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Preface

This dissertation is split into two parts. In the first part we expand upon work by Gábor Elek

on C*-algebras of Uniformly Recurrent Subgroups. In the second we expand upon work by many

hands on the decomposition of nuclear maps.

Part I generalizes Elek’s construction. A finitely generated discrete group acts upon the set

of its subgroups via conjugation. We apply a natural topology to this set, then take the closure

of the orbit of a chosen subgroup. This gives a dynamical system which happens to have a nice

correspondence with a Cayley-like graph of the subgroup’s cosets. It is this graph upon which our

C*-algebra is built, encoding information about the short-term evolution of the system, and using

a process reminiscent of some common C*-algebra constructions. We make use of this similarity

(as well as the differences) to apply techniques which have previously shown to be illuminating for

these other constructions. This reveals properties of the C*-algebra and relates them to properties

of the graph, the dynamical system, and the subgroup itself.

Part II adds to a chain of incremental papers. Nuclear maps between C*-algebras can be

characterized by their ability to be approximately written as the composition of maps to and from

matrices. Under certain conditions (such as quasidiagonality), we can guarantee that the maps in

these decompositions behave nicely. In particular, we seek maps which preserve multiplication up

to an arbitrary degree of accuracy. To that end, we find conditions both necessary and sufficient

for such decompositions, and also relate them to a W*-analog.
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Part I

C*-Algebras of Orbit-Closures of Subgroups

1 Introduction

This part is heavily based upon [Ele18], in which Gábor Elek defines the reduced C*-algebra of a

Uniformly Recurrent Subgroup (URS) of a finitely generated discrete group. The concept of a URS

was introduced by Glasner and Weiss in [GW15] as a topological analogue of an Invariant Random

Subgroup; however, one of our goals is to explore beyond the scope of URSs.

Section 2First definitionssection.2 introduces the fundamental definitions and notation of the

part. Sections 3Graphs and kernelssection.3 & 4The C*-algebrasection.4 retread the construction of

Elek’s C*-algebra; although we have dropped the minimal-under-group-action assumption of a URS,

not much here is any different. Elek’s construction bears resemblance to that of the uniform Roe

algebra [BO08, Chap. 5] with an added layer of finiteness made possible by the group dynamics of

the URS. These Roe algebras show up in the study of groups, groupoids, and coarse metric spaces.

They are subalgebras of operators on functions on such spaces, built from “finite-width tubes”

which limit interaction of distant coordinates (essentially, entries vanish far from the diagonal),

thus providing insight into the space’s small-scale structure. We embrace the similarities between

these algebras later.

Elek remarks at the end of [Ele18, Sec. 6.4] that, by using a special coloring, one may define an-

other C*-algebra from a URS, and that his preceding proof of simplicity then no longer requires what

Elek calls genericity—a condition which describes a lack of self-similarity within the URS. We flesh

out Elek’s remark in Section 5Colorssection.5, along with a note that the new C*-algebra contains

the original as a C*-subalgebra. We then use this containment in Section 6Coamenabilitysection.6

to strengthen [Ele18, Sec. 9.1] by dropping genericity.

Corollary 6.9theorem.6.9. Suppose OK is a URS. Then the following are equivalent:

1. K is coamenable.

2. C∗Γ(K) admits a faithful amenable trace.

3. C∗Γ(K) admits an amenable trace.
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We finally move beyond Elek in Section 7Covariant representationssection.7. Here we circle

back to the Roe algebra by noting that, like it, our C*-algebra has a crossed-product-like structure.

Crossed products are one of the elementary tools for constructing new C*-algebras. Akin to the

semidirect product of groups, a crossed product integrates a C*-algebra and a group that acts

upon it into a larger C*-algebra that contains the group as unitaries whose conjugation witnesses

the action. However, our “crossed product” is very different from what we may expect, and its

properties are explored in Section 8Crossed product consequencessection.8.

In Section 9Injective envelopessection.9 we see what more we can say about the C*-algebra by

using Hamana’s theory of injective envelopes. Injective envelopes are structures that show up in

many related categories as unique super-objects that allow extensions of morphisms—of particular

use is the extension of isomorphisms into what we call pseudo-expectations. These are more handy

than conditional expectations, as we can always guarantee their existence. They are especially useful

in analyzing crossed products, as we have a natural choice of subalgebra for the range (that is, the

original C*-algebra). Using these tools, we are able to describe the C*-algebra’s ideals in terms of

the orbit-closure’s topology, and expand upon Elek’s proof that genericity implies simplicity.

Corollary 9.2theorem.9.2. If Λ is topologically cheap (see Definition 2.4theorem.2.4), then I ∩

C(OΛ) is nonzero for every nontrivial (closed, two-sided) ideal I E C∗Γ(Λ). In particular, if OΛ is

a URS, then C∗Γ(Λ) is simple.

We end in Section 10Subalgebrassection.10 with a discussion of properties of other different kinds

of subalgebras. First are Cartan C*-subalgebras, which are analagous to Cartan von Neumann

algebras, and a special kind of maximal abelian subalgebra (MASA). MASAs are particularly

informative: they are abelian, so they are well understood as being continuous functions on a

topological space, and they are maximal, so much of their shape carries over into the original C*-

algebra. Unlike general MASAs, whose classification remains a woolly task, the structure of the

Cartan relation has been completely characterized in terms of groupoids. We are able to frame

this global embedability property of a certain C*-subalgebra in terms of the self-similarity of an

orbit-closure.

Theorem 10.3theorem.10.3. Λ is topologically cheap iff C(OΛ) is a Cartan subalgebra of C∗Γ(Λ).

This is followed-up with a special case of both properties.
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Theorem 10.6theorem.10.6. Λ is cheap iff C(OΛ) is a C*-diagonal subalgebra of C∗Γ(Λ).

Finally, we discuss when the orbit-closure of a subgroup of an intermediate group generates a

C*-subalgebra of the C*-algebra of the orbit-closure within the full group.

Theorem 10.8theorem.10.8. Suppose Λ ≤ H ≤ Γ and let U be Λ’s orbit-closure within Sub H.

Also suppose that U is open in OΛ and that the normalizer NΓ(Λ) ≤ H. Then C∗H(Λ) ⊆ C∗Γ(Λ).

2 First definitions

Throughout this part, Γ will be a discrete group with finite generating set Q (for notational con-

venience, we assume γ ∈ Q implies γ−1 ∈ Q) and unit e. We inductively define sets Qn :=

{γ, γλ, λγ | γ ∈ Qn−1 and λ ∈ Q}, starting with Q0 := {e}. The length of an element γ ∈ Γ is the

smallest integer lQ(γ) such that γ ∈ QlQ(γ).

Sub Γ is the set of all subgroups of Γ, which we equip with the compact Hausdorff Chabauty

(or Fell) topology [Bee93, Fel62], in which a net converges if its terms are eventually consistent in

what they do and don’t contain.

Definition 2.1. The Chabauty topology is a topology defined on a set S of subsets of another

set G. It is induced by a clopen subbasis that comprises sets of the form Sg = {K ∈ S | g ∈ K},

and their complements.

Proposition 2.2. A net (Kn) ⊆ Sub Γ converges to a subgroup K ∈ Sub Γ iff, for every γ ∈ Γ,

there is an index m such that n ≥ m implies γ ∈ Kn iff γ ∈ K.

Proof. Any basic open subset U of Sub Γ takes the form

(
j−1⋂
i=0

Sγi

)
∩

k−1⋂
i=j

S\Sγi

 = {K ∈ Sub Γ | ∀i ∈ [0, j)(γi ∈ K)} ∩ {K ∈ Sub Γ | ∀i ∈ [j, k)(γi /∈ K)}

= {K ≤ Γ | ∀i ∈ [0, k)(γi ∈ K⇔ i < j)}

for some γi ∈ Γ and integers 0 ≤ j ≤ k. Therefore, for any pair of subgroups Kn,K ∈ U within

this basic set, we have Kn ∩ {γi | i ∈ [0, k)} = K ∩ {γi | i ∈ [0, k)} = {γi | i ∈ [0, j)}, ergo γi ∈ Kn

iff γi ∈ K for every i ∈ [0, k). �
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Λ shall be our designated subgroup of Γ, and OΛ = {γΛγ−1 | γ ∈ Γ} shall be its orbit under

conjugation. Naturally, its orbit-closure is denoted OΛ.

Definition 2.3. [GW15] A uniformly recurrent subgroup is a closed subset U ⊆ Sub Γ that is

minimal under conjugation; that is, for every K ∈ U , its orbit-closure OK = U .

The conjugation action of Γ on OΛ (as well as the induced action on `∞(OΛ)) is denoted α

when needed. That is, for all γ ∈ Γ and K ∈ Sub Γ,

αγ(K) = γKγ−1.

Evidently, the stabilizer of K is its normalizer NΓ(K). The topological stabilizer of K is the set

Γ◦K of group-elements that fix some neighborhood of K ∈ OΛ; while we know of no group-theoretic

description of this set, we can at least see K ≤ Γ◦K ≤ NΓ(K). Thus, not even this topological

stabilizer can be trivial for nontrivial K, so the action on OΛ cannot even be topologically free.

However, it is nonetheless useful for our (topological) stabilizers to be as small as possible.

Definition 2.4. We shall say the subgroup Λ ≤ Γ is cheap if every element of its orbit-closure is

equal to its own normalizer. That is, K = NΓ(K) for every K ∈ OΛ. A nominally weaker condition

is topologically cheap, which means K = Γ◦K for every K ∈ OΛ.

Remark 2.5. “Cheap Λ” generalizes the notion of a generic URS (in the sense of Elek) to apply

when OΛ is not minimal.

The coset space Γ/Λ is equipped with the left-multiplication action by Γ. We define ω : Γ/Λ→

OΛ as the Γ-equivariant surjection that preserves Λ:

ω(γΛ) = γΛγ−1 = αγ(Λ)

for every γ ∈ Γ. If Λ is cheap, then ω is bijective; indeed, ω(γΛ) = ω(Λ) iff γ ∈ NΓ(Λ), while

γΛ = Λ iff γ ∈ Λ.

3 Graphs and kernels

A rooted-Q-labeled graph (G, x, q) is a directed graph G with a distinguished vertex x ∈ V (G)

and a labeling q : E(G) → Q of its edges. A rooted-Q-labeled graph isomorphism between
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(G, x, q), (G′, x′, q′) is a graph isomorphism that preserves the root and all labels; we write (G, x, q) ∼=

(G′, x′, q′) if such an isomorphism exists. The ball Br(y) of radius r ∈ N around a vertex y ∈ V (G)

in the rooted-Q-labeled graph (G, x, q) is a rooted-Q-labeled subgraph that comprises all vertices

of G that are within a length-r (undirected) walk of y, and all edges connecting these vertices,

equipped with y as a root and the restriction of q as a labeling. We shall occasionally use the same

notation to refer only to the vertices within the ball, but context will make these instances clear.

Definition 3.1. The Schreier graph of a subgroup K ≤ Γ is the rooted-Q-labeled graph SQΓ (K)

that has the cosets Γ/K as it vertices, K as its root, and an edge labeled γ going from x to γx for

every x ∈ Γ/K and γ ∈ Q. While the exact graph depends on the choice of Q, this turns out to be

irrelevant for our purposes, so we shall usually suppress it.

We note that λγK = γK iff λγKγ−1 = γKγ−1, so we have a label-preserving graph isomorphism

from SΓ(K) to SΓ(αγ(K)) that sends K to γ−1αγ(K); thus we shall treat them as being the same

labeled graph with different choices of root.

For each integer r ∈ N, we partition the vertices/cosets V (SΓ(Λ)) = Γ/Λ into equivalence

classes [x]r = {y ∈ Γ/Λ | Br(x) ∼= Br(y)}. Since vertices all have degree |Q|, there are finitely

many distinct classes for each r. We also define sets BK,r = {K′ ∈ OΛ | Br(K′) ∼= Br(K)} for every

K ∈ OΛ and r ∈ N. The following Lemma shows that these form a clopen basis of OΛ’s topology.

Lemma 3.2. A net (Kn) ⊆ Sub Γ converges to a subgroup K ∈ Sub Γ iff, for every r ∈ N, there is

an index m such that n > m implies Br(Kn) ∼= Br(K).

Proof. For every γ ∈ Γ, there are by definition γi ∈ Q such that

γ = γlQ(γ) · · · γ2γ1.

For any K ∈ Sub(Γ), there is a walk

(K, γ1K, γ2γ1K, . . . , γ−1
lQ(γ)γK, γK)

in BlQ(γ)(K) ⊆ SΓ(K), and it is a cycle iff γ ∈ K. If Br(K) ∼= Br(Kn), then a string of r-many labels

corresponds to a cycle in one ball iff it corresponds to a cycle in the other, therefore K∩Qr = Kn∩Qr.

Conversely, suppose for sake of contraposition that Br(K) 6∼= Br(Kn). Then there are γ, λ ∈ Qr
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such that the vertices γK = λK, while γKn 6= λKn. Ergo λ−1γ ∈ K while λ−1γ /∈ Kn, therefore

Kn ∩Q2r 6= K ∩Q2r. �

We denote by δx ∈ `2(Γ/Λ) the indicator function of x ∈ Γ/Λ:

δx(y) =


1 if y = x,

0 else.

Definition 3.3. A local kernel is an operator K ∈ B
(
`2(Γ/Λ)

)
such that there is a w ∈ N

satisfying the following for all vertices x, y ∈ Γ/Λ:

� If y /∈ Bw(x), then K(δx)(y) = 0.

� If [x]w = [y]w and γ ∈ Qw, then K(δx)(γx) = K(δy)(γy).

The smallest w satisfying these conditions is called the width of K (note that the conditions are

still satisfied for any larger w).

While proving it directly is not too difficult, we shall see in Section 7Covariant representationssection.7

that the definition of a local kernel is independent of the choice of Q.

Proposition 3.4. The set of local kernels forms a *-subalgebra of B
(
`2(Γ/Λ)

)
.

Proof. Let c ∈ C, and K,K ′ be local kernels with respective widths w,w′. Then for all x ∈ Γ/Λ

and y /∈ Bw+w′(x), we have that x /∈ Bw(y) and Bw(y) ∩Bw′(x) = ∅; thus

(cK +K ′)(δx)(y) = cK(δx)(y) +K ′(δx)(y) = c(0) + 0 = 0,

K∗(δx)(y) = K(δy)(x) = 0 = 0,

KK ′(δx)(y) =
∑
z∈Γ/Λ

K(δz)(y)K ′(δx)(z)

=
∑

z∈Bw(y)∩Bw′ (x)

K(δz)(y)K ′(δx)(z) = 0.

We check that linear combination preserves the second condition by supposing x, y ∈ Γ/Λ

and γ ∈ Γ satisfy [x]w+w′ = [y]w+w′ and γ ∈ Qw+w′ . We recall the parenthetical note from

7



Definition 3.3theorem.3.3, so

(cK +K ′)(δx)(γx) = cK(δx)(γx) +K ′(δx)(γx)

= cK(δy)(γy) +K ′(δy)(γy) = (cK +K ′)(δy)(γy).

We check involution by supposing x, y ∈ Γ/Λ and γ ∈ Γ satisfy [x]2w = [y]2w and γ ∈ Qw. Then

[γx]w = [γy]w and lQ(γ−1) = lQ(γ) ≤ w, so

K∗(δx)(γx) = K(δγx)(x) = K(δγx)(γ−1γx) = K(δγy)(γ−1γy) = K∗(δy)(γy).

We must still address γ ∈ Q2w\Qw, for which there are two cases. In the case γx ∈ Bw(x), we may

use the above argument by replacing γ−1 with some λ ∈ Qw such that λγx = x. The other case is

γx /∈ Bw(x), which is equivalent to γy 6∈ Bw(y), and implies K∗(δx)(γx) = K∗(δy)(γy) = 0.

We finally check multiplication by supposing x, y ∈ Γ/Λ and γ ∈ Γ satisfy [x]w+w′ = [y]w+w′

and γ ∈ Qw+w′ . Then for each z ∈ Bw′(x) there is a λ ∈ Qw′ (so [λx]w = [λy]w) such that z = λx,

and if z ∈ Bw(γx) then there is also λ′ ∈ Qw such that γx = λ′z = λ′λx. Thus

KK ′(δx)(γx) =
∑

z∈Bw(γx)∩Bw′ (x)

K(δz)(γx)K ′(δx)(z)

=
∑

λx∈Bw(γx)∩Bw′ (x)

K(δλx)(λ′λx)K ′(δx)(λx)

=
∑

λy∈Bw(γy)∩Bw′ (y)

K(δλy)(λ
′λy)K ′(δy)(λy)

= KK ′(δy)(γy).

Therefore the set of local kernels is closed under *-algebraic operations. �

4 The C*-algebra

Definition 4.1. The C*-algebra C∗Γ(Λ) ⊆ B
(
`2(Γ/Λ)

)
is the closure of the *-subalgebra of all local

kernels. This generalizes the notion of the reduced C*-algebra of a URS (as defined by Elek) to

apply when OΛ is not minimal.
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Theorem 4.2. Suppose Λ′ ∈ OΛ. Then C∗Γ(Λ′) is a quotient of C∗Γ(Λ), with equality holding if

OΛ′ = OΛ.

Proof. Since Λ′ ∈ OΛ, Lemma 3.2theorem.3.2 ensures that, for every radius r ∈ N, we may find

γr ∈ Γ such that the balls Br(Λ
′) ∼= Br(αγr(Λ)) ∼= Br(γrΛ). Given a local kernel K ∈ C∗Γ(Λ) of

width w, we shall use this fact to define a local kernel K ′ ∈ C∗Γ(Λ′) (also of width w). Every vertex

x′ ∈ Γ/Λ′ of distance r from the root has corresponding x ∈ Br(γr+wΛ) with Bw(x) ∼= Bw(x′). We

set K ′(δx′)(γx
′) = K(δx)(γx) for every γ ∈ Qw.

By reversing the construction—with the added stipulation that K(δx) is identically 0 when no

suitable x′ exists—we may construct an appropriate K for any given local kernel K ′ ∈ C∗Γ(Λ′). Ergo

our map K 7→ K ′ is a surjection between the *-algebras of local kernels. Moreover, if OΛ′ = OΛ,

then Λ ∈ OΛ′ , therefore our map is bijective.

The map is also evidently linear and preserves adjoints. To show multiplicativity we first note

the construction would not be changed by using w larger than K’s width. Let K,L ∈ C∗Γ(Λ) be local

kernels with respective widths w, v, so the product KL has width at most w+v. Choose γ ∈ Qw+v

and x′ ∈ Γ/Λ′. We can find x ∈ Γ/Λ such that Bw+v(x) ∼= Bw+v(x
′), so Bw(λx′) ∼= Bw(λx) for

every λ ∈ Qv. Thus

K ′L′(δx′)(γx
′) =

∑
y′∈Γ/Λ′

K ′(δy′)(γx
′)L′(δx′)(y

′)

=
∑

y′∈Bw(γx′)∩Bv(x′)

K ′(δy′)(γx
′)L′(δx′)(y

′)

=
∑

y∈Bw(γx)∩Bv(x)

K(δy)(γx)L(δx)(y) = KL(δx)(γx).

Therefore K ′L′ = (KL)′, so K 7→ K ′ is a *-epimorphism.

Finally we show it is continuous. For given local kernel K ′ of width w and ε > 0, there is a

finitely supported unit vector f ′ ∈ `2(Γ/Λ′) such that ‖K ′‖− ε ≤ ‖K ′(f ′)‖. Since supp(f ′) is finite,

it is contained in the ball Br(Λ
′) for some finite radius r. By our identification of the labeled graph

SΓ(Λ) with SΓ(αγr+2w(Λ)) and the fact that the choice of root has no bearing on local kernels,

we may assume without loss of generality Λ = γr+2wΛ, so that there is a rooted-labeled graph

9



isomorphism ϕ : Br+2w(Λ)→ Br+2w(Λ′). Then f := f ′ ◦ϕ ∈ `2(Γ/Λ) is supported on Br(Λ). Thus

‖K(f)‖2 =
∑
x∈Γ/Λ

|K(f)(x)|2 =
∑
x∈Γ/Λ

∣∣∣∣∣∣
∑
y∈Γ/Λ

f(y)K(δy)(x)

∣∣∣∣∣∣
2

=
∑

x∈Br+w(Λ)

∣∣∣∣∣∣
∑

y∈Bw(x)

f(y)K(δy)(x)

∣∣∣∣∣∣
2

=
∑

x∈Br+w(Λ)

∣∣∣∣∣∣
∑

y∈Bw(x)

f ′ ◦ ϕ(y)K ′(δϕ(y))(ϕ(x))

∣∣∣∣∣∣
2

=
∑

x′∈Br+w(Λ′)

∣∣∣∣∣∣
∑

y′∈Bw(x′)

f ′(y′)K ′(δy′)(x
′)

∣∣∣∣∣∣
2

= ‖K ′(f ′)‖2.

This confirms our map K 7→ K ′ is bounded, therefore it extends to C∗Γ(Λ). Finally, as a *-

homomorphism from a C*-algebra, the extension’s codomain must be closed, therefore is C∗Γ(Λ′).

�

Remark 4.3. There is a faithful conditional expectation from B
(
`2(Γ/Λ)

)
to `∞(Γ/Λ) that simply

erases all entries not along the diagonal. When restricted to C∗Γ(Λ), we shall call this the canonical

conditional expectation and denote it by E. To be clear,

E(T )(x) = T (δx)(x).

5 Colors

A colored-rooted-labeled graph (G, x, q, c) is a rooted-labeled graph (G, x, q) with a coloring c :

V (G)→ Z of its vertices; the coloring is called finite if the image of c is finite. Similarly, a colored-

rooted-labeled graph isomorphism between (G, x, q, c), (G′, x′, q′, c′) is a rooted-labeled graph isomor-

phism that also preserves the coloring, and we denote its existence by (G, x, q, c) ∼=C (G′, x′, q′, c′).

From here we define Bc
r(y), [x]cr, colored local kernels, Cc∗Γ (Λ) ⊆ B

(
`2(Γ/Λ)

)
(which contains C∗Γ(Λ),

since [x]cw = [y]cw is stronger than [x]w = [y]w), and Ec analogously to the colorless versions.

Remark 5.1. For this section, we shall assume OΛ is a URS—that is, it is minimal. By [Ele18,

Thm. 1], there is a minimal OΛ-proper Bernoulli subshift M ⊆ BK(OΛ). Each element of
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M is an OΛ-regular (hence nonrepeating) finitely-colored Schreier graph, meaning it admits no

non-trivial colored-labeled graph automorphism. The Γ-action on M is given by γ.
(
SΓ(K), d

)
=(

SΓ(αγ(K)), γ.d
)
, where each color (γ.d)

(
λαγ(K)

)
= d(λγK). Thus we have an injective analog to

the Γ-equivariant map ω:

ωc : Γ/Λ→M, ωc(γΛ) = γ.(SΓ(Λ), c).

The details of M ’s existence may be found in [Ele18, Sec. 3], but we only need to understand its

description. The topology on M is in analogy to Lemma 3.2theorem.3.2: a net
(
(SΓ(Kn), dn)

)
⊆M

of colored Schreier graphs converges to (SΓ(K), d) iff for every r ∈ N there is an index m such that

n > m implies Bdn
r (Kn) ∼=C Bd

r (K). In fact, we can just think of M as the inverse inductive limit

of colored-rooted-labeled balls: for each r ∈ N, let Mr = {[x]cr | x ∈ Γ/Λ} be the finite set of

equivalence classes of vertices in our distinguished Schreier graph (SΓ(Λ), c) ∈ M . (Since M is

minimal, this is still independent of our choice of Λ.) Using discrete topologies and surjections

[x]cr+1 7→ [x]cr, we characterize M = lim
←−Mr by identifying the graph (SΓ(K), d) ∈ M with the

sequence ([xn]cn) where each Bc
n(xn) ∼=C Bd

n(K).

In this section, the goal is the following:

Proposition 5.2. Cc∗Γ (Λ) is simple.

This is exactly as Elek describes in [Ele18, Sec. 6.3]: we will show every nontrivial (closed,

two sided) ideal of Cc∗Γ (Λ) has nontrivial intersection with an abelian C*-subalgebra A ∼= C(M),

which—since M is minimal—admits no Γ-invariant ideals.

Lemma 5.3. If w ∈ N, then there is a radius rw ∈ N such that [x]crw = [y]crw and x 6= y together

imply y /∈ Bc
w(x).

Proof. For sake of contradiction, suppose there is a width w ∈ N such that, for every n ∈ N, there

are distinct xn, yn ∈ Γ/Λ satisfying yn ∈ Bc
w(xn) and [xn]cn = [yn]cn. Since a radius-w ball has

at most |Qw| < ∞ vertices, there must be some γ ∈ Qw such that yn = γxn holds for infinitely

many n. Passing to a subsequence, we may assume it holds for all n. For each n, ([xn]cr) ∈ lim
←−Mr

corresponds to some colored Schreier graph Gn ∈ M . By compactness of M , the sequence (Gn)

has a subsequence (we again assume it is the whole sequence) converging to some (SΓ(K), d) ∈M .
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This contradicts OΛ-regularity: For every radius r, by convergence there is an n > r such that

Bd
r+w(K) ∼=C Bc

r+w(xn), hence

Bd
r (K) ∼=C Bc

r(xn) ∼=C Bc
r(yn) = Bc

r(γxn) ∼=C Bd
r (γK).

Therefore (SΓ(K), d) admits a non-trivial colored-labeled graph automorphism. �

Lemma 5.4. C(M) is *-isomorphic to a unital C*-subalgebra of Cc∗Γ (Λ).

Proof. The family of characteristic functions χ[x]cw
∈ `∞(Γ/Λ) ⊆ B

(
`2(Γ/Λ)

)
on the equivalence

classes for different w ∈ N and x ∈ Γ/Λ generate a *-subalgebra A which contains the identity

operator id`2(Γ/Λ) =
∑

ξ∈M0
χξ.

By the inverse inductive limit characterization, a clopen basis of M ’s topology is given by the

family of sets Cxw := {(SΓ(K), d) ∈ M | Bd
w(K) ∼=C Bc

w(x)} = {(ξr) ∈ lim
←−Mr | ξw = [x]cw} for

different w ∈ N and x ∈ Γ/Λ. Thus C(M) is generated by the characteristic functions χCxw , so

χCxw 7→ χ[x]cw
defines a Γ-equivariant *-isomorphism to the closure A.

As a multiplication operator, χ[x]cw
∈ B

(
`2(Γ/Λ)

)
is a projection given by

χ[x]cw
(δy)(z) =


1 if y = z ∈ [x]cw,

0 else.

Thus it is a colored local kernel, therefore A ⊂ Cc∗Γ (Λ). �

For each γ ∈ Γ, let Uγ ∈ B
(
`2(Γ/Λ)

)
be the unitary enacting the induced Γ-action; that is, for

all f ∈ `2(Γ/Λ) and x ∈ Γ/Λ,

Uγ(f)(x) = f(γ−1x).

This is a local kernel of width (at most) lQ(γ), and Ad(Uγ)|A corresponds to the induced action of
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γ on C(M):

Ad(Uγ)(χ[x]cr
)(δy)(z) = χ[x]cr

(δγ−1y)(γ
−1z) =


1 if γ−1y = γ−1z ∈ [x]cr.

0 else,

=


1 if y = z ∈ γ[x]cr,

0 else,

= χγ[x]cr
(δy)(z)

for any x, y, z ∈ Γ/Λ.

We must now refer to completely positive maps, which describe those maps φ : A → B between

C*-algebras such that the matrix [φ(ai,j)] ∈ Mn(B) is positive for every positive matrix [ai,j ] ∈

Mn(A) (see e.g. [BO08, Def. 1.5.1]). Notably, this includes a 7→
∑n

i=1 biπi(a)b∗i for any bi ∈ B and

*-homomorphisms πi : A → B.

For each r ∈ N, define the unital completely positive (u.c.p.) map Ecr : Cc∗Γ (Λ)→ Cc∗Γ (Λ) by

Ecr(K) =
∑
ξ∈Mr

χξKχξ.

Note that, if K has finite width w, then

Ec(K) =
∑

[x]cw∈Mw

K(δx)(x)χ[x]cw
,

so Im(Ec) = A.

Lemma 5.5. limr E
c
r(K) = Ec(K) for every K ∈ Cc∗Γ (Λ).

Proof. Let K ∈ Cc∗Γ (Λ) have finite width w. Find rw as in Lemma 5.3theorem.5.3 so that [x]crw =

[y]crw and x 6= y together imply K(δx)(y) = 0. Thus, for every r ≥ rw,

Ecr(K)(δy) = χ[y]cr
K(δy) =

∑
x∈[y]cr

K(δy)(x)δx = K(δy)(y)δy = Ec(K)(δy).

Therefore the result is proven for local kernels, and the rest follows from density and continuity. �

Proof of Proposition 5.2theorem.5.2. Suppose I E Cc∗Γ (Λ) is an ideal containing nonzero operator

13



T . Then T ∗T ∈ I, hence each Ecr(T
∗T ) ∈ I, hence the limit Ec(T ∗T ) ∈ I. Since Ec is faithful,

Ec(T ∗T ) is also nonzero, so I ∩ A is a nonzero Γ-invariant (due to the unitaries Uγ) ideal of

A ∼= C(M). Thus id`2(Γ/Λ) ∈ I, therefore I = Cc∗Γ (Λ). �

6 Coamenability

Remark 6.1. We continue to assume OΛ is a URS for this section. We immediately use this

assumption in the following lemma—a necessary component for our characterization of an amenable

trace. We shall also assume Λ has infinte index in Γ (ergo SΓ(Λ) is an infinite graph), since the

alternative is trivial.

Lemma 6.2. Cc∗Γ (Λ) contains no nonzero compact operators. (Hence neither does C∗Γ(Λ).)

Proof. By definition, for any L ∈ Cc∗Γ (Λ) with L(δx)(x′) 6= 0, there is some K ∈ Cc∗Γ (Λ) of finite

width w such that ‖L − K‖ < L(δx)(x′). But for every y ∈ [x]cw there is a coset y′ ∈ Γ/Λ such

that K(δy)(y
′) = K(δx)(x′), hence L(δy)(y

′) 6= 0. Thus, in order for L to be compact, [x]cw must

be finite, which contradicts the minimality of M .

Indeed, for sake of contradiction, suppose F ⊂ SΓ(Λ) is a finite subgraph such that the set

[F ] of colored-labeled isomorphic subgraphs is finite. Then since SΓ(Λ) is an infinite graph, it has

infinitely many vertices x such that the subgraph B1(x) ⊂ SΓ(Λ) is disjoint from every subgraph

in [F ]. This allows us to choose one particular such vertex x1 that has an infinite equivalence class

[x1]c1. Similarly, we inductively choose xn ∈ [xn−1]cn−1 so that [xn]cn is infinite and Bn(xn) is disjoint

from every subgraph in [F ]. The sequence ([xn]cn) ⊆M corresponds to a colored Schreier graph G

which contains no subgraph colored-labeled isomorphic to F , therefore (SΓ(Λ), c) cannot be in G’s

orbit-closure. �

Remark 6.3. We shall also assume that Λ is coamenable; that is, the action of Γ on Γ/Λ is

amenable (see [BO08, Def. 12.2.12]). In short, this means there exists a Følner sequence (Fk) ⊂ Γ/Λ

characterized by the property

|γFk4Fk|
|Fk|

→ 0

for every γ ∈ Γ (where 4 denotes the symmetric difference and |S| denotes the cardinality of S).

This in fact implies that every K ∈ OΛ is coamenable; more generally, if a subgroup in OK is

coamenable, then K is coamenable [Ele18, Prop. 5.2].
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Because of the continuous Γ-equivariant ω, Λ is coamenable if Γ acts amenably on OΛ. However,

even in the cheap, minimal case, the converse is not true: If the Γ-action on OΛ is amenable,

then C∗Γ(Λ) is a quotient of the reduced crossed product C(OΛ) oα,r Γ (see Section 7Covariant

representationssection.7) that admits an amenable trace. This trace can be composed with the

quotient map and restricted to C∗r (Γ) ⊆ C(OΛ) oα,r Γ to imply Γ itself is amenable. Finally, since

now we see C(OΛ) oα,r Γ is nuclear [BO08, Thm. 4.2.6.b], we conclude C∗Γ(Λ) must be nuclear.

The catch is that in [Ele18, Sec. 10.1], Elek constructed a generic, coamenable URS with non-exact

reduced C*-algebra.

Lemma 6.4. There exists a Γ-invariant probability measure µ on M .

Proof. We use the Følner sequence (Fk) and the Γ-equivariant injection ωc to define probability

measures µk on M by

µk(U) = µk
(
U ∩ Im(ωc)

)
=
|ω−1
c (U) ∩ Fk|
|Fk|

for any U ⊆M . For any γ ∈ Γ,

∣∣ω−1
c (γU) ∩ Fk

∣∣ =
∣∣(γω−1

c (U)
)
∩ Fk

∣∣ =
∣∣γ(ω−1

c (U) ∩ (γ−1Fk)
)∣∣ =

∣∣ω−1
c (U) ∩ (γ−1Fk)

∣∣,∣∣µk(U)− µk(γU)
∣∣ ≤ |ω−1

c (U) ∩ (Fk4γ−1Fk)|
|Fk|

≤ |Fk4γ
−1Fk|

|Fk|
k→∞−→ 0.

Therefore, since M is compact, (µk) must have a subsequence (we shall assume itself) that weakly

converges to our µ. �

For each k ∈ N, we define Pk ∈ B
(
`2(Γ/Λ)

)
to be the finite-dimensional projection onto `2(Fk).

We then define τ(T ) as the limit of

〈TPk, Pk〉HS

‖Pk‖2HS

=

∑
y∈Γ/Λ〈TPk(δy), Pk(δy)〉∑

y∈Γ/Λ ‖Pk(δy)‖2
=

∑
y∈Fk〈T (δy), δy〉∑
y∈Fk ‖δy‖

2
=
∑
x∈Fk

Ec(T )(x)

|Fk|
.

It is no coincidence if this formula appears familiar.

Definition 6.5. [Bro06, Thm. 3.1.7.3] A trace τ ′ on a C*-algebra A ⊂ B(H) that contains no

nonzero compact operators is called amenable if there exists a sequence (P ′k) ⊂ B(H) of finite
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rank projections such that, for every a ∈ A,

τ ′(a) = lim
k→∞

〈aP ′k, P ′k〉HS

‖P ′k‖2HS

, lim
k→∞

‖aP ′k − P ′ka‖2HS

‖P ′k‖2HS

= 0.

The focus of this section is the following:

Theorem 6.6. τ is a faithful amenable trace on Cc∗Γ (Λ).

As in the previous section, the proof is just a translation of what Elek did in the generic case

[Ele18, Sec. 9.1]. Of course, first we need the following:

Lemma 6.7. τ is a well-defined trace on colored local kernels.

Proof. For any (SΓ(K), d) ∈ M and r ∈ N, by minimality there is a coset xK,r ∈ Γ/Λ such that

Bd
r (K) ∼=C Bc

r(xK,r). Thus µk
(
{(SΓ(K′), d′) ∈M | Bd′

r (K′) ∼=C Bd
r (K)}

)
is equal to

µk
(
ωc([xK,r]

c
r)
)

=

∫
Imωc

χωc([xK,r]cr)
(G) dµk(G) =

∑
y∈Fk

χ[xK,r]cr
(y)

|Fk|
=
|[xK,r]

c
r ∩ Fk|
|Fk|

.

For any L ∈ Cc∗Γ (Λ) with finite width w, this therefore shows

〈LPk, Pk〉HS

‖Pk‖2HS

=
∑

[y]cw∈Mw

∑
x∈[y]cw

χFk(x)
Ec(L)(x)

|Fk|
=

∑
[y]cw∈Mw

Ec(L)(y)

∣∣[y]cw ∩ Fk
∣∣

|Fk|

=
∑

[y]cw∈Mw

Ec(L)(y)µk
(
{(SΓ(K), d) ∈M | Bd

w(K) ∼=C Bc
w(y)}

)
=

∫
M

Ec(L)(xK,w) dµk
(
(SΓ(K), d)

) k→∞−→ ∫
M

Ec(L)(xK,w) dµ
(
(SΓ(K), d)

)
. �

Lemma 6.8. For any L ∈ Cc∗Γ (Λ) with finite width w,

lim
k→∞

‖LPk − PkL‖2HS

‖Pk‖2HS

= 0.

Proof. Note that

‖LPk − PkL‖2HS = Tr
(
|LPk − PkL|2

)
= Tr

(
PkL

∗LPk − PkL∗PkL− L∗PkLPk + L∗PkPkL
)

= Tr
(
|LPk|2 − |PkLPk|2 − |PkL∗Pk|2 + |L∗Pk|2

)
= Tr(|P⊥k LPk|2) + Tr(|P⊥k L∗Pk|2).
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Let ∂Fk denote the set of vertices of Fk adjacent to vertices not in Fk (thus the Følner condition

yields |∂Fk||Fk| ≤
∑

γ∈Q
|Fk\γFk|
|Fk| → 0) and Qn =

{
(x, y) ∈ Γ/Λ × Γ/Λ

∣∣ |P⊥k LPk|2(δx)(y) 6= 0
}

.

Recalling that Q is our finite symmetric set that generates Γ (thus every vertex in G has at most

|Q| neighbors), we find an upper bound on |Qn|:

Suppose (x, y) ∈ Qn, ergo 0 6= |P⊥k LPk|2(δx)(y) =
∑

z∈Γ/Λ

(
P⊥k L

∗Pk(δz)(y)
)(
P⊥k LPk(δx)(z)

)
.

We deduce P⊥k LPk(δx) is not identically zero, so x ∈ Fk and there exists at least one vertex z ∈

Bw(x)\Fk. Thus there are at most |Q|w−1|∂Fk| possibilities for x. Moreover, since PkL
∗P⊥k (δz)(y) 6=

0, the vertex z ∈ Bw(y), implying y ∈ B2w(x). Given x, this leaves at most |Q|2w possibilities for

y.

Using these bounds,

∣∣Tr
(
|P⊥k LPk|2

)∣∣
‖Pk‖2HS

≤
∑

(x,y)∈Qn

∣∣|P⊥k LPk|2(δx)(y)
∣∣

‖Pk‖2HS

≤ ‖L‖2|Q|3w−1 |∂Fk|
|Fk|

k→∞−→ 0.

Similarly,
∣∣Tr
(
|P⊥k L∗Pk|2

)∣∣/‖Pk‖2HS → 0, therefore the result follows. �

Proof of Theorem 6.6theorem.6.6. Density and continuity generalize the prior lemmas to all of

Cc∗Γ (Λ), which we know to be simple and contain no nonzero compact operators. Therefore τ

is a faithful amenable trace. �

Corollary 6.9. Suppose OK is a URS. Then the following are equivalent:

1. K is coamenable.

2. C∗Γ(K) admits a faithful amenable trace.

3. C∗Γ(K) admits an amenable trace.

Proof. (2)⇒(3) is vacuous, while (1)⇒(2) combines the previous theorem with the fact that C∗Γ(K) ⊆

Cd∗Γ (K). (3)⇒(1) is a minor alteration of [BO08, Prop. 6.3.2]:

Suppose C∗Γ(K) ⊂ B
(
`2(Γ/K)

)
has an amenable trace τ . Then τ can be extended to a state on

B
(
`2(Γ/K)

)
such that τ(uTu∗) = τ(T ) for every operator T ∈ B

(
`2(Γ/K)

)
and unitary u ∈ C∗Γ(K).

For any multiplication operator g ∈ `∞(Γ/K) and vector f ∈ `2(Γ/K),

UγgU
∗
γ (f)(x) = g(γ−1.f)(γ−1x) = g(γ−1x)(γ−1.f)(γ−1x) = (γ.g)(x)f(x)

= (γ.g)(f)(x).
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Thus τ(γ.g) = τ(UγgU
∗
γ ) = τ(g), so g 7→ τ(g) is a Γ-invariant mean on `∞(Γ/K), therefore K is

coamenable. �

Remark 6.10. Note that, even for nonminimal orbit-closures, the proof above of (3)⇒(1) still

applies. We also have from Theorem 4.2theorem.4.2 that any C∗Γ(K) with Λ ∈ OK will also admit

an amenable trace.

7 Covariant representations

Let β : Γ→ Aut(A) denote a Γ-action on a C*-algebra A. A covariant representation (π, u,H) of

A consists of a *-homomorphism π : A → B(H) and a unitary representation u : Γ → B(H) such

that uγπ(a)u∗γ = π ◦ βγ(a) for every γ ∈ Γ and a ∈ A. We refer the reader to [BO08, Ch. 4.1]

for further discussion. Suffice it to say that in this section we show C∗Γ(Λ) is a quotient of the full

crossed product C(OΛ) oα Γ.

For every r ∈ N, γ ∈ Qr, and x, y ∈ Γ/Λ, define

Lrx,γ(δy) =


δγy if y ∈ [x]r,

0 else;

thus Lrx,γ is a local kernel of width r. Moreover, every local kernel K of width r is a linear

combination of operators of this form:

K =
∑

[x]r⊆Γ/Λ

∑
γ∈Qr

(
K(δx)(γx)

)
Lrx,γ

|{λ ∈ Qr | λx = γx}|
.

Define µ : C(OΛ) → B
(
`2(Γ/Λ)

)
as taking a function, restricting it to the orbit of Λ, passing

to the coset-space, then using it as a multiplication operator:

µ(g)(f)(γΛ) = (g ◦ ω)(f)(γΛ) = g(γΛγ−1)f(γΛ)

for any g ∈ C(OΛ), f ∈ `2(Γ/Λ), and γ ∈ Γ.

Lemma 7.1. µ is a *-monomorphism into C∗Γ(Λ).
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Proof. µ is a *-homomorphism by composition. µ is injective since g ◦ ω = h ◦ ω for some g, h ∈

C(OΛ) implies g|OΛ
= h|OΛ

, and OΛ is dense in OΛ.

By Lemma 3.2theorem.3.2 and compactness of OΛ, C(OΛ) is the closed linear span of the

characteristic functions χBK,r
. These have images given by

µ(χBω(x),r
)(δy) = χBω(x),r

(ω(y))δy =


δy if ω(y) ∈ Bω(x),r,

0 else,

=


δey if y ∈ [x]r,

0 else,

= Lrx,e(δy).

Therefore C(OΛ) ∼= µ(C(OΛ)) ⊂ C∗Γ(Λ). �

Recall from Section 5Colorssection.5 that we have unitaries Uγ ∈ C∗Γ(Λ) enacting the induced

Γ-action on `2(Γ/Λ). These shall form our unitary representation U : Γ→ C∗Γ(Λ).

Theorem 7.2. (U, µ, `2(Γ/Λ)) is a covariant representation of the Γ-C*-algebra C(OΛ), and its

image is C∗Γ(Λ).

Proof. We first show covariance:

Uγµ(g)U∗γ (f)(x) = µ(g)U∗γ (f)(γ−1x) = g(ω(γ−1x))U∗γ (f)(γ−1x)

= g
(
αγ−1(ω(x))

)
f(x) = αγ(g)(ω(x))f(x) = µ(αγ(g))(f)(x).

for all γ ∈ Γ, g ∈ C(OΛ), f ∈ `2(Γ/Λ), and x ∈ Γ/Λ.

We next show that the spanning elements Lrx,γ are in U(Γ)µ(C(OΛ)); we already know from

Lemma 7.1theorem.7.1 that this is true for γ = e. But

Lrx,γ(δy) =


Uγδy if y ∈ [x]r,

, else,

= UγL
r
x,e(δy).
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Therefore C∗
(
µ(C(OΛ))U(Γ)

)
= C∗Γ(Λ). �

Remark 7.3. In the future, we shall suppress µ, identifying C(OΛ) itself as being a C*-subalgebra

of C∗Γ(Λ). Also, we now have a way to define C∗Γ(Λ) even if Γ is not finitely generated, and most

of the rest of this part still applies. Moreover, Theorem 4.2theorem.4.2 and the representations

described here imply a natural generalization to any Γ-invariant subset O ⊆ Sub Γ by representing

C0(O) o Γ on
⊕

Λ∈O `
2(Γ/Λ).

Unfortunately, U is not necessarily faithful, which limits the usefulness of such a crossed-

product-like form. Fortunately, we have a workaround.

Lemma 7.4. Suppose N is a subgroup of Λ and a normal subgroup of Γ, and πN : Γ→ Γ/N is the

corresponding quotient map. Then S
πN(Q)
Γ/N (Λ/N) is a rooted graph isomorphic to SQΓ (Λ), C∗Γ/N(Λ/N)

is *-isomorphic to C∗Γ(Λ), and OΛ/N is homeomorphic to OΛ.

Proof. N = γNγ−1 ⊆ γΛγ−1 for every γ ∈ Γ, so N ⊆ K for every K ∈ OΛ. By surjectivity, Γ/N

is generated by πN(Q) :=
⊔
γ∈Q{πN(Q)}. (The disjoint union is a technicality to ensure vertices’

degrees remain the same.)

Suppose K ∈ OΛ and πN(γ) ∈ K/N, so there is an element λ ∈ K such that πN(λ) = πN(γ).

Then λ−1γ ∈ N ⊆ K, hence γ = λλ−1γ ∈ K. This shows

K = π−1
N (K/N), (7.1)

which completes the chain of equivalent statements establishing a Γ-invariant bijection γΛ 7→

πN(γ)(Λ/N) between Λ’s and Λ/N’s left cosets:

γΛ = λΛ⇔ Λ = γ−1λΛ⇔ γ−1λ ∈ Λ⇔ πN(γ−1λ) ∈ Λ/N

⇔ Λ/N = πN(γ−1λ)(Λ/N)⇔ πN(γ)(Λ/N) = πN(λ)(Λ/N).

Therefore we have our rooted graph isomorphism, which moreover sends edges labeled γ to edges

labeled πN(γ). The definition of a local kernel is tied to the rooted-labeled structure of the Schreier

graph, therefore this also provides our *-isomorphism.

We showed with equation (7.1Covariant representationsequation.7.1) that the map K 7→ K/N

is bijective, and it is even evidently Γ-equivariant for the natural Γ-action on OΛ/N. Next we show
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it is bicontinuous in the Chabauty topology.

Let (Kn) ⊆ OΛ be a net converging to some K ≤ Γ. Suppose s /∈ πN(K). Then K∩π−1
N (s) = ∅,

so for every γ ∈ π−1
N (s) there is an index m such that n > m implies γ /∈ Kn. Since π−1

N (s) is not a

subset of Kn, equation (7.1Covariant representationsequation.7.1) tells us they are disjoint. Thus

n > m also implies s = πN(γ) /∈ πN(Kn). Similarly, t ∈ πN(K) implies t ∈ πN(Kn) for big enough

n. Therefore (πN(Kn)) converges to πN(K), establishing continuity.

Conversely, let (In) ⊆ OΛ/N be a net converging to I ≤ Γ/N. Suppose γ ∈ π−1
N (I), ergo

πN(γ) ∈ I. Then there is an index m such that n > m implies πN(γ) ∈ In, which in turn implies

γ ∈ π−1
N (In). Similarly, λ /∈ π−1

N (I) implies λ /∈ π−1
N (In) for big enough n. Thus (π−1

N (In)) converges

to π−1
N (I), therefore the map is open by equation (7.1Covariant representationsequation.7.1). �

Lemma 7.5. Λ contains no nontrivial normal subgroups of Γ iff the representation U is faithful.

Proof. U is faithful iff the identity e is the only group element that fixes every coset. Left-

multiplication by group element γ fixes coset λΛ iff it fixes λΛλ−1, ergo γ ∈ λΛλ−1. Thus the

representation is faithful iff the intersection
⋂
λ∈Γ λΛλ−1 is trivial. Therefore the forward direc-

tion is proven by observing
⋂
λ∈Γ λΛλ−1 E Γ. For the reverse, we note that N =

⋂
λ∈Γ λNλ−1 ≤⋂

λ∈Γ λΛλ−1 for any subgroup N E Γ of Λ. �

Remark 7.6. Lemma 7.4theorem.7.4 shows that nothing is lost by passing to Γ/ ∩ OΛ, and

Lemma 7.5theorem.7.5 gives us incentive to do so. Hence, from here on, we shall assume ∩OΛ = {e}.

8 Crossed product consequences

The faithfulness of γ means C∗Γ(Λ) contains a copy of the group *-algebra C[Γ]. However, the

covariant representation itself is never faithful (for nontrivial Λ).

Proposition 8.1. Let Sγ = {K ∈ Sub Γ | γ ∈ K} be a subbasic set of the Chabauty topology as in

Definition 2.1theorem.2.1. Then, as a multiplication operator,

χSγ∩OΛ
= χSγ∩OΛ

Uγ .

21



Proof. A simple calculation:

χSγ∩OΛ
(δx) =


δx if γ ∈ ω(x),

0 else,

=


δγx if γ ∈ ω(γx),

0 else,

= χSγ (ω(γx)) (δγx) = χSγ∩OΛ
(δγx)

= χSγ∩OΛ
Uγ(δx). �

Corollary 8.2. If Λ 6= {e}, then C∗Γ(Λ) is neither the full nor reduced crossed product of C(OΛ)

with Γ. It does not even admit the reduced crossed product as a quotient.

Information is sparse on such exotic, crossed-product-like C*-algebras. We are at least able to

claim U : Γ → C∗Γ(Λ) is a DΛ-representation in the sense of [BG13, Def. 2.1], where DΛ E `∞(Γ)

is the ideal generated by functions supported on subsets of the form
⋃n
i=1 λ

′
nΛλn. Indeed, `2(Γ/Λ)

is the closed linear span of the indicator functions δλΛ, and

πδλΛ,δλ′Λ(γ) = δλΛ(γ−1λ′Λ) = χλ′Λλ−1(γ),

where πf,g ∈ `∞(Γ) is defined for every f, g ∈ `2(Γ/Λ) by

πf,g(γ) = 〈Uγf, g〉 =
∑
x∈Γ/Λ

f(γ−1x)g(x).

Theorem 8.3. The canonical conditional expectation E is a faithful conditional expectation onto

C(OΛ).

Proof. That E is the identity on C(OΛ) comes straight from the definitions. Referring to the proof
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of Lemma 7.1theorem.7.1,

E(Lrx,γ)(y) =


1 if [x]r = [y]r and y = γy,

0 else,

=


1 if Br(ω(x)) ∼= Br(ω(y)) and γ ∈ ω(y),

0 else,

= χBω(x),r∩Sγ ◦ ω(y).

Therefore, by continuity, for every operator K ∈ C∗Γ(Λ) there exists fK ∈ C(OΛ) such that E(K) =

fK ◦ ω. �

Proposition 8.4. Suppose Γ acts amenably on OΛ. Then every trace on C∗Γ(Λ) is amenable.

Proof. We have that the usual crossed product C(OΛ) oα Γ = C(OΛ) oα,r Γ is nuclear by [BO08,

Thm. 4.3.4], hence every trace on it is amenable by [BO08, Prop. 6.3.4]. Therefore, since C∗Γ(Λ) is

a quotient thereof, the result follows from [BO08, Prop. 6.3.6]. �

Theorem 8.5. If Λ is cheap (Definition 2.4theorem.2.4), then its C*-algebra has trivial center:

Z(C∗Γ(Λ)) = Cid`2(Γ/Λ).

Proof. Let K ∈ Z(C∗Γ(Λ)) be a central operator. Then for every γ ∈ Γ and y, z ∈ Γ/Λ,

K(δy)(z) = UγK(δy)(γz) = KUγ(δy)(γz) = K(δγy)(γz),

therefore K is constant along “diagonals.”

Also,

Lrx,γK(δy)(z) =
∑

w∈Γ/Λ

Lrx,γ(δw)(z)K(δy)(w) =


K(δy)(γ

−1z) if γ−1z ∈ [x]r,

0 else,
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must be equal to

KLrx,γ(δy)(z) =
∑

w∈Γ/Λ

K(δw)(z)Lrx,γ(δy)(w) =


K(δγy)(z) if y ∈ [x]r,

0 else,

for every x, y, z ∈ Γ/Λ, r ∈ N, and γ ∈ Qr. In particular, if ω(x) 6= ω(z), then z /∈ [x]R for some

R ∈ N, so

K(δx)(z) = KLRx,e(δx)(z) = LRx,eK(δx)(z) = 0.

If Λ is cheap, then ω(x) = ω(z) only if x = z, therefore K is nonzero only along the main

diagonal. �

9 Injective envelopes

The injective envelope of a C*-algebra A is the minimal C*-algebra I(A) containing A as a C*-

subalgebra such that every u.c.p. map to I(A) from an operator subsystem T of operator system S

can be extended to a u.c.p. map on all of S. Automorphisms extend uniquely to injective envelopes,

so a Γ-action on A uniquely extends to I(A). This all originates in [Ham79], and more can be found

in [HP11, Kaw17, PZ15, Zar19].

The injective envelope of a commutative C*-algebra is also commutative [HP11, Cor. 2.18]. We

write ÕΛ for the character space of the injective envelope I
(
C(OΛ)

) ∼= C(ÕΛ) of C(OΛ).

By definition, there always exists at least one u.c.p. map C∗Γ(Λ) → C(ÕΛ) which restricts to

the identity on C(OΛ); any such map is known as a pseudo-expectation. Since C(OΛ) is in the

multiplicative domain, any pseudo-expectation is a C(OΛ)-bimodule. See [?, Zar19] for further

discussion.

Proposition 9.1. Suppose the Γ-action on ÕΛ is free. Then Λ = {e}.

Proof. By [HP11, Thm. 2.21], the injective envelope C(ÕΛ) is a Γ-C*-subalgebra of the injective

envelope I(C∗Γ(Λ)). Moreover, by the uniqueness of the automorphisms [Ham79, Cor. 4.2], the

action of Γ on I(C∗Γ(Λ)) is still given by the inner automorphisms associated to the unitaries

Uγ ∈ C∗Γ(Λ).
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Let φ : C∗Γ(Λ) → C(ÕΛ) be a pseudo-expectation. Then we can extend φ to a u.c.p. map on

I(C∗Γ(Λ)). Note that φ is the identity on C(OΛ), hence is a conditional expectation onto C(ÕΛ) by

rigidity of the injective envelope [Ham79, Def. 2.2].

Let γ ∈ Γ\{e}. Since any point x ∈ ÕΛ is not equal to the point γ−1.x, they can be separated

by a continuous function f ; ergo, f(x) 6= (γ.f)(x). By C(ÕΛ)-bimodularity,

φ(Uγ)f = φ(Uγ)φ(f) = φ(Uγf) = φ((γ.f)Uγ) = (γ.f)φ(Uγ),

so φ(Uγ)(x) must be 0. Since x was arbitrary, we in fact have that φ(Uγ) is identically 0, hence

(using Proposition 8.1theorem.8.1) so is

χSγ∩OΛ
= φ(χSγ∩OΛ

) = φ(χSγ∩OΛ
Uγ) = χSγ∩OΛ

φ(Uγ).

Therefore Sγ ∩ OΛ = {K ∈ OΛ | γ ∈ K} = ∅. �

We shall work our way toward the following corollary. Compare it with [Ele18, Thm. 7], and

the intersection property discussed in [Bry17, Kaw17, KS19].

Corollary 9.2. If Λ is topologically cheap, then I ∩C(OΛ) is nonzero for every nontrivial (closed,

two-sided) ideal I E C∗Γ(Λ). In particular, if OΛ is a URS, then C∗Γ(Λ) is simple.

This shall be a consequence of Proposition 9.3theorem.9.3 and Corollary 9.5theorem.9.5. Com-

pare Proposition 9.3theorem.9.3 with [KS19, Sec. 6]’s results for C*-dynamical injective envelopes,

and note that we can achieve both directions in that category by mimicking Lemma 6.5 of that

paper.

Proposition 9.3. If every pseudo-expectation is faithful, then I ∩ C(OΛ) is nonzero for every

nontrivial ideal I E C∗Γ(Λ).

Proof. For sake of contraposition, suppose there is nontrivial ideal I /C∗Γ(Λ) with I∩C(OΛ) = {0}.

Let πI : C∗Γ(Λ)→ C∗Γ(Λ)/I be the quotient map. Then πI is injective on C(OΛ), hence there is a

u.c.p. ψ : C∗Γ(Λ)/I → C(ÕΛ) such that ψ ◦ πI is the identity on C(OΛ). Therefore ψ ◦ πI is an

unfaithful pseudo-expectation. �

Since the action on OΛ is never topologically free, [PZ15, Thm. 4.6] states C(OΛ) is never
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a maximal abelian subalgebra (MASA, an abelian subalgebra not contained in any other abelian

subalgebra) of the reduced crossed product C(OΛ) oα,r Γ. Contrast that with the following:

Theorem 9.4. Λ is topologically cheap iff C(OΛ) is a MASA of C∗Γ(Λ).

Proof. ⇒: Proceeding by contraposition, suppose there is a T ∈ C∗Γ(Λ)\C(OΛ) that commutes

with all operators in C(OΛ). Then there are γ, λ ∈ Γ such that c := T (δλΛ)(γΛ) 6= 0 and λΛ 6= γΛ.

Changing root if necessary, we may write λ = e and γ /∈ Λ. For every f ∈ C(OΛ),

f
(
αγ(Λ)

)
= f

(
αγ(Λ)

)
T (δΛ)(γΛ)/c =

(
fT
)
(δΛ)(γΛ)/c =

(
Tf
)
(δΛ)(γΛ)/c =

T
(
(f ◦ ω)δΛ

)
(γΛ)/c = T

(
f(ω(Λ))δΛ

)
(γΛ)/c = f(Λ)T (δΛ)(γΛ)/c = f(Λ), (9.1)

so Λ = αγ(Λ), ergo γ ∈ NΓ(Λ).

There must be a local kernel L of width w ≥ lQ(γ) with ‖T−L‖ < c/2. By Lemma 3.2theorem.3.2,

BΛ,w is a neighborhood of Λ. Suppose K ∈ BΛ,w, so γ /∈ K. By Theorem 4.2theorem.4.2 there is

a surjection ϕ : C∗Γ(Λ)→ C∗Γ(K). Thus ϕ(T ) commutes with all operators in ϕ(C(OΛ)) = C(OK),

and ϕ(T )(δK)(γK) 6= 0 since

c > ‖ϕ(T − L)‖+ ‖L− T‖ ≥ |ϕ(T − L)(δK)(γK)|+ |(L− T )(δΛ)(γΛ)|

≥ |ϕ(T )(δK)(γK)− T (δΛ)(γΛ)| = |ϕ(T )(δK)(γK)− c|.

Combining these facts, we may repeat equation (9.1Injective envelopesequation.9.1) to show γ ∈

NΓ(K). Therefore γ is in the topological stabilizer Γ◦Λ.

⇐: Using contraposition again, suppose there is a subgroup Λ′ ∈ OΛ and γ ∈ Γ◦Λ′\Λ′. Ergo

there is neighborhood V ⊆ OΛ of Λ′ such that αγ |V = idV . Since V \Sγ = {K ∈ V | γ /∈ K} is open,

it intersects OΛ; ergo there is a subgroup in OΛ (which our freedom of root allows us to assume is

Λ) such that γ ∈ Γ◦Λ\Λ. Let f ∈ C(OΛ) be equal to 1 at Λ and supported on V \Sγ . Thus Λ 6= γΛ,

yet

fUγ(δΛ)(γΛ) = f(γΛγ−1)Uγ(δΛ)(γΛ) = f(Λ)δγΛ(γΛ) = 1 6= 0,
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so fUγ /∈ C(OΛ). However, for any g ∈ C(OΛ) and K ∈ OΛ,

(
fUγgU

∗
γ

)
(K) = f(K)g(α−1

γ (K)) =


f(K)g(α−1

γ (K)) if K ∈ V,

0 else,

=


f(K)g(K) if K ∈ V,

0 else,

=
(
gf
)
(K),

therefore fUγ commutes with g. �

Corollary 9.5. If Λ is topologically cheap, then there is a unique pseudo-expectation C∗Γ(Λ) →

C(ÕΛ) (which must be the canonical conditional expectation). Moreover, for any T ∈Mn(C∗Γ(Λ)),

‖T‖ = sup
{
‖LTC‖

∣∣ L,Rt ∈ C(OΛ,M1×n) and ‖L‖ = ‖R‖ = 1
}
.

Proof. Combine the previous theorem with [PZ15, Thm. 1.4]. �

Question 9.6. What conditions on Λ guarantee there is a bijection between ideals of C∗Γ(Λ) and

Γ-invariant ideals of C(OΛ)? (cf. ideal separation property [Kaw17, KS19, Sie10])

To prove a bijection, we simply need that for every ideal I / C∗Γ(Λ), subgroup K ∈ I, and

J := I ∩ C(OΛ),

K ∈ C∗Γ(Λ)JC∗Γ(Λ). (9.2)

Corollary 9.2theorem.9.2 suggests the answer is related to cheapness, as does the following

observation: If Λ is cheap, [Ele18, Lm. 6.6] tells us E(I) ⊆ J . For any γ ∈ Γ and x ∈ Γ/Λ,

E(KUγ)(ω(x)) = KUγ(δx)(x) = K(δγx)(x).

Thus we have “slices” of K in J . These slices are not necessarily “parallel,” but we can remove all

double-counting.
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Order Qr = {γ1, γ2, . . . , γ|Qr|}. For an integer m ∈ [1, |Qr|], define Kr
m ∈ C(OΛ) by

Kr
m(Λ′) =


E(KUγm)(Λ′) if γmΛ′ 6= γiΛ

′ for every i < m,

0 else.

Note that Kr
m ∈ J since it is simply the product of E(KUγm) with the (continuous) characteristic

function of OΛ\
⋃m
i=1 Sγ−1

i γm
.

Now, for every x, y ∈ Γ/Λ,

Kr
mU
∗
γm(δx)(y) = Kr

m(δγ−1
m x)(y) =


0 if x 6= γmy,

0 if γmy = γiy for some i < m

K(δx)(y) else.

Define Kr =
∑|Qr|

m=1K
r
mU
∗
γm , so

Kr(δx)(y) =


K(δx)(y) if y ∈ Br(x),

0 else.

Thus the sequence (Kn) ⊂ I strongly converges to K. If it converges in norm, then we have

K ∈ C∗Γ(Λ)JC∗Γ(Λ). K is already the limit of local kernels, so it seems feasible.

However, the following throws a wrench into things:

Theorem 9.7. Suppose Λ is topologically cheap and I is a nonzero ideal of C∗Γ(Λ). Then I is

strongly dense in C∗Γ(Λ) ⊂ B
(
`2(Γ/Λ)

)
.

Proof. By Corollary 9.2theorem.9.2, I ∩ C(OΛ) is a nonzero Γ-invariant ideal of C(OΛ), hence it

must be C0(V ) for some nonempty Γ-invariant open subspace V ⊆ OΛ. Since V is open, it must

intersect OΛ, and since V is Γ-invariant, it must contain all of OΛ, ergo αγ(Λ) ∈ V for every γ ∈ Γ.

Let F ⊂ Γ be a finite subset. Since OΛ is compact and Hausdorff, there is a function fF ∈ C0(V )

such that fF (αγ(Λ)) = 1 for each γ ∈ F , and so

(fF − idΓ/Λ)(δγΛ) = fF (αγ(Λ))δγΛ − δγΛ = 0.
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Since `2(Γ/Λ) is the closed linear span of {δγΛ | γ ∈ Γ}, the net (fF ) ⊂ I (ordered by inclusion of F )

strongly converges to idΓ/Λ. Therefore the result follows from strong-continuity of multiplication.

�

10 Subalgebras

In this section we explore some assorted facts related to C*-subalgebras of C∗Γ(Λ), starting with

Cartan subalgebras, as introduced in [Ren08, Def. 5.1]. These arise from the study of groupoid

C*-algebras as a C*-analogue of the W* concept introduced in [FM77], and have recently come

under study for their relation to the Universal Coefficient Theorem. (See e.g. [Li20].)

Definition 10.1. A C*-subalgebra B ⊆ A of a unital C*-algebra A is called a Cartan subalgebra

if the following hold:

1. B is a MASA of A.

2. There is a faithful conditional expectation from A onto B.

3. B is regular in A [PZ15, Sec. 1.1]; that is, it is the closed linear span of the set{
a ∈ A

∣∣ aBa∗, a∗Ba ⊆ B}.
Proposition 10.2. C(OΛ) is regular in C∗Γ(Λ).

Proof. This is evident from Section 7Covariant representationssection.7 and the fact C(OΛ) is Γ-

invariant. �

Theorem 10.3. Λ is topologically cheap iff C(OΛ) is a Cartan subalgebra of C∗Γ(Λ).

Proof. The requirements have been established previously: The first (and the backwards direction)

in Theorem 9.4theorem.9.4, the second in Theorem 8.3theorem.8.3, and the third just now in

Proposition 10.2theorem.10.2. �

Definition 10.4. [Kum86, Def. 1.3] A C*-diagonal subalgebra B of unital A is a special case

of a Cartan subalgebra, inspired by the subalgebra of Mn consisting of diagonal matrices, and is

characterized by the following requirements:

1. B is abelian and contains 1A.

2. There is a faithful conditional expectation P : A → B.
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3. The kernel of P is the closed linear span of

NP := {a ∈ A | a∗Ba, aBa∗ ⊆ B and a2 = 0}.

Lemma 10.5. Suppose T ∈ C∗Γ(Λ) satisfies TC(OΛ)T ∗ ⊆ C(OΛ), and z ∈ Γ/Λ. Then there exists

at most one coset x ∈ Γ/Λ such that T (δz)(x) 6= 0.

Proof. For each x, y ∈ Γ/Λ, define τx,y : C(OΛ) → C by τx,y(f) = TfT ∗(δx)(y), so for any

f, g ∈ C(OΛ) and c ∈ C,

τx,y(cf + g) = T (cf + g)T ∗(δx)(y) = cTfT ∗(δx)(y) + TgT ∗(δx)(y) = cτx,y(f) + τx,y(g),

|τx,y(f)| ≤ ‖f‖∞‖T‖2,

τx,y(f) =
∑
z∈Γ/Λ

(
Tf
)
(δz)(y)T ∗(δx)(z) =

∑
z∈Γ/Λ

∑
w∈Γ/Λ

T (δw)(y)f(δz)(w)T (δz)(x)

=
∑
z∈Γ/Λ

T (δz)(y)f
(
ω(z)

)
T (δz)(x). (10.1)

Thus τx,y is a bounded linear functional, hence represents integration against a unique regular

Borel measure µx,y on OΛ by the Riesz-Markov-Kakutani Representation Theorem [Kad18, Thm.

8.4.2.4][Con90, Cor. 3.5].

If y 6= x, then every τx,y(f) = 0 since TfT ∗ ∈ C(OΛ) by assumption; in particular, for any

z ∈ Γ/Λ,

0 = lim
r

0 = lim
r
τx,y

(
χBω(z),r

)
= lim

r

∫
χBω(z),r

dµx,y =

∫
χ{ω(z)} dµx,y = T (δz)(y)T (δz)(x)

using the basic clopen subsets Bω(z),r = {K ∈ OΛ | Br(K) ∼= Br(ω(z))}, the Dominated Convergence

Theorem [Kad18, Thm. 4.4.2.1], and equation (10.1Subalgebrasequation.10.1).

Therefore, for any pair of distinct x, y ∈ Γ/Λ, at least one of T (δz)(y), T (δz)(x) is zero. �

Theorem 10.6. Λ is cheap iff C(OΛ) is a C*-diagonal subalgebra of C∗Γ(Λ).

Proof. ⇒: Once again, we reference the canonical conditional expectation E from Remark 4.3theorem.4.3

and the spanning elements Lrx,γ from Section 7Covariant representationssection.7. Suppose T /∈
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ker(E) and T 2 = 0. Then there is a coset z ∈ Γ/Λ such that T (δz)(z) = E(T )(ω(z)) 6= 0, but

0 = T 2(δz)(z) =
∑
x∈Γ/Λ

T (δx)(z)T (δz)(x).

Thus there must be another coset x ∈ Γ/Λ such that T (δz)(x) 6= 0. Then TC(OΛ)T ∗ is not a

subset of C(OΛ) by Lemma 10.5theorem.10.5, so T /∈ NE . Therefore NE ⊆ ker(E).

By the definitions, if γx 6= x, then E(Lrx,γ) is identically 0. Moreover, every local kernel in

ker(E) of width w is a linear combination of Lwx,γ ’s with γx 6= x. Any K ∈ ker(E) is the limit of a

net (Kn) of local kernels; thus K = K − E(K) is the limit of the net (Kn − E(Kn)) ⊆ ker(E) of

local kernels. Therefore we see ker(E) = span{Lrx,γ | γx 6= x}.

For cheap Λ and every γ ∈ Γ, [Ele18, Prop. 2.3] provides an rγ > lQ(γ) such that γy /∈ [y]rγ for

all y ∈ Γ/Λ. For any r ≥ rγ ≥ n ≥ lQ(γ),

(Lrx,γ)2(δy) =


Lrx,γ(δγy) if y ∈ [x]r,

0 else,

=


δγ2y if γy, y ∈ [x]r,

0 else,

= 0,

Lnx,γ =
∑

[z]r⊆[x]n

Lrz,γ .

Therefore ker(E) = span{Lrx,γ | γx 6= x and (Lrx,γ)2 = 0}.
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For any f ∈ C(OΛ),

(Lrx,γ)∗fLrx,γ(δy) =


(Lrx,γ)∗f(δγy) if y ∈ [x]r,

0 else,

=


f ◦ ω(γy)(Lrx,γ)∗(δγy) if y ∈ [x]r,

0 else,

=


f ◦ ω(γy)δy if y ∈ [x]r,

0 else,

Lrx,γf(Lrx,γ)∗(δy) =


Lrx,γf(δγ−1y) if γ−1y ∈ [x]r,

0 else,

=


f ◦ ω(γ−1y)Lrx,γ(δγ−1y) if γ−1y ∈ [x]r,

0 else,

=


f ◦ ω(γ−1y)δy if γ−1y ∈ [x]r,

0 else,

therefore {Lrx,γ | γx 6= x and (Lrx,γ)2 = 0} ⊆ NE .

⇐: Conversely, suppose Λ is not cheap. Then there is a subgroup K ∈ OΛ and γ /∈ K such

that αγ(K) = K. Let r ≥ max{lQ(γ), lQ(γ2)}, and q : C∗Γ(Λ) → C∗Γ(K) be the quotient map given

in Theorem 4.2theorem.4.2. Let r ≥ max{lQ(γ), lQ(γ2)}. Lemma 3.2theorem.3.2 allows us to find

y ∈ Γ/Λ such that Br(y) ∼= Br(K), hence γy 6= y. We shall use separate cases depending on

whether γ2 is in K.

Suppose γ2 ∈ K, so also γ2y = y. Choose T ∈ C∗Γ(Λ) such that TC(OΛ)T ∗ ⊆ C(OΛ) and

q(T )(δK)(γK) 6= 0. There are local kernels Tn of respective widths (at least) n such that Tn → T ,

and there are cosets xn ∈ Γ/Λ with respective balls Bn(xn) ∼= Bn(K). We use these to see that, for
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every λ ∈ Γ,

q(T )(δK)(λK) = lim
n
q(Tn)(δK)(λK) = lim

n
Tn+lQ(λ)(δxn+lQ(λ)

)(λxn+lQ(λ))

= lim
n
U∗λTn+lQ(λ)(δxn+lQ(λ)

)(xn+lQ(λ)) = lim
n
E(U∗λTn+lQ(λ))(ω(xn+lQ(λ)))

= lim
n
E(U∗λTn+lQ(λ))(K) = E(U∗λT )(K) = lim

n
E(U∗λT )(ω(xn+lQ(λ)))

= lim
n
T (δxn)(λxn).

Then, using Lemma 10.5theorem.10.5,

q(T )2(δK)(K) =
∑
s∈Γ/K

q(T )(δs)(K)q(T )(δK)(s) = q(T )(δγK)(K)q(T )(δK)(γK)

= q(T )(δγK)(γ2K)q(T )(δK)(γK) = q(T )(δK)(γK)q(T )(δK)(γK) 6= 0.

Thus T 2 6= 0, hence T /∈ NE . Since q(Lry,γ)(δK)(γK) = Lry,γ(δy)(γy) 6= 0, this means Lry,γ cannot be

in the closed linear span of NE . In proving the other direction we showed Lry,γ ∈ ker(E), therefore

we have proved this direction in this case.

Now suppose γ2 /∈ K, so Lry,γ2 ∈ ker(E). The evaluation map g 7→ g(K) is a pure state ρ on

C(OΛ), which we may extend to ρ0 on C∗Γ(Λ) by ρ0(T ) = E(T )(K). Define V = (Uγ +U∗γ )/
√

2 and

state ρ1 on C∗Γ(Λ) by ρ1(T ) = E
(
V gV ∗

)
(K). For any x ∈ Γ/Λ such that γ /∈ ω(x) (ergo γx 6= x)

and any g ∈ C(OΛ),

E
(
V gV ∗

)
(ω(x)) = V gV ∗(δx)(x) =

(
g(δγx)(γx) + g(δγ−1x)(γx) + g(δγx)(γ−1x) + g(δγ−1x)(γ−1x)

)
/2

=
(
g ◦ ω(γx)(δγx + δγ−1x)(γx) + g ◦ ω(γ−1x)(δγx + δγ−1x)(γ−1x)

)
/2

=
(
g ◦ αγ ◦ ω(x) + g ◦ αγ−1 ◦ ω(x)

)
/2.

Thus ρ1(g) =
(
g(K) + g(K)

)
/2 = g(K), so ρ1 is also an extension of ρ. We have

.E
(
V Lry,γ2V

∗
)

(ω(x)) =
(
Lry,γ2(δγx + δγ−1x)(γx) + Lry,γ2(δγx + δγ−1x)(γ−1x)

)
/2

≥ Lry,γ2(δγ−1x)(γx)/2 =


1/2 if Br(αγ−1 ◦ ω(x)) ∼= Br(K),

0 else,
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Thus ρ1(L
rγ
y,γ2) 6= 0 = ρ0(L

rγ
y,γ2), hence the two extensions are distinct. Therefore C(OΛ) is not a

diagonal subalgebra of C∗Γ(Λ) by [Kum86, Prop. 1.4]. �

We end this section with a discussion of the relationship between the C*-algebras when there

is an intermediate group Λ ≤ H ≤ Γ.

Proposition 10.7. Suppose there is a subgroup H ≤ Γ such that Λ ≤ H. Then there is a u.c.p.

map EH : C∗Γ(Λ)→ C∗H(Λ).

Proof. First let U be Λ’s orbit-closure within the dynamical system of H’s subgroups, and note

that U ⊆ OΛ. For each γ ∈ Γ and g ∈ C(OΛ), define

EH(gUγ) = χH(γ)g|UUγ ∈ C∗H(Λ).

For cosets x, γx ∈ H/Λ, there must be η, η′ ∈ H such that ηΛ = x and η′Λ = γx = γηΛ, hence

γ ∈ η′Λη−1 ⊆ H. Thus, for any finite sum
∑

γ∈Γ gγUγ and f ∈ `2(H/Λ) ⊆ `2(Γ/Λ),

∥∥∥∥∥∥
∑
γ∈Γ

EH (gγUγ) (f)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
η∈H

gη ◦ ω(x)f(η−1x)

∥∥∥∥∥∥
2

=
∑

x∈H/Λ

∣∣∣∣∣∣
∑
η∈H

gη ◦ ω(x)f(η−1x)

∣∣∣∣∣∣
2

=
∑

x∈H/Λ

∣∣∣∣∣∣
∑
γ∈Γ

gγ ◦ ω(x)f(γ−1x)

∣∣∣∣∣∣
2

≤
∑
x∈Γ/Λ

∣∣∣∣∣∣
∑
γ∈Γ

gγ ◦ ω(x)f(γ−1x)

∣∣∣∣∣∣
2

=

∥∥∥∥∥∥
∑
γ∈Γ

gγUγ(f)

∥∥∥∥∥∥
2

,

so EH is well-defined and contractive, therefore may be continuously extended to a linear map on

C∗Γ(Λ).

Similarly, for matrices
[
fi
]
∈Mn,1

(
`2(H/Λ)

)
⊆Mn,1

(
`2(H/Λ)

)
and positive

[
Ti,j
]
∈Mn(C∗Γ(Λ))

with Ti,j =
∑

γ∈Γ gγ;i,jUγ ,

〈[
EH (Ti,j)

] [
fi

]
,

[
fi

]〉
=

n∑
i,j=1

〈EH (Ti,j) (fj), fi〉 =

n∑
i,j=1

∑
x∈H/Λ

fi(x)
∑
η∈H

fj(η
−1x)gη;i,j ◦ ω(x)

=
n∑

i,j=1

∑
x∈Γ/Λ

fi(x)
∑
γ∈Γ

fj(γ
−1x)gγ;i,j ◦ ω(x) =

〈[
Ti,j

]([
fi

])
,

[
fi

]〉
≥ 0,

so
[
EH (Ti,j)

]
is also a positive matrix. Therefore EH is completely positive.
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Theorem 10.8. Let H and U be as above, and suppose U is open in OΛ and that the normalizer

NΓ(Λ) ≤ H. Then C∗H(Λ) ⊆ C∗Γ(Λ).

Proof. We have C(U) ⊆ C(OΛ), so any finite sum
∑

η∈H gηUη ∈ C∗H(Λ) is formally equivalent to an

operator in C∗Γ(Λ). The result shall follow once we show these two interpretations have equal norm.

We simply note that if αγ(Λ) ∈ U , then it is equal to αη(Λ) for some η ∈ H, thus η−1γ ∈ NΓ(Λ),

so γ ∈ H. Therefore, for any f ∈ `2(Γ/Λ),

∥∥∥∥∥∑
η∈H

gηUη(f)

∥∥∥∥∥
2

`2(Γ/Λ)

=
∑
x∈Γ/Λ

∣∣∣∣∣∑
η∈H

gη ◦ ω(x)f(η−1x)

∣∣∣∣∣
2

=
∑

x∈H/Λ

∣∣∣∣∣∑
η∈H

gη ◦ ω(x)f(η−1x)

∣∣∣∣∣
2

=

∥∥∥∥∥EH

(∑
η∈H

gηUη

)(
f |H/Λ

)∥∥∥∥∥
2

`2(H/Λ)

. �
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Part II

Approximately Multiplicative

Decompositions of Nuclear Maps

1 Background

Nuclearity was originally defined for C*-algebras in terms of the uniqueness of tensor products,

a property first described in [Gro55]. While of historical importance and useful in its own right,

the work of [Kir77] and [CE78] showed it was identical to the completely positive approximation

property (CPAP). This characterization has found an equal share of attention—thanks in part to

its connection to hyperfinite von Neumann algebras—and it is what we investigate here.

Definition 1.1. [BO08, Ch. 2] A contractive completely positive (c.c.p.) map π : A→ B between

C*-algebras (or to a von Neumann algebra B) is called nuclear (resp. weakly nuclear) if it

admits a certain decomposition: there exists a net (Fn) of finite-dimensional C*-algebras and c.c.p.

maps A
ψn−→ Fn

ϕn−→ B such that (ϕn ◦ ψn) converges to πn in the point-norm (resp. point-σ-weak)

topology. It is this decomposition to which the “CPA” in CPAP refers. If π is the identity, then

we say that A itself is nuclear; if π is an inclusion, we say A is exact.

The germinal idea of this investigation was the definition of nuclear dimension in [WZ09][Def.

2.1.], which sought to quantify the CPAP. (Although this notion goes back even further to [KW04]’s

decomposition rank, and so on.) Methods for strengthening the CPAP were first explored in

[HKW12]. This was synthesized with [BK97]’s results on quasidiagonal nuclear C*-algebras into

[BCW17], which was built upon by [CS19]. This part builds further by providing a partial answer

to the final question in [CS19]. These experiments are about seeing how far we can stretch these

finite-dimensional approximations. As in [BCW17], they hinge on properties related to quasidiag-

onality.

Definition 1.2. [BO08, Thm. 7.2.1] A C*-algebra A ⊂ B(H) is quasidiagonal if, for any ε > 0

and any finite set F ⊂ A and F ⊂ H, there exists a finite-rank projection p ∈ B(H) such that

‖px− xp‖, ‖pv − v‖ ≤ ε
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for every x ∈ F and v ∈ F.

More generally, quasidiagonality is defined by the existence of another kind of finite-dimensional

approximation: approximately multiplicative, approximately isometric c.c.p. maps. The equiva-

lence of these is due to [Voi91].

Definition 1.3. [BO08, Def. 7.1.1] A C*-algebra A is quasidiagonal if, for every ε > 0 and finite

set F ⊂ A, there exist c.c.p. maps ψ : A→ F to a finite-dimensional C*-algebra F such that

‖ψ(x)ψ(y)− ψ(xy)‖,
∣∣‖ψ(x)‖ − ‖x‖

∣∣ < ε

for all x, y ∈ F .

This characterization motivates the following:

Definition 1.4. [Bro06, Def. 3.3.1] A trace (by which we mean a tracial state) τ on a C*-algebra

A is quasidiagonal if, for every ε > 0 and finite set F ⊂ A, there exist unitary completely positive

(u.c.p.) maps ψ : A→ F to a finite-dimensional C*-algebra F with trace trF such that

‖ψ(x)ψ(y)− ψ(xy)‖, |τ(x)− tr ◦ ψ(x)| < ε

for all x, y ∈ F .

Our search for multiplicativity-in-the-limit also leads to interest in another approximate form

of multiplicativity introduced alongside nuclear dimension, that being the preservation of the mul-

tiplication of orthogonal positive elements.

Definition 1.5. [WZ09, Def. 2.3] A *-homomorphism ϕ : A → B between C*-algebras A,B is

called order zero if ϕ(a0)ϕ(a1) = 0 for every positive a0, a1 ∈ A such that a0a1 = 0.

The CPAP was previously examined for nuclear A in [HKW12, Thm. 1.4], which showed that

we may then find ϕn : Fn → A (as in Definition 1.1theorem.1.1) that are convex combinations of

finitely many c.c.p. order zero maps. This was further strengthened in [BCW17, Thm. 3.1] by

showing the sequence (ψn : A→ Fn) may be chosen to be approximately order zero. Furthermore,

drawing from [BK97], if both A and all of its traces are quasidiagonal, then (ψn) may be chosen
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to be approximately multiplicative. In fact, [BCW17, Thm. 2.2] shows that the converse is true as

well.

Using the result from [HKW12] as their starting point, [CS19] began the process of generalizing

these to non-nuclear A: so long as π is order zero, we may find ϕn that are convex combinations

of c.c.p. order zero maps [CS19, Th. 1]. Alternatively, approximate multiplicativity of (ψn) is

attainable for weakly nuclear π with quasidiagonal A [CS19, Prop. 3] .

The question is, then, “What is necessary or sufficient to get approximate multiplicativity for

nuclear π?” This part’s results are two necessary conditions.

Lemma 2.6theorem.2.6. Let π : A → B be a *-homomorphism between C*-algebras A,B that

admits an approximately multiplicative norm-decomposition (see Definition 2.5theorem.2.5), and τ

be a trace on π(A). Then τ ◦ π is a quasidiagonal trace on A.

Theorem 2.7theorem.2.7. Let π : A→ B ⊆ B∗∗ be a *-homomorphism that admits an approxi-

mately multiplicative σ-strong*-decomposition (see Definition 2.2theorem.2.2). Then the inclusion

π(A) ⊆ B is nuclear.

We also reach a full characterization in the exact case, which stems from a more general sufficient

condition given in Theorem 2.12theorem.2.12.

Theorem 2.12theorem.2.12. Let A be an exact C*-algebra and π : A→ B be a *-homomorphism

to another C*-algebra B. Then π admits an approximately multiplicative norm-decomposition iff it

is nuclear and quasidiagonal and τ ◦ π is a quasidiagonal trace on A for every trace τ on π(A).

We shall require Kirchberg’s ε-test [Kir06, Lem. A.1], which—given sequences that approxi-

mately satisfy a condition arbitrarily closely—allows us to re-index into a sequence that exactly

satisfies the condition. We state it in slightly less generality so as to make our application clear.

Theorem 1.6. (E. Kirchberg) Let O ⊂ N be the unit ball of a von Neumann algebra N , and

suppose there is a γ ∈ N such that for every n, k ∈ N there exists a function fkn : O → [0,∞) with

Lipschitz constant less than γ. For fixed ultrafilter ω, define functions fkω : `∞(O) → [0,∞) by

fkn
(
(bn)

)
= limn→ω f

k
ω(bn). Finally, suppose that for every K ∈ N and ε > 0 there is a sequence

W ∈ `∞(O) such that fkω(W ) < ε for every k < K. Then there exists U ∈ `∞(O) such that

fkω(U) = 0 for every k ∈ N.
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We also use that the σ-strong* topology on a von Neumann algebra N agrees on bounded

subsets with the topology generated by seminorms

‖x‖ρ :=

√
ρ

(
x∗x+ xx∗

2

)

for a separating family of normal states ρ on N (see e.g. [Bla06, III.2.2.19]).

For simplicity, we shall assume that our C*-algebras are separable and unital.

2 Results

This part is only possible through use of the following as-yet unpublished result, which is something

of a folklore theorem (cf. [CETW20]). We thank the authors of [CCE+21] for allowing us to

reproduce the proof.

Theorem 2.1. Let θ, π : A → N be weakly nuclear *-homomorphisms from a C*-algebra A to a

finite von Neumann algebra N that agree on traces (that is, τ ◦ θ = τ ◦ π for every trace τ on N).

Then θ and π are strong* approximately unitarily equivalent.

Proof. Let normal trace τ0 on N be given. Replacing N with πτ0(N) (where πτ is the GNS

representation corresponding to τ0) if necessary, we may assume τ0 is faithful. We need to show

that θ and π are unitarily equivalent as maps into the tracial ultrapower Nω
τ of N with respect to

τ0.

Define the weakly nuclear *-homomorphism µ : A→M2(Nω
τ ) by

µ(a) =

θ(a) 0

0 π(a)

 .
We claim that M := π(A)′′ is hyperfinite.

Indeed, let ψn : A → Fn and ϕn : Fn → M be c.c.p. maps for finite-dimensional C*-algebras

Fn such that (ϕn ◦ψn) point-weak* converges to µ. Fix a unital normal representation M ⊆ B(H),

and define maps η, ηn : A ⊗alg M
′ → B(H) by η(a ⊗ b) = µ(a)b and ηn(a ⊗ b) = ϕn ◦ ψn(a)b, so

that (ηn) point-weak* converges to η. The ηn are continuous with respect to the minimal tensor

product since they factor through Fk ⊗M ′, hence so is η. A conditional expectation of B(H) onto
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M ′ is then provided by [BO08, Prop. 3.6.5], confirming that M is injective, hence hyperfinite by

Connes’ Theorem [Con76, Thm. 6].

Define projections

p1 =

1 0

0 0

 , p2 =

0 0

0 1


in M2(Nω

τ )∩π(A)′. Then τ(p1x) = τ(p2x) for every normal trace τ and every x ∈ π(A), hence also

for every x ∈ π(A)′′. By [CET+20, Lem. 4.5], τ(p1) = τ(p2) for every trace τ on M2(Nω
τ ) ∩ π(A)′.

Thus there is a unitary u = [ui,j ] ∈ M2(Nω
τ ) ∩ π(A)′ such that u∗p1u = p2, hence u1,1 = 0

and u∗1,2u1,2 = 1Nω
τ

. Therefore u1,2 is unitary since Nω
τ is finite, and θ(a)u1,2 = u1,2π(a) since

u ∈ π(A)′. �

Most of the following lemma’s proof is borrowed from [BCW17]; improvements are due to mixing

in material from [CS19] and Theorem 2.1theorem.2.1. To properly state the theorems, we need (the

W* half of) the part’s central definition.

Definition 2.2. Let π : A → N be a *-homomorphism from a C*-algebra A to a von Neumann

algebra N . An approximately multiplicative σ-strong*-decomposition of π is a net of u.c.p.

maps A
ψn−→ Fn

ϕn−→ N for finite-dimensional C*-algebras Fn such that

(i) ϕn ◦ ψn(x)→ π(x) in the σ-strong* topology for all x ∈ A,

(ii) ‖ψn(x)ψn(y)− ψn(xy)‖ → 0 for all x, y ∈ A,

(iii) every ϕn is a *-homomorphism.

Lemma 2.3. Let A be a quasidiagonal C*-algebra and π : A → N be a weakly nuclear *-

homomorphism such that, for every trace τ on π(A), the trace τ ◦ π is quasidiagonal. Then π

admits an approximately multiplicative σ-strong*-decomposition.

Remark 2.4. Note that the “quasidiagonal τ ◦ π” condition is satisfied if either every trace on A

or every trace on π(A) is quasidiagonal. We shall see that this property is essential.

Proof of Lemma 2.3theorem.2.3. Let F ⊂ A be a finite set of contractions, S a finite set of normal

states on N , and ε > 0. Define normal state ρ =
∑

ρ′∈S ρ
′/|S|, so that ‖b‖2ρ′ ≤ |S|‖b‖2ρ for every

ρ′ ∈ S and b ∈ N . Thus we need only make reference to ρ in the proof, rather than the entire set

S.
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N may be decomposed into N1 ⊕N∞ for von Neumann algebras N1, N∞ that are respectively

finite and properly infinite. Similarly, π = π1 ⊕ π∞ for weakly nuclear *-homomorphisms π1 : A→

N1 and π∞ : A→ N∞. We shall deal with each summand separately by assuming it comprises all

of N .

Suppose N is properly infinite. (cf. proofs of [CS19, Prop. 2] and [BCW17, Lem. 2.4]) By

weak nuclearity, there are k ∈ Z+ and u.c.p. maps A
ψ′−→Mk

ϕ̇′−→ N such that ‖ϕ̇′◦ψ′(x)−π(x)‖ρ ≤

ε for every x ∈ F . Since A is separable, we may fix a faithful unital representation A ⊆ B(H) such

that H is separable and A contains no nonzero compact operators. Voiculescu’s Theorem [Dav96,

Thm. II.5.3] provides an isometry v : Ck → H such that ‖v∗xv − ψ′(x)‖ ≤ ε for every x ∈ F .

Likewise, quasidiagonality provides a finite-rank projection p ∈ B(H) such that ‖pv − p‖ ≤ ε and

‖px − xp‖ ≤ ε for every x ∈ F . Define u.c.p. maps A
ψ−→ B(pH)

ϕ̇−→ N by ψ(a) = pap and

ϕ̇(T ) = ϕ̇′(v∗Tv). Thus, for all x, y ∈ F ,

‖ψ(x)ψ(y)− ψ(xy)‖ ≤ ‖p‖‖xp− px‖‖yp‖ ≤ ε,

‖ϕ̇ ◦ ψ(x)− π(x)‖ρ ≤ ‖ϕ̇′(v∗ψ(x)v)− ϕ̇′ ◦ ψ′(x)‖+ ‖ϕ̇′ ◦ ψ′(x)− π(x)‖ρ

≤ ‖ϕ̇′‖‖v∗ψ(x)v − ψ′(x)‖+ ε

≤ ‖v∗pxpv − v∗xpv‖+ ‖v∗xpv − v∗xv‖+ ‖v∗xv − ψ′(x)‖+ ε

≤ ‖v∗p− v∗‖‖xpv‖+ ‖v∗x‖‖pv − v‖+ 2ε ≤ 4ε.

Our properly infinite assumption finally kicks in, allowing us to find a unital embedding ι :

B(pH) → N (a consequence of [Bla06, III.1.3.5]). By [Haa85, Prop. 2.1] there is isometry w ∈ N

such that ϕ̇(T ) = w∗ι(T )w for all T ∈ B(pH), and [Haa85][Page 167] shows how w may be

approximated by a unitary u so that

‖Ad(u∗) ◦ ι(T )− ϕ̇(T )‖ρ ≤ ‖T‖ε ≤ ε

for every T ∈ ψ(F) ⊂ B(pH). The *-homomorphism ϕ = Ad(u∗) ◦ ι therefore completes this term

of the net.

Now suppose N is finite. (cf. proof of [BCW17, Lem. 2.5]) Then it has a separating family

of normal traces, hence we may assume ρ is tracial. Moreover, there is central projection p ∈ N such

that the ideal {b ∈ N | ρ(b∗b) = 0} is Np. Thus we may identify πρ◦π(A)′′ (the strong closure of the
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image of the GNS representation corresponding to the trace ρ ◦ π) with the summand N(1N − p)

and, without loss of generality, with N itself.

Once again, we may split N into factors to be dealt with separately, one of type I and another

of type II1. Also again, we may simply assume that each factor is, in turn, all of N .

First suppose it is type I, ergo can be written N ∼=
⊕∞

i=1 Mni

(
L∞(Xi)

)
, and hence we can

decompose π =
⊕∞

i=1 π
(i). By normality of π, there is a finite sum πn =

⊕n
i=1 π

(i) such that

‖π(x) − πn(x)‖ρ ≤ ε for every x ∈ F . Since
⊕n

i=1 Mni

(
L∞(Xi)

)
is AF, it contains a finite-

dimensional C*-subalgebra F such that, for each x ∈ F , there is a contraction bx ∈ F that satisfies

‖πn(x)− bx‖ ≤ ε.

Since it is finite-dimensional, F is the direct sum of finitely many matrix algebras Fj . By

Arveson’s Extension Theorem [BO08, Thm. 1.6.1], for each j the *-homomorphism
⊕

k fk 7→ fj

from F onto Fk may be extended to a u.c.p. map ψFk :
⊕n

i=1 Mni

(
L∞(Xi)

)
→ Fk. Putting them

together, we get a u.c.p. map ψF :=
⊕

j ψFj which restricts to the identity on F .

Define ψ : A → F to be ψF ◦ πn, and ϕ : F → N to simply be the inclusion. Thus, for any

x, y ∈ F ,

‖ϕ ◦ ψ(x)− π(x)‖ρ ≤ ‖ψF ◦ πn(x)− ψF (bx)‖+ ‖bx − πn(x)‖+ ‖πn(x)− π(x)‖ρ ≤ 3ε,

‖ψ(x)ψ(y)− ψ(xy)‖ ≤ ‖ψ(x)‖ ‖ψF ◦ πn(y)− ψF (by)‖+ ‖ψ(x)ψF (by)− ψ(xy)‖

≤ ε+ ‖ψF ◦ πn(x)− ψF (bx)‖ ‖by‖+ ‖ψF (bx)by − ψ(xy)‖

≤ 2ε+ ‖ψF ‖ ‖bx − πn(x)‖ ‖by‖+ ‖ψF (πn(x)by)− ψ(xy)‖

≤ 3ε+ ‖ψF ‖‖πn(x)‖ ‖by − πn(y)‖ ≤ 4ε.

Now suppose N is type II1. Our strategy for finding ϕ̇n, ψn that satisfy properties (ii) and (iii)

of Definition 2.2theorem.2.2 is to break N into summands Npi for n-tuples i ∈ {0, . . . , n}n and

central projections pi. We also use the pi to find corresponding functions ϕ̇i, ψi on their respective

Npi that satisfy the desired inequalities. We access approximately multiplicative ψi by constructing

traces ρi ◦ π on A that are quasidiagonal by assumption. We then define ϕ̇n, ψn by just putting

everything back together again. The point of breaking everything down like this is to show that

ϕ̇n ◦ ψn and π approximately agree on all normal traces at once; this fact is used in replacing ϕ̇n

with ϕn to satisfy (i).
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N ’s center is of the form L∞(X), where the measure on X is induced by ρ. Let E : N → L∞(X)

denote the center-valued trace, and (without loss of generality) assume F = {a1, . . . , an} contains

only positive elements and that 3/n < ε. For each i = (i1, . . . , in) ∈ {0, . . . , n}n, define pi ∈ L∞(X)

to be the characteristic function on

n⋂
j=1

(
E ◦ π(aj)

)−1
([

ij
n
,
ij + 1

n

))
⊆ X.

Ergo pi(x) = 1 for some x ∈ X iff ij ≤ E ◦ π(naj)(x) < ij + 1 for every j ∈ [1, n]; note that such

sets partition X.

To avoid division by zero, we define the finite indexing set I =
{
i ∈ {0, . . . , n}n

∣∣ ρ(pi) 6= 0
}

.

Since each 0 ≤ aj ≤ 1A, there exists an i ∈ I for ρ-almost every x ∈ X such that pi(x) = 1, and

that i is unique by construction. Thus
∑

i∈I pi = 1N , and the projections pi, pi′ are orthogonal if

i, i′ ∈ I are distinct. Define states ρi on π(A) by ρi(b) = ρ(bpi)/ρ(pi). Since ρ is tracial and pi is

central, ρi is also tracial; indeed, ρ(bb′pi) = ρ(b′pib) = ρ(b′bpi). Thus we have traces τi := ρi ◦ π

on A. By our assumption of quasidiagonality, there are matrix algebras Fi and u.c.p. ψi : A→ Fi

such that, for any integers j, j0, j1 ∈ [1, n],

|trFi ◦ ψi(aj)− τi(aj)| ≤ 1/n, (1)

‖ψn(aj0)ψn(aj1)− ψn(aj0aj1)‖ ≤ ε.

For every b ∈ N and r ∈ L∞(X), by the properties of the center-valued trace E, ρ(br) =

ρ ◦ E(br) = ρ(E(b)r). Moreover, for every integer j ∈ [1, n], by the construction of the pi,∥∥∥∥E ◦ π(aj)−
∑
i∈I

ij
n pi

∥∥∥∥
∞
≤ 1

n , thus

∣∣∣∣τi(aj)− ij
n

∣∣∣∣ =
1

ρ(pi)

∣∣∣∣ρ(π(aj)pi)−
ij
n
ρ(pi)

∣∣∣∣ =
1

ρ(pi)

∣∣∣∣∣ρ
((

E ◦ π(aj)−
∑
i′∈I

i′j
n
pi′

)
pi

)∣∣∣∣∣ ≤ 1

n
. (2)

Let L be the set of positive norm-one absolutely-integrable functions on X. Also recall that

each normal trace on N may be written as b 7→ ρ(fb) for some f ∈ L.Then for any j ∈ [1, n] and
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f ∈ L,

∣∣∣∣∣∑
i∈I

ρ(fpi)
ij
n
− ρ
(
fπ(aj)

)∣∣∣∣∣ ≤ 1

n
. (3)

Since each subalgebra Npi is itself type II1, there are unital *-homomorphisms ϕ̇i : Fi → Npi

(a consequence of [Bla06, III.2.5.4.iii]). We define Fn =
⊕

i∈I Fi, ψn =
⊕

i∈I ψi, and ϕ̇n =
⊕

i∈I ϕ̇i.

At this point, we have shown (ii) and (iii) for the type II1 case. Combining the inequalities

(1)ResultsAMS.7, (2)ResultsAMS.9, and (3)ResultsAMS.11 with ρ
(
fϕ̇n(T )

)
=
∑

i∈I ρ(fpi)trFi(T ),

we have also shown that ϕ̇n ◦ ψn approximately agrees with π on normal traces:

sup
f∈L

∣∣ρ(fϕ̇n ◦ ψn(aj)
)
− ρ
(
fπ(aj)

)∣∣ ≤ 3

n
< ε.

To get (i), we shall pass to an ultrapower Nω by taking an increasing sequence ({a1, . . . , an})n∈N

of F ’s that approach a dense subset of the unit ball. The net (ϕ̇n ◦ψn) induces a *-homomorphism

θ : A→ Nω, which we claim agrees with πω on traces (cf. proof of [BBS+19, Lem. 3.21]). Showing

this claim is the first step toward using Theorem 2.1theorem.2.1 to deduce strong* approximate

unitary equivalence, which will then be replaced using Theorem 1.6theorem.1.6 with strong* actual

unitary equivalence.

Define xj,n = ϕ̇n ◦ ψn(aj) − π(aj). Since E
(
xj,n − E(xj,n)

)
= 0, [FdlH80, Thm. 3.2] allows us

to write

xj,n − E(xj,n) =
10∑
i=1

[yj,n,i, zj,n,i]

where each yj,n,i, zj,n,i ∈ N satisfy ‖yj,n,i‖ ≤ 12‖xj,n − E(xj,n)‖ and ‖zj,n,i‖ ≤ 12. Thus we may

define yj,i := q
(
(yj,n,i)n

)
and zj,i := q

(
(zj,n,i)n

)
, where q : `∞(N)→ Nω is the quotient map.

‖E(xj,n)‖ ≤ sup
f∈L

∣∣ρ(fϕ̇n ◦ ψn(aj)
)
− ρ
(
fπ(aj)

)∣∣ n→∞−→ 0,

so q
(
(E(xj,n))n

)
= 0. Consequently,

q
(
(xj,n)n

)
= q

((
E(xj,n) +

10∑
i=1

[yj,n,i, zj,n,i]

)
n

)
=

10∑
i=1

[yj,i, zj,i]

vanishes on all traces, and the claim is shown.
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Note that θ is nuclear by definition: we have finite-dimensional u.c.p. maps ψ̃n :=
⊕n

k=1 ψk :

A→
⊕n

k=1 Fk and *-homomorphisms ˜̇ϕn :
⊕n

k=1 Fk → Nω given by

˜̇ϕn( (T1, . . . , Tn)
)

= q
(

(ϕ̇1(T1), . . . , ϕ̇n−1(Tn−1), ϕ̇n(Tn), ϕ̇n(Tn), . . .)n
)
.

Thus θ = limω ϕ̇n ◦ ψn = limn
˜̇ϕn ◦ ψ̃n.

Let {ak | k ∈ N} be a dense subset of the unit ball of A, . Define O ⊂ N to be the unit ball,

fkn : O → [0,∞) by fkn(b) = ‖bϕ̇n ◦ ψn(ak)b
∗ − π(ak)‖ρ (so they all have Lipschitz constant of 2),

and fkω : `∞(O)→ [0,∞) by

fkω
(
(bn)n

)
= lim

n→ω
fkω(bn) =

∥∥q((bn)n
)
θ(ak)q

(
(bn)n

)∗ − πω(ak)
∥∥
ρω
.

We use Theorem 2.1theorem.2.1 to deduce that for every K ∈ N, there is a unitary W ∈ `∞(O)

such that fkω
(
W
)
≤ ε for every k < K. Then by Theorem 1.6theorem.1.6, there is a sequence

U = (un) ∈ `∞(O) such that

0 = fkω
(
U
)

= lim
ω

∥∥unϕ̇n ◦ ψn(ak)u
∗
n − π(ak)

∥∥
ρ

for every k ∈ N. Therefore, defining ϕn = Ad(un) ◦ ϕ̇n and passing to a subsequence, we conclude

∥∥ϕn ◦ ψn(a)− π(a)
∥∥
ρ
→ 0

for every a ∈ A. �

We introduced this form of W*-decomposition solely to relate it to the following C*-counterpart:

Definition 2.5. Let π : A → B be a *-homomorphism between C*-algebras A,B. An approxi-

mately multiplicative norm-decomposition of π is a sequence of u.c.p. maps A
ψn−→ Fn

ϕn−→ B

for finite-dimensional C*-algebras Fn such that

(i) ‖ϕn ◦ ψn(x)− π(x)‖ → 0 for all x ∈ A,

(ii) ‖ψn(x)ψn(y)− ψn(xy)‖ → 0 for all x, y ∈ A,

(iii) every ϕn is a convex combination of u.c.p. order zero maps.

We have the following two necessary conditions for the existence of such decompositions:
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Lemma 2.6. Let π : A → B be a *-homomorphism between C*-algebras A,B that admits an

approximately multiplicative norm-decomposition, and τ be a trace on π(A). Then τ ◦ π is a qua-

sidiagonal trace on A.

Proof. The composition of a trace with an order zero map is again (rescalable into) a trace [WZ09,

Cor. 3.4], so each τ ◦ϕn is a trace on the finite-dimensional C*-algebra Fn. By assumption, the ψn

are approximately multiplicative, and τ ◦ ϕn ◦ ψn → τ ◦ π in the weak* topology. Therefore τ ◦ π

is quasidiagonal. �

Theorem 2.7. Let π : A → B ⊆ B∗∗ be a *-homomorphism that admits an approximately multi-

plicative σ-strong*-decomposition. Then the inclusion π(A) ⊆ B is nuclear.

Proof. Let A
ψn−→ Fn

ϕn−→ B∗∗ be an approximately multiplicative σ-strong*-decomposition. By

Arveson’s Extension Theorem (as in the finite case of the proof of Lemma 2.3theorem.2.3), each

inclusion ϕn(Fn) ⊂ B∗∗ extends to a conditional expectation En : B∗∗ → ϕn(Fn). Moreover, by

Alaoglu’s Theorem we may pass (En) to a subsequence that converges to a linear map E : B∗∗ →

B∗∗ in the point-σ-weak topology (cf. [BO08, Thm. 1.3.7]).

Let ε > 0, a ∈ A, and normal functional η ∈ B∗ all be given. Then η ◦ E is also a normal

functional, so by the previous paragraph there exists m ∈ N such that n > m implies each of the

following hold:

∣∣η(En(π(a)
)
− E

(
π(a)

))∣∣ ≤ ε/4,∣∣η ◦ E(π(a)− ϕn ◦ ψn(a)
)∣∣ ≤ ε/4,∣∣η(E(ϕn ◦ ψn(a)

)
− En

(
ϕn ◦ ψn(a)

))∣∣ ≤ ε/4,∣∣η(ϕn ◦ ψn(a)− π(a)
)∣∣ ≤ ε/4.

Combined, we get

∣∣η(En ◦ π(a)− π(a)
)∣∣ ≤ ε,

so the inclusion π(A) ⊆ B∗∗ is weakly nuclear.

We now use a Hahn-Banach argument akin to the proof (as in [BO08, Prop. 2.3.6]) that

semidiscrete A∗∗ implies nuclear A. Let X be the set of all maps from π(A) to B∗∗ of the form
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ϕ ◦ ψ for u.c.p. ψ : π(A)→ F and ϕ : F → B∗∗ and finite-dimensional F . Then X is convex.

Indeed, let w ∈ (0, 1) and ϕ0 ◦ ψ0, ϕ1 ◦ ψ1 ∈ X. Then ψ := ψ0 ⊕ ψ1 : π(A) → F0 ⊕ F1 is

u.c.p., as is the map ϕ : F0 ⊕ F1 → B∗∗ given by ϕ
(
(M0,M1)

)
= wϕ0(M0) + (1−w)ϕ1(M1). Thus

wϕ0 ◦ ψ0 + (1− w)ϕ1 ◦ ψ1 = ϕ ◦ ψ ∈ X.

Let F = {bi | i ∈ [1, k]} ⊂ π(A) be given. By weak nuclearity, the k-tuple (bi)
k
i=1 ∈

⊕k
i=1B

∗∗

is in the weak-closure of the set
{(
ϕ ◦ ψ(bi)

)k
i=1

∣∣∣ ϕ ◦ ψ ∈ X}, hence also in its norm-closure by

the Hahn-Banach Theorem. Therefore there is a map ϕ ◦ ψ ∈ X such that maxi ‖bi − ϕ ◦ ψ(bi)‖ =∥∥∥(bi)
k
i=1 −

(
ϕ ◦ ψ(bi)

)k
i=1

∥∥∥ < ε. �

Proposition 2.8. Let π : A→ B be a *-homomorphism between C*-algebras A,B. Then π admits

an approximately multiplicative norm-decomposition iff π : A → B∗∗ admits an approximately

multiplicative σ-strong*-decomposition.

Proof. ⇒: We retread the proof of Lemma 2.3theorem.2.3, beginning by letting normal state ρ,

finite F ⊂ A, and ε > 0 be given.

We may skip the first paragraph of the properly infinite case, instead using approximately mul-

tiplicative norm-decomposition to provide A
ψ−→ F

ϕ̇−→ B that satisfy the necessary inequalities.

We now need only use [Haa85] to find a unitary u ∈ N so that ϕ = Ad(u∗) ◦ ι approximates ϕ̇ for

a unital embedding ι : F → B∗∗.

The finite case does not require that A be quasidiagonal. Of course, property (i) of our norm-

decomposition witnesses the nuclearity of π, hence π : A → B∗∗ is weakly nuclear. Therefore

Lemma 2.6theorem.2.6 allows us finish this case, and this direction.

⇐: This is a perturbation of [HKW12, Thm. 1.4]. Let A
ψn−→ Fn

ϕ̇n−→ B∗∗ be an approximately

multiplicative σ-strong*-decomposition. Using [HKW12, Lem. 1.1], we can find order zero u.c.p.

maps ϕn : Fn → B (note the range) such that ϕn ◦ ψn(x)→ π(x) in the σ-weak topology for every

x ∈ A.

We once again use a Hahn-Banach argument. Let F = {ai | i ∈ [1, k]} ⊂ A and ε > 0 be given.

Then there is an index m such that n > m implies ‖ψn(x)ψn(y)− ψn(xy)‖ < ε for every x, y ∈ F .

By assumption,
(
π(ai)

)k
i=1
∈
⊕k

i=1A is in the weak closure of the set
{(
ϕn ◦ ψn(ai)

)k
i=1

∣∣∣ n > m
}

,

hence also in the norm-closure of its convex hull.

Ergo, there are nj > m and finitely-many wj ∈ [0, 1] such that
∑

j wj = 1 and∥∥∥(π −∑j wjϕnj ◦ ψnj
)

(x)
∥∥∥ < ε for every x ∈ F . Define ψ =

⊕
j ψnj : A →

⊕
j Fnj , the pro-
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jections qj′ :
⊕

j Fnj → Fnj′ , and ϕ =
∑

j wjϕnj ◦ qj :
⊕

j Fnj → A. Therefore ϕ is a convex

combination of u.c.p. order zero maps, and for every x, y ∈ F ,

‖π(x)− ϕ ◦ ψ(x)‖ =

∥∥∥∥∥∥π(x)−
∑
j

wjϕnj ◦ ψnj (x)

∥∥∥∥∥∥ < ε,

‖ψ(x)ψ(y)− ψ(xy)‖ = max
j
‖ψnj (x)ψnj (y)− ψnj (xy)‖ < ε. �

With the equivalence of these decompositions, we hope to find a way to characterize their

existence. An important component seems to be that π is a quasidiagonal *-homomorphism.

Definition 2.9. A *-homomorphism π : A→ B is quasidiagonal if it factors through a quasidi-

agonal C*-algebra D. That is, there exist *-homomorphisms π1 : A → D and π2 : D → B such

that π1 is surjective and π = π2 ◦ π1.

Definition 2.10. An extension

0 −→ kerπ −→ A −→ B −→ 0

is called locally split if every finite subset G ⊂ B of contractions admits a u.c.p. local lifting

λ : span(G)→ A such that π ◦ λ(b) = b for every b ∈ spanG.

Locally split is a weaker condition than exactness (see eg. [BO08, Prop. 9.1.4]). It is of note

that the full power of exactness is not required for the following result:

Proposition 2.11. Let A be a C*-algebra, π : A→ B be a nuclear, quasidiagonal *-homomorphism

to another C*-algebra B, and D,π1, π2 be as in Definition 2.10theorem.2.10. Further suppose that

the trace τ ◦ π is quasidiagonal for every trace τ on π(A), and that the extension

0 −→ kerπ1 −→ A −→ D −→ 0

is locally split. Then π admits an approximately multiplicative decomposition.

Proof. Let ε > 0 and finite subset G ⊂ D of contractions be given. Let λ : span(G) → A be

a local lifting. By nuclearity, there are i ∈ N and u.c.p. maps A
ψ−→ Mi

ϕ̇−→ B such that∥∥ϕ̇ ◦ ψ(a) − π(a)
∥∥ < ε for every a ∈ λ(G). Arveson’s Extension Theorem then provides u.c.p.
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ψ′ : D →Mi that agrees with ψ ◦ λ on span(G). Thus, for any d ∈ G,

∥∥ϕ̇ ◦ ψ′(d)− π2(d)
∥∥ =

∥∥ϕ̇ ◦ ψ(λ(d)
)
− π

(
λ(d)

)∥∥ < ε.

From this we conclude that π2 is nuclear. This allows us to apply the properly infinite case of

Lemma 2.3theorem.2.3 to get approximately multiplicative decompositions of π2 : D → B∗∗. This

case may then be extended to work for A itself by replacing the resultant ψn with ψn ◦ π1. The

finite case goes through for A unmodified, resulting in approximately multiplicative decompositions

of π : A→ B∗∗. �

However, exactness does provide us with the converse statement.

Theorem 2.12. Let A be an exact C*-algebra and π : A → B be a *-homomorphism to another

C*-algebra B. Then π admits an approximately multiplicative decomposition iff it is nuclear and

quasidiagonal and τ ◦ π is a quasidiagonal trace on A for every trace τ on π(A).

Proof. As mentioned, Proposition 2.11theorem.2.11 already provides the backward direction, so we

need now only address the forward one. Let A
ψn−→ Fn

ϕn−→ B be the approximately multiplicative

norm-decomposition. The decomposition itself witnesses the nuclearity of π. The quasidiagonality

of every τ ◦π was shown in Lemma 2.6theorem.2.6. The quasidiagonality of π itself is a consequence

of [Dad97, Thm. 4.8]; for the convenience of the reader, we present a distillation of the proof.

Since A is exact, we may treat it as a C*-subalgebra of some C*-algebra C such that the inclusion

is nuclear. Using Arveson’s Extension Theorem, we may treat the ψn’s domains as C. They induce

a u.c.p. map Ψ from C to an ultraproduct
∏
ω Fn, where (ψn(a))n is a representative sequence of

Ψ(a). Note that the approximate multiplicativity of (ψn) makes Ψ|A a *-homomorphism. Likewise,

we have a c.c.p. map Φ from
∏
ω Fn to the ultrapower Bω given by Φ

(
(Tn)n

)
=
(
ϕn(Tn)

)
n
. Thus

Φ ◦ Ψ(a) =
(
ϕn ◦ ψn(a)

)
n

=
(
π(a)

)
n
, which we may identify with π(a) itself by treating B as a

C*-subalgebra of Bω through constant sequences. Thus Φ|Ψ(A) must also be a *-homomorphism.

Let ε > 0 and finite subset G ⊂ Ψ(A) of contractions be given. Also let λ : span(G) → A be a

local lifting of Ψ. By nuclearity of A ⊆ C, there exist a finite-dimensional C*-algebra G and c.c.p.

maps A
θ−→ G

ξ−→ C such that, for every d ∈ G,

‖(Ψ ◦ ξ) ◦ (θ ◦ λ)(d)− d‖ = ‖Ψ ◦ ξ ◦ θ ◦ λ(d)−Ψ ◦ λ(d)‖ ≤ ‖ξ ◦ θ ◦ λ(d)− λ(d)‖ < ε.
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Another use of Arveson’s Extension Theorem yields θ′ : Ψ(A)→ G with restriction θ′|G = θ ◦ λ.

Thus the inclusion Ψ(A) ⊆
∏
ω Fn is nuclear. By the Choi-Effros Lifting Theorem [BO08, Thm.

C.3], said inclusion lifts to a c.c.p. map to
∏
n Fn, therefore Ψ(A) is quasidiagonal (see eg. [BO08,

Exc. 7.1.3]). �

Remark 2.13. It seems probable to the author that this theorem may be strengthened to show

that π admits an approximately multiplicative decomposition iff it factors through a quasidiagonal

C*-algebra D via A
π1→ D

π2→ B such that π2 admits an approximately multiplicative decomposition.

All that is needed is to show that the trace τ ◦π2 is quasidiagonal for every trace τ on π2(D) = π(A).

This is of course satisfied if every trace on B is quasidiagonal, but the common theme of these results

has been moving requirements away from the C*-algebras and onto the *-homomorphism itself.
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This dissertation is split into two parts. In the first part we expand upon work by Gábor Elek

on C*-algebras of Uniformly Recurrent Subgroups. We construct a dynamical system from the set

of subgroups of a finitely-generated discrete group. This has a nice correspondence with a Cayley-

like graph of a subgroup’s cosets. From these structures we construct a C*-algebra. We then

apply techniques from other constructions to reveal properties of the new C*-algebra and relate

them to properties of the graph, the dynamical system, and the subgroup itself. In the second we

expand upon work from many hands on the decomposition of nuclear maps. Such maps can be

characterized by their ability to be approximately written as the composition of maps to and from

matrices. Under certain conditions (such as quasidiagonality), we can find a decomposition whose

maps behave nicely, such as preserving multiplication up to an arbitrary degree of accuracy. We

investigate these conditions and relate them to a W*-analog.


