer method only takes into consideration broadening due to crystallite 

size.  Also, since defects like stacking faults and dislocations affect the space between 

atoms they can cause profile broadening as well.  A more sophisticated technique must be 

used to account for each of these effects.  For this research the extended Convolution 

Multiple Whole Profile (eCMWP) method was used. 

 

The eCWMP method assumes that the experimental profile is the sum of the 

background and the convolution of the size profile, SI , the dislocation profile, DI , the 

stacking fault profile, SFI , and the instrumental profile, instI : 

exp S D SF instI I I I I background= ∗ ∗ ∗ +          (2-8) 

the star denotes convolution.  The profile stripped of instrumental broadening and 

background, FI , would then be the convolution of SI ,  DI , and SFI : F S D SFI I I I= ∗ ∗ .  The 

Fourier transform of this equation is: 

S D SF
L L L LA A A A=

               
(2-9) 

the superscripts S, D and SF indicate size, dislocation, and stacking faults, respectively and 

L represents the Fourier variable.9-11  The difficulties in solving Equation (2-9) is in how 

the Fourier size coefficient, S
LA , the distortion effect due to dislocations, D

LA , and the 

Fourier planar fault coefficient, SF
LA , are treated. 

    

 Recall, that the Sherrer method, Equation (2-7), showed that the peak profile is 

dependent on the size of crystallite.  Guinier and Bertaut showed that the intensity 

distribution for a given set of hkl planes due to the size distribution of a crystal powder is a 

Fourier transform of a volume function, V(t), where V(t) is the volume shared by the 
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crystal and its “double” divided by the volume of the crystal, V.12,13  The “double” is found 

by taking a translation of length t normal to the hkl planes.  Since V(t) is a Fourier 

transform of the intensity profile, if one were to find the function V(t) they could find S
LA , 

which is the Fourier size coefficient in Equation (2-9). 

 

The volume function, V(t) can be found by dividing the crystal into cylinders, see 

Figure 15, and integrating over those cylinders.  The crystal has a thickness of M, t is the 

length of the translation which is normal to the lattice planes hkl, and the cylinder has a 

cross sectional area of dσM.  One can clearly see in Figure 15 that the length of the cylinder 

is M – t as long as the translation is less than thickness and there is no shared volume if the 

translation is greater than the thickness.  The volume function V(t) would therefore be: 

( )
M

M
M 0

1V(t) M t d
V

σ
=∞

=

= −∫ .       (2-10) 

If the translation is greater than the thickness of the crystal there will be no shared volume 

between the crystal and its “double”, therefore the lower limit of integration in Equation (2-

10) can be changed to M = t.  Some algebraic manipulations can also be done to achieve 

the following equation: 

( )M
t t

t tMV(t) 1 d 1 g M dM
M V M

σ
∞ ∞⎛ ⎞ ⎛ ⎞

= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫          (2-11) 

where g(M) is the distribution of the column heights.13  The beauty in using g(M) in 

Equation (2-11) is that it can be easily used even if the crystallites are not identical.  The 

eCMWP method assumes that the volume size distribution is log-normal and that the 

shapes of the crystallites are spheres.  This reduces Equation (2-11) to: 
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( )S 2

t M

t
A t 1 M f (x)dx dM

M

∞ ∞⎡ ⎤⎛ ⎞
= −⎜ ⎟ ⎢ ⎥

⎝ ⎠ ⎣ ⎦
∫ ∫              (2-12) 

where f (x)  is the log-normal size distribution density function which is: 

( )
( )( )2

1/2 2

log x / w1f (x) exp
22 x σπ σ

⎡ ⎤−
⎢ ⎥=
⎢ ⎥⎣ ⎦

          (2-13) 

where σ is the variance and w is the median.10,14  The area-weighted mean crystallite size is 

therefore:14 

22.5
area

x we σ= .          (2-14) 

One can find similar expressions for the volume-weighted mean and arithmetically 

weighted mean but these were not used and all the size values listed are the area-weighted 

mean. 

 

 

Figure 15 – A cross sectional view of a crystal and its double.  The solid figure is the 
crystal with thickness of M.  The dashed figure is the crystal’s “double” translated by a 
distance of t.  The hatched region is the volume V(t).  The double hatched region is the 
volume shared by V(t) and the cylinder, which has a cross sectional area of dσ. 
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 The Fourier coefficient due to dislocations was found by using the Warren-

Averbach method.  The coefficient can be expressed as: 

( )D 2 2 2 2
L LA exp 2 g Lπ ε= −       (2-15) 

where L is the Fourier transform variable, g is the magnitude of the diffraction vector, and 

2
Lε  is the mean square strain, which depends on how much the atoms are displaced due to 

strain compared to an ideal lattice arrangement.15  Krivoglaz developed a method to 

calculate the mean square strain caused by dislocations.16  Wilkens improved Krivoglaz’s 

method by assuming that dislocations have an outer cutoff radius, eR∗ .17  Recall that the 

total energy of a dislocation would go to infinity if an outer cut-off radius is not considered.  

Krivoglaz just let the outer cut-off radius be the radius of the crystal.  Wilkens introduced 

the outer cut-off radius parameter as eR∗ .  Using this parameter Wilkens derived the 

following equation for the mean strain: 

( )
2

2 *
L e

b Cf L / R
2

ε πρ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

       (2-16) 

where b is the magnitude of the Burgers vector, C is the contrast factor of the dislocations 

and ( )f  is Wilkens function of strain as defined by: 

( )*
2

0

7 512 1 1 2 1 arcsin Vf log log 2 1 dV
4 90 4 V

η

η η
π η π η

⎛ ⎞⎛ ⎞= − + − + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫
 

                                 ( )1/23 21 769 1 41 2 1
180 90 90

η η η
π η
⎛ ⎞

− + + −⎜ ⎟
⎝ ⎠

 

                                 2 2
2

1 11 1 7 1 1arcsin
12 2 3 6

η η η
π η
⎛ ⎞

− + + +⎜ ⎟
⎝ ⎠

, 1η <  
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( )*
2

512 1 1 11 1 1f log 2
90 24 4

η η
π η η

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 , 1η ≥                           (2-17) 

where ( ) ( )* *
ef L / R f η=  where ( ) ( )( )*

e1 / 2 exp 1/ 4 L / Rη = − .10,17 The anisotropy of the 

dislocations is accounted for by the average contrast factor C.18  In a cubic crystal C is 

dependent on Ch00, the average contrast factor in the <h00> direction, which is dependent 

on the elasticity of the material and on the fourth-order polynomial of the hkl indices. The 

average contrast factor therefore is10: 

( )
2 2 2 2 2 2

h00 22 2 2

h k h l k lC C 1 q
h k l

⎛ ⎞+ +⎜ ⎟= −
⎜ ⎟+ +⎝ ⎠

.           (2-18) 

 

 In order to determine the Fourier coefficient due to planar faults the magnitude of 

peak broadening and peak location were first evaluated.  Diffraction peaks were 

numerically calculated using the program: DIFFAX (diffraction of faulted crystals).  

DIFFAX uses the recursion relationship of the wave function in crystals to simulate planar 

faults.19  DIFFAX was used to simulate the first 15 Bragg angles of face-centered cubic 

crystals with extrinsic and intrinsic stacking faults and twins with probabilities up to 25%.  

Over 15,000 subreflections due to planar faults were analyzed.  It was found that they fit 

either a delta function or a Lorentzian function.  The FWHM and the shift of the 

subreflections were dependent on the hkl indices and the planar fault probability.  The 

probability followed a fifth order polynomial.  Using a data table of the fifth order 

polynomials for each hkl indices eCWMP is capable of determining the fault probability.20 
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The eCMWP fitting routine simultaneously analyzes the whole profile instead of 

individual peaks.  For a cubic lattice it provides the following parameters: i) the mean size, 

ii) standard deviation, with which one can find 
area

x , the area weighted mean crystallite 

size, iii)β  the fault or twin probability, iv) ρ  the dislocation density, and v) q, a parameter 

that is dependent on the dislocation type, screw or edge. 

 

When analyzing the X-ray diffraction data the following protocol was followed: 

 

First the FWHM of the 111 peak was found and a rough estimate of the crystallite 

size was calculated using the Scherrer method.  A general trend in the crystallite sizes 

could be inferred from this data. 

 

Next, the intensity as a function of the length of the diffraction vector K was 

plotted, where the diffraction vector is defined as: 

2sinK θ
λ

=        (2-19) 

where θ is the angle of incidence and λ is the wavelength of the X-ray radiation.  The 

FWHM of the diffraction vectors was plotted versus the Miller indices; this is called a 

Williamson-Hall plot, see Figure 16.  By analyzing the trend in the FWHM values in the 

Williamson-Hall plot the prominent defects causing line broadening can be determined.  

Because of the anisotropic strain field of the dislocations and the elastic constants of 

crystals if dislocations are a prominent cause of line broadening, there will be a non-

monotonic increase in the Williamson-Hall plot.18  As discussed above there is relationship 

between the average contrast factor and specific hkl values, see Equation (2-18).  There is 
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also a relationship between the average strain and the average contrast factor, see Equation 

(2-16).  It is easy to see that there will be an order-dependence in FWHM values due to 

dislocations.  Because planar faults lie in the 111 plane the FWHM values of harmonic 

pairs of planes, e.g. the 111/222 planes, will be order-independent if planar faults play a 

prominent role in line broadening.  For example, in Figure 16 the harmonic pairs 111/222 

and 200/400 have very similar values.  It was therefore supposed that this sample had a 

large percent of planar defects.  This was later verified using the eCWMP method.  Hence, 

by careful analysis of the Williamson-Hall plots the defects present in the crystals can be 

inferred. 

 

 
Figure 16 – The Williamson-Hall plot of the SiC compact sintered at 2.0 GPa and 1800 oC. 

 
 

Finally the X-ray diffraction data were analyzed using the eCMWP method.  First 

the background is eliminated using cubic splines.  Next instrumental broadening is 

accounted for by taking a Fourier transform of LaB6 powder diffraction pattern.  LaB6 is a 
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large crystal powder with very few defects, therefore any broadening will be due to 

instrumental effects.  Next the X-ray data minus the background data and instrumental 

effects is fit assuming twins, intrinsic stacking faults, and extrinsic stacking faults.  The 

eCMWP procedure is performed many times to verify that the parameters always converge 

to the same values.  By comparing the total sum of residuals when twins, intrinsic stacking 

faults, and extrinsic stacking faults are assumed the predominate planar fault can be found.  

The numerical results of the eCMWP fitting are also compared to the anticipated results 

found from the Scherrer method and by looking at the Williamson-Hall plots to verify the 

results. 

 

For the nano-sized diamond composites the alp (apparent lattice parameter) method 

was also used to measure stress in the core and shell of the diamond and SiC phase.  

Analysis of the peak location in nano-sized crystals can yield useful information.  Recall 

that Bragg’s equation, Equation (2-1), equates the location of the peak with the planar 

spacing of the crystal.  Since the powder method was used and this method simultaneously 

records several crystals and each crystal consists of numerous planes, if the average planar 

spacing is changed due to strain, then the Bragg angle corresponding to that hkl plane 

would also change.  By analyzing the peak positions it is possible to measure changes in 

the planar spacing and thus measure if the crystals are being contracted or expanded. 

 

Recall from Chapter I that planar faults introduce stacking sequences which 

resemble the hexagonal structure.20-22  The cubic structure can be defined by one 

parameter, the lattice constant acubic, the hexagonal structure, however, requires two lattice 
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parameters.  There is an in-plane lattice parameter, atrig, and the parameter which is normal 

to the layer plane ctrig.  The introduction of the stacking fault will also elongate the “cubic” 

unit cell in the <111> direction.  The cell actually can no longer be considered a cubic and 

its elongation, or lattice parameter, is going to be a ratio of trig trigc / a .  For a cubic crystal 

trig cubicc a 3=  and trig cubica a / 2= , where cubica  is the lattice parameter of a cubic.  Since 

there are three plane spacings between opposite corners in the <111> direction we can 

define a new variable, 0,trig trig cubicc c / 3 a / 3= = .  In a cubic the ratio of 0,trigc  to triga  is 

2 / 3 0.8165≈ .23  An increase in this value would indicate that there is elongation due to 

strain.  An increase in the planar faults will result in more stacking sequences which 

resemble the hexagonal structure.24,25  And as such the lattice parameter will change 

depending on the population of planar faults.  By finding the Bragg angles we are no longer 

finding the lattice parameter of a cubic unit cell but the average lattice value, which we 

renamed the apparent lattice value.  With this information it is possible to measure the 

strain in crystals due to planar faults. 

 

In addition to finding the elongation due to changes in the 0,trigc  to triga  ratio, 

changes in the volume of the lattice can also be calculated.  Using the 0,trigc  and triga  values 

it is possible to measure the volume of the unit cell.  Corresponding to this volume there is 

a cube that has the same volume and a cubic length of EClp (equivalent cubic lattice 

parameter).  By comparing the EClp values of the composites and of the raw powders we 

can find if the lattices are compressed or stretched due to strain.  This is the alp method the 

results of which will be discussed more in Chapters IV and V. 
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CHAPTER III. EXPERIMENTAL FRAMEWORK 

3.1. High Pressure High Temperature Sintering 

 

Diamond and SiC compacts and diamond-SiC composites are created under high 

pressure high temperature (HPHT) conditions using a toroidal system or a high pressure 

piston system, depending on the pressures required.  For pressures above 3 GPa the toroidal 

system must be used to maximize the life span of the pressure vessel used in the piston 

system.  For pressures below 3 GPa either system can be used, depending on the required 

temperature and the preference of the user.  The HPHT protocol is the same for both 

systems.  First the pressure is increased until the desired set point is reached.  While the 

system is under pressure the temperature is rapidly increased by applying a current to a 

graphite cylinder till the desired sintering temperature and time is reached.  Next the 

system is allowed to cool, while still under pressure.  Finally the pressure is slowly 

released. 

 

In both systems pressure calibration curves were created beforehand by measuring 

known pressure induced phase transitions of Bi, Tl, PbSe, and PbTe.  Pressure calibrations 

were originally performed over five years ago.  Therefore, the pressure calibrations had to 

be rerun to verify these values.  A sample was prepared as in Figure 17, with the sample 

powder being Pb.  The pressure was slowly increased at room temperature and the 

resistivity of the system was monitored using a Labview program written by C. Pantea.  As 

Pb goes through phase transformations its restivity also changes.  By comparing the applied 
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pressure that resulted in phase transition we were able to verify the load pressure.  This 

procedure was repeated for other compounds.  It is estimated that the pressures are accurate 

to within 10%. 

 

 

Figure 17 – The limestone gasket and graphite furnace used in the toroidal system. 

 
 

The high pressure piston system allows HPHT experiments to be run with a 

W5%Re-W20%Re thermocouple to measure the temperature in situ, see Figure 18.  While 

the experiment is being run the temperature can precisely be controlled by varying the 

output power based on the thermocouple reading.  Although the graphite tube used in the 

piston system is 32 mm, the sample size is usually limited to 2 – 3 mm.  There is a very 

large temperature gradient in the graphite tube.  For more uniform results it is best to limit 

the size of the sample and center it in the tube. 
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Figure 18 – The sample preparation for the high pressure piston system. 

 
 

It is very difficult and costly to attach a thermocouple to the toroidal system.  

Therefore, beforehand a W5%Re-W20%Re thermocouple is used to create temperature 

curves for the toroidal system using various output powers at different temperatures.  These 

curves are used to determine the required output power for each HPHT experiment that 

uses the toroidal system.  Temperature curves were verified by measuring the melting 
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temperature of Cu and Si at set pressures.  Small grains of Cu or Si were added to nano-

diamond powders and the output power was applied.  By examining the samples post 

sintering it was obvious if the Cu or Si melted.  The measured output power of the melting 

point of Cu or Si was then compared to the temperature curve for the same pressure and to 

known values to verify the temperature calibration.  It is estimated that the temperature 

measurements were accurate to within 50 oC. 

 

In the toroidal system there are two identical anvils with toroidal grooves.  A 

graphite tube which acts like a furnace is placed in a limestone gasket with contours that 

match the grooves of the toroidal anvils.  The powder to be sintered is placed in the middle 

of the graphite furnace with graphite discs and pyrophyllite or MgO caps on both ends, see 

Figure 17.  A pallet is often created from the powders to be sintered using a hand press and 

a pressure of 1000 psi.  This reduces the volume of the powders and allows more material 

to be sintered.  The graphite discs and zirconium caps act as conductors to conduct 

electricity from the toroidal anvils to the graphite tube.  As the pressure is released non-

uniform expansion of the holder and the materials inside the holder leads to applied stresses 

which can lead to the cracking of the sample.  Therefore a pressure medium is used on both 

ends of the sample to make sure the pressure is released uniformly in all directions.  When 

preparing the samples at Texas Christian University, pyrophyllite is used as a pressure 

medium.  Samples made at Unipress used MgO as a pressure medium.  Even with the 

pressure mediums some samples, particularly the compacts, were prone to breaking. 
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The graphite furnace in the piston system is prepared in a similar manner.  The 

furnace is placed in a water free talc tube, which is placed in a pressure cell and pressure is 

applied with pistons.  It was found that using talc tubes which were not annealed resulted in 

rapid graphitization.  This was speculated to be caused by the presence of water in the 

tubes.  Therefore, beforehand the talc tubes were baked at 900 oC for 2 hours.  Samples 

were created in: TCU, Fort Worth, Bakul Institute for Superhard Materials of Nas, Kiev, 

Ukraine, and Unipress, Warsaw, Poland. 

 

3.2. Microscopic Imaging 

 

Surface images of the samples were taken using a scanning electron microscope 

(SEM).  All the SEM images were taken using a JEOL SM-6100.  The probe current 

ranged from 10-12 to 10-6 A and had a magnification range of 750 to 4500×.  Images of thin 

cross sections were taken using transmission electron microscopes (TEM). 

 

Three TEMs were used to create the images: (a) a Philips CM-20 with an operating 

voltage of 200 kV, (b) a Philips EM 300 with an operating voltage of 100 kV, and (c) a 

JEOL JEM 3010 with an operating voltage of 200 keV.  Ditabis imaging plates were used 

to record images from the Philips CM-20 TEM, the EM 300 also used imagining plates, 

and the JEOL used a Gatan camera.  The samples being imaged must be very thin to use 

the TEM.  In order to accomplish this first the samples were mechanically ground and then 

they were ion milled until perforation took place. 
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3.3. X-ray Diffraction 

 

X-ray diffraction data were collected using a Philips X’pert powder diffractometer 

with a Cu anode, a Nonius FR 591 with a Cu anode, and beams X14A and X16C at the 

National Synchrotron Light Source (NSLS), Brookhaven National Labs (BNL).  In each 

case the incident beam had a larger surface area than the sample and the penetration depth 

was believed to be the entire depth of the sample. 

 

The Philips X’pert diffractometer has a single crystal Si to allow only 
1

Kα radiation.  

Because the beam is weak the radiation cannot thoroughly be filtered and a measurable 

amount of 
2

Kα is present in the diffraction patterns.  The diffraction data were taken over 6 

to 12 hours.  The minimum 2θ step size is 0.01o.  The x-ray source has a fixed single slit. 

1
Kα  radiation for copper has a wavelength of 1.54 Å.  Because of the poor filtering and 

large 2θ step size the Philips was used primarily for cursory analysis. 

 

The Nonius FR 591 has a rotating anode, which can be better cooled than the 

Philips.  For this reason the beam can be more intense and can be more thoroughly filtered.  

The presence of 
2

Kα is negligible.  A Cu anode was used in the Nonius system, so the 

wavelength was also 1.54 Å.  The dwell times were around 24 hours.  Light sensitive 

imaging plates were placed at a fixed distance in a circle around the sample.  The imaging 

plates were arranged such that the diffraction peaks were centered in the middle of each 

plate to reduce diffraction data that might be lost due the edge of the plate.  The imaging 
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plates were scanned into a tiff image and the intensities were calculated by integrating the 

dots in an area so that a traditional looking diffraction pattern could be obtained. 

 

Two beams at the NSLS were used, beam X14A and X16C.  Since synchrotron 

light is a continuous beam LaB6 was used before hand to calculate the wavelength. Beam 

X14A had a wavelength of 0.80532 Å.  X14A has a ΔE/E resolution of 2×10-4.  The 

monochromator consisted of two Si(111) crystals.  The first crystal was flat and was water 

cooled.  The second crystal conically bent.  Before reaching the sample the intensity of the 

primary beam was measured using an ion chamber.  The diffracted beam was then 

normalized based on the decay of the source.  The diffracted beam was reflected by a 

Ge(111) crystal analyzer before being detected by a NaI scintillation counter.  Diffraction 

measurements were taken at room temperature.  The 2θ step size was 0.01o from the 2θ 

range of 13o to 60o and 0.02o from 60o to 126o.  Beam X14A was used to measure the nano-

diamond composites. 

 

Beam X16C was used on two separate occasions.  On both occasions detailed 

measurements of LaB6 were used to calculate the wavelengths.  The wavelength of the 

beam that was used to measure the micron-diamond composites was 0.700385 Å.  The 

wavelength of the beam used to measure the nano-diamond compacts was 0.698914 Å.  

X16C has a ΔE/E resolution of 2×10-4.  It uses a Siddons channel-cut Si(111) 

monochromator.  A vertical two-circle diffractometer with a Ge(111) analyzer was used to 

take the diffraction data.  Diffraction data were taken at room temperature with 2θ range of 

13o to 75o and step size of 0.001o.  The average dwell time per step was 1 second.  Because 
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the crystals were much larger than those in the nano-diamond composites it was expected 

that the peak broadening due to size effects, recall Chapter II, was smaller and difficult to 

analyze.  Therefore the step size had to be much smaller to get the best signal to noise ratio.  

Accurate measurements of narrow band shapes are critical in the analysis of their 

broadening. 
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 CHAPTER IV. SILICON CARBIDE 

 

Silicon carbide, SiC, is used as a binding phase in diamond composites.  It is a hard 

substance but has a lower hardness than diamond and can greatly affect the overall 

mechanical properties of the composites.  For this reason it is important to study the 

crystallite and defect growth mechanisms of pure SiC compacts.  SiC is produced in 

composites when liquid Si reacts with carbon from the diamond crystals.  The crystal 

growth of this SiC is limited to the gaps in-between the diamond crystals and is dependent 

on the sintering conditions.  It is therefore sufficient to study SiC compacts produced from 

nanocrystalline SiC and not necessary to analyze compacts created from microcrystalline 

SiC. 

 

4.1. SiC Compacts 

 

SiC compacts were produced from nanocrystalline SiC powder with a nominal 

grain size of 30 nm.  They were sintered at temperatures of 1400, 1600, and 1800 oC and 

pressures of 2, 4, and 5.5 GPa.  An additional sample was sintered at 1800 oC and 8 GP.  

There were a total of 10 samples produced.  The 2 GPa samples were produced using a 

piston-cylinder cell system and the other samples were produced using a toroid high 

pressure system, both systems are described in Chapter III. 
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X-ray diffraction analysis was performed on the samples.  In the case of pure SiC it 

was sufficient to use the Philips X’pert powder diffractometer with a Cu anode and the 

high resolution Nonius with a rotating Cu anode, both described in Chapter III.  A typical 

X-ray diffraction pattern can be seen in Figure 19.  One can notice that there are graphite 

peaks present in each of the diffraction patterns.  By comparing the areas under the first 

diffraction peak of SiC and graphite one can estimate that graphite constitutes between 2 

and 5 percent of the compacts volume.  The graphite is most likely a residual effect of the 

graphite furnaces used in the production of the compacts.  The graphite can become 

embedded in the surface during the high pressure production.  Even though polishing was 

performed on the samples it can be difficult to remove all of the graphite without damaging 

the samples.  This observation is not a numerical artifact.  The graphite peaks and SiC 

peaks are sufficiently far apart from each other, therefore there was a negligible 

overlapping  and the analysis gave trustworthy results. 

 

 
Figure 19 – The X-ray diffraction in logarithmic scale for the nanocrystalline SiC compact 
sintered at 2 GPa and 1800 oC. 
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 Observation of the X-ray diffraction patterns also revealed a shoulder to the left of 

all the SiC 111 peaks, see Figure 20.  This satellite peak can be found centered at 2θ = 

33.6o.  It was suspected that this additional peak was a result of the presence of planar 

faults in the SiC phase.  Theoretical X-ray diffraction patterns were produced using the 

DIFFaX software.19  In these simulations 10% intrinsic and extrinsic stacking faults and 

twins were assumed.  In all the simulated patterns a shoulder centered at 2θ = 33.6o was 

found.  A simulated X-ray diffraction pattern assuming twins can be seen in Figure 21. 

 

 
Figure 20 – The X-ray diffraction pattern of the SiC compact sintered at 2 GPa and 1800 
oC. 
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Figure 21 – The calculated X-ray diffraction pattern using DIFFaX assuming 10% twins. 

 
 
 To better determine the prevalent defects present in the microstructure the 

Williamson-Hall plot from each sample’s X-ray diffraction pattern were created, as 

discussed in Chapter II.  The Williamson-Hall plots, followed one of two patterns.  In one 

case the FWHM values between reflection pairs, for example 111/222 and 200/400, are 

order independent, as seen in Figure 16.  This would indicate that peak broadening is 

mainly dependent on small crystallite size and planar faults.  This pattern in the 

Williamson-Hall plots was found in the samples sintered at pressures less than 4 GPa and 

temperatures less than 1600 oC.  However, in the samples sintered at higher temperatures 

and pressure there is a strong order-dependence of the FWHM and the Williamson-Hall 

plot has a pattern more similar to Figure 22. 
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Figure 22 – The Williamson-Hall plot of the SiC compact sintered at 5.5 GPa and 1800 oC. 
 
 

Dislocations cause peak breadths to have a dependence on the Miller indices.18  

When dislocations are present the breadth of a peak is smallest for the smallest K value and 

the Williamson-Hall plot displays a non-monotonic trend with increasing K.18  As was 

mentioned in Chapter II, anisotropic strain broadening is caused by anisotropic effects in 

the crystal, including strain field of the lattice defects and the elastic constants.  The 

broadening due to dislocations will therefore be dependent on the relative orientations of 

the line and Burgers vectors of the dislocations and the diffraction vector.  It has been 

shown that the average contrast factors, C, considers the effects of the anisotropic contrast 

of dislocations in a non-textured polycrystalline material.  The contrast factors can be 

calculated numerically based on the dislocations and elastic constants of the crystal.  The 

average value of C for a non-textured pollycrystallite is a fourth order polynomial of the 

Miller indices, Equation (2-18).  It is also known that when anisotropic broadening is 
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caused by dislocations the FWHM values are dependent on 2K C .  The modified 

Williamson-Hall plot of the FWHM versus 2K C  can be seen in Figure 23.  There it is 

evident from the smooth curve that dislocations play a predominate role in the broadening 

of peaks of the samples sintered at higher pressures and temperatures. 

 

 
Figure 23 – The modified Williamson-Hall plot of the SiC compact sintered at 5.5 GPa and 
1800 oC. 

 
 
 Since line broadening was caused by dislocations, planar faults and crystallite size, 

it was best to analyze the X-ray difffraction data using the eCMWP method, an example of 

the fitting can be found in Figure 24.  Analysis was carried out on all of the samples 

assuming: twins, extrinsic faults, and intrinsic faults.  The sum of the residuals was 

smallest for each of the calculations when twins were assumed.  This is consistent with the 

symmetric nature of the peaks, as opposed asymmetries usually found with intrinsic or 

extrinsic faults.  Hence forth, for the SiC compacts when talking about planar fault 

probability I will be referring to twins.  Table 1 shows the microstructure parameters of 
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nine of the samples.  Please note that dislocations densities less than 1013 m-2 are not 

detectable by eCMWP. 

 

 

Figure 24 – The eCWMP fitting of the SiC compact sintered at 2 GPa and 1800 oC.  Open 
circles are the measured pattern, the solid line is the fitted pattern and the line on the 
bottom is the difference between the two. 
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Table 1 – The calculated parameters of the microstructure of the SiC compacts for various 
temperatures and pressures: 

area
x  is the area-weighted mean crystallite size, β is the planar 

fault probability, and ρ is the dislocation density.                 

Pressure (GPa) 2 4 5.5 
 

Temperature (oC) 
   

 
 

1400 

area

13 2

x 8.9 0.8nm

9.4 0.9%
10 m

β

ρ −

= ±

= ±

<
 

area

13 2

x 15 1nm

11 1%
10 m

β

ρ −

= ±

= ±

<

 
area

13 2

x 19 1nm

11 1%
10 m

β

ρ −

= ±

= ±

<

 

 
 

1600 

area

13 2

x 13 1nm

11 1%
10 m

β

ρ −

= ±

= ±

<
 

area

13 2

x 16 1nm

11 1%
10 m

β

ρ −

= ±

= ±

<

 
area

15 2

x 94 7 nm

0.20 0.03%
0.40 0.08 10 m

β

ρ −

= ±

= ±

= ± ×
 

 
 

1800 

area

13 2

x 13 1nm

11 1%
10 m

β

ρ −

= ±

= ±

<
 

area

15 2

x 124 10 nm

0.10 0.02%
0.30 0.08 10 m

β

ρ −

= ±

= ±

= ± ×
 

area

15 2

x 126 10 nm

0.17 0.03%
0.40 0.08 10 m

β

ρ −

= ±

= ±

= ± ×
 

 
  

The average grain size increases as a result of sintering.  As pressure is held 

constant there is growth in the average crystallite size as temperature is increased.  

Likewise as temperature is held constant there is growth in the average crystallite size as 

pressure is increased.  For example, the sample sintered 4 GPa and 1400 oC had an average 

crystallite size of 15 nm, the sample sintered at 4 GPa and 1600 oC had an average 

crystallite size of 16 nm, and the sample sintered at 4 GPa and 1800 oC had an average 

crystallite size of 124 nm. 
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TEM images of the samples sintered at 1800 oC and 2 and 5.5 GPa can be found in 

Figures 25 and 26.  The values of the grain sizes observed in the TEM images range from 

30 to 100 nm for the 2 GPa sample and 100 to 300 nm for the 5.5 GPa sample.  This trend 

is consistent with the one observed by the X-ray diffraction analysis.  Larger values were 

observed by the TEM but this can be attributed to the fact that x-ray line profile analysis 

measures the coherently scattering domain size, which is generally smaller than the grain 

size observable by microscopic methods.  This can be caused by low angle disorientations 

which disrupt the coherence but show only as weak contrast differences in microscopic 

images.  These discrepancies in sizes have previously been reported by Zhu et al.26 

 

 
Figure 25 – The TEM image of the SiC compact sintered at 2 GPa and 1800 oC. 
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Figure 26 – The TEM image of the SiC compact sintered at 5.5 GPa and 1800 oC. 

 
 
 At lower pressure and temperature values twins are formed during sintering and the 

dislocation density is below the detectable range.  At temperatures of 1600 and 1800 oC 

and above pressures of 5.5 GPa and 4 GPa, respectively, the planar fault probability 

decreases to less than 0.1% and the dislocation density increases.  There is still a presence 

of planar faults as confirmed by a shoulder of 111 peak.  The planar fault population 

decrease can also be observed in the TEM images, Figures 25 and 26.  The distance 

between faults is 3 to 6 nm and 100 to 200 nm for the 2 GPa and 5.5 GPa samples 

respectively.  Since the distance between planes in the <111> direction is 0.252 nm the 

planar fault probability can be estimated using the TEM images and they range between 6 

and 12 % and 0.1 and 0.2%, for the two samples.  This is in good correlation with the X-

ray diffraction analysis.  Unfortunately the dislocations cannot be detected by TEM.  As the 
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crystallite size increases there is an increase in the dislocation density and a decrease in the 

planar fault probability.  It would appear that at high pressures and temperatures the 

relatively large crystallite size enables the formation of dislocations during the sintering 

process.  There is also an elimination of planar faults at higher temperature and larger 

crystallite sizes.  This has previously been reported by Koumoto et al.27 

  

The specimen prepared at 8 GPa and 1800 oC had: 
area

x = 73 ± 8 nm, β = 1.8 ± 

0.3%, and ρ = 1.5 ± 0.2 x 1015 m-2.  The crystallite size decreased compared to the sample 

sintered at 5.5 GPa and the same temperature, while the dislocation density and planar fault 

probability increased.  Again the TEM images for this sample, see Figure 27, are in 

correlation with these results. 

 

 
Figure 27– The TEM image of the SiC compact sintered at 8 GPa and 1800 oC. 
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4.2. SiC in Diamond-SiC Composites 

 

Next the SiC phase from diamond-SiC composites was analyzed.  Two sets of 

composites were sintered, one using diamond powders with initial grain size of 0 to 50 nm 

and the other using diamond powder with an initial size of 50-70 μm.  Both sets of samples 

used silicon powder with a nominal grain size of 30 nm. 

 

4.2.1. SiC in Nano-Diamond-SiC Composites   

 

The samples sintered using the nano-sized diamond powder were sintered at a 

pressure of 8 GPa and temperatures of 1820, 1975, 2190 and 2320 oC.  The diamond 

powder had an initial size of 0 – 50 nm and the Si powder had a nominal grain size of 30 

nm.  The diamond to Si powder had a weight ratio of 7:3.  Usually in the production of 

diamond-SiC composites the percent of Si by weight is around 10 – 15%.  However, since 

it is important to study the microstructure of the SiC phase, the weaker of the two phases, 

we wanted to have strong SiC peaks and used a higher concentration of Si. 

  

The liquid infiltration method usually dictates that inside the sample holder, see 

Figure 17, a layer of Si powder is placed on top of the diamond layer.  As the pressure and 

temperature are increased the strong capillary forces drive the liquid Si into the pores 

between the diamonds.  There the Si reacts with carbon and forms a SiC matrix.  When this 

procedure was followed using the nano-diamond powder it was found that the Si did not 
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completely infiltrate the diamond powder.  Therefore a new procedure was introduced.  

First the powders were combined and added to ethyl alcohol and mixed using an ultrasonic 

mixer.  The mixture was then placed inside of a cylinder and mechanically rotated for 2 

days.  The mixed powder was then added to the sample holder.  And the usual HPHT 

protocol was followed.  Even with the mixing there were scattered regions within the 

composites which consisted of conglomerates of predominately diamond, see Figure 28. 

 

 

Figure 28 – SEM image of the nano-diamond-SiC composite sintered at 1820 oC.  The 
sample is not completely uniform.  Self-aggregation of nano-diamond, the white areas, is 
very difficult to avoid even with long mixing times. 

 
 

X-ray diffraction data was taken using beam X14A at the NSLS, BNL.  The typical 

X-ray diffraction pattern can be seen in Figure 29.  It is important to note that the only 

peaks present are diamond and cubic SiC.  The lack of Si indicates that the sintering 

process was complete and the lack of graphite peaks indicates that the sintering process 
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took place at temperatures and pressures where diamond is the stable form of graphite.  

One can also notice a shoulder to the left of all of the SiC 111 peaks, see Figure 30.  As 

mentioned above this shoulder indicates a presence of planar faults in the SiC phase.  In 

Figures 29 and 30 it is apparent that the shoulder of the sample sintered at 1820 oC is more 

pronounced than that of the 2320 oC sample.  This would seem to indicate a higher 

percentage of planar faults in the 1820 oC sample.  One can also notice in those figures that 

the broadening is greater in the sample sintered at 1820 oC.  This would indicate that the 

crystallite size is smaller for this sample. 

 

 
Figure 29  – The X-ray diffractograms for the nano-diamond-SiC composite sintered at 8 
GPa and 1820 oC, top, and 2320 oC, bottom.  The circles are the SiC peaks, squares are the 
diamond peaks, and the pluses are where Si peaks would be. 
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Figure 30  – The 111 peak of the SiC for the nano-diamond-SiC composites sintered at 8 
GPa and 1820 and 2320 oC. 

 
 

One can compare the Williamson-Hall plot of these samples in Figure 31 to those in 

Figures 16 and 22.  The Williamson-Hall plot of the 2190 oC lies in-between the 1975 and 

2320 oC samples.  The Williamson-Hall plot in Figure 31 has a non-monotonic increase 

similar to one found in Figure 22.  This indicates that line profile broadening is due to 

dislocations in addition to planar faults and crystallite size.  One can also notice that the 

FWHM values of 1820 oC sample, Figure 31, and the SiC compact sintered at 2 GPa and 

1800 oC, Figure 16, are much larger than the other FWHM values found in Figure 22.  This 

is primarily due to the broadening due to crystallite size.  The samples with the larger 

FWHM values will have smaller grain sizes due to fewer crystal planes destructively 

interfering with each other near the Bragg angle. 
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Figure 31 – The Williamson-Hall plot of SiC phase in the nano-diamond-SiC composites. 

 
 

Since broadening is due to crystallite size, dislocations, and planar faults the 

eCMWP method was used to estimate the microstructure properties.  The values calculated 

using the eCMWP fitting procedure for the SiC in the nano-sized diamond composites can 

be found in Table 2.  The eCMWP fitting procedure was run assuming intrinsic and 

extrinsic faults and twins.  The sum of the residuals was least when twins were assumed.  

All planar fault values are given assuming twins.  With growing sintering temperature the 

weighted average crystallite size increases and the planar fault probability decreases.  This 

trend was observed in the SiC compacts.  The average crystallite size for the 1820 oC 

sample was the smallest, which coincides with the expected results by comparing the 

FWHM values.  The presence of twins was observed in the TEM images, see Figure 32.  

The tendency of twins to be less prevalent in the sample sintered at higher temperatures 

was also observed.  Unfortunately, since the diamond is harder than SiC, the SiC was 
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selectively ion milled during preparation for the TEM images.  This left only small SiC 

crystals sandwiched between diamonds.  Therefore the size dependence could not be 

verified.  The dislocation density was found to decrease and then increase as sintering 

temperature increases. 

 

Table 2 – The calculated parameters of the microstructure of SiC in nano-diamond-SiC 
composites sintered at 8 GP and various temperatures.  

area
x  is the area-weighted mean 

crystallite size, β is the planar fault probability, and ρ is the dislocation density. 
 
Temperature (oC)  

 
1820 area

15 2

x 24 2nm

16 4%
3.8 1 10 m

β

ρ −

= ±

= ±

= ± ×

 

 
1975 area

15 2

x 37 3nm

14 4%
2.6 1 10 m

β

ρ −

= ±

= ±

= ± ×

 

 
2190 area

15 2

x 86 5nm

3.8 1%
0.3 0.1 10 m

β

ρ −

= ±

= ±

= ± ×

 

 
2320 area

15 2

x 138 2nm

1.7 0.5%
0.5 0.1 10 m

β

ρ −

= ±

= ±

= ± ×
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Figure 32 – High resolution transmission electron microscopic image of the nano-diamond-
SiC composite sintered at 8 GPa and 1820 oC.  The darker area is SiC and twins are clearly 
present. 

 
 

Previous articles have shown an increase in dislocation densities as sintering 

temperature increases.28-31  In those research articles a maximum was found at 1800 oC.  In 

these nano-sized diamond-SiC composites all the sintering temperatures were always above 

1800 oC.  This would indicate that at higher temperatures recovery and or recrystallization 

occurs.  This in addition to previous results indicates that at higher temperatures SiC is less 

brittle than at lower temperatures and plastic deformation can occur. 

 

The bonding of the materials investigated here are mainly of covalent type.  The 

materials are brittle ceramics and plastic deformations are practically absent.  Defects in the 

crystal structure, whether from planar faults or dislocations, affect the interatomic distances 

and the chemical strengths of the bonds. 
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The core-shell model of the SiC phase in these nano-sized diamond composites was 

measured using the alp method, which was discussed in Chapter II.  Differences in the 

grain’s structure to that of the core’s structure result in changes in the lattice parameters 

compared to a perfect cubic crystals.  Recall that in a cubic crystal 

0,trig trigc / a 2 / 3 0.8165= ≈ .  The alp method was applied to a untreated SiC powder and 

the measured EClp value was 4.356 Å.  By modeling the difference in these lattice 

parameters we were able to determine changes in atomic distance in atoms near the surface 

or the shell and those in the core of the crystals. 

 

The results of the alp method can be found in Table 3.  In the SiC in the samples 

sintered at the lowest temperature the core’s EClp has a larger volume than the SiC 

powder.  As the sintering temperature increases the core’s EClp becomes compressed.  

Eventually the volume is smaller than that of the powder.  The interatomic distances of the 

atoms in the shell are smaller than those in the core for SiC for the sample sintered at 1820 

and 1975 oC.  However this trend reverses for the samples sintered at 2320 oC.  The SiC 

appears to have no shell in the sample sintered at 2190 oC.  This lack of a shell would likely 

indicate there is no detectable difference in core and shell distances.   

 

Table 3 – Parameters found from the alp method of the SiC in the nano-diamond-SiC 
composites.  Vunit cell is the volume of the unit trigonal lattice, so is the thickness of the 
surface shell, and Δr/r is the relative change in the interatomic distances in the surface 
shell. 
Temperature 

(oC) 
triga (Å) 0,trigc (Å) 0,trig trigc / a  Vunit cell 

(Å3) 
EClp 
(Å) 

0s (Å) r / rΔ (%) 

1820 3.077 2.528 0.8214 82.90 4.360 3 -6 
1975 3.078 2.523 0.8198 82.81 4.359 3 -2 
2190 3.082 2.517 0.8173 82.73 4.357 … … 
2320 3.077 2.512 0.8173 82.51 4.353 5 +6 
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 The core-shell model was also able to show a trend in the planar fault probability.  

By comparing the measured 0,trig trigc / a  to that of a cubic crystal it is apparent that the 

planar fault probability decreased as sintering temperature increased which corresponds to 

the eCMWP data.  It is important to note that the alp method does not explore the band 

shape and therefore cannot give a quantitative analysis of the planar fault probability. 

 

4.2.2. SiC in Micron-Diamond-SiC Composites   

 

Analysis was also performed on the SiC phase of samples sintered using micron-

sized diamonds.  Samples were sintered using diamond powder with an initial grain size of 

50-70 μm and Si powder with a nominal grain size of 30 nm.  These powders were not 

mixed before sintering.  The samples were sintered at 10 GPa and 1600, 1800, and 2000 

oC. 

 

X-ray diffraction analysis was performed for these samples using the x-ray source 

of beam X16C from the NSLS, BNL.  There was no evidence of graphite or other phases 

besides SiC or diamond in the X-ray diffraction patterns.  Like the previous SiC samples 

there was a shoulder found to the left of the SiC 111 peak.  A Williamson-Hall plot of SiC 

had order dependence, see Figure 33.  The pattern is similar to ones found in Figures 12 

and 31.  This order-dependence indicates that in addition to stacking faults and crystallite 

size, dislocations play a role in the line broadening of the SiC X-ray diffraction patterns.  

Since there was a presence of stacking faults and dislocations, the X-ray diffraction data 
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were analyzed using the eCMWP method.  eCMWP analysis was simultaneously 

performed on ten SiC peaks.  The results of the analysis can be found in Table 4.  The 

fitting was done assuming intrinsic and extrinsic stacking faults and twins.  The sum of the 

residuals was a minimum when twins were assumed.  As with all the samples the planar 

fault probability decreased with an increase in sintering temperature. 

 

 
Figure 33  – The Williamson-Hall plot of the SiC phase of the micron-diamond-SiC 
composite sintered at 10 GPa. 

 
 

The dislocation density increases as the sintering temperature increases.  This trend 

was found to be the same with the SiC compacts and in other research.28-31  However, we 

found at 8 GPa and temperatures of 1820 to 2190 oC the dislocation density decreased.  It 

was supposed that at lower temperatures the SiC phase behaves in a more brittle manner 

and dislocations can form.  However at higher temperatures it is more plastic and 
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recrystallization or recovery can occur.  These results would indicate that at higher 

pressures even higher temperatures are required for plasticity to occur. 

 

Table 4 – The calculated parameters of the microstructure of the SiC in the micron-
diamond-SiC composites sintered at 10 GPa and various temperatures: 

area
x  is the area-

weighted mean crystallite size, β is the planar fault probability, and ρ is the dislocation 
density. 

Temperature (oC)  
 

1600 area

15 2

x 110 10nm

2.9 0.1%
0.65 0.05 10 m

β

ρ −

= ±

= ±

= ± ×
 

1800 area

15 2

x 100 10nm

1.7 0.1%
0.57 0.05 10 m

β

ρ −

= ±

= ±

= ± ×
 

2000 area

15 2

x 75 8nm

2.0 0.1%
0.63 0.05 10 m

β

ρ −

= ±

= ±

= ± ×
 

 

The results from the SiC compacts led us to hypothesize that the crystallite size may 

increase due to diffusion of mass from the outer layers of neighboring grains.  The presence 

of partially disordered structures near the grain boundary has been postulated by Keblinski 

et al.32 and detected by Yakamoto et al.33 and Liao et al.34  These partially disordered 

structures may allow the diffusion of mass leading to grain growth.  It is also possible that 

increased pressure led to ordering of amorphous or partially disordered phases.  In the 

diffusion process there are two competing factors, temperature, which increases atom 

mobility and pressure which decreases it.  In the nano-diamond sized composite samples 

there was a much higher temperature which may have led to the increase in the crystallite 

sizes.  In the micron-sized diamond composites the pressure was much higher and the 
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temperatures were lower.  An increase in pressure usually decreases the mobility, however 

increased elastic shear strains at the contact surfaces may induce the grain growth in the 

samples sintered at pressures less than 8 GPa.  However, at 8 GPa the decrease in mobility 

due to an increase pressure and increase in elastic shear is balanced with the increase in 

mobility due to higher temperatures such that grain growth is limited.  This may be why 

there is a decrease in crystallite size as temperature increases.  The increase in temperature 

just increased the expansion of the diamond crystals resulting in more localized pressures.  

And a high enough temperature needed to overcome the reduced mobility of atoms due to 

pressure was not reached. 
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CHAPTER V. DIAMOND 

 

Because of their exceptional hardness and wear resistance diamonds are ideal for 

industrial applications.  However, they have low fracture toughness particularly along 

certain facets.  The use of large diamonds would require careful alignment of the face being 

used.  The use of randomly oriented diamond powders to form composites and compacts is 

one way to avoid this difficulty.  In addition, large diamonds are quite costly.  However 

diamond powders can be manmade and are relatively cheap.  The overall physical qualities 

of the compacts and composites are going to be dependent on the microstructure of the 

crystals that comprise them.  It is therefore important to study the microstructure of 

diamonds in composites and compacts after various sintering conditions. 

 

5.1. Diamond Compacts 

 

Because of their more isomorphic shapes and large surface energy, nano-diamond 

powders can be more attractive than micron-diamond powders for use in industrial 

applications.  Diamonds will go through phase transformations into graphite at high 

temperatures and under non-hydrostatic conditions or when deformations are 

introduced.36,37  Deformations can be introduced from non-hydrostatic conditions.  During 

the high pressure phase of the production of diamond compacts from micron-diamond 

powders the diamond crystals are pushed into each other.  This causes small pieces of the 

crystals to shear off.  These small crystals then can fill the voids between the larger 
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crystals.  This creates an environment more conducive to hydrostatic conditions.38  Qian et 

al. also found that nano-diamond powders graphitize more rapidly than microcrystalline 

diamonds.37  Also nanodiamond powders are surrounded by an amorphous carbon 

layer.37,39  This layer transforms into graphite at temperatures above 1200 oC.  This was 

discovered by Palosz, et al.39 who used neutron diffraction techniques and Qian, et al.37 

who used high resolution TEM. 

 

In order to reduce graphitization diamond compacts sintered at high temperatures 

must also be sintered at high pressures and the pressures must be hydrostatic.  

Experimentally it was found that the nano-diamonds resist the breaking under high 

pressures and would therefore be less likely to be in hydrostatic conditions.  This was 

found by creating a sample compact of nano-diamonds at 8 GPa and room temperature.  

After compacting the porosity was measured and found to be 55%.  It is believed that the 

resistance to breaking is caused by the large surface energy.  Since the nano-diamonds 

resisted the breaking they were less likely to be in hydrostatic conditions and more likely to 

graphitize.  For that reason and because of the amorphous carbon layer and the more rapid 

graphitization times, sintering times for nano diamonds were kept very short in hopes of 

avoiding graphitization. 

 

 The diamond compacts were sintered under HPHT conditions using 

monocrystalline diamond powder with an average grain size of 25 nm.  The sintering 

pressure was 8 GPa and was achieved using a toroidal system.  The output power to control 

the temperature was very high but the sintering times were very short, as to reduce 
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graphitization.  Traditionally sintering times are the times that the sample is kept at the 

desired temperature.  However, for these experiments the sintering time is the total time 

that power was applied.  Given sufficient time, about 15 seconds, the temperature reached 

would be 2370 oC.  Since the sintering times were below 15 seconds that temperature was 

never reached.  The sintering times were 5, 7, 9, and 11 seconds and the final temperatures 

reached were 1975, 2190, 2320, and 2390 oC, respectively.  Once the final temperature was 

reached the output power was turned off and the samples were allowed to cool under 

pressure.  Very little difference was found in the 5 and 7 second samples and the 9 and 11 

second samples, so I will only discuss the 5 and 11 second samples. 

 

The temperatures followed the curve found in Figure 34.  The temperature curve 

was found using a W5%Re-W20%Re thermocouple and verified by measuring the melting 

temperature of Si and Cu.  Si or Cu powders were added to the diamond powder.  The 

output power was applied for the time required to reach their melting temperatures, in the 

case of Cu 2.4s.  Analysis of the sample quickly showed if the Si or Cu melted.  The time 

was controlled with a precision better than 0.1 second.     

 

The samples were prepared using a toroidal system similar to that described in 

Chapter III, however the cell assembly was slightly different than that described in that 

chapter.  Instead of using the assembly depicted in Figure 17, the samples were prepared in 

a matter similar to Figure 35.  The molybdenum ring and plates provided an electrical 

connection between the anvils and the graphite heater.  The CsCl+ZrO2 is a pressure 

medium.  The ZrO2+graphite and the ZrO2 discs act as a thermo isolation medium.  The 
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most important difference is the use of the Zr foil to separate the diamond powder from 

graphite disc and heater.  This ensured that any graphite found in the sample would have 

originated from graphitization of the diamond powder. 

 

 
Figure 34 – The temperature curve that the samples followed while being sintered.  The 
square and triangle denote the melting points of Si and Cu, respectively, at 8 GPa.  

 

 
Figure 35 – A cross section of the cell assembly for the high pressure high temperature 
production of the diamond compacts. (1) Mo ring; (2) CsCl+ZrO2 (20 wt.%); (3) 
ZrO2+graphite (10 vol.%); (4) graphite heater; (5) Mo plate; (6) diamond nanopowder; (7) 
Zr foil; (8) graphite disc; (9) ZrO2 disc. 
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Because the selection rules of the diamond structure factor limit the amount of 

diamond diffraction peaks, see Equation (3-4), a synchrotron source with a smaller 

wavelength was used for the x-ray diffraction data.  Measurements were taken at the NSLS 

beam X16C which had a wavelength of 0.06979 nm. Diffraction data were taken from a 2θ 

range of 13.8o to 78.3o and a step size of 0.001o and an average time per step of 1 second.  

This allowed 9 peaks to be simultaneously analyzed using the eCMWP method, a Cu anode 

would only have allowed 4 peaks to be analyzed. 

 

Even though the sintering times were very short there was still graphitization of the 

diamonds.  Analysis of the x-ray diffraction data showed a graphite peak indicating that 

graphite was present in each sample.  By comparing the area under the curve for the 002 

diffraction peak of graphite and for the 111 diamond peak we were able to estimate that 

graphite accounted for less than 2% of the samples volume.  Because the diamond powder 

was isolated from the graphite heater and discs it was assumed that all the graphite present 

originated from graphitization.  Qian, et al. found that most graphitization in micron-sized 

diamonds takes place in the first 30 minutes of sintering.  They also found that the process 

is much more rapid in nano-sized diamond powders, less than 60 seconds.  Because of the 

volume of pores between the crystal grains, graphitization could not be avoided.  Pressure 

reduces graphitization but the exposed surfaces at the pores are not pressurized and quickly 

become graphitized at high temperatures.  As was mentioned before, the nano-diamonds 

seem to resist the breaking found in micron-diamonds.  They therefore have many more 

pores between the crystals; and the crystals are not under hydrostatic conditions.  After 

sintering the porosity of the diamond compacts was measured and found to be 16% and 
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11% for the 5 and 11 second samples respectively.  The large porosity coincides with the 

graphitization of the diamonds even though the sintering times were very short.  It is likely 

that the lower porosity of the 11 second sample was due to an increase in graphite or 

amorphous carbon.  The increase in temperature and time most likely led to an increase in 

non-diamond carbon.  The non-diamond carbon is softer and would be more likely to fill 

the holes between crystals.  Thus there would be a lower porosity. 

 

The eCMWP method was used to analyze the microstructure of diamonds in 

diamond compacts.  The results from the sample sintered at 5 and 11 seconds can be found 

in Table 5.  The eCMWP method was run assuming intrinsic and extrinsic stacking faults 

and twins.  The square sum of the residuals was least when twins were assumed.  Therefore 

when I discuss planar faults in the diamond compacts I will be refer to twins.  The planar 

fault probability was below 1% for both samples.  A low planar fault probability is not 

unusual for diamonds.  As the sintering time increased the average crystallite size stayed 

within repeatability of each other.  Both the dislocation density and planar fault probability 

decrease as the sintering time increases.  Annealing of defects has been previously 

observed with nano-sized diamonds.40  However, as the results indicate the defect 

annealing takes time which would result in larger graphite concentration in the nanometer 

sized diamonds.  Despite the presence of graphite and a larger than desired porosity the 

compacts had a high hardness.  The measured Knoops hardness for the samples was 49 ± 3 

and 52 ± 2 for the 5 and 11 second samples respectively. 
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Table 5 – The calculated microstructure parameters of the of the diamond compacts for two 
different sintering times. 
 
Sintering time [s] 5 11 
Porosity [%] 16 ± 1 11 ± 1 
Average crystallite size [nm] 16 ± 2 17 ± 2 
Stacking fault probability [%] 1.0 ± 0.1 0.50 ± 0.05 
Dislocation density [m-2] 5.3×1015 ± 0.5×1015 4.2×1015 ± 0.4×1015 
 

  

This study showed that it is possible to produce very hard nano-diamond compacts 

by very rapid sintering. 

 

5.2. Diamond in Diamond Composites 

 

The diamond compacts can be quite brittle.  Therefore for industrial applications it 

is important to have the diamonds embedded in a matrix.  Often the matrix used is SiC.  

That is why diamond-SiC composites were also studied.  Composites were made using 

nano-diamond powder and micron-diamond powder. 

 

5.2.1. Diamond in Nano-Diamond-SiC Composites   

 

Nano-diamonds possess high hardness but the compacts produced from them are 

prone to graphitization.  In addition to creating a SiC matrix in order to reduce the 

brittleness, silicon was used to close pores and stop graphitization. 

 



 

     69

As mentioned in section 4.2.1. nano-diamond-SiC composites were produced using 

nano-diamond powder with a size of less than 50 nm and Si powder with a nominal grain 

size of 30 nm.  They were sintered at 8 GPa and temperatures of 1820, 1975, 2190 and 

2320 oC.  The diamond to Si ratio was 7:3 by weight.  The percent of Si by volume for 

composites is usually much lower.  Since there was more Si and thus a higher 

concentration of SiC in the composites the hardness of these composites was about half that 

of what is considered a good superhard composite.  The powders were mixed before 

sintering but due to the agglomeration of the nano-diamond powder there were non-

uniform regions in the composites.  This led to varying hardness throughout the 

composites.  This in conjunction with fact that the composites cannot be considered 

superhard materials limits their industrial applications, but they are an important scientific 

study none the less. 

 

 The eCMWP method was used to analyze the microstructure of the diamond phase 

in these composites.  The results of that analysis can be found in Table 6.  X-ray diffraction 

data were taken using beam X14A at the NSLS.  The wavelength was 0.080532 nm.  The 

eCMWP method can only analyze one phase at a time.  Because of overlapping diamond 

and SiC peaks analysis was simultaneously done on only 4 diamond peaks.  This is still 

twice more than would have been available if a Cu anode was used. 

 

 One can see that as the sintering temperature increases the crystallite size also 

increases.  As with the other samples the eCMWP method was run assuming intrinsic and 

extrinsic stacking faults and twins.  The square sum of the residuals was smallest when 



 

     70

twins were assumed.  There is decrease in planar fault probability as the sintering 

temperature increases.  As with the diamond compacts the planar fault probability was very 

low.  The planar fault probability was below 3% for each sample and less than 0.5% for 

two of them.  As the sintering temperature increases there is a decrease in the planar fault 

probability.  The dislocations density decreases with increasing temperature for the three 

lowest temperatures and then increases for the fourth. 

 
Table 6 – The calculated parameters of the microstructure of diamond in the nano-
diamond-SiC composites sintered at 8 GP and various temperatures.  

area
x  is the area-

weighted mean crystallite size, β is the planar fault probability, and ρ is the dislocation 
density. 
 
Temperature (oC)  

 
1820 area

15 2

x 20 2nm

2.6 1%
4.3 1 10 m

β

ρ −

= ±

= ±

= ± ×

 

 
1975 area

15 2

x 24 2nm

1.4 0.5%
0.34 0.1 10 m

β

ρ −

= ±

= ±

= ± ×

 

 
2190 area

15 2

x 30 3nm

0.2 0.1%
0.13 0.1 10 m

β

ρ −

= ±

= ±

= ± ×

 

 
2320 area

15 2

x 34 3nm

0 0.02%
0.45 0.2 10 m

β

ρ −

= ±

= ±

= ± ×
  

 

Previous experiments have shown that the dislocation density in ceramics like 

diamond and SiC increases up to 1800 oC.28-31  This would indicate that higher 

temperatures are needed to initialize dislocation movement or plasticity.  The results from 

this study indicate that at temperatures even higher than 1800 oC dislocations and planar 



 

     71

faults begin annealing.  Since in addition to the annealing the grain size increases, it is 

assumed that either recovery of the crystal or re-crystallization is occurring.  This 

corresponds to the brittle nature of diamonds at lower temperatures, then as temperatures 

increase plastic deformation is allowed to set in, and then finally there is re-crystallization. 

 

The alp method was also used to analyze the diamond phase of the nano-diamond-

SiC composites, see Table 7.  Recall that for a cubic crystal 0,trig trigc / a 0.8165≈ .  The EClp 

parameter for the initial diamond powder was found to be 3.5659 Å.  By comparing this 

value to the measured EClp values of the composites we can see that the lattice is most 

expanded in the core of the composite sintered at the lowest temperature.  As the sintering 

temperature increases the EClp value decreases, which corresponds to a shrinking lattice.  

The EClp value of the 3 composites sintered at the highest temperatures is less than the 

EClp value of the powder.  This would indicate that the cores are compressed relative to 

the powder.  It was not possible to distinguish the interatomic spacing between the core 

atoms and the shell atoms in the the sample sintered at 1975 oC.  The sample sintered at a 

temperature lower than 1975 oC had a smaller interatomic spacing in the shell than in its 

core.  The two samples sintered above 1975 oC had a larger interatomic spacing in their 

shells than in their cores.  For all three samples were the cores and shells could be 

distinguished the shell thickness was 5 Å.  By comparing the 0,trig trigc / a  ratio one can see 

that the amount of planar defects is minimal and does not change drastically for any of the 

samples.  This is similar to the results found from the eCMWP method.  
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Table 7 – Parameters found from the alp method of the diamond in the nano-diamond-SiC 
composites.  Vunit cell is the volume of the unit trigonal lattice, so is the thickness of the 
surface shell, and Δr/r is the relative change in the interatomic distances in the surface 
shell. 
 
Temperature 

(oC) 
triga (Å) 0,trigc (Å) 0,trig trigc / a  Vunit cell 

(Å3) 
EClp 
(Å) 

0s (Å) r / rΔ (%) 

1820 2.5235 2.0624 0.8173 45.49 3.5698 5 -3 
1975 2.5220 2.0559 0.8165 45.30 3.5648 … … 
2190 2.5195 2.0592 0.8173 45.28 3.5642 5 +1 
2320 2.5190 2.0589 0.8173 45.26 3.5639 5 +3 

 

 

5.2.2. Diamond in Micron-Diamond-SiC Composites   

 

Composites were sintered using micron-sized diamonds and Si powder.  The 

samples were sintered using natural diamond powder with a grain size of 50 – 70 μm and 

Si powder with a particle size of 30 nm.  The sintering pressure was 10 GPa and the 

temperatures were 1600, 1800, and 2000 oC.  Unlike the nano-diamond-SiC composites the 

powders were not premixed before sintering.  Also the powders had an 85:15 diamond to Si 

weight ratio.  These composites therefore did not suffer the same problems that affected the 

nano-diamond-SiC composite’s hardness.  The Knoops hardness was measured to be above 

40 GPa for each sample.  In addition to the 3 composites a diamond compact was made 

from the same starting material and it was sintered at 10 GPa and 2000 oC. 

 

 A Williamson-Hall plot of the diamond phase was made.  It did not show order 

dependence however it did show an increase in the full width for half maximum as an 

increase in the diffraction vector.  This would seem to indicate that there were few planar 
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faults and that the primary sources of peak broadening were due to crystallite size and 

dislocation density.  The eCMWP method was performed on the four samples made from 

the micron-sized diamonds.  The results can be found in Table 8.  The planar fault 

probability was found to 0% for each sample and therefore was not listed in this table. 

 

Table 8 – The calculated parameters of the microstructure of the diamond in the micron-
diamond-SiC composites and compact sintered at 10 GPa and various temperatures: 

area
x  is 

the area-weighted mean crystallite size and ρ is the dislocation density. 
 
Temperature (oC)  

 
1600 

area

15 2

x 210 20nm

0.082 0.007 10 mρ −

= ±

= ± ×
 

1800 
area

15 2

x 200 20nm

0.092 0.009 10 mρ −

= ±

= ± ×
 

 
2000 

area

15 2

x 180 20nm

0.12 0.01 10 mρ −

= ±

= ± ×
 

 
Compact 

area

15 2

x 80 8nm

0.15 0.02 10 mρ −

= ±

= ± ×
 
 
  

The diamond compact has a significantly smaller crystallite size than any of the 

composites.  Recall that the crystallite size is the domains of the crystals that scatter 

coherently.  There may be tens to even thousands of crystallites in a single crystal.  

Crystallites may be separated by dislocations which will not be visible to SEMs.  Therefore 

the best way known to us to measure crystallite sizes is with the eCMWP method.  As the 

sintering temperature increases the average crystallite size decreases. 
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 In the composites as the sintering temperature increases the dislocation density 

increases.  The compact has the largest population of dislocations.  This taken in addition 

with fact that the compact has the smallest crystallite size seems to indicate the binding 

phase, SiC, when it filled the spaces between the diamond crystals stopped the further 

deformation of the diamond crystals.  This would reduce the amount of dislocations and 

reduce the amount of cracks. 

 

 The planar fault probability was very low, below the detectable amount by the 

eCMWP method.  Finding diamonds without planar faults is not unusual.  The nano-

diamond-SiC composite sintered at the highest temperature had a planar fault probability of 

0% and of the 10 measured samples that contained diamond only 2 had planar fault 

probabilities above 1%. 
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CHAPTER VI. CONCLUSIONS 

 

 There is a correlation between the average crystallite size and the sintering 

temperature in the SiC compacts and the composites made with the nano-sized diamonds.  

For a fixed pressure as the temperature increases the average crystallite size increases, see 

Tables 1 and 2.  This trend however reverses for the composites sintered with the micron-

sized diamonds.  There the crystallite size decreases as the sintering temperature increases.  

A viable explanation for this reverse in trend cannot be offered.  The composites sintered 

with the micron-sized diamonds were made at 10 GPa.  Crystallite growth is directly 

dependent on sintering temperature and pressure, but it is also dependent on factors such as 

compressibility and the thermal expansion coefficient of both phases.  At normal 

conditions SiC has a larger thermal expansion coefficient than diamond, but at 1600 oC the 

values of the thermal expansion coefficients seem to converge.  Only limited data on 

thermal expansion coefficients of diamond and SiC are available at high pressure.  But data 

obtained from computer simulations41 and some experimental results obtained by L. 

Balogh et al.42 indicate that differences in thermal expansion coefficients are responsible 

for the observed stress.  

 

 In all of the samples the predominate form of planar fault was the twin.  This was 

observed visually in TEM images and using the eCMWP fitting method which had a 

smaller sum of residual when run using twins as opposed to extrinsic or intrinsic stacking 

faults.  For the SiC compacts we found that there was a correlation between the crystallite 
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size and the planar fault probability.  This trend was observed in the composites as well, 

see Figure 36.  Crystallites with an average grain size of less than 60 nm have an order 

magnitude higher fault probability than crystallites with an average grain size larger than 

60 nm.  A larger crystallite has more atomic planes.  Planar faults change the distances 

between atomic planes and thus their formation requires external energy.  As the number of 

atomic planes in a crystallite increases the required energy also increases.  This could 

explain why larger crystallites have a smaller planar fault probability. 

 

 

Figure 36 – A plot of the mean crystallite size versus the planar fault probability for the 
SiC phase of the nano and micron-sized diamond composites and the compacts. 

 
 

Zhu et al.43 found in Cu that crystals with small crystallite sizes predominately had 

planar faults and above a certain crystallite size severe plastic deformation activates 

dislocations.  A similar trend was observed for SiC, see Figure 37.  As the crystallite size 
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increases it appears that the formation of dislocations is preferred to stacking faults.  This 

threshold occurs between 25 and 75 nm.   

 

 
Figure 37- The ratio of planar fault probability to dislocation density (β/ρ) as a function of 
the mean crystallite size for all the SiC samples. 

 

As the sintering temperature increased the mean crystallite size of the diamonds of 

the nano-meter sized composites also increased.  There was also decrease in the dislocation 

density as the mean crystallite size increased.  This observation indicates that 

recrystallization took place.  The mean crystallite size of the compacts made from the 

nano-meter diamonds remained unchanged.  However, there was a decrease in the 

dislocation density.  In both composites and compacts there were planar faults present and 

the amount of faults decreased as temperature increased.  However, there were far fewer 

faults in the diamond than in the SiC samples. 
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The diamond phase in the micron-sized diamond composites had a different 

correlation between sintering temperature and mean crystallite size than in the nano-sized 

diamond composites.  In the micron-sized composites there was a decrease in crystallite 

size as the sintering temperature increased.  Since these composites were sintered at 10 

GPa (as opposed to 8 GPa) it is possible that at 10 GPa higher temperatures are needed for 

recrystallization to occur.  The dislocation density also increased as the sintering 

temperature increased.  But the density was much lower than that in the nano-sized 

diamonds.  There was also no appreciable amount of stacking faults found by the eCMWP 

analysis in the micron-sized diamonds.  This finding indicates that the defects in diamond 

phase can be affected by sintering conditions and the size of the initial crystals. 

 

The compact that was created using the same micron-sized diamond powder had a 

smaller crystallite size and more dislocations than its composite counterpart.  This result 

was explained by the presence SiC, which, when it fills the gaps between the diamond 

crystals, acts as a buffer between the crystals to reduce strain and deformation to the 

diamond. 

 

Stress is present in both phases.  Its origin is in different thermal expansions and 

compressibility of the two phases and at the atomic level can be explained in terms of 

different lattice constants in the interior and exterior layers of the crystallites.  The alp 

method, which was used to analyze the atomic level, could only be applied to the 

nanometer-sized diamond-SiC composites. 
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When the ratio of the shell’s interatomic differences, r / rΔ , are less than zero it 

implies that the distances in the shell are less than the distances in the core.  In other words 

that the shell atoms are more compressed and that the core atoms are more relaxed.  

Therefore, the strain is concentrated in the shell.  The diamond phase in the nano-sized 

diamond composites had a negative r / rΔ  ratio in the sample sintered at the lowest 

temperature.  The sample sintered at 1975 oC had no distinguishable difference in the 

atomic spacings between the core and shell atoms; an indication that the diamond crystals 

have uniform strain.  Above that temperature the ratio changes sign and the shell is less 

compressed than the core.  In the SiC phase however, the samples sintered at the two 

lowest temperatures have compressed shells.  The sample sintered at 2190 oC has no 

distinguishable differences in the core and shell atomic spacings.  But when the 

temperature was increased to 2320 oC we discovered that the core was compressed more 

than the shell. This indicates that during sintering at certain specific temperature and 

pressure values the diamond and the SiC crystals both become relaxed.  Unfortunately this 

occurs at different temperatures for the diamond and the SiC phase.  It is therefore 

impossible to create a diamond SiC composite that is completely free of strain.  This 

conclusion is limited to the sintering pressure of 8 GPa.  However, it is possible that 

different pressures may produce samples that will be strain free in both phases for some yet 

unknown common temperature.  But users of commercially manufactured nanocomposites 

sintered at 8 GPa must decide, based on the future application, if it is of more value to have 

a weaker SiC matrix and strain free diamond crystals or a stronger SiC matrix but diamond 

crystals with large surface strain. 
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Compacts and composites were sintered under high pressure (2 GPa – 10 GPa) and 

high temperature (1400 – 2300 oC) conditions.  The compacts were sintered using nano-

SiC powder, micron-diamond powder, and nano-diamond powder.  Composites were 

sintered using the liquid infiltration method from nano-silicon powder and nano or micron 

diamond powder.  Under the high pressure, high temperature conditions the silicon powder 

would melt and react with carbon from the diamonds to form a SiC matrix.   

 

The microstructure and strain of the composites and compacts was analyzed using 

X-ray diffraction analysis.  The extended convolutional multiple whole profile fitting 

method was used to analyze the X-ray line profiles to determine average crystallite size, 

dislocation density, and planar fault probability.  The apparent lattice parameter method 

was used to analyze strain.  Below a certain pressure there was subgrain growth.  However, 

at the higher pressures there was a reduction in crystallite size.  In the SiC phase there was 

a correlation between predominate defect, dislocation or planar fault, and the crystallite 



 

   

size.  The defect structure of the diamonds seemed to be dependent on the initial diamond 

powder used.  At higher temperatures there was evidence of recovery and or 

recrystallization. 
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