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ABSTRACT: We conceptualize observation selection effects (OSEs) by
considering how a shift from one process of observation to another af-
fects discrimination-conduciveness, by which we mean the degree to
which possible observations discriminate between hypotheses, given the
observation process at work. OSEs in this sense come in degrees and
are causal, where the cause is the shift in process, and the effect is a
change in degree of discrimination-conduciveness. We contrast our un-
derstanding of OSEs with others that have appeared in the literature.
After describing conditions of adequacy that an acceptable measure of
degree of discrimination-conduciveness must satisfy, we use those condi-
tions of adequacy to evaluate several possible measures. We also discuss
how the effect of shifting from one observation process to another might
be measured. We apply our framework to several examples, including
the ravens paradox and the phenomenon of publication bias.

1. Introduction

It is widely recognized that the process used to make observations often
has a significant effect on how hypotheses should be evaluated in light
of those observations. Arthur Stanley Eddington (1939, Ch. II) provides
a classic example.1 You’re at a lake and are interested in the size of the
fish it contains. You know, from testimony, that at least some of the fish
in the lake are big (i.e., at least 10 inches long), but beyond that you’re
in the dark. You devise a plan of attack: get a net and use it to draw a
sample of fish from the lake. You carry out your plan and observe:

O100: 100% of the fish in the net are big.

You think that O100 is helpful evidence, since it discriminates between
at least the following two hypotheses of interest:

H100: 100% of the fish in the lake are big.

H50: 50% of the fish in the lake are big.

1 We make some minor modifications in Eddington’s example.
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In particular, O100 seems to you to discriminate between these two hy-
potheses because it favors H100 over H50. But then you see that these
first impressions are wrong because you notice that the holes in your
net are so big that it can’t hold fish that are medium-sized (i.e., at least 5

inches long but less than 10 inches long) or small (i.e., less than 5 inches
long). You realize, furthermore, that had you used a net with small holes,
the situation would have been different.2 Then O100 would discriminate
between H100 and H50, since the observation really would favor the first
hypothesis over the second.

Your using one net rather than the other makes an epistemic difference.
Given your epistemic goal of wanting to test the two hypotheses against
each other, you are better off using one net rather than the other. This is
a paradigm case of an observation selection effect (an OSE).

The net with big holes has a deficiency, but this is only because you
are considering hypotheses about the size of the fish in the lake. Had
you been interested in the color of the big fish in the lake, the net with
big holes would have worked just fine. Your “interests” can be taken out
of the picture by putting the point like this:

Relativity: Whether an observational process p induces an OSE is
relative to a set of competing hypotheses Γhyp = {H1, H2, ..., Hn}.

In the initial fish example, the OSE is extreme. A net with big holes is
totally useless, whereas a net with small holes works just fine, given that
you observe O100 and are considering hypotheses H100 and H50. How-
ever, there are plenty of observation processes that fall in between. To
illustrate the existence of non-extreme cases, we move to a slightly more
complicated example. Instead of focusing on just two nets (one with big
holes, the other with small), let’s add a third—a net with medium holes.
It retains fish that are medium and large, but not fish that are small. And
we’ll now consider three possible observations. Each involves catching a
single fish, which can be big, medium, or small. Call these OB, OM, and
OS; they comprise a three-membered set of possible observations Γobs =

2 In saying that the net has ”small” holes, we mean that it retains fish that are
small, medium, and large, once they swim into the net.

{OB, OM, OS}. And, finally, in this new example, we’ll set H100 and H50

aside and consider two new hypotheses:

H50–50–0: 50% of the fish in the lake are big, 50% are medium, and
0% are small.

H5–5–90: 5% of the fish in the lake are big, 5% are medium, and
90% are small.

There’s a clear sense in which the net with small holes is better than the
net with medium holes, which in turn is better than the net with large
holes. If you use the net with small holes, all three possible observations
can occur and each discriminates between the two hypotheses. But use
a net with medium holes, and only two of the possible observations can
occur. Each of these favors H50–50–0 over H5–5–90, but the third possible
observation, OS, cannot occur. The net with medium-sized holes there-
fore has a defect, but it is better than the net with large holes, since the
latter allows only one observation, and that observation fails to discrimi-
nate between the two hypotheses. This leads to the following conclusion:

Degree: An observation process p has a degree of discrimination-
conduciveness, by which we mean the degree to which possible
observations discriminate between hypotheses, given that p is the
process at work.

This concept of discrimination-conduciveness has the following charac-
teristic:

Three-Place Relation: Discrimination-conduciveness is a relation
among an observation process p, a set of hypotheses Γhyp, and a
set of possible observations Γobs.

Discrimination-conduciveness comes in degrees, denoted by
”DDC(Γhyp, Γobs | p),” which allows us to state a formal point
about the character of OSEs:

Contrastive: The OSE that an observational process p induces on
hypotheses Γhyp and possible observations Γobs should be under-
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stood by comparing DDC(Γhyp, Γobs | p) and DDC(Γhyp, Γobs |
p*), for some p* 6= p.

OSE is a causal concept, and its causal character is captured by the
idea that shifting from one observation process to another can make
a difference in the degree to which possible observations discriminate
between hypotheses. Here we are using a familiar fact about causal
claims. To say that C caused E is often shorthand for saying that it
was C rather than C* that caused E rather than E*.3 What was the ef-
fect of using a net with medium holes in the fishing example just dis-
cussed? This question is underspecified. Do you mean the effect of us-
ing a net with medium holes rather than a net with large holes? Or do
you mean the effect of using a net with medium holes rather than a
net with small holes? If the former, using the net with medium holes
increased discrimination-conduciveness. If the latter, using that net re-
duced discrimination-conduciveness.

When there is an OSE, the presence of one observation process rather
than another makes a difference in discrimination-conduciveness. How-
ever, observations can fail to discriminate between competing hypothe-
ses even though the use of one observation process rather than another
makes no difference. Suppose hypotheses H and H* are observationally
equivalent. You observe that O, and then notice the inevitable: O fails to
discriminate between H and H*. However, this is not an effect, strictly
speaking, of whatever observation process led to O.4 For, if H and H*
are observationally equivalent, no alternative observation process could
have done any better. Even so, the OSE concept and the concept of ob-
servational equivalence both apply to cases in which DDC(Γhyp, Γobs |
p) takes its minimum possible value.

Because discrimination-conduciveness comes in degrees, it will be im-
portant to figure out how discrimination-conduciveness should be mea-

3 For discussion of ”contrastive causation,” and for references, see Schaffer
(2005).

4 We will often write as though observation processes yield propositions as
outputs as opposed to perceptual beliefs with propositional contents. But,
strictly speaking, they don’t do that; they yield perceptual beliefs, not propo-
sitions, as outputs.

Table 1: Abbreviations

d(H1, H2 | P) the degree to which O discriminates

between H1 and H2 given that

P is a true appropriate description of

the observer’s observation process p

DDC(Γhyp, Γobs | p) the degree to which

the members of Γobs discriminate

between the members of Γhyp given that

the observer’s observation process is p

OSE(Γhyp, Γobs | p1 rather than p2) the degree to which the observer’s using

observation process p1 rather than p2 affects

the degree to which the members of Γobs

discriminate between the members of Γhyp

sured. We need to be able to say how much the shift from observation pro-
cess p to observation process p* affects the ability of observations to dis-
criminate between hypotheses. This quantitative question is not only the-
oretically important; it also may have important practical applications.
For example, nets with small holes are more discrimination-conducive
than nets with medium holes, which in turn are more discrimination-
conducive than nets with big holes. If the first type of net is more expen-
sive than the second, and the second is more expensive than the third,
is it worth your while to buy a more expensive net? It will help answer
this question if you can characterize how discrimination-conducive each
type of net is.

For the reader’s convenience, we state definitions in Table 1 of the
three main abbreviations we use in what follows. Each represents a con-
cept that stands in need of clarification. Later items on the list build on
earlier ones.

We will proceed as follows. In Section 2, we describe three alter-
native conceptions of OSEs and compare them to the one we endorse.
In Section 3, we clarify the idea of hypothesis discrimination, and pro-
pose an adequacy condition on measures of degree of discrimination-
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conduciveness. We call our proposed condition ”Minimality.” In Section
4, we consider three candidate measures of degree of discrimination-
conduciveness. Two are inspired by conceptions of OSEs described in
Section 2, and the third is inspired by yet another conception in the liter-
ature. We argue that each of these three candidate measures fails to meet
Minimality and so is inadequate.5 In Section 5, we describe a schema for
measuring degree of discrimination-conduciveness, and show that any
instance of it meets Minimality. We also provide two prima facie plau-
sible measures, and compare them to several alternatives. In Section 6,
we turn to the related issue of how degree of OSE should be measured.
In Section 7, we put our general framework to work, applying it to an
old chestnut in Bayesian confirmation theory—the ravens paradox. In
Section 8, we do the same but for a newer topic—publication bias.6 In
Section 9, we offer some concluding comments.

2. Alternative Conceptions of OSEs

We use the term “OSE” to denote cases in which the presence of one
observation process rather than another makes a difference in the de-
gree to which observations discriminate between competing hypotheses.
However, the term has sometimes been used with different meanings.

For example, Nick Bostrom (2002) uses “OSE” to refer to a bias due to
an observer’s mere existence. He writes:

In these examples, a selection effect is introduced by the fact that
the instrument you use to collect data (a fishing net, a mail sur-
vey, preserved trading records) samples only from a proper sub-
set of the target domain. Analogously, there are selection effects
that arise not from the limitations of some measuring device but

5 Since the measures in question are merely inspired by, as opposed to taken
from, various writings in which ”OSE” is used, our objections to them aren’t
meant to tell against anything in the writings in question.

6 These are just two of many potential applications of our general framework.
For other potential applications, see, for example, Roush (2003) on Kant’s
”Copernican revolution,” Cirković et al. (2010) on estimating the risk of hu-
man extinction, Titelbaum (2010) on ”no-lose” epistemologies, and Dawid
(1976) on data-bases and medical diagnosis.

from the fact that all observations require the existence of an ap-
propriately positioned observer. Our data is filtered not only by
limitations in our instrumentation but also by the precondition
that somebody be there to “have” the data yielded by the instru-
ments (and to build the instruments in the first place). The biases
that occur due to that precondition—we shall call them observation se-
lection effects—are the subject matter of this book. (Bostrom 2002, p. 2,
emphasis added)

Another use of ”OSE” that differs from ours comes from Darren Bradley
(2011), who uses the term to refer to an effect of a sampling procedure on the
inferences that can be drawn on the basis of samples obtained via that procedure.
He writes:

Whenever a sample is drawn from a population, some particular
method must be used. This method is the selection procedure.
The effect this has on the inference is the (observation) selection effect.
Eddington’s ... classic example involves fishing with a net. If we
catch a sample of fish from a lake, and all the fish in the sample
are bigger than six inches, this appears to confirm the hypothesis
that all the fish in the lake are bigger than six inches. But if we
then find out that the net used cannot catch anything smaller than
six inches due to the size of its holes, the hypothesis is no longer
confirmed. So the inference depends on the method of obtaining the
sample, i.e. on the selection procedure. (Bradley 2011, p. 324, emphasis
added)

A third usage is deployed by Manson (2003; 2009) and White (2003), who
think that OSEs arise precisely when the observation process ensures
that some possible observation doesn’t occur.

We see no substantive disagreement among Bostrom, Bradley, Man-
son, and White and ourselves if each is simply stipulating a meaning
for ”OSE.” They have their usages and we have ours. However, even if
stipulation is the name of the game,7 it is important to be clear on how

7 An alternative to stipulation is explication (see Carnap 1962, Maher 2007,
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our OSE concept differs from these others.
When you fish with a net that has big holes, the OSE derives from the

net used, not from the mere existence of an observer. For us, this example
is a paradigm case of an OSE; according to Bostrom’s stipulation, it is
nothing of the kind.

To see how our picture differs from Bradley’s, suppose you enter
a room and want to find out whether the walls are red or white. You
carefully scan each wall in its entirety and note that the walls look red.
You take this datum to favor the hypothesis that the walls are red over
the hypothesis that they are white. But then you learn that the walls are
lit by red lights in such a way that the walls would look red whether
they are red or white. Call this case ”RED LIGHTS.” It does not involve
a literal sampling of objects from a population of objects (as was true in
the fishing examples), so it does not involve an OSE in Bradley’s sense.8

However, it is an OSE in our sense, since the fact that there are red
lights (rather than normal lighting) diminishes the ability of your sense
impressions (or propositions describing them) to discriminate between
competing hypotheses.

Turning now to Manson and White, we note that our three fish sto-
ries align well with their usage. If the fish in the lake come in three
categories—big, medium, and small—and you’re going to catch just one
fish, then there are three possible observations if you use a net with
small holes, two possible observations if you use a net with medium
holes, and just one possible observation if you use a net with large holes.

Olsson 2015, and Schupbach 2017); here you revise a concept already in use
with the goal of making it clearer and more precise. Explications can be
undertaken for concepts that are part of a widely used natural language, but
they also have their place for concepts used by narrower populations—e.g.
groups of scientists or philosophers. We think it makes sense to explicate the
OSE concept, but won’t defend the claim that our account of OSEs is a good
explication.

8 We don’t deny that there are models of this example according to which
your experience is the result of sampling from a population of possible ex-
periences (see Bradley 2011). However, these are mere models and shouldn’t
be taken literally.

Increasingly severe OSEs reflect more and more possible observations
receiving a probability of zero.

Even so, there are other examples of OSEs in our sense in which
shifting from one observation process to another leaves unchanged the
number of possible observations that can occur. Suppose you’re a doctor,
and Joe is your patient. You want to test him for tuberculosis, so you use
your tuberculosis test kit k. There are two hypotheses about Joe (he has
tuberculosis, or he does not) and two possible observational outcomes
(positive and negative). Suppose this test kit has small error probabili-
ties. This means that if Joe has tuberculosis, he’ll almost certainly have
a positive test result, and if he doesn’t have tuberculosis, he’ll almost
certainly have a negative test result. Now let’s compare test kit k with
an alternative test kit k*. When the latter is used on a given patient, a
randomizing device inside the kit flips a fair coin. If the coin comes up
heads, k* says that the patient has tuberculosis. If the coin doesn’t come
up heads, k* says that the patient does not have tuberculosis. Call this
case ”TUBERCULOSIS.” Shifting from test kit k to test kit k* induces
an OSE in our sense, but neither of the possible observations has its
probability plunge to zero.9

Although our usage of ”OSE” isn’t universal, it isn’t entirely idiosyn-
cratic, either. In fact, it is inspired by the meaning that Eddington (1939)
assigns to ”selective effect” (and ”selection”). He doesn’t restrict selec-
tive effects in his sense to effects of a sampling procedure, as is clear
from the following passages:

It seems appropriate to call the philosophical outlook that we have
here reached selective subjectivism. ”Selective” is to be interpreted

9 Here’s another example that leads to the same conclusion. People with nor-
mal binocular vision can detect the presence of objects in a visual field of
about 180 degrees when their heads are stationary. Strokes and other in-
juries can cause peripheral blindness so that the chance of detecting objects
in the periphery (i.e., outside of, say, 150 degrees) goes to zero. This would
induce an OSE both in our sense and in the sense of ruling out possible
observations. But now imagine a less extreme case where a stroke or other
injury merely lowers the probability of detecting objects in the periphery to
some value close to but greater than zero. This would induce an OSE in our
sense but not in the sense of ruling out possible observations.
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broadly. I do not wish to assert that the influence of the procedure of
observing on the knowledge obtained is confined to simple selection, like
passing through a net. (Eddington 1939, p. 26, emphasis added)

In introducing subjective selection (p. 16), I attributed it to ”the
sensory and intellectual equipment” used in obtaining observa-
tional knowledge. The inclusion of intellectual equipment may
have seemed surprising. It is easy to see that our sensory equipment
has a selective effect—that the nature and extent of our knowledge
of the external world must be largely conditioned by its lines of
communication with consciousness, provided by our sense organs. (Ed-
dington 1939, p. 114, emphasis added)

By ”subjective” he seems to mean something like dependent on an observa-
tion process.10 Eddington (1939, Ch. II) also notes that selective effects are
relative to hypothesis sets. Our usage of ”OSE” is identical to his usage
of ”selective effect” on each of these two fronts.

If you think that nets with big holes can induce OSEs, that there is an
OSE in the case of RED LIGHTS, and that the same is true in TUBERCU-
LOSIS, then you’ll be inclined to conclude that the stipulated meanings
that Bostrom, Bradley, Manson, and White introduce for their OSE con-
cepts are too narrow. But perhaps you have no preconceptions concern-
ing how this terminology should be used. In that case, you perhaps will
grant that OSEs in Bostrom’s, Bradley’s, Manson’s, and White’s senses
are epistemically interesting. It’s crucial to note, however, that observa-
tion processes have effects on hypothesis discrimination additional to
the ones they identify. OSEs in our sense cover effects of that sort, and
are worthy of careful consideration in and of themselves.

We now turn to the task of fleshing out the idea that OSEs are matters
of degree and that they involve shifts from one observation process to
another that affect discrimination-conduciveness.

10 See, for example, Eddington (1939, p. 66). This way of understanding ”subjec-
tive” is compatible with what we say in Section 3 about ”true” descriptions
of observation processes and “objective” probabilities.

3. Minimality

In describing our three examples of net fishing, we spoke of ”favoring”
and ”discrimination,” but we did not explain what we mean by these
terms. It now is time for us to put some cards on the table.

When you fish with a net that has big holes (FISH-B), O100 fails to
discriminate between H100 and H50 in that

(3.1) Pr(O100 | PB & H100) = Pr(O100 | PB & H50).

Here “PB” is a true appropriate description of your observation process
in FISH-B.11 In contrast, when you fish with a net that has small holes
(FISH-S), O100 discriminates between H100 and H50 in that

(3.2) Pr(O100 | PS & H100) > Pr(O100 | PS & H50),

where ”PS” is a true appropriate description of your observation pro-
cess in FISH-S. There’s a likelihood equality in FISH-B and a likelihood
inequality in FISH-S.

We are assuming here that hypothesis discrimination is to be under-
stood as follows:

(3.3) For any hypotheses H1 and H2, observation O, and observa-
tion process p, where P is a true appropriate description of p,
O discriminates between H1 and H2 given P precisely when
Pr(O | P & H1) 6= Pr(O | P & H2).12

This condition is inspired by the law of likelihood:

(3.4) For any hypotheses H1 and H2, observation O, and observa-
tion process p, where P is a true appropriate description of p,

11 We explain below what we mean by “appropriate.”
12 This is distinct from the following: For any hypotheses H1 and H2, and

observation O, O discriminates between H1 and H2 precisely when Pr(O |
H1) 6= Pr(O | H2). Here there’s no explicit mention of an observation process,
though the probability function may take that relevant fact into account. But
then again, it may not. It’s clear from cases like FISH-B and FISH-S that the
role of observation processes should be made explicit. This can also be done
by subscripting the probability function, like this: Prp(-).
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O favors H1 over H2 given P precisely when Pr(O | P & H1) >
Pr(O | P & H2).13

Propositions (3.3) and (3.4) together entail that if O favors H1 over H2

given P, then O discriminates between H1 and H2 given P, but not con-
versely. Note that a key difference between discrimination and favoring
is that the former but not the latter is symmetric. O discriminates be-
tween H1 and H2 given P only if O discriminates between H2 and H1

given P. However, favoring is asymmetric in that O favors H1 over H2

given P only if O does not favor H2 over H1 given P.14,15

The reader may wonder why we use (3.3) to characterize discrimina-
tion rather than say that O discriminates between H1 and H2 given P
precisely when Pr(H1 | P & O) 6= Pr(H2 | P & O). The reason is that
the posterior probabilities in this last inequality typically depend on the
prior probabilities of the hypotheses mentioned, whereas the likelihoods
used in (3.3) typically do not. For example, a tuberculosis test kit has er-
ror probabilities that do not depend on how common or rare the disease
is.

When is P an ”appropriate” description of p? This is a delicate ques-
tion, but there are clear examples of inappropriate descriptions. In FISH-
S, if the hypothesis set is Γhyp = {H100, H50}, and the observation set is
Γobs = {O100, O50}, each observation discriminates between the two hy-
potheses, and this marks a difference between FISH-S and FISH-B. But
suppose you use a net with small holes, learn O100, and then describe the
process of observation like this: ”sampling fish from the lake with a net
with small holes and catching 10 fish each of which is big.” Given this
description of the process, the two hypotheses confer the same probabil-

13 This is our preferred formulation of the law of likelihood. Hacking (1965)
uses a simpler formulation. Tricky issues sometimes arise when the law is
used in a given case. See Weisberg (2005) and Kotzen (2012) for discussion.
We believe that each issue can be adequately resolved, but this isn’t the place
to work out the details. See Sober (2009, 2018) for relevant discussion.

14 The term ”favoring” is sometimes used with a meaning that differs from the
one used in (3.4). See Sober (2008, p. 36) for discussion.

15 Discrimination is also distinct from ”confirmation” in the sense of increase
in probability. We return to this point in Section 5.3.

ity on the observation. The lesson here is that the process outcome (the
observation yielded) shouldn’t be ”packed into” the process description,
on pain of endorsing the nihilistic thesis that observations never discrim-
inate between hypotheses.16,17

We require that P be a true description of p because we are interested
in the discrimination-conduciveness of your actual observation process,
and not the discrimination-conduciveness of what you believe your pro-
cess to be. If, for example, your net has big holes but you believe oth-
erwise, the fact remains that the members of Γobs fail to discriminate
between the members of Γhyp (where the hypotheses concern the size
of the fish in the lake), given your actual observation process.18 So P
should be a true description of p.19

We mean for the likelihoods that describe p’s degree of
discrimination-conduciveness to be understood as objective probabili-
ties in that they’re independent of the observer’s (and everyone else’s)
actual credences. For example, even if, in FISH-B, your credence in O100

given P and H100 is greater than your credence in O100 given P and H50,
this wouldn’t change the fact that your observation process is not at all
discrimination-conducive.20

16 There are other, and more subtle, caveats concerning when a process descrip-
tion is appropriate. See Sober (2009, 2018) for discussion. See also Eddington
(1939, Ch. II, p. 20).

17 A similar point has been made about the appropriate description of a sys-
tem’s state at a given time in the context of defining determinism (see Berof-
sky 1971 and Earman 1986).

18 Compare: there can be cases where an observer’s perceptual belief-forming
processes are unreliable, and yet her information suggests otherwise.

19 The issues discussed in this and the prior paragraph concern the ”right-
hand” sides (the conditioning sides) of the likelihoods in (3.3). There are
also questions concerning the ”left-hand” sides. For example, there’s the
question of whether, as per the Requirement of Total Evidence, O should
be the logically strongest true description of what you observed. See Barrett
and Sober (fort) and Epstein (2017) for a recent exchange on this issue.

20 There are several interpretations of objective probability. These include
propensity interpretations, frequency interpretations, and rational-credence
interpretations. For helpful discussion, see Hájek (2012). We do not assume
any particular interpretation. Indeed, we do not even assume that a reduc-
tive interpretation is needed or possible; see Sober (2000, Ch. 3, sec. 3.2) on
the ”no-theory theory of probability.”
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How is degree of discrimination to be measured? We use ”d(H1, H2,
O | P)” to denote the degree to which, given process P, observation
O discriminates between hypotheses H1 and H2. We assume that any
adequate measure of degree of discrimination should meet each of the
following conditions:

(3.5) For any hypotheses H1 and H2, observation O, and observa-
tion process p, where P is a true appropriate description of p,
d(H1, H2, O | P) = d(H2, H1, O | P).

(3.6) For any hypotheses H1 and H2, observation O, and observa-
tion process p, where P is a true appropriate description of p,
d(H1, H2, O | P) is minimal (i.e., takes its minimum possible
value) precisely when Pr(O | P & H1) = Pr(O | P & H2).

At this point, we don’t assume any particular measure meeting these
conditions.21

It’s important to distinguish between cases of ”fragile non-
discrimination” and cases of ”robust non-discrimination.” The former
are cases in which

(3.7) Pr(Oα | P & Hj) = Pr(Oα | P & Hk) for all j and k where Oα
is the actual observation yielded by p, but Pr(Oi | P & Hj) 6=
Pr(Oi | P & Hk) for some i, j, and k where i 6= α.

The latter are cases where:

(3.8) Pr(Oi | P & Hj) = Pr(Oi | P & Hk) for all i, j, and k.

Fragile non-discrimination is an unfortunate fact of life. Sometimes per-
fectly good observation processes yield a non-discriminating observa-
tion, as when random sampling from an urn yields 50% green balls and
the two hypotheses are “52% of the balls in the urn are green” and “48%
of the balls in the urn are green.” Robust non-discrimination is a horse
of a different color. Here the actual observation is non-discriminating,
and so too is every other member of the observation set.

21 We will return to this issue in Section 5.2.

We now can state our first adequacy condition on measures of degree
of discrimination-conduciveness:

Minimality: For any hypothesis set Γhyp = {H1, H2, ..., Hn}, ob-
servation set Γobs = {O1, O2, ..., Om}, and observation process p,
where P is a true appropriate description of p, DDC(Γhyp, Γobs |
p) is minimal precisely when d(Hi, Hj, Ok | P) is minimal for all
i, j, and k.

In other words, the minimum possible degree of discrimination-
conduciveness arises precisely when there’s robust non-discrimination.
Notice that ”d(-)” denotes the degree of discrimination that a single ob-
servation provides whereas ”DDC(-)” denotes the degree of discrimina-
tion provided by a set of possible observations. In addition, d(-) concerns
two hypotheses, whereas DDC(-) concerns sets of hypotheses that may
be larger.

We aren’t assuming that hypothesis sets or observation sets must be
partitions (i.e., sets of mutually exclusive and jointly exhaustive proposi-
tions), though we are assuming that they are sets of mutually exclusive
propositions.22 However, if Γhyp is a partition, then it follows from Min-
imality that DDC(Γhyp, Γobs | p) is minimal precisely when:

(3.9) Pr(Oi | P & Hj) = Pr(Oi | P) for all i and j.23

This means that process p ”takes over” and completely shuts out each
member of Γhyp; P ”screens off” Γhyp from Γobs in that, given P, no
member of Γhyp has any impact on the probability of any member of
Γobs.24 It doesn’t follow from Minimality, though, that DDC(Γhyp, Γobs

22 It’s straightforward to turn non-partitions into partitions. Take Γhyp = {H1,
H2, ..., Hn}, and suppose it’s not a partition. Now add to Γhyp the ”catch-all”
hypothesis ∼ (H1 ∨H2 ∨ . . . ∨Hn). The result is a partition: Γ∗hyp = {H1, H2,
..., Hn, ∼ (H1 ∨H2 ∨ . . . ∨Hn)}. However, this procedure for constructing a
partition often runs into the problem that likelihoods for catch-all hypothe-
ses are unavailable (perhaps even undefined). For this reason, we want to
allow for cases where the hypothesis sets of interest aren’t partitions.

23 This is shown in Appendix A.
24 There are different ways of talking about screening-off. Our claim could
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| p) is minimal precisely when (3.9) holds. In fact, there are cases where
Γhyp is not a partition, d(Hi, Hj, Ok | P) is minimal for all i, j, and k,
and (3.9) is false.25

We considered a case in Section 1 where the hypotheses of interest
are observationally equivalent to each other. Any such case is a case
of robust non-discrimination and so by Minimality is a case where
DDC(Γhyp, Γobs | p) is minimal. This is the right result. The issue
here is degree of discrimination-conduciveness as opposed to degree
of OSE. When two hypotheses are observationally equivalent, no obser-
vation can discriminate between them, even though the situation would
be the same if some alternative observation process were used.

4. How Not to Measure Degree of Discrimination-Conduciveness

Here we construct three candidate measures of degree of discrimination-
conduciveness and address the question of whether they meet Minimal-
ity. All are inspired by the extant literature on OSE concepts. We say
“inspired by” rather than “found in” because the authors whose work
we use here do not provide a measure; they treat OSEs as an on/off phe-
nomenon. We argue that each of these candidate measures fails to meet
Minimality and thus is inadequate. We then offer a brief diagnosis and
suggest a way forward.

4.1 DDCROO*, DDCBSP*, and DDCCLV*
We noted in Section 2 that our usage of the expression “OSE” dif-
fers from usages that others have employed. Here we want to exam-
ine whether those alternative usages, or usages inspired by them, can
be fashioned into an adequate measure of degree of discrimination-
conduciveness.

First, there’s the suggestion that OSEs occur precisely when p rules
out at last one member of Γobs:

instead be put like this: P screens off each member of Γhyp from each member
of Γobs in that, given P, no member of Γhyp has any impact on the probability
of any member of Γobs. This is just a terminological matter.

25 This is shown in Appendix B.

ROO(Γhyp, Γobs | p): Pr(Oi | P) = 0 for some i.

Second, there’s the suggestion that OSEs occur precisely when there is a
biased sampling process:

BSP(Γhyp, Γobs | p): p is a biased (non-random) sampling process
with respect to the population at issue in the hypotheses in Γhyp.

Third, there’s a proposal in the literature to the effect that OSEs occur
precisely when a “simple” likelihood value changes when p is taken into
account:

CLV(Γhyp, Γobs | p): Pr(Oi | P & Hj) 6= Pr(Oi | Hj) for some i and
j.26

By ”simple” we mean ”not conditioned on P.” Can any of ROO,
BSP, and CLV be used to develop an adequate measure of degree of
discrimination-conduciveness?27

An initial difficulty is that none of ROO, BSP, and CLV is a matter of
degree. Each either holds in a given case or does not; there is no middle
ground. This difficulty can be remedied by constructing the following
variants:

ROO*(Γhyp, Γobs | p): the percentage of Oi in Γobs such that Pr(Oi
| P) = 0.

BSP*(Γhyp, Γobs | p): the extent to which p is a biased sampling
process with respect to the population at issue in the hypotheses
in Γhyp.

CLV*(Γhyp, Γobs | p): the average degree of change from Pr(Oi |
Hj) to Pr(Oi | P & Hj) for all i and j.

It’s not immediately clear how exactly to measure BSP* or CLV*. But
clearly they come in degrees, and so does ROO*.

26 See, e.g., Sober (2003, 2009) and Roberts (2012).
27 We don’t see a way to turn Bostrom’s OSE concept into a matter of degree,

which is why we don’t try to do so here.
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This is a start, but a patch is needed. As stated, each of ROO*, BSP*,
and CLV* is inadequate when understood as a measure of degree of
discrimination-conduciveness. Take ROO* for example, and suppose
that:

(4.1.1) Pr(Oi | P) = 0 for all i.

It follows that ROO*(Γhyp, Γobs | p) is maximal at 1. Given (4.1.1),
though, it follows that:

(4.1.2) Pr(Oi | P & Hj) = 0 = Pr(Oi | P & Hk) for all i, j, and k.

Hence by Minimality it follows that DDC(Γhyp, Γobs | p) is minimal
and thus not maximal.

There’s an easy fix here. Consider:

DDCROO∗ (Γhyp, Γobs | p): 1 – ROO*(Γhyp, Γobs | p).

DDCBSP∗ (Γhyp, Γobs | p): 1 – BSP*(Γhyp, Γobs | p).

DDCCLV∗ (Γhyp, Γobs | p): 1 – CLV*(Γhyp, Γobs | p).

Here DDCROO∗ (Γhyp, Γobs | p) is a decreasing function of ROO*(Γhyp,
Γobs | p), DDCBSP∗ (Γhyp, Γobs | p) is a decreasing function of
BSP*(Γhyp, Γobs | p), and DDCCLV∗ (Γhyp, Γobs | p) is a decreasing
function of CLV*(Γhyp, Γobs | p). So, for example, when (4.1.1) holds,
DDCROO∗ (Γhyp, Γobs | p) is minimal at 0, which is just as it should be.

Each of DDCROO*, DDCBSP*, and DDCCLV* has some prima fa-
cie plausibility as a measure of degree of discrimination-conduciveness.
This is because lower degrees of discrimination-conduciveness often
come with higher values of ROO*, higher values of BSP*, and higher
values of CLV*. However, do DDCROO*, DDCBSP*, and DDCCLV* sat-
isfy the requirement of Minimality?

4.2 DDCROO* and Minimality
Here we draw on the tuberculosis example from Section 2. Let Γhyp =
{Ht, H∼t} and Γobs = {Ot, O∼t}, where:

Ht: Joe has tuberculosis.

H∼t: Joes does not have tuberculosis.

Ot: k* says that Joe has tuberculosis.

O∼t: k* says that Joe does not have tuberculosis.

Recall that k* isn’t much of a test kit. When used on a given patient, a
randomizing device inside of k* flips a fair coin. If the coin comes up
heads, k* says that the patient has tuberculosis. If the coin doesn’t come
up heads, k* says that the patient doesn’t have tuberculosis. Suppose
you use k* on Joe, and it tells you that he has tuberculosis. It follows
that neither Ot nor O∼t discriminates between Ht and H∼t:

(4.2.1) Pr(Ot | P & Ht) = 1/2 = Pr(Ot | P & H∼t)

(4.2.2) Pr(O∼t | P & Ht) = 1/2 = Pr(O∼t | P & H∼t)

But it also follows that neither Ot nor O∼t is ruled out by p:

(4.2.3) Pr(Ot | P) = 1/2 = Pr(O∼t | P)

Given (4.2.3), DDCROO∗ (Γhyp, Γobs | p) is maximal. But given (4.2.1)
and (4.2.2), it follows by Minimality that DDC(Γhyp, Γobs | p) is mini-
mal. DDCROO* therefore fails to meet Minimality.

4.3 DDCBSP* and Minimality
Now let’s return to RED LIGHTS from Section 2. You’re about to enter
a room. Let Γhyp = {Hr, Hw} and Γobs = {Or, Ow}, where:

Hr: The walls in the room are red.

Hw: The walls in the room are white.

Or: The walls in the room look red to you.

Ow: The walls in the room look white to you.

You carefully scan each wall (in its entirety) and learn that Or. But, un-
beknownst to you, the walls in the room are lit by red lights in such
a way that the walls would look red whether they are red or white. It
follows (given natural assumptions) that this is a case of robust non-
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discrimination:

(4.3.1) Pr(Or | P & Hr) = 1 = Pr(Or | P & Hw)

(4.3.2) Pr(Ow | P & Hr) = 0 = Pr(Ow | P & Hw)

Hence by Minimality it follows that DDC(Γhyp, Γobs | p) is minimal.
However, your observation process isn’t a sampling process and thus
isn’t a biased sampling process. There’s no literal population from which
you’ve extracted member objects. Given this, DDCBSP∗ (Γhyp, Γobs | p)
is either maximal or undefined. Thus DDCBSP*, like DDCROO*, fails to
meet Minimality.

4.4 DDCCLV* and Minimality
Imagine a variant of TUBERCULOSIS where it’s a matter of chance
which test kit you will use on Joe. You are going to flip a fair coin. If
it comes up heads, you will use k (the good test kit) on Joe, where k is
such that:

(4.4.1) Pr(Ot | Pk & Ht) = 0.99

(4.4.2) Pr(O∼t | Pk & H∼t) = 0.95

If, instead, the coin doesn’t come up heads, you will use the totally use-
less kit k* (the bad test kit, as described in Section 2) on Joe. It follows
that:

(4.4.3) Pr(Ot | Ht) = Pr(Pk | Ht)Pr(Ot | Pk & Ht) + Pr(Pk∗ | Ht)Pr(Ot
| Pk∗ & Ht) = (0.5)(0.99) + (0.5)(0.5) = 0.745

(4.4.4) Pr(Ot | H∼t) = Pr(Pk | H∼t)Pr(Ot | Pk & H∼t) + Pr(Pk∗ |
H∼t)Pr(Ot | Pk∗ & H∼t) = (0.5)(0.05) + (0.5)(0.5) = 0.275

Suppose you flip the coin and it doesn’t come up heads. You then
use k* on Joe, and it says that he has tuberculosis. Call this case
”TUBERCULOSIS-FLIP.” DDCCLV*(Γhyp,Γobs|pk∗ ) is given by the av-
erage of the following:

(4.4.5) the degree of change from Pr(Ot | Ht) = 0.745 to Pr(Ot | Pk∗

& Ht) = 0.5

(4.4.6) the degree of change from Pr(O∼t | Ht) = 0.255 to Pr(O∼t |
Pk∗ & Ht) = 0.5

(4.4.7) the degree of change from Pr(Ot | H∼t) = 0.275 to Pr(Ot | Pk∗

& H∼t) = 0.5

(4.4.8) the degree of change from Pr(O∼t | H∼t) = 0.725 to Pr(O∼t |
Pk∗ & H∼t) = 0.5

We noted in Section 4.1 that it’s not immediately clear how to measure
CLV*. It’s clear, though, that this is not a case where CLV* is maximal.28

Hence DDCCLV*(Γhyp,Γobs|pk∗ ) isn’t minimal. Now consider just the
second probabilities in (4.4.5)-(4.4.8). Since the second probabilities in
(4.4.5) and (4.4.7) are equal to each other, and the same is true of the
second probabilities in (4.4.6) and (4.4.8), it follows by Minimality that
DDC(Γhyp,Γobs|pk∗ ) is minimal. This means that DDCCLV*, like the
first two candidate measures, fails to meet Minimality.29

4.5 Diagnosis
We have argued that none of DDCROO*, DDCBSP*, and DDCCLV*
meets Minimality because none of them is nil in all cases of robust non-
discrimination. The reason for this is simple: none of them is a function
of the degrees to which, given P, the members of Γobs discriminate be-
tween the members of Γhyp. DDCROO*, for instance, is a function of
the percentage of ruled out observations. Since this percentage isn’t the
same in all cases of robust non-discrimination, DDCROO* doesn’t have

28 If TUBERCULOSIS-FLIP were changed so that, say, Pr(Ot | Pk & Ht) = 0.999

and Pr(O∼t | Pk & H∼t) = 0.995, then each of the four degrees of change at
issue would be greater, and so the average degree of change would be greater.
It follows that TUBERCULOSIS-FLIP isn’t a case where CLV* is maximal.

29 It might be insisted that DDCCLV* should be understood so that Pr(Oi | Hj)
is elliptical for Pr(Oi | P* & Hj), where P* is what the observer takes to be a
true appropriate description of p. But this wouldn’t help. To see why, return
to RED LIGHTS, and suppose you’re aware of the red lights so that P* = P.
It follows by DDCCLV* on this new way of understanding it that the degree
of discrimination-conduciveness is maximal. This isn’t the right result.
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the same value in all such cases and thus, contra Minimality, isn’t nil
in each of them. The way forward, we suggest, is to construct a measure
of degree of discrimination-conduciveness that is a function of the de-
grees to which, given P, the members of Γobs discriminate between the
members of Γhyp. We turn now to that very task.

5. How to Measure Degree of Discrimination-Conduciveness

This section is divided into four subsections. In Section 5.1, we develop
a schema for measuring degree of discrimination-conduciveness, and ar-
gue that all instances of it meet Minimality. In Section 5.2, we describe
two prima facie plausible instances of our schema. In Section 5.3, we con-
sider some alternative measures of discrimination-conduciveness, and
argue that they are inferior to the two measures from Section 5.2. In
Section 5.4, we give a brief summary of our main findings.

5.1 Average Degree of Discrimination
Consider:

DDCADD(Γhyp,Γobs|p) :
∑i<j d(Hi, Hj, Ok|P)

(m) ∑i=n–1

i=1
(i)

Here Γhyp = {H1, H2, ..., Hn} is some hypothesis set, Γobs = {O1, O2, ...,
Om} is some observation set, p is some observation process, where P is a
true appropriate description of p, and d(Hi, Hj, Ok|P) is some measure
of degree of discrimination. DDCADD(Γhyp, Γobs | p) is the average
degree to which, given P, the members of Γobs discriminate between the
members of Γhyp. The subscript in ”DDCADD” is short for average degree
of discrimination.

An illustration is in order. Let Γhyp = {H1, H2, H3} and Γobs =

{O1, O2, O3}. Then DDCADD(Γhyp, Γobs | p) equals:

d(H1, H2, O1|P) + d(H1, H3, O1|P)+
d(H2, H3, O1|P) + d(H1, H2, O2|P)+
d(H1, H3, O2|P) + d(H2, H3, O2|P)+
d(H1, H2, O3|P) + d(H1, H3, O3|P)+

d(H2, H3, O3|P)
9

Notice that this sum includes d(H1, H2, O1 | P) but not d(H2, H1, O1

| P). This is because degree of discrimination is symmetric (as noted in
Section 3), and so it would be double counting to include both.

DDCADD isn’t itself a measure of degree of discrimination-
conduciveness. Rather, it’s just a schema for measuring that quantity.
There are different ways of measuring degree of discrimination d(-), and
different such measures lead to different instances of DDCADD.

We assume here and throughout that any instance of DDCADD is
such that the underlying measure of degree of discrimination meets both
(3.5) and (3.6) from Section 3. The former is the symmetry condition that
d(H1, H2, O | P) = d(H2, H1, O | P); the latter is the condition that d(H1,
H2, O | P) is minimal precisely when Pr(O | P & H1) = Pr(O | P & H2).

It’s easy to see that every instance of DDCADD (so understood) meets
Minimality. Let DDCADD-X be some arbitrary instance of DDCADD,
where degree of discrimination is measured by dX. First, suppose
that dX(Hi, Hj, Ok | P) is minimal for all i, j, and k. Then since
DDCADD-X(Γhyp, Γobs | p) is an average of degrees of discrimination
where each degree is minimal, it follows that DDCADD-X(Γhyp, Γobs|
p) itself is minimal. Second, suppose that DDCADD-X(Γhyp, Γobs| p)
is minimal. Since DDCADD-X(Γhyp, Γobs| p) is an average of degrees
of discrimination, it is minimal only if each degree of discrimination is
minimal. Thus dX(Hi, Hj, Ok | P) is minimal for all i, j, and k. In confor-
mity with Minimality, DDCADD-X(Γhyp, Γobs| p) is minimal precisely
when dX(Hi, Hj, Ok | P) is minimal for all i, j, and k.

Now let’s return to our diagnosis of why DDCROO*, DDCBSP*,
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and DDCCLV* fail to meet Minimality, and our suggestion that what’s
needed is a measure that’s a function of the degrees to which, given P,
the members of Γobs discriminate between the members of Γhyp. Every
instance of DDCADD is a measure of exactly that sort. This is why no
instance of DDCADD has trouble with Minimality.

It’s hardly surprising, on reflection, that every instance of DDCADD
meets Minimality. We don’t mean to suggest otherwise. The important
point is that, whether surprising or not, every instance of DDCADD
satisfies this condition of adequacy.

It won’t suffice, though, to rest content with DDCADD. There’s still
the issue of how to measure degree of discrimination. We turn to that
task now.

5.2 DDCADD-AD and DDCADD-SD
There are numerous measures of degree of discrimination in logical
space. We want to focus on these:

dAD(H1, H2, O|P) =
∣∣Pr(O | P&H1) – Pr(O | P&H2)

∣∣
dSD(H1, H2, O|P) =

[
Pr(O | P&H1) – Pr(O | P&H2)

]
2

The subscript in ”dAD” is short for absolute difference. The subscript in
”dSD” is short for squared difference.

Do dAD and dSD meet (3.5) and (3.6)? They meet (3.5) since absolute
differences and squared differences are order-invariant. And they meet
(3.6) because absolute differences and squared differences are minimal
at zero precisely when the two values in question are equal to each other.

Each of dAD and dSD can be used to flesh out DDCADD. If dAD is
substituted for d in DDCADD, the result is:

DDCADD–AD(Γhyp,Γobs|p) :
∑i<j dAD(Hi, Hj, Ok|P)

(m) ∑i=n–1

i=1
(i)

If, instead, dSD is substituted for d in DDCADD, the result is:

DDCADD–SD(Γhyp,Γobs|p) :
∑i<j dSD(Hi, Hj, Ok|P)

(m) ∑i=n–1

i=1
(i)

Each of these measures has a range of [0, 1].30 Since every instance of
DDCADD meets Minimality, it follows immediately that DDCADD-AD
and DDCADD-SD both meet Minimality.

Now consider a new condition of adequacy:

Dominance: For any hypothesis set Γhyp = {H, ∼H}, observation
set Γobs = {O, ∼O}, and observation processes p and p*, where P
is a true appropriate description of p, and P* is a true appropriate
description of p*, if Pr(O | P & H) > Pr(O | P* & H) > Pr(O | P*
& ∼H) > Pr(O | P & ∼H), then DDC(Γhyp, Γobs| p) > DDC(Γhyp,
Γobs | p*).

If Pr(O | P & H) > Pr(O | P* & H) > Pr(O | P* & ∼H) > Pr(O | P &
∼H), then p dominates p* with respect to Γhyp and Γobs in the sense
that regardless of which member of Γobs is true, the degree to which it
discriminates between H and ∼H given P is greater than the degree to

30 If Pr(Ok | P & Hi) = Pr(Ok | P & Hj) for all i, j, and k, then
DDCADD-AD(Γhyp, Γobs| p) and DDCADD-SD(Γhyp, Γobs| p) are both
equal to 0. If Pr(Ok | P & Hi) 6= Pr(Ok | P & Hj) for some i, j, and k,
then DDCADD-AD(Γhyp, Γobs| p) and DDCADD-SD(Γhyp, Γobs| p) are both
greater than 0. If each of Γhyp and Γobs has exactly two members and each
member of Γhyp confers a probability of 1 on a different member of Γobs,
then both DDCADD-AD(Γhyp, Γobs| p) and DDCADD-SD(Γhyp, Γobs| p)
equal 1. If either of Γhyp and Γobs has more than two members, then each of
DDCADD-AD(Γhyp, Γobs| p) and DDCADD-SD(Γhyp, Γobs| p) is less than 1.
If, for example, Γhyp = {H1, H2, H3} and Γobs = {O1, O2, O3}, and H1 and H2

maximally disagree on O1 and O2 in that Pr(O1 | P & H1) = 1 > 0 = Pr(O1

| P & H2) and Pr(O2 | P & H1) = 0 < 1 = Pr(O2 | P & H2), then H1 and H2

maximally agree on O3 in that Pr(O3 | P & H1) = 0 = Pr(O3 | P & H2) and
thus both DDCADD-AD(Γhyp, Γobs| p) and DDCADD-SD(Γhyp, Γobs| p) are
less than 1.
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which it discriminates between H and ∼H given P*. Dominance says
that if p dominates p* with respect to Γhyp and Γobs, then p’s degree of
discrimination-conduciveness with respect to Γhyp and Γobs is greater
than p*’s degree of discrimination-conduciveness with respect to Γhyp
and Γobs.

It turns out that DDCADD-AD and DDCADD-SD both meet Domi-
nance (in addition to meeting Minimality). Take some case where:

(5.2.1) Pr(O | P & H) > Pr(O | P* & H) > Pr(O | P* & ∼H) > Pr(O |
P & ∼H).

It follows that:

(5.2.2) Pr(∼O | P & ∼H) > Pr(∼O | P* & ∼H) > Pr(∼O | P* & H) >
Pr(∼O | P & H)

Given (5.2.1) and (5.2.2), it follows that:

(5.2.3) dAD(H, ∼H, O | P) > dAD(H, ∼H, O | P*)

(5.2.4) dAD(H, ∼H, ∼O | P) > dAD(H, ∼H, ∼O | P*)

(5.2.5) dSD(H, ∼H, O | P) > dSD(H, ∼H, O | P*)

(5.2.6) dSD(H, ∼H, ∼O | P) > dSD(H, ∼H, ∼O | P*)

Hence, as per Dominance, DDCADD-AD(Γhyp, Γobs| p) is greater
than DDCADD-AD(Γhyp, Γobs| p*), and DDCADD-SD(Γhyp, Γobs| p) is
greater than DDCADD-SD(Γhyp, Γobs| p*).

There’s more. DDCADD-AD and DDCADD-SD are ordinally equiva-
lent if the hypothesis sets of interest have exactly two members and the
observation sets at issue are two-membered partitions:

(5.2.7) For any hypothesis sets Γhyp = {H1, H2} and Γ*hyp = {H*1, H*2},
observation sets Γobs = {O, ∼O} and Γ*obs = {O*, ∼O*}, and
observation processes p and p*, where P is a true appropriate
description of p, and P* is a true appropriate description of p*,
DDCADD-AD(Γhyp, Γobs| p) > / = / < DDCADD-AD(Γ*hyp,
Γ*obs | p*) if and only if DDCADD-SD(Γhyp, Γobs| p) > / = /

< DDCADD-SD(Γ*hyp, Γ*obs | p*).31

This is significant, since in many contexts the crucial questions concern
relative degrees of discrimination-conduciveness as opposed to absolute
degrees of discrimination-conduciveness.

However, ordinal equivalence fails in the general case where the hy-
pothesis sets and the observation sets can have more than two members
and the observation sets (as with the hypothesis sets) don’t need to be
partitions. There are cases, for instance, where Γhyp= {H, ∼H}, Γobs =
{O1, O2, O3}, Γ*obs = {O∗

1
, O∗

2
, O∗

3
}, and DDCADD-AD(Γhyp, Γobs| p) is

less than DDCADD-AD(Γhyp, Γ*obs | p), whereas DDCADD-SD(Γhyp,
Γobs| p) is greater than DDCADD-SD(Γhyp, Γ*obs | p).32

We see no clear reason at this point for preferring one of our two
candidate measures over the other. But that’s okay for our purposes, for
it isn’t essential here that we defend some particular measure of degree
of discrimination-conduciveness as superior to all rival measures. We
return to these issues in Section 9.

5.3 Other Measures of Degree of Discrimination-Conduciveness
There are numerous measures of degree of discrimination in addition to
dAD and dSD. Here is one:

dR(H1, H2, O|P) =
Pr(O | P&H1)
Pr(O | P&H2)

The subscript in “dR” is short for ”Ratio.” This measure is clearly inade-
quate. If, say, Pr(O | P & H1) > Pr(O | P & H2), then dR(H1, H2, O | P)
> dR(H2, H1, O | P). Hence it fails to meet (3.5). If, instead, Pr(O | P &
H1) = Pr(O | P & H2) > 0, then dR(H1, H2, O | P) = 1, which is greater
than its minimal value of 0. It thus fails to meet (3.6).33

31 This is shown in Appendix C.
32 This is shown in Appendix D.
33 It doesn’t follow that no ratio-based measure of degree of discrimination

meets both (3.5) and (3.6). Consider: dR*(H1, H2, O|P) =
∣∣∣log

[
Pr(O|P&H1)
Pr(O|P&H2)

]∣∣∣.
This is a ratio-based measure. But, unlike dR, it meets both (3.5) and
(3.6). The key here is that log

[
Pr(O|P&H1)
Pr(O|P&H2)

]
equals log

[
Pr(O|P&H1)

]
–
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This result has implications for how degree of discrimination-
conduciveness should be understood. Consider:

DDCADD–R(Γhyp,Γobs|p) :
∑i<j dR(Hi, Hj, Ok|P)

(m) ∑i=n–1

i=1
(i)

This resembles DDCADD-AD and DDCADD-SD except that the under-
lying measure of degree of discrimination is dR as opposed to dAD or
dSD. But DDCADD-R, unlike DDCADD-AD and DDCADD-SD, fails to
meet Minimality. Any case of robust non-discrimination where none
of the probabilities equals 0 is a case where DDCADD-R(Γhyp, Γobs| p)
equals 1. However, DDCADD-R(Γhyp, Γobs| p) can be less than 1.34

Now consider the following variant of dAD:

dAD∗ (H1, H2, O|P) =

∣∣Pr(O|P&H1) – Pr(O|P&H2)
∣∣

Pr(O|P)

This measure, like dAD and unlike dR, meets both (3.5) and (3.6).35

If dAD* is plugged in for d in DDCADD, the result is:

DDCADD–AD∗ (Γhyp,Γobs|p) :
∑i<j dAD∗ (Hi, Hj, Ok|P)

(m) ∑i=n–1

i=1
(i)

This is an instance of DDCADD. So, since every instance of DDCADD

log
[
Pr(O|P&H2)

]
.

34 Let Γhyp = {H, ∼H} and Γobs = {O, ∼O}, and suppose that Pr(O | P & H)
= 0 and Pr(O | P & ∼H) = 0.01. Then DDCADD-R(Γhyp, Γobs| p) equals

0

0.01
+ 1

0.99

2
which is approximately 0.505.

35 We’re assuming here, for the sake of argument, that Pr(O | P) > 0. If this
assumption is dropped, then dAD* fails to meet (3.6). For, there are cases
where Pr(O | P & H) = 0 = Pr(O | P & ∼H) and thus Pr(O | P) = 0. (3.6)
implies that dAD*(H, ∼H, O | P) is minimal in such cases. But dAD*(H, ∼H,
O | P) is undefined and thus fails to be minimal.

meets Minimality, it follows that it too meets Minimality.36 Why, then,
do we prefer DDCADD-AD and DDCADD-SD over DDCADD-AD*?

Our preference here is based in part on the following:

Likelihoods: For any hypothesis set Γhyp = {H1, H2, ..., Hn}, ob-
servation set Γobs = {O1, O2, ..., Om}, and observation process p,
where P is a true appropriate description of p, DDC(Γhyp, Γobs|
p) is fully determined by Pr(Oi | P & Hj) for all i and j.

Both DDCADD-AD and DDCADD-SD meet Likelihoods, but
DDCADD-AD* does not.37 Given this, and given that we want a measure
of degree of discrimination-conduciveness on which Likelihoods holds,
we prefer DDCADD-AD and DDCADD-SD over DDCADD-AD*.

To explain why we want a measure of degree of discrimination-
conduciveness on which Likelihoods holds, we return to TUBERCU-
LOSIS, where k (the good test kit) is such that

(5.3.1) Pr(k says that S has tuberculosis| | P & S has tuberculosis) =
0.99

(5.3.2) Pr(k says that S has tuberculosis | P & S does not have tuber-
culosis) = 0.05

Here S is a random member of the population. It follows both by
DDCADD-AD and by DDCADD-SD that DDC(Γhyp, Γobs | p) is high.
This is because it follows both by dAD and by dSD that each member of
Γobs discriminates between the two members of Γhyp to a high degree:

(5.3.3) dAD(Ht, H∼t, Ot|P) = dAD(Ht, H∼t, O∼t|P) = 0.94

(5.3.4) dSD(Ht, H∼t, Ot|P) = dSD(Ht, H∼t, O∼t|P) ≈ 0.884

But things are different with DDCADD-AD*, since whether dAD*(Ht,
H∼t, Ot | P) and dAD*(Ht, H∼t, O∼t | P) are high depends on Pr(Ot |

36 This claim and the prior claim that DDCADD-AD* is an instance of DDCADD
are based on the assumption noted in footnote 35. Neither claim holds if this
assumption is dropped.

37 This is shown in Appendix E.
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P) and thus depends indirectly on Pr(Ht | P) along with the base-rate
of tuberculosis in the population as given by Pr(S has tuberculosis | P).
If, say, Pr(S has tuberculosis | P) equals 0.1 and so Pr(Ht | P) equals 0.1,
then:

(5.3.5) dAD∗ (Ht, H∼t, Ot|P) ≈ 6.528 >
1.098 ≈ dAD∗ (Ht, H∼t, O∼t|P)

(5.3.6) DDCADD–AD∗ (Γhyp,Γobs|p) ≈ 3.813

If, instead, Pr(S has tuberculosis | P) equals 0.5 and thus Pr(Ht | P)
equals 0.5, then:

(5.3.7) dAD∗ (Ht, H∼t, Ot|P) ≈ 1.810 <
1.958 ≈ dAD∗ (Ht, H∼t, O∼t|P)

(5.3.8) DDCADD–AD∗ (Γhyp,Γobs|p) ≈ 1.883

This kind of sensitivity to priors seems out of place in the context of de-
gree of discrimination (and degree of discrimination-conduciveness). As
mentioned earlier (Section 3), a tuberculosis test kit’s ability to discrim-
inate between ”S has tuberculosis” and ”S does not have tuberculosis”
does not depend on whether tuberculosis is common or rare. Of course
the success rate of a tuberculosis test kit depends on the frequency of
tuberculosis in the population in question. However, these relevant fea-
tures are extrinsic to the test kit.

It’s important to note that discrimination is distinct from confirmation,
where given P, O confirms H precisely when Pr(H | P & O) is greater
than Pr(H | P). This difference is evident from the fact that there are
cases where, given P, O discriminates between H1 and H2, but confirms
neither of them, because Pr(H1 | P & O) is less than Pr(H1 | P), and
Pr(H2 | P & O) is less than Pr(H2 | P).38 We leave it open that sensitivity

38 Consider a case where a card is randomly drawn from a standard well-
shuffled deck of cards. Let H1 be the proposition that the card drawn is
a Diamond, H2 be the proposition that the card drawn is a Heart, and O be
the proposition that the card drawn is a Club, a Spade, the Ace of Diamonds,
the Ace of Hearts, or the King of Hearts. Let P be a true appropriate descrip-
tion of your observation process. It follows that Pr(O | P & H1) = 1/13 6=

to priors is a virtue, not a vice, in the context of degree of confirmation
(and degree of “confirmation-conduciveness”).

This is not the end of the story on alternatives to DDCADD-AD and
DDCADD-SD, but we want to move forward, using the supposition that
DDCADD-AD and DDCADD-SD are preferable to their alternatives.

5.4 Section Summary
We proposed a framework for measuring degree of discrimination-
conduciveness, and set out two prima facie plausible instances—the abso-
lute difference measure DDCADD-AD and the squared difference mea-
sure DDCADD-SD. Each satisfies Minimality, Dominance, and Likeli-
hoods. Given this, and given that we see no clear reason for choosing
between them, we keep both on the table and leave for the future the in-
vestigation of whether either is preferable to the other (and also whether
either is preferable to alternative measures that obey Minimality, Dom-
inance, and Likelihoods).

It will help, though, for ease of presentation in what follows, to fo-
cus on just one of them. Henceforth when we talk about ”DDCADD”
we’ll mean DDCADD-AD. None of our main points below hinges on
this choice, despite the fact that DDCADD-AD and DDCADD-SD are not
ordinally equivalent.

We turn now to the related issue of how to measure degree of OSE.

6. How to Measure Degree of OSE

Recall from Section 1 that there’s a distinction between degree of
discrimination-conduciveness and degree of OSE. The latter, but not the
former, is causal. OSEs arise when changing the observation process
changes the degree of discrimination-conduciveness. Discrimination-
conduciveness is to the size of a balloon as OSEs are to the amount
of air you put into the balloon. We have constructed a framework for

2/13 = Pr(O | P & H2), Pr(H1 | P & O) = 1/29 < 1/4 = Pr(H1 | P), and
Pr(H2 | P & O) = 2/29 < 1/4 = Pr(H2 | P). Hence, given P, O discriminates
between H1 and H2, but confirms neither of them.
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measuring degree of discrimination-conduciveness. The task now is to
use it as a basis for constructing a measure of degree of OSE.

A natural idea is to measure degree of OSE in a particular case
by taking the difference between the two degrees of discrimination-
conduciveness in question:

OSED(Γhyp,Γobs|p
1

rather than p
2
) :

DDCADD(Γhyp,Γobs|p
1
) – DDCADD(Γhyp,Γobs|p

2
)

If, for instance, you found yourself in FISH-B, and the alternative obser-
vation process on hand was the one in FISH-S, then the degree of OSE
would be given by:

OSED(Γhyp,Γobs|pB rather than pS) :
DDCADD(Γhyp,Γobs|pB) – DDCADD(Γhyp,Γobs|pS)

If, instead, you found yourself in FISH-M, not FISH-B, and the alterna-
tive observation process on hand was the one in FISH-S, then the degree
of OSE would be given by:

OSED(Γhyp,Γobs|pM rather than pS) :
DDCADD(Γhyp,Γobs|pM) – DDCADD(Γhyp,Γobs|pS)

Given that DDCADD(Γhyp, Γobs| pB) is minimal and thus is less than
DDCADD(Γhyp, Γobs| pM), it follows that though both OSED(Γhyp,
Γobs| pB rather than pS) and OSED(Γhyp, Γobs| pM rather than pS)
are negative, the former is less than the latter. This is just as it should
be. The negative effect of using pB rather than pS is greater than the
negative effect of using pM rather than pS.

Another natural idea is to measure degree of OSE in a particular case
by taking the ratio of the two degrees of discrimination-conduciveness

in question:

OSER(Γhyp,Γobs|p
1

rather than p
2
) :

DDCADD(Γhyp,Γobs|p
1
)

DDCADD(Γhyp,Γobs|p
2
)

The right-hand side here is greater than 1 precisely when the right-hand
side of OSED is positive. However, OSED and OSER are not ordinally
equivalent.39

We see no clear basis for choosing between OSED and OSER. But,
as was true with respect to the fact that DDCADD-AD and DDCADD-SD
aren’t ordinally equivalent, this is okay for our purposes. We return to
these issues in Section 9.

7. The Ravens Paradox

The ravens paradox can be understood in terms of the following three
theses:

Nicod’s Condition: For any object a, and predicates F and G,
(∀x)(Fx ⊃ Gx) is confirmed by Fa & Ga.

Equivalence Condition: For any propositions E, H, and H*, if H
and H* are logically equivalent and E confirms H, then E confirms
H*.

Ravens Condition: (∀x)(Rx ⊃ Bx) is not confirmed by ∼Ba & ∼Ra,
where ”Rx” means ”x is a raven” and ”Bx” means ”x is black.”

The alleged paradox is that each of these three theses is prima facie plau-
sible in isolation, but they are inconsistent as a set.

A standard Bayesian response is to reject Ravens Condition in favor
of one or both of the following:

39 This is shown in Appendix F.
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(7.1) c((∀x)(Rx ⊃ Bx), ∼ Ba & ∼ Ra) = ε > n

(7.2) c((∀x)(Rx ⊃ Bx), Ra & Ba)� c((∀x)(Rx ⊃ Bx), ∼ Ba & ∼ Ra)

Here n is the neutral point between confirmation and disconfirmation
(where the evidence neither increases nor decreases the probability of
the hypothesis), and ε is some value very close to n. (7.1) says that the
degree to which (∀x)(Rx ⊃ Bx) is confirmed by ∼Ba & ∼Ra is negligible.
(7.2) says that the degree to which (∀x)(Rx ⊃ Bx) is confirmed by Ra &
Ba is much greater than the degree to which it is confirmed by ∼Ba &
∼Ra.40

Our preferred measures of degree of discrimination-conduciveness
and degree of OSE don’t bear directly on (7.1) or (7.2), and don’t indicate
what to do in light of the fact that the three raven theses are jointly
inconsistent. However, there is a connection.

Suppose you want to test the following hypotheses against each
other:

H100: 100% of all ravens are black.

H50: 50% of all ravens are black.

Suppose, further, you want to do this by drawing a random sample.
Should your sample be drawn from the population of ravens? Should it
instead be drawn from the population of non-black things, or from some
third population?

Our framework for measuring degree of discrimination-
conduciveness can help here. Let p be the process of sampling at
random from the class of ravens, and p* be the process of sampling at
random from the class of non-black things. Suppose that if p is used,
the observation set is Γ = {O1, O2}, where:

O1: Ba

O2: ∼Ba

40 See Fitelson and Hawthorne (2010) for helpful discussion of Bayesian de-
fenses of (7.1) and (7.2).

and suppose that if p* is used, the observation set is Γ* = {O*1, O*2},
where:

O*1: Ra

O*2: ∼Ra

It follows that:

(7.3) Pr(O1 | P & H100) = 1 > 1/2 = Pr(O1 | P & H50)

(7.4) Pr(O2 | P & H100) = 0 < 1/2 = Pr(O2 | P & H50)

Given that the class of non-black things is much larger than the class of
ravens, it further follows that:

(7.5) Pr(O∗
1

| P∗ & H100) = 0 ≈ Pr(O∗
1

| P∗ & H50)

(7.6) Pr(O∗
2

| P∗ & H100) = 1 ≈ Pr(O∗
2

| P∗ & H50)

But then:

(7.7) d(H100, H50, O1 | P) > d(H100, H50, O∗
1

| P∗)

(7.8) d(H100, H50, O1 | P) > d(H100, H50, O∗
2

| P∗)

(7.9) d(H100, H50, O2 | P) > d(H100, H50, O∗
1

|P∗)

(7.10) d(H100, H50, O2 | P) > d(H100, H50, O∗
2

| P∗)

Hence:

(7.11) DDCADD(Γhyp, Γobs | p) > DDCADD(Γhyp, Γ*obs | p*)

This captures the intuitive idea that p is a better observational process
than p* in the context of testing H100 and H50 against each other.41

Sampling at random from the ravens and sampling at random from
the non-black things are the two obvious observation processes to con-
sider, but there are other possibilities, and they also can be evaluated by

41 See Forster (1994) for a similar treatment of the ravens paradox, which is
formulated in terms of predictive accuracy.

philosophers’ imprint - 18 - vol. 19, no. 40 (september 2019)



william roche and elliott sober Discrimination-Conduciveness and OSEs

using our framework.42 It is interesting that the ravens paradox provides
an example in which it makes sense to compare different observational
processes and different observation sets relative to a single set of com-
peting hypotheses.43

Eddington’s fishing example may seem worlds away from the ravens
paradox, but they are connected by the fact that an observation process
can diminish (or enhance!) the extent to which observations discriminate
between competing hypotheses.

8. Publication Bias

The ravens paradox is an old standby in philosophy of science, but the
topic of this section is something more contemporary. Various sciences,
including medicine and psychology, have recently been overtaken by a
”replication crisis,” wherein a great many of the results reported in ref-
ereed journals fail to be replicated.44 One possible explanation that has
been discussed is publication bias. One type of publication bias occurs
when researchers obtain negative results but don’t try to publish them,
and then they “try and try again” until they come up with a positive
result, which they then submit to a journal. Another type of publication
bias occurs when journal editors are disinclined to accept papers that

42 In his discussion of the ravens paradox, Royall (1997, pp. 177-179) considers
several sampling schemes, but he doesn’t consider sampling at random from
the non-black things, nor does he consider possible but nonactual observa-
tions.

43 Unsurprisingly, our treatment of the ravens paradox carries over straightfor-
wardly to the grue paradox. Let H1 be the hypothesis that all emeralds are
green and H2 be the hypothesis that all emeralds are grue (where an object
is grue at time t precisely when it is green and t < 2050 or it is blue and t
≥ 2050). You are going to sample 100 emeralds. In Situation 1, you do your
sampling before 2050. In Situation 2, you do your sampling at or after 2050.
In Situation 1, your observation process (described by proposition P) takes
over in that Pr(O100 | P & H1) = 1 = Pr(O100 | P & H2) where O100 is the
claim that 100% of the emeralds sampled are green, and Pr(Oi | P & H1) = 0

= Pr(Oi | P & H2) for each i < 100. In Situation 2, your observation process
(described by proposition P*) does not take over, since Pr(O100 | P* & H1) =
1 > 0 = Pr(O100 | P* & H2).

44 For discussion and references on publication bias, see, for example, Bird
(fort) and Stegenga (2018).

report negative results though they are happy to do so for submitted
papers that report positive findings.

To illustrate how our account of OSEs applies to publication bias,
suppose that journal Positive-and-Negative publishes every well-designed
and properly run study submitted to it regardless of the results, and
that journal Positive-Only publishes every well-designed and properly
run study submitted to it in which the results are positive but none in
which the results are negative. Consider two scenarios:

Scenario 1: Smith reads Positive-and-Negative (and no other journal),
and observes that the results are positive in every study published
there on the effectiveness of drug D.

Scenario 2: Smith reads Positive-Only (and no other journal), and
observes that the results are positive in every study published
there on the effectiveness of drug D.

It seems clear here that:

(8.1) Pr(the results are positive in every published study that Smith
has read on the effectiveness of drug D | PS1

& D is more
effective than a placebo)� Pr(the results are positive in every
published study that Smith has read on the effectiveness of
drug D | PS1

& D is not more effective than a placebo)

(8.2) Pr(the results are positive in every published study that Smith
has read on the effectiveness of drug D | PS2

& D is more
effective than a placebo) = Pr(the results are positive in every
published study that Smith has read on the effectiveness of
drug D | PS2

& D is not more effective than a placebo)

Here PS1
and PS2

describe Smith’s observation processes pS1
and pS2

(but not the observational outcomes!) in Scenario 1 and Scenario 2, respec-
tively. If Smith shifts from pS1

to pS2
, a regrettable OSE has occurred; if

Smith shifts in the opposite direction, an OSE has also occurred, but this
time it is all to the good.

This example does not require us to quantify how much of an OSE
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occurs in the shift. But the example can be modified to make that perti-
nent.

In the fishing examples discussed at the start of this paper, we spoke
of ”your” using a fishing net and ”your” observing the fish caught in
the net. The experimenter and the observer of the outcome are one and
the same person. However, in the case just described, Smith reads the
studies, but she is not the scientist who carried out the trials. This al-
lows for the possibility that the scientists carrying out their studies did
flawless work, and yet others are entitled to look with jaundiced eye on
these same studies when they read them.

9. Concluding Comments

In this paper, we conceptualized OSEs by considering how a shift
from one process of observation to another affects discrimination-
conduciveness—the degree to which possible observations discriminate
between hypotheses, given the observation process at work. This OSE
concept is causal. The cause is the shift in process. The effect is a change
in degree of discrimination-conduciveness. We described conditions
of adequacy that an acceptable measure of degree of discrimination-
conduciveness must satisfy, and used those conditions of adequacy to
evaluate several possible measures. We then defined two measures of
how much of an OSE the shift from one process to another induces.

We were driven to consider choices of measure by the fact that
discrimination-conduciveness and OSEs are matters of degree. If they
are matters of degree, one is obliged to say degrees of what. Although it
turned out that each choice of measure faces a problem of measure sen-
sitivity, our goal was not to solve that pair of problems. The situation
here is rather similar to the one that Bayesians face when they talk about
confirmation. They agree that, given P, O confirms H precisely when
Pr(H | P & O) > Pr(H | P), but they disagree about how degree of con-
firmation should be understood. The disagreement is substantive, since
several measures fail to be ordinally equivalent (Fitelson 1999; Brössel
2013). However even if no uniquely correct measure of degree of confir-
mation can be defended, Bayesian confirmation theory still has its uses.

In the theory of confirmation, rarely is it important to be able to
compare c(H1, O1 | P) with c(H2, O2 | P), where c(-) is a measure of de-
gree of confirmation, and H1 and H2 are on completely different subject
matters, as are O1 and O2. More often, the interesting questions concern
whether c(H1, O | P) > c(H2, O | P), and whether c(H, O1 | P) > c(H, O2

| P). Similar points apply to degrees of discrimination-conduciveness.
Rarely is it important to be able to decide whether DDCADD(Γhyp,
Γobs| p) > DDCADD(Γ*hyp, Γ*obs | p*). More often, the interesting ques-
tions concern whether DDCADD(Γhyp, Γobs| p) > DDCADD(Γhyp, Γobs
| p*). However, the problem of measure-sensitivity arises even in this
restricted context.

Perhaps, in many cases of interest, the ordering of processes in terms
of their discrimination-conduciveness is the same regardless of which
of several ”reasonable” measures you choose. In cases where this una-
nimity does not arise, it is interesting that different choices of mea-
sure lead to different answers. That is a discovery worth making, not
a cause for despair. On the other hand, maybe a single best measure
of discrimination-conduciveness can be found. There are questions here
that merit further investigation.

A locus classicus for discussion of OSEs is the fine-tuning argument;
since we have not discussed that argument to this point, a few com-
ments are in order. Some have argued that an OSE completely vitiates
this argument; they contend that the observation that a physical constant
has a value that falls in a very narrow window of life-permitting values
fails to discriminate between the competing hypotheses, since the ob-
servation was made by beings who are themselves alive (see, e.g., Sober
2009, 2018). Critics of that negative assessment respond that a proper un-
derstanding of the epistemology of OSEs reveals that no such vitiation
arises (for discussion, see, e.g., Leslie 1989; Monton 2006; Collins 2009;
Kotzen 2012). Much of this disagreement concerns how an “appropri-
ate” description of the process of observation should be formulated, a
topic we mentioned earlier but did not explore. The present paper, there-
fore, does not by itself resolve the controversy about the fine-tuning ar-
gument. We hope, however, that it does contribute to this discussion, in
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that it makes precise how an observation process’s effect on the ability of
observations to discriminate between hypotheses should be understood.

One such contribution derives from the fact that OSEs, understood
in terms of discrimination-conduciveness, depend on the space of pos-
sible observations considered. The fine-tuning argument is usually for-
mulated by considering a dichotomous property—our universe either
permits life to exist, or it does not. The question is then asked what the
probability is that our universe is life-permitting according to this or
that cosmological or theistic hypothesis. However, recent work on the
physics of fine-tuning suggests that this dichotomous characterization
of the problem may be too crude. Instead of saying whether or not our
universe is life-permitting, we might describe how life-friendly our uni-
verse is. The possibilities range from life’s being impossible to life’s be-
ing inevitable, with lots of other possibilities in between.45 Suppose our
universe is such that life is possible, but is very improbable. When living
observers determine how life-friendly our universe is, that fact about the
observers isn’t enough to settle what degree of life-friendliness our uni-
verse must manifest. This means that even if a massive OSE arises when
we consider the dichotomous property, it doesn’t follow that a massive
shut-down also occurs when more fine-grained observations are consid-
ered (Sober 2018).

Since our OSE concept applies to net-fishing, RED LIGHTS, TUBER-
CULOSIS, the ravens paradox, publication bias, stroke-impaired visual
acuity, and the fine-tuning argument, the worry may arise that the ac-
count we have given is too broad to be of much use. We disagree. We
think our account unifies these examples, and explains why OSEs often
(but not always) impose epistemic costs.

Our OSE concept, though broad, is not a vacuous catch-all that en-
compasses all forms of bad research practice. This can be seen by noting
that research has at least five distinct (but related) stages:

• formulating a question or problem
• formulating competing hypotheses

45 See Lewis and Barnes (2016, Ch. 3) for helpful discussion.

• choosing a method of gathering observations
• making observations
• interpreting how the observations bear on the competing hy-

potheses, given the observation process used

Our OSE framework comes into play at the stage of choosing a method
of gathering observations, but flawed research practices also can be
found at the other stages. An obvious example is the use of a falla-
cious mode of inference at the last stage mentioned (e.g., the base-rate
fallacy).46 Our OSE framework is a tool, not for evaluating research prac-
tices as a whole, but for evaluating a limited though central part of that
variegated totality.

Appendix A
We aim to show:

(A.1) If Γhyp is a partition, then it follows from Minimality that
DDC(Γhyp,Γobs|p) is minimal precisely when Pr(Oi | P & Hj)
= Pr(Oi | P) for all i and j.

Take some Γhyp, Γobs, and p such that Γhyp is a partition. Suppose, first,
that:

(A.2) Pr(Oi | P & Hj) = Pr(Oi | P) for all i and j.

It follows from (A.2) that:

(A.3) Pr(O1 | P & H1) = Pr(O1 | P) = Pr(O1 | P & H2) = . . . = Pr(O1

| P & Hn)
Pr(O2 | P & H1) = Pr(O2 | P) = Pr(O2 | P & H2) = . . . = Pr(O2

| P & Hn)
. . .

46 Additional examples include: (a) ignoring a relevant alternative hypothesis,
(b) failing to take proper account of imprecision in an observation instru-
ment, (c) giving a spurious burden of proof argument, (d) making a facile
application of Ockham’s razor, (e) using an indefensible prior probability,
and (f) using a rejectionist significance test.
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Pr(Om | P & H1) = Pr(Om | P) = Pr(Om | P & H2) = . . . =
Pr(Om | P & Hn)

Hence:

(A.4) Pr(Oi | P & Hj) = Pr(Oi | P & Hk) for all i, j, and k

Hence by Minimality it follows that DDC(Γhyp,Γobs|p) is minimal.
Suppose, second, that by Minimality it follows that DDC(Γhyp,Γobs|p)
is minimal. Then:

(A.5) Pr(Oi | P & Hj) = Pr(Oi | P & Hk) for all i, j, and k

The law of total probability implies that:

(A.6) Pr(Oi | P) = Pr(H1 | P)Pr(Oi | P & H1) + Pr(H2 | P)Pr(Oi | P
& H2) + . . . + Pr(Hn | P)Pr(Oi | P & Hn)

(A.5) and (A.6) together imply:

(A.7) Pr(Oi | P) = Pr(Oi | P & H1)[Pr(H1 | P) + Pr(H2 | P) + . . . +
Pr(Hn | P)]

Hence, since Γhyp is a partition, it follows that the sum on the right-hand
side of (A.7) equals 1 and thus:

(A.8) Pr(Oi | P) = Pr(Oi | P & H1)

Given (A.5), it follows that:

(A.9) Pr(Oi | P & Hj) = Pr(Oi | P) for all i and j

Hence (A.1). QED.

Appendix B
The aim is to show:

(B.1) There are cases where Γhyp is not a partition, d(Hi, Hj, Ok | P)
is minimal for all i, j, and k, and it’s not the case that Pr(Oi |
P & Hj) = Pr(Oi | P) for all i and j.

Let Γhyp = {H1, H2}, Γ∗hyp = {H1, H2, H3}, and Γobs = {O1, O2, O3}. Sup-

pose that Γ∗hyp is a partition but Γhyp isn’t. Take the following (partially
displayed) probability distribution:

O1 O2 O3 H1 H2 H3 Pr(–|P)
T F F T F F 1

6

T F F F T F 1

6

T F F F F T 1

3

F T F F F T 1

3

It follows that:

(B.2) Pr(O1 | P & H1) = 1 = Pr(O1 | P & H2)
Pr(O2 | P & H1) = 0 = Pr(O2 | P & H2)
Pr(O3 | P & H1) = 0 = Pr(O3 | P & H2)

(B.3) Pr(O1 | P & H1) = 1 > 2/3 = Pr(O1 | P)

Hence (B.1). QED

Appendix C
The aim is to show:

(C.1) For any hypothesis sets Γhyp = {H1, H2} and Γ∗hyp = {H*1,
H*2}, observation sets Γobs = {O, ∼O} and Γ∗obs = {O*, ∼O*},
and observation processes p and p*, where P is a true appro-
priate description of p, and where P* is a true appropriate
description of p*, DDCADD–AD(Γhyp, Γobs | p) > / = / <
DDCADD–AD(Γ∗hyp, Γ∗obs | p*) iff DDCADD–SD(Γhyp, Γobs |
p) > / = / < DDCADD–SD(Γ∗hyp, Γ∗obs | p*).

Take some hypothesis sets Γhyp = {H1, H2} and Γ∗hyp = {H∗
1

, H∗
2

}, ob-
servation sets Γobs = {O,∼ O} and Γ∗obs = {O∗,∼ O∗}, and observation
processes p and p*, where P is a true appropriate description of p, and
where P* is a true appropriate description of p*. It follows that:
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(C.2) DDCADD-AD(Γhyp, Γobs | p) >/=/<
DDCADD-AD(Γ*hyp, Γ*obs | p*) iff

∣∣Pr(O | P&H1) – Pr(O | P&H2)
∣∣+∣∣Pr(∼ O | P&H1) – Pr(∼ O | P&H2)
∣∣

2
>/=/<

∣∣Pr(O∗ | P∗&H∗
1

) – Pr(O∗ | P∗&H∗
2

)
∣∣+∣∣Pr(∼ O∗ | P∗&H∗

1
) – Pr(∼ O∗ | P∗&H∗

2
)
∣∣

2
iff∣∣Pr(O | P&H1) – Pr(O | P&H2)

∣∣ >/=/<∣∣Pr(O∗ | P∗&H∗
1

) – Pr(O∗ | P∗&H∗
2

)
∣∣

(C.3) DDCADD-SD(Γhyp, Γobs | p) >/=/<
DDCADD-SD(Γ*hyp, Γ*obs | p*) iff

[
Pr(O | P&H1) – Pr(O | P&H2)

]
2 +[

Pr(∼ O | P&H1) – Pr(∼ O | P&H2)
]

2

2
>/=/<

[
Pr(O∗ | P∗&H∗

1
) – Pr(O∗ | P∗&H∗

2
)
]

2 +[
Pr(∼ O∗ | P∗&H∗

1
) – Pr(∼ O∗ | P∗&H∗

2
)
]

2

2
iff[

Pr(O | P&H1) – Pr(O | P&H2)
]

2 >/=/<[
Pr(O∗ | P∗&H∗

1
) – Pr(O∗ | P∗&H∗

2
)
]

2

But:

(C.4)
∣∣Pr(O | P&H1) – Pr(O | P&H2)

∣∣ >/=/<∣∣Pr(O∗ | P∗&H∗
1

) – Pr(O∗ | P∗&H∗
2

)
∣∣ iff[

Pr(O | P&H1) – Pr(O | P&H2)
]

2 >/=/<[
Pr(O∗ | P∗&H∗

1
) – Pr(O∗ | P∗&H∗

2
)
]

2

Hence:

(C.5) DDCADD-AD(Γhyp, Γobs | p) >/=/<
DDCADD-AD(Γ*hyp, Γ*obs | p*) iff
DDCADD-SD(Γhyp, Γobs | p) >/=/<
DDCADD-SD(Γ*hyp, Γ*obs | p*)

Hence (C1). QED

Appendix D
The aim is to show:

(D.1) There are cases where Γhyp = {H, ∼H}, Γobs = {O1,
O2, O3}, Γ∗obs = {O*1, O*2, O*3}, and DDCADD-AD(Γhyp,
Γobs | p) is less than DDCADD-AD(Γhyp, Γ∗obs | p),
whereas DDCADD-SD(Γhyp, Γobs | p) is greater than
DDCADD-SD(Γhyp, Γ∗obs | p).

Let Γhyp = {H, ∼H}, Γobs = {O1, O2, O3}, and Γ∗obs = {O*1, O*2, O*3}.
Consider the following (partially displayed) probability distribution:

O1 O2 O3 O∗
1

O∗
2

O∗
3

H Pr

T F F F T F T 383

3072

T F F F F T T 1

3072

T F F F F T F 1

16

F T F T F F T 511

3072

F T F F T F T 257

3072

F T F F F T F 1

32

F F T T F F F 43

131072

F F T F T F T 1

8

F F T F T F F 223

1024

F F T F F T F 24661

131072

It follows that:

(D.2) DDCADD-AD(Γhyp, Γobs | p) = 0.375 < 0.3754 ≈
DDCADD-AD(Γhyp, Γ∗obs | p)

(D.3) DDCADD-SD(Γhyp, Γobs | p) ≈ 0.174 > 0.160 ≈
DDCADD-SD(Γhyp, Γ∗obs | p)
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Hence (D.1). QED

Appendix E
The aim is to show:

(E.1) DDCADD-AD* doesn’t meet Likelihoods.

Let Γhyp = {H1, H2, H3} and Γobs = {O,∼O}. Consider, first, the following
(partially displayed) probability distribution:

O H1 H2 H3 Pr(–|P)
T T F F 27

100

T F T F 1

5

T F F T 2

25

F T F F 9

100

F F T F 1

5

F F F T 4

25

It follows that:

(E.2) Pr(O | P & H1) = 0.75 > 0.25 = Pr(∼O | P & H1)
Pr(O | P & H2) = 0.5 = Pr(∼O | P & H2)
Pr(O | P & H3) = 1/3 < 2/3 = Pr(∼O | P & H3)

(E.3) DDCADD-AD*(Γhyp, Γobs | p) ≈ 0.561

Consider, second, the following portion of an alternative probability dis-

tribution:

O H1 H2 H3 Pr(–|P)
T T F F 3

50

T F T F 1

10

T F F T 6

25

F T F F 1

50

F F T F 1

10

F F F T 12

25

(E.2) still holds but:

(E.4) DDCADD-AD*(Γhyp, Γobs | p) ≈ 0.579

Hence DDCADD-AD* fails to meet Likelihoods. Hence (E.1). QED

Appendix F
The aim is to show:

(F.1) OSED and OSER are not ordinally equivalent.

Let Γhyp = {H, ∼H} and Γobs = {O1, O2, O3}, and consider the following
(partially displayed) probability distributions:

O1 O2 O3 H Pr(–|P1)

T F F T 238259

2280396

T F F F 41480

570099

F T F T 238259

1140198

F T F F 20740

570099

F F T T 238259

2280396

F F T F 269620

570099
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O1 O2 O3 H Pr(–|P2)
T F F T 7975

32756

T F F F 60146

122835

F T F T 55825

786144

F T F F 17629

122835

F F T T 7975

786144

F F T F 1037

24567

O1 O2 O3 H Pr(–|P3)
T F F T 4125

48184

T F F F 1037

6023

F T F T 3375

24092

F F T T 4125

48184

F F T F 3111

6023

O1 O2 O3 H Pr(–|P4)

T F F T 631533

109342720

F T F T 80204691

109342720

F T F F 14030541

54671360

F F T F 222707

54671360

It follows that:

(F.2) OSED(Γhyp, Γobs | p1 rather than p2) ≈ 0.354 > 0.306 ≈
OSED(Γhyp, Γobs | p3 rather than p4)

(F.3) OSER(Γhyp, Γobs | p1 rather than p2) = 18 < 30.4 = OSER(Γhyp,
Γobs | p3 rather than p4)

Hence (F.1). QED
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Cirković, M., Sandberg, A., and Bostrom, N. (2010). Anthropic shadow:
observation selection effects and human extinction risks. Risk Analysis,
30(10):1495–506.

Collins, R. (2009). The teleological argument – an exploration of the
fine-tuning of the universe. In Craig, W. and Moreland, J., editors, The
Blackwell companion to natural theology, pages 202–281. Wiley-Blackwell.

Dawid, A. (1976). Properties of diagnostic data distributions. Biometrics,
32:647–658.

Earman, J. (1986). A primer on determinism. D. Reidel, Dordrecht.
Eddington, A. S. (1939). The philosophy of physical science. Cambridge

University Press, Cambridge.
Epstein, P. (2017). The fine-tuning argument and the requirement of total

philosophers’ imprint - 25 - vol. 19, no. 40 (september 2019)



william roche and elliott sober Discrimination-Conduciveness and OSEs

evidence. Philosophy of Science, 84(4):639–658.
Fitelson, B. (1999). The plurality of Bayesian measures of confirmation

and the problem of measure sensitivity. Philosophy of Science, 66:S362–
S378.

Fitelson, B. and Hawthorne, J. (2010). How Bayesian confirmation theory
handles the paradox of the ravens. In Eells, E. and Fetzer, J., editors,
The place of probability in science, pages 247–275. Springer.

Forster, M. (1994). Non-Bayesian foundations for statistical estimation,
prediction, and the ravens example. Erkenntnis, 40(3):357–376.

Hacking, I. (1965). The logic of statistical inference. Cambridge University
Press, Cambridge.

Hájek, A. (2012). Interpretations of probability. In Zalta, E., editor, Stan-
ford Encyclopedia of Philosophy. Winter 2012 edition.

Kotzen, M. (2012). Selection biases in likelihood arguments. British Jour-
nal for the Philosophy of Science, 63(4):825–839.

Leslie, J. (1989). Universes. Routledge, London.
Lewis, G. and Barnes, L. (2016). A fortunate universe: life in a finely tuned

cosmos. Cambridge University Press, Cambridge.
Maher, P. (2007). Explication defended. Studia Logica, 86(2):331–341.
Manson, N. (2003). Introduction. In Manson, N., editor, God and design:

the teleological argument and modern science, pages 1–23. Routledge.
Manson, N. A. (2009). The fine-tuning argument. Philosophy Compass,

4(1):271–286.
Monton, B. (2006). God, fine-tuning, and the problem of old evidence.

British Journal for the Philosophy of Science, 57(2):405–424.
Olsson, E. J. (2015). Gettier and the method of explication: a 60 year old

solution to a 50 year old problem. Philosophical Studies, 172(1):57–72.
Roberts, J. T. (2012). Fine-tuning and the infrared bull’s-eye. Philosophical

Studies, 160(2):287–303.
Roush, S. (2003). Copernicus, kant, and the anthropic cosmological prin-

ciples. Studies in History and Philosophy of Science Part B: Studies in
History and Philosophy of Modern Physics, 34(1):5–35.

Royall, R. (1997). Statistical evidence: a likelihood paradigm, volume 71. CRC
Press.

Schaffer, J. (2005). Contrastive causation. Philosophical Review, 114(3):327–
358.

Schupbach, J. N. (2017). Experimental explication. Philosophy and Phe-
nomenological Research, 94(3):672–710.

Sober, E. (2000). Philosophy of biology. Westview Press, Boulder, Colo.,
2nd edition.

Sober, E. (2003). The argument from design. In Manson, N., editor,
God and design: the teleological argument and modern science, pages 27–54.
Routledge.

Sober, E. (2008). Evidence and evolution: the logic behind the science. Cam-
bridge University Press, Cambridge, UK.

Sober, E. (2009). Absence of evidence and evidence of absence: evidential
transitivity in connection with fossils, fishing, fine-tuning, and firing
squads. Philosophical Studies, 143(1):63–90.

Sober, E. (2018). The design argument. Cambridge University Press, Cam-
bridge.

Stegenga, J. (2018). Medical nihilism. Oxford University Press, Oxford.
Titelbaum, M. G. (2010). Tell me you love me: bootstrapping, externalism,

and no-lose epistemology. Philosophical Studies, 149(1):119–134.
Weisberg, J. (2005). Firing squads and fine-tuning: Sober on the design

argument. British Journal for the Philosophy of Science, 56(4):809–821.
White, R. (2003). Fine-tuning and multiple universes. In Manson, N.,

editor, God and design: the teleological argument and modern science, pages
229–250. Routledge.

philosophers’ imprint - 26 - vol. 19, no. 40 (september 2019)


	1. Introduction
	2. Alternative Conceptions of OSEs
	3. Minimality
	4. How Not to Measure Degree of Discrimination-Conduciveness
	DDCROO*, DDCBSP*, and DDCCLV*
	DDCROO* and Minimality
	DDCBSP* and Minimality
	DDCCLV* and Minimality
	Diagnosis

	5. How to Measure Degree of Discrimination-Conduciveness
	Average Degree of Discrimination
	DDCADD-AD and DDCADD-SD
	Other Measures of Degree of Discrimination-Conduciveness
	Section Summary

	6. How to Measure Degree of OSE
	7. The Ravens Paradox
	8. Publication Bias
	9. Concluding Comments

