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Chapter 1

Introduction

The Coronavirus Disease 2019 (COVID-19) pandemic indicates how great of a need

there is for accurate and fast modeling methods. In this thesis, I describe a model that

incorporates the spatial spread of viruses and produces accurate simulations in a few

seconds or minutes, so that the model can be used to study viruses in a more accurate

way.

1.1 Basic Virology

Viruses are microscopic parasites, generally much smaller than bacteria, that lack the

capacity to thrive and reproduce outside of a host body. A virus is composed of a nucleic

acid genome and a protein capsid that covers the genome. As seen in figure 1.1, the life

cycle of a virus begins with the virus attaching to or being absorbed by the host cell.

Once the virus genome enters into a cell, the genome moves to the ribosomes, where the

genome is replicated. After the genome is replicated, new virus can be assembled and
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released from the host cell, allowing the virus to continue spreading throughout the host

cells (OpenStax et al. 2016).

Figure 1.1: The life cycle of a virus begins with a virion (virus particle) being absorbed
by the cell. Once the virion enters into a cell the virus genome is released. The genome
moves to the ribosomes, where the genome is replicated. With the replicated genome,
new virus can be assembled by the golgi apparatus and then released from the cell.

Some viruses cause illnesses and the spread of a few has been severe enough to cause

global pandemics (global outbreaks). Recent examples are the current 2019-2021 Covid-

19 pandemic, the 2014 Ebola pandemic, and the 2009 Swine Flu pandemic. Other viruses

are endemic (regional outbreak) or occur seasonally (yearly outbreaks); for example,

influenza (flu) is know for its spread each year in the United States. In total, the Centers

for Disease Control and Prevention estimates that in the United States up to 42.9 million

people were sick during the 2018-2019 flu season, 647,000 people were hospitalized, and

61,200 died. (Xu 2019)

In order to understand viruses, assays are performed. An assay is an experiment for
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assessing or measuring characteristics of a substance. There are two ways the assays are

carried out, in vitro or in vivo. In vitro assays are assays that are performed outside

of a living organism. In virology, the plaque assay is the type of in vitro assay that

is most widely used for determining viral titer (Pankaj 2021). These assays are often

performed on a monolayer of cells in petri dishes or multi-well plates with a small number

of wells. The dishes and plates are a type of adherent culture where the cells are grown

on a nutritious substrate. The cells are grown to cover the entire surface (the point of

confluence), at this point the cells tend to push on each other and distort the shape of each

cell membrane (Brückner and Janshoff 2018). Each dish/well has on the order of 105–106

cells grown on its surface (Thermofisher). When the assay is performed, virus is placed in

a dish/well of healthy cells. Any virus that causes damage to the cells in the dish/well can

be studied. This damage is called a plaque and is roughly circular in shape. During the

assay, formation of plaques and the concentration of virus are monitored. It is assumed

that each plaque formed is caused by one virus particle. Because of this assumption, the

viral concentration is often recorded as plaque forming units per milliliter (PFU/mL).

In vivo assays are assays that are performed in a multi-cellular living organism. Any

virus that will infect the target animal can be studied. When the assay is performed,

virus is introduced to the target animal through a nasal spray or injection. Then during

the assay any visible symptoms and viral concentration are monitored.
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1.2 Modeling of assays

In recent years, the field of virology has started using agent-based models to study the

spread of viruses during in vitro viral infection assays (Beauchemin et al. 2005, Alvarado

et al. 2018, Wodarz et al. 2014, Tong et al. 2015, Whitman et al. 2020, Goyal and Murray

2016, Itakura et al. 2010, Wasik et al. 2014) in an effort to study the spatiality of viral

spread. The agent-based model framework is appealing to virus modelers because it

allows for the individual tracking of how cells, as agents, interact with the virus, and has

the potential to replicate in vitro and eventually in vivo viral infections.

Agent-based (individual-based or micro-simulation) models have been around since

1970 with the introduction of “Conway’s Game of Life” (Gardner 1970). These models

have been utilized in many different fields from physics to the study of fish (ichthyology)

(Owusu et al. 2020) and continue to be popularized for different applications by software

like Netlogo (Nogare and Chitnis 2020, Chiacchio et al. 2014). The models consist of

a collection of agents whose behavior is determined by mathematical or computational

rules. The agents of the system can move freely (Beauchemin et al. 2007) or be fixed

in a grid or lattice (Beauchemin et al. 2005) for varying applications, but either config-

uration allows for tracking of spatially emergent patterns. To date, unfortunately, the

implementation of agent-based models for simulating viral infections has had two issues:

speed and size.

Agent-based models are notorious for being computationally intensive and taking long

amounts of time to run simulations. This point has been commented on in a review of

spatiotemporal models of viral infection (Gallagher et al. 2018), and the feasibility of
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agent-based models for viral infection research has been talked about as a goal that is to

come with increasing computational advancements (Bauer et al. 2009). Previous research

has addressed this lack of computing power issue by reducing the number of agents

modeled and therefore reducing the number of computations required for a simulation.

The number of agents published is at minimum an order of magnitude lower than the

number of target cells used in the corresponding experimental data. Beauchemin et

al. (Beauchemin et al. 2005) simulated 1.232× 105 agents, while the experiment they

were attempting to replicate was performed in 6 well-plates and had ∼1.2× 106 cells per

well. Alvarado et al. (Alvarado et al. 2018) simulated 4.0× 104 agents when trying to

replicate experiments also performed in 6 well-plates. Wodarz et al. (Wodarz et al. 2014)

simulated 2.0× 104 agents, while the experiment they were replicating was performed

in 24 well-plates and had ∼2.4× 105 cells per well. Tong et al. (Tong et al. 2015)

simulated 6.0× 105 agents in an effort to simulate mice lungs, which have ∼109 cells.

These smaller simulations are more affected by boundary interactions, which can result

in model dynamics that don’t faithfully reproduce the infection. Having an in-host

model that can produce accurate simulations in a timely manner not only allows for

the prediction of patient infection, but also can be used to flush out potential causes of

varying symptoms in patients.

1.3 Exigence

While it might be feasible to wait long periods of time to run accurate simulations for

endemic or recurrent seasonal viruses, recent events of the COVID-19 pandemic indicate
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how great a need there is for accurate and fast modeling methods. Epidemiological

population-level modeling tools that include both ordinary differential equation models

(Li et al. 2020, Ngonghala et al. 2020) and agent-based models (Ying and O’Clery 2021,

Sneppen et al. 2021, Kano et al. 2021) were immediately deployed to help predict how

the new virus would spread around the world and how different interventions could help

stem the spread. At the within-host level, the primary modeling tool was limited to

simple ordinary differential equation models (Gonçalves et al. 2020, Wang et al. 2020,

Hernandez-Vargas and Velasco-Hernandez 2020, Dogra et al. 2020) that lack the ability

to reproduce the spatial heterogeneity of real viral infections. Fast and accurate in-host

models could be helpful in assessing the potential of re-purposed drugs (Czuppon et al.

2021, Gonçalves et al. 2020, Dodds et al. 2020), finding indicators of disease severity

or mortality (Nant et al. 2021), and assessing the effectiveness of testing (Ejima et al.

2021). A community-driven agent-based model incorporating many realistic biological

responses was quickly developed for Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2) (Getz et al. 2021), but is only currently simulating a few thousand agents

and is expected to need high-performance computing or cloud resources to parameterize

the model. Thus, there is a need to develop modeling and simulation tools for accurately

predicting in-host viral dynamics that can be quickly deployed to help combat the next

pandemic.
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1.4 Scope

In this work, the testing, validation, and application of a hybrid agent-based model and

partial differential equation model implemented on graphics processing units is presented.

The work here begins with the methods where the four attributes of the model: (1)

the agent-based model of the cells, (2) the partial differential equation of the virus,

(3) the cell-free transmission mode of viruses, and (4) fitting of the model to data,

are explained. Then, the results of model implementation with parallel programming,

convergence testing, and simulation speed improvement are presented. Finally, I show

that the model can reproduce experiments by fitting the model to an in vitro influenza

virus experiment and an in vitro SARS-Cov-2 experiment. This work shows how an

agent-based and partial differential equation hybrid model of in-host infections is tested

for numerical convergence, is applied to experimental data for parameter extraction, and

produces simulations within seconds to minutes for timely application.
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Chapter 2

Methods

When studying something like viruses, that can have a huge effect on a person let alone

a society, it is crucial to produce accurate simulations quickly. In the previous chapter,

I showed how the field of virology has tried to use agent-based models to capture the

spatial spread of viruses, but does not have either the computing power or coding tools

to make the agent-based models feasible. In this chapter, a model for studying virus that

incorporates the physics of viral spread both quickly and accurately is given in detail.

I will present how the model accounts for spatial spread of virus, is able to produce

simulations without compromising on accuracy, and can be applied to real experimental

data.

2.1 Model details

In this work, a two dimensional biological system is simulated with a mathematical model.

The system is a culture dish of a monolayer of cells with virus diffusing over the cells.
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The model is a hybrid of an agent based model (ABM) and a partial differential equation

model (PDM) where the cells are represented with an ABM and the virus diffusion is

represented by a PDM.

2.1.1 Spatial accounting

To allow for the two dimensional aspect of the culture dish to be represented in the

model, the cells are approximated as hexagons. Using hexagons enables for an elegant

managing of the cells’ shapes in the dish and the viral transmission. Since the culture

dishes are grown to confluence, the cells are close enough that they push on each other

and the cell walls deform. This causes the cells to no longer be in the shape of a circle, but

become irregular polygons with multiple sides (Brückner and Janshoff 2018). Modeling

the cells as hexagons gives the cells definite sides and the cells are able to span any two

dimensional region forming a hexagonal grid. Furthermore, by using a hexagonal grid,

when virus particles spread among this population of cells the indexing of the grid can be

used to find the neighbors of any cell. This will be used for cell-free transmission to know

where virus will flow away from (high concentrations areas) and to (low concentration

areas) during diffusion. In addition to helping with the physical representation of the

model, hexagonal coordinates have some other attributes that can be utilized to optimize

the code for quicker compute times. The three attributes that this code utilizes are:

1. The coordinates can be split in to three sectors where the coordinates Xhex, Yhex,

and Zhex are simply cyclic permutations.

2. The Xhex and Zhex directions can be used as indices of a matrix.
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3. The coordinates of the neighboring hexagons are found by adding a cyclic permu-

tation of




1

0

−1



for three of the neighbors and




1

−1

0



for the other three neighbors.

These attributes save time by either reducing the number of calculations needed or the

amount of searching through data arrays. Attribute 1 allows for only a third of the

cell locations to be calculated and Attributes 2 and 3 give the data a reference so that

adjacent data in memory can be found quicker.

2.1.2 Agent-based model

In an ABM, a system is broken down into smaller units called “agents”. Each of the

agents are governed by a set of rules on a local scale with large scale phenomena resulting

from interaction of the agents, so the two scales are studied to find the connections. As

a simulation of the model is stepped through time, the agents act and interact. These

actions cause bulk properties, that may appear disconnected from the individual agents,

to manifest. Properties are observed and measured to find the connection between the

small interactions and large scale properties.

In this work, an ABM governs the transitions a cell makes through the stages of

infection: healthy, eclipse, infected, and dead. A cell in the healthy state is an uninfected

cell that remains healthy until infected. A cell in the eclipse state is an infected cell that

is not yet producing virus. The cell remains in the eclipse state for an average amount

of time, τE. The specific time value for each cell is determined by a gamma distribution

with shape value ηE and scale value τE/ηE. A cell in the infected state is an infected
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cell that is producing virus. The cell remains in the infected state for an average amount

of time, τI . The specific time value for each cell is determined by a gamma distribution

with shape value ηI and scale value τI/ηI . A gamma (Erlang) distribution is used for the

amount of time in the eclipse and infected phase, as suggested by the work of Beauchemin

et al. (Beauchemin et al. 2017) and Kakizoe et al. (Kakizoe et al. 2015). A cell in the

dead state is a cell that can no longer change state, so once a cell is in the dead state the

cell remains in that state until the end of the simulation. The flow of this is illustrated

in figure 2.1.

The ABM uses four time arrays to track and transition the cells to different states

after infection. The four arrays universal time (UT), healthy time (HT), eclipse time

(ET), and infected time (IT) have an element for each cell. The universal time array

holds the amount of time that each cell has been in the simulation; each element starts at

zero and increases each iteration by the simulation’s time step. The healthy time array

holds the amount of time that a cell is healthy; each element starts at zero and while the

cell is healthy increases each iteration by the simulation’s time step. The eclipse time

array holds the amount of time each cell is in the eclipse state and the infected time array

holds the amount of time each cell is in the infected state. For the eclipse and infected

arrays the amount of time is fixed and the value is determined by a gamma (Erlang)

distribution, as described above. The flow of this is illustrated in figure 2.1.
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Healthy

Eclipse

Infected

Dead

Infection event

UT > HT + ET

UT > HT + ET + ITτE

τI

UT Universal time

HT Healthy time

ET Eclipse time

IT Infected time

Figure 2.1: The stages of infection: healthy, eclipse, infected, and dead are shown. The
cells transition through the stages at different time points. Above: The time point when
a state transition occurs is shown in terms of UT, the universal time, for a cell. Below:
The time point when a state transition occurs is shown in terms of average time. τE is
the average time a cell stays in the eclipse stage and τI is the average time a cell stays
in the infected stage. UT is the time a cell has existed, HT is the time a cell has been
healthy, ET is the time a cell is in the eclipse phase, and IT is the time a cell is in the
infected phase.
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2.1.3 Partial differential equation model

PDMs are used to model multiple dimensions; in this work a partial differential equation

in hexagonal coordinates is used to model the two-dimensional spatial spread of virus

over cells in a culture dish. In a PDM, the dynamics of a system can be represented by a

partial differential equation, or more specifically, an equation that contains multi-variable

functions that represent important system aspects and one or more partial derivatives of

those functions. In the culture dish, as an infected cell releases virus into the extracellular

fluid, the virus diffuses across a density gradient. The PDM represents this diffusion with

the diffusion equation,

∂V

∂t
= D∇2V + p− cV, (2.1)

where V is the density of the virus, D the diffusion coefficient, p is the production rate per

cell, c is the viral clearance rate. In the code, along with the assumption of hexagonal cells,

the cells are assumed to be flat, so the virus is diffusing over a smooth two dimensional

plane. This assumption allows for the use of the two dimensional diffusion equation in

hexagonal coordinates, so Eq. (2.1) becomes

∂V

∂t
= D

2

3

�
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

�
V + p− cV

where x1 =




1

0


, x2 =




−1/2

√
3/2


, and x3 =




−1/2

−
√
3/2


 are the unit vectors for a hexagonal

grid. For computation, a forward Euler implementation of the PDM with Neumann

boundary conditions is used.
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2.1.4 Viral transmission

When a virus is spreading among the cells in a culture dish, there is a probability that a

healthy cell becomes infected by virus that is not within a cell, but flowing around and

above the cell. When this viral transmission occurs it is called cell-free transmission. For

cell-free transmission, the probability per unit time (Pcf) that a cell becomes infected is

determined by the amount of virus that is covering the cell (V ) times the infection rate

(β) (Holder et al. 2011a),

Pcf = V β.

As a healthy cell becomes surrounded by more virus, the probability of cell-free infection

increases. If the probability (V βΔt) is ever greater than one due to the build up of virus,

an adaptive time step is used. The time step (Δt) is divided in half repeatedly until the

probability of cell-free infection is below one. Once the probability is finalized, a number

from the uniform distribution is compared with the probability of cell-free infection. If

that number is less than Pcf , then the cell becomes infected.

2.1.5 Parameters of viral spread

The eight parameters β, τE, ηE, τI , ηI , p, c, and D affect the dynamics of virus spread in

the model. Four of the parameters, τE, ηE, τI , and ηI , are used in the ABM to choose the

time duration that a cell is in the eclipse and infected phase as mentioned in section 2.1.2.

Three of the other parameters, p, c, and D, are used in the PDM and characterize the

differential equation, as mentioned in section 2.1.3. The final parameter, β, governs the

interaction between the virus and cells, setting the probability that the cell is infected.
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Table 2.1: Parameter values to simulate an influenza infection with the ABM/PDM
model.
Parameter Meaning Value Reference
β Infection rate 2.0 /h Scaled from Beauchemin et al. (Beauchemin et al. 2008)
p Viral production rate 562800 /h Scaled from Beauchemin et al. (Beauchemin et al. 2008)
c Viral clearance rate 0.105 /h Beauchemin et al. (Beauchemin et al. 2008)
D Diffusion coefficient 2.16×10−8 m2/h Stokes-Einstein equation
τE Mean eclipse duration 6.0 h Beauchemin et al. (Beauchemin et al. 2008)
ηE Eclipse shape parameter 30 Pinilla et al. (Pinilla et al. 2012)
τI Mean infectious lifespan 12.0 h Beauchemin et al. (Beauchemin et al. 2008)
ηI Infectious shape parameter 100 Pinilla et al. (Pinilla et al. 2012)

In order to model a particular virus, values for these parameters need to be chosen. The

initial values of the parameters are chosen from ordinary differential equation models

of influenza and listed in Table 2.1, viral titer units have been converted to virions as

described in previous work (Dobrovolny and Beauchemin 2017).

2.2 Computational details

In this work, the simulations are of viral infections, that can have drastic effects on those

infected, so the model needs to produce simulations that are fast, numerically sound,

and have realistic results. The model uses parallel processing on graphics processing

units (GPUs) to reduce simulation times without reducing complexity. Additionally, the

simulations are tested for numerical convergence and are then fit to real experimental

data in order to reproduce experiments.

2.2.1 Implementation on GPUs

As the model becomes more complex, GPU acceleration via parallel programming is used

to decrease the simulation run times and therefore increase the number of studies that

can be conducted in a given time. In the simulations, the cells change state based on
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the amount of virus above them. The number of cells in a culture dish is on the order of

106 cells (Thermofisher), so the ABM will simulate a grid of 1001365 agents of hexagonal

cells in a circle to best replicate what is happening in the experiment. Each agent will

follow the rules of checking the amount of virus above the cell every time step. Utilizing

attribute 2 of hexagonal coordinates from section 2.1.1, the number of calculations is

reduced from the order of (O(n2)) per time step to the order of the number of agents

(O(n)). The calculations from the agents’ rules are split over the processing units of a

GPU to be calculated in parallel or simultaneously. To utilize this processing, Nvidia’s

CUDA (Compute Unified Device Architecture) is used to implement the ABM and PDM.

CUDA is an Application Programming Interface (API) that allows the many processing

units (cores) on a Nvidia brand GPU to be used for computing.

2.2.2 Convergence Testing

Partial differential equations (PDEs) are a popular way to model systems that evolve over

both space and time, but often require computers to produce solutions. With PDEs, even

systems that have an exact solution often need to be calculated on a computer because

of the infinite series that are required in those solutions. Therefore, solutions to PDEs

are often found through numerical integration. In the numerical integration, space and

time are assumed to be made up of small units or discretized. From this discretization,

time is a one dimensional line of points separated by a chunk of time called Δt and two

dimensional Cartesian space is a grid with a line of points for each dimension where

there is a chunk of space for each dimension Δx, Δy. At these points in time and
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space, a numerical integration scheme approximates the solution of the PDE. Different

numerical schemes have different benefits. Depending on the phenomena that needs to

be studied with the PDE the size of Δt, Δx, and Δy and the choice of numerical scheme

are important. If the chunks of space or time are too large then the simulation does not

have the resolution to resolve phenomena that occur at smaller increments in the model

and if the numerical scheme requires to much computing power then the solutions can

not be found in a timely manner.

Depending on the choice of numerical scheme, a conditional relationship between Δt,

Δx, and Δy must be met. For the symmetric, two dimensional Euler’s method

Δt ≤ (Δx)2

4D
,

is the conditional relationship (Wendroff 1968, Olsen-Kettle). Satisfying this relationship

is necessary to ensure that the sequence of approximations that the numerical scheme

uses to approximate a solution converges, otherwise the error grows exponentially to a

point that the solutions are unreliable. Using the relationship above, values for Δt, Δx,

and Δy can be chosen to ensure stability of the error in the numerical scheme. As long as

that relationship is met the solution is reliable within a certain error, but the relationship

does not give the Δt, Δx, and Δy that are best for producing accurate simulations with

the least amount of computing cost.

To ensure the simulations are not using more resources than necessary, the space

and time discretizations: Δt, Δx, and Δy need to be optimized. Convergence testing

is a simple brute force method where the input parameters are increased or decreased
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by a particular amount and the accuracy or trends of the simulation are measured for

each of the the new increments. Schemes for convergence testing are implemented and

studied in fields like computational fluid dynamics (Bermejo and Saavedra 2016, Kim and

Kim 2020) and astrophysics (Xu and An 2021, Banei and Shanazari 2021). The model

proposed in this work has fixed Δx and Δy to a value of 50 µm, because the simulations

are of real cells, whose average diameter can be measured between 50–100 µm. Thus the

convergence testing only has to be conducted for Δt. To conduct the study a starting

point of 0.005 hr, about 5.78 times smaller than the conditional relationship, was chosen

and a range of seven values was created by multiplying or dividing the initial Δt by 2

repeatedly. For each of these Δts, the median viral titer curve of ten simulations were

compared.

2.2.3 Measurements

As the viral infection progresses the total amount of virus in the culture dish changes

and the shape of the total amount of virus over time can change depending on the virus

being used for the infection. Plotting the amount of virus vs. time produces a curve that

has a distinct shape and has characteristics that can be measured. The measurements,

shown in Figure 2.2 and defined below, can be used to compare multiple viruses or to

compare multiple simulations of the same virus with different input parameters. In this

thesis, I will use them to verify the convergence of the simulation.

• peak viral load: The maximum amount of virus is commonly used as an indicator

of the transmissibility of an infection (Handel et al. 2009).
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• time of viral peak: This is the time between the start of the infection and the

peak of the virus and can give an indication of how quickly the virus is replicating.

• viral upslope: Viral upslope is the exponential growth rate of the viral titer before

the peak is reached and is another indication of how quickly the virus is spreading

from cell to cell.

• viral downslope: Viral downslope is the exponential decay rate of the viral titer

after the peak. While the slope during the decay phase is negative, we define

downslope as the positive value of the slope.

• area under the curve (AUC): AUC is often used to assess the severity of an

infection (Hayden et al. 2000, Barroso et al. 2005).

• infection duration: The infection duration is indicative of how long an infected

patient might test positive for presence of the virus. In this work 101 virions is the

threshold.

2.3 Data Fitting

As part of the model validation, the model is tested to ensure it can reproduce viral

titer curves observed experimentally. Three experimental data sets varying both virus

and cell type are being used. The first data set used here is from an in vitro experiment

performed by Pinilla et al. (Pinilla et al. 2012). During the study, a well of a 24-well

plate, containing Madin-Darby canine kidney (MDCKα2,6) cells was inoculated with the
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Figure 2.2: Measurable characteristics of the viral titer curve.

A/Québec/144147/09 (H1N1) pandemic strain of influenza virus and the supernatant

fluid was collected every 6 hours until 36 hours and then every 12 hours until 72 hours

post infection. The supernatant was then used for ribonucleic acid (RNA) isolation

and/or viral titration by standard plaque assay on MDCKα2,6 cells. The specific data

referenced for this work is the “Multiple-cycle viral yield” experiment shown in figure 2A

of the Pinilla et al. manuscript.

The second and third data sets are from an in vitro experiment performed by Wang

et al. (2021). During the study, 25 cell lines were inoculated with 5× 104 TCID50 (50%

Tissue Culture Infectious Dose) per well of SARS-CoV-2/USA-WA1/2020. The Vero and

Vero76 cell line data will be used here for the fitting process. The supernatant fluid was

recorded initially at 0 hours and washed away at 2 hours. Supernatent was then collected

every 24 hours until 120 hours post infection. The supernatant was used for viral RNA

quantification. The specific data referenced for this work is the Vero cell lines and the

Vero76 cell lines of the “Replication of SARS-CoV-2 in a Large Set of Cell Substrates”
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experiment shown in figure 2 of the Wang et al. manuscript. Data was extracted from

both manuscripts using WebPlotDigitizer (WebPlotDigitizer).

To determine the best fit of the model to the experimental data, the sum of square

residuals (SSR) is minimized,

SSR =
n�

i=1

(yi − ŷi)
2,

where yi is from the experimental data set and ŷi is from the simulated data set. In

our case, the simulated data set is the average of ten cell-free transmission simulations.

The initial conditions for the simulations are: Total cells – 1001365, Total virus – 0.0,

and Multiplicity of Infection (MOI) – 5× 10−5. To perform the minimization, a separate

code that utilizes the function minimize from the python package scipy, was written.

In the code, five parameters (β, p, τI , τE, and c) are allowed to vary and the remaining

parameters are held fixed to the values given in Table 2.1. The minimization code is

given an initial guess for the five parameters, then by the Nelder-Mead method the next

set of parameters is produced, until the minimum SSR is found.

2.4 Summary

In this chapter, I’ve described the construction of a hybrid ABM/PDM model of viral

infections and I’ve outlined the techniques that will be used to test the reliability and

validity of the model.
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Chapter 3

Results

The methods presented in the previous chapter result in a model for studying viruses

that incorporates the spatial spread of virus, has the ability to produce simulations in

seconds, and has the flexibility to be applied to real data. In this chapter, the accuracy,

speed, and applicability of the model is presented. I will show accurate simulations of

plaque assays, the speed increase of the simulations by GPUs, and the analysis of virus

infections.

3.1 Model simulation

Using the influenza parameters of table 2.1, I simulated infections initiated with 1001365

cells in a dish, of which 100 randomly chosen cells are infected and no initial virus.

Figure 3.1 shows different views of plaques forming in the entire dish. On the left are

cells in the different stages of infection described in section 2.1.2, where the healthy

cells are colored green, eclipse cells are colored cyan, infected cells are colored red, and
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dead cells are colored black. On the right are figures showing the corresponding virus

concentrations that are over the cells, where areas of higher concentration are colored

yellow and areas of lower concentration are colored purple. Figure 3.1 shows the infection

in 5 hour increments starting at 5 hours, when no cells are producing virus, and ending at

60 hours, when almost all the cells have died. The ABM reproduces the plaques typically

seen in experimental in vitro infections (Holder et al. 2011b).

For a closer look at the plaques, figure 3.2 is a zoomed in view of the infection at

hours 6.5, 11.5, and 16.5. The cells are shown on the left, with the same color scheme

used in figure 3.1, and the corresponding virus distribution is shown on the right. Here

the heterogeneous growth of the plaque can clearly be see; it is not simply a radially

symmetric change of cells from eclipse to infectious.

As a visual check, the simulated plaque assays are compared to actual plaque assays.

The left of figure 3.3 is a petri dish from a plaque assay that infected MDCK cells with

influenza virus A/Memphis/14/96-M (H1N1). The virus was placed in the dish and then

after one hour a solution of Avicel RC-581 was injected onto the cells. The Avicel RC-581

allows for plaques to form by hindering the flow of virus through the liquid medium in

the dish. When the experiment was done, the assays were stained with an immuno-stain

that stains the infected cells red. The right of figure 3.3 shows the simulated assay of

106 cells, where again the same color scheme as figure 3.1 is used; the healthy cells are

colored green, eclipse cells are colored cyan, infected cells are colored red, and dead cells

are colored black. The plaques appear to be similar between the actual and simulated

assays.
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Figure 3.1: The dish at hours 5 through 60 in 5 hour increments. On the left are cells
in the different stages of infection; the stages are represented by healthy cells colored
green, eclipse cells colored cyan, infected cells colored red, and dead cells colored black.
On the right are images of the virions that are diffusing over the cells; areas of higher
concentration are represented by yellow and areas of lower concentration are represented
by purple.
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Figure 3.2: A zoomed in section of the dish looking at the plaque formed by a single
infected cell during a viral infection at hours 6.5, 11.5, and 16.5. On the left are cells in
the different stages of infection; the stages are represented by healthy cells colored green,
eclipse cells colored cyan, infected cells colored red, and dead cells colored black. On the
right are the many virus that are diffusing over the cells; areas of higher concentration
are represented by yellow and areas of lower concentration are represented by purple.
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Figure 3.3: (Left) Plaque assay that infected MDCK cells with influenza virus
A/Memphis/14/96-M (H1N1). (Right) Simulated plaque assay of 106 cells, where the
green are the healthy cells, cyan are the eclipse cells, red are the infected cells, and black
are the dead cells.

3.2 Implementation on GPUs

Ten viral infections of five different numbers of cells were simulated, with codes that

utilize three different programming languages: Python, C, and CUDA. The amount of

computation time needed to simulate one hour of the infection, on a desktop computer,

is shown in figure 3.4. The computer was built with an Intel Xeon E-2144G central pro-

cessing unit (CPU), 16 gigabytes of random access memory (RAM), and P4000 Nvidia

Graphics card. The compute times for the three codes increase as the number of cells

in the simulations increases, but the speed increase of switching from Python, the pro-

gramming language commonly used in physics, to code using CUDA for implementation

on GPUs is 7000 times faster.
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Figure 3.4: With more than a million cells, CUDA is 7000 times faster then the Python
code and 43 time faster than the C code.

3.3 Convergence Testing

Three scenarios were examined when testing the convergence of the model: an infection

initiated with 10013 cells in the eclipse phase (Initial Cell); an infection initiated with

1012 virions (Initial Virus); and a scenario with no infection, but 1012 virions (Only

Virus), examining viral spread and decay only. Simulations in each of the scenarios used

the influenza parameters from table 2.1. Figure 3.5 shows the simulations of the three

scenarios, where the time step was varied to test the convergence of the model in time.

A time step of 0.005 hr, about 5.78 times smaller than the conditional relationship from

section 2.2.2, was chosen and a range around it was made by dividing or multiplying by

2 repeatedly. This formed an array of seven time step values, 0.000625, 0.00128, 0.0025,

0.005, 0.01, 0.02, and 0.04 hr. For each time step, the median curve of ten viral titer
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Figure 3.5: The time step was varied to test the convergence of the model in time. A time
step of 0.005 hr was chosen and a range around it was made by dividing or multiplying
by 2 repeatedly. Seven values were used [0.000625, 0.00128, 0.0025, 0.005, 0.01, 0.02,
0.04]. The median curve of ten viral titer curves is shown for each time step. From left to
right, curves of a viral infection exhibiting cell-free transmission initiated with infected
cells; curves of a viral infection exhibiting cell-free transmission initiated with virus; and
curves of virus without underlying cell infection.

curves is shown. In figure 3.5, from left to right, curves of a viral infection initiated

with infected cells; curves of a viral infection initiated with virus; and curves of virus

without underlying cell infection. For all time steps, except 0.04 hr, the curves are hard

to distinguish from one another and follow the same trend for each scenario.

In figure 3.6 the different viral titer curves are explored further by plotting the mea-

surable characteristics mentioned in section 2.2.3 for each time step. For all the character-

istics, except AUC, the amount of change was in the hundredths place or less, so for time

characteristics the amount of change was less than 14.5min, for 1/time characteristics the

amount of change was less than 6.9× 10−6min−1, and for amount of virus characteristics

the amount of change was less than 1010 virus particles, which is less than 1% change in

the amount of virus. Note that typical experimental error in measurements of viral load

are typically 0.5 log10(PFU/ml) (LaBarre and Lowy 2001). The AUC varied the most

28



over the different timesteps. The mean of the AUC values for the different timesteps is

3626 log(virus)/d with a standard deviation (STD) of 13.09 log(virus)/d. Therefore, the

coefficient of variation is CV = 13.09
3626

≈ 0.0036, which shows that the STD is about 0.36%

the size of the mean.

3.4 Fitting the model to data

The model is fit to three experimental in vitro data sets (Pinilla et al. 2012) and (Wang

et al. 2021) via minimization of the SSR. For the (Pinilla et al. 2012) data, the initial

condition of the simulations were: 501535 cells in the dish (similar to the number of

cells in a typical 24-well plate (Thermofisher)), 250 initial infected cells, and no virus

in the dish. On the left in figure 3.7 is the median curve of ten simulations, using the

best fit parameters, plotted in dark blue alongside the data in green. For both of the

cell lines used from the (Wang et al. 2021) data, the initial condition of the simulations

were: 501535 cells in the dish (similar to the number of cells in a typical 24-well plate),

0 initial infected cells, and 5× 104 virus in the dish. In the center and on the right of

figure 3.7 are the median curves of ten simulations, using the best fit parameters, plotted

in dark blue alongside the data in green. The best fit parameters for each set of data are

presented in table 3.1.

From the best fit parameters in table 3.1, 100 simulations for each data set were

produced. All one hundred runs and the median curve for each data set are shown in

figure 3.8. To showcase how the different parameters change the viral titer, the initial

conditions of the simulated dish were the same for the different data sets. The initial
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Figure 3.6: Characteristics of the viral titer curves where measured for each of the seven
time steps and the different scenarios.
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Table 3.1: Best fit parameter values from fitting the model to experimental data (Pinilla
et al. 2012, Wang et al. 2021).

Pinilla et al. Wang et al. Vero76 Wang et al. Vero
Parameter Meaning Value Value Value
β Infection rate 54 h−1 56 h−1 69 h−1

p Viral production rate 3000 h−1 3.9 h−1 2.4 h−1

c Viral clearance rate 0.25 h−1 0.01 h−1 0.06 h−1

D Diffusion coefficient 2.2× 10−8m2 h−1 (fixed) 1.7× 10−8m2 h−1 (fixed) 1.7× 10−8m2 h−1 (fixed)
τE Mean eclipse duration 16 h 2.9 h 3.8 h
ηE Eclipse shape parameter 30 (fixed) 30 (fixed) 30 (fixed)
τI Mean infectious lifespan 26 h 17 h 18 h
ηI Infectious shape parameter 100 (fixed) 100 (fixed) 100 (fixed)

Pinilla Wang Vero76 Wang Vero
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Figure 3.7: The ten simulated titer curves and corresponding median curve, from the
fitting process, are plotted in blue. The experimental cell-free transmission data (Pinilla
et al. 2012) is plotted in green. The median curve has the minimal SSR with respect to
the experimental data, when using the best fit parameters. The best fit parameters are
shown in 3.1.
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Figure 3.8: Using the best fit parameters in table 3.1, a hundred simulated titer curves
and corresponding median curve are plotted in purple.

conditions were: 1001365 cells in the dish (similar to the number of cells in a typical

35 mm petri dish), 500 initial infected cells, and no initial virus in the dish. It is easy

to notice in figure 3.8 that the simulations of the Pinilla et al. data vary more than

simulations of the Wang et al. data; this is from the change in standard deviation of

the eclipse phase length of the cells. This will be discussed more in section 4.1 of the

discussion chapter.

3.5 Summary

In this chapter, I’ve shown that the model produces accurate simulations that compare

to real experimental plaque assays and that the model can reproduce experimental data.
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Chapter 4

Discussion

In the previous chapter it was shown that the model is accurate, fast, and numerically

sound. Then it was shown that the model can reproduce experimental influenza virus and

SARS-CoV-2 experiments from real data. In this chapter, the findings, model extensions,

and future work of this thesis will be discussed. I will discuss how the faster speed of

the simulations allows for the model to be compared with common practices in the field

of computation virology, how the current limitation of a lack of all the cell processes can

be addressed, and how the model will be applied in the future.

4.1 Findings

4.1.1 Advances in ABM simulation

In this paper, the construction of a hybrid ABM/PDM model to investigate spatially

extended viral infections is described. While the formulation of the model is similar to

other ABM/PDM models of viral spread (Beauchemin et al. 2005, Bauer et al. 2009),
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the model was implemented to run on GPUs, vastly improving the simulation speed of

these models. This allows for efficient replication of in vitro infections with a realistic

number of cells. This will help lead to a better understanding of virus-cell dynamics in

vitro (Blahut et al. 2021), but could also help realize the goal of simulating infections

in vivo (Laubenbacher et al. 2021). The faster simulations also allowed for the use of

standard ordinary differential equation (ODE) model-fitting techniques to fit this model

to experimental data, making it possible to quickly parameterize these models to repro-

duce dynamics of different viruses. Previously, researchers have had to develop other

techniques to help speed up fitting of ABMs to experimental data, including reducing

the sampled parameter space (Li et al. 2017), and mapping of ABM outputs to simpler

functions (Tong et al. 2015, Read et al. 2016). These techniques coupled with simulation

of ABMs on GPUs could potentially allow for real-time parameter estimation of models

for use in patient care. This is particularly useful for a novel pandemic virus that can be

simulated such that trial runs of test drugs can be performed and viral infection severity

for a patient can potentially be predicted.

This paper shows that the use of GPUs to accelerate computation of agent-based and

partial-differential equation hybrid models allows for simulation results within hours,

but with the necessary level of detail to capture individual cell effects, and allows for

parameterizing the model quickly. The model in this work accurately replicates the

diffusion of a virus, the stages of infection of individual cells, and can be fit to data

within hours. While still lacking some of the biology needed for replication of in vivo

infections, the speed of computation leaves room for incorporation of additional features.

Thus, this model implementation forms the foundation of a modeling and simulation
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tool that can accurately predict in-host viral dynamics and be quickly deployed to help

combat the next pandemic.

4.1.2 ABM viral dynamics

From the data fitting results shown in section 3.4, some of our parameter estimates differ

from those reported in Pinilla et al. (Pinilla et al. 2012) even though the same data

was used. Our best fit τI is smaller than the τI = 49 h reported by Pinilla et al., while

our best fit τE is larger than the τE = 6.6 h found by Pinilla et al., and the best fit

c is larger than c = 0.13 h−1. Some of this discrepancy might be due to the inclusion

of spatial effects in the ABM, but Pinilla et al. also used more data — they used both

a single cycle and multiple cycle experiment as well as viral RNA measurements — to

constrain the parameter estimates. All in all, the ABM/PDM model can replicate the

viral titer measurements of a typical infection (both influenza virus and SARS-CoV-2)

via fitting where the fitting process uses standard packaged fitting algorithms and the

computational time for fitting is less than 24 hours from initial guess to best fit.

In figure 3.8, one might notice that the simulated experiments of the Pinilla et al.

data vary from each other more than each simulation of the Wang et al. data. This is

due to the fact that the standard deviation of the Erlang distribution that determines

the eclipse phase lengths is dependent on τE. The mean of the phase time for the eclipse

phase is τE and the standard deviation is τE/
√
ηE. Therefore, the standard deviation

becomes smaller as τE becomes smaller. This point is illustrated in figure 4.1, where,

on the left, the Erlang distributions of the eclipse phase lengths and, on the right, the
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Figure 4.1: On the left is the Erlang distributions of the eclipse phase lengths and on
the right is the Erlang distributions of the infectious phase lengths. For the eclipse phase
and the infectious phase: MEAN = τ and STD = τ/

√
η.

Erlang distributions of the infectious phase lengths are plotter for each of the three

infections. This implies that, for cell free transmission of a virus with a small mean

eclipse phase length, the variation in end times of infections for the same virus comes

from the differences in infectious phase lengths.

4.2 Model extensions

Although the model currently only incorporates cell-free transmission, since the ABM

models interactions of each cell in a culture dish, the spatial aspects of different viral

transmission routes can be explored in detail. There has been recent interest in viruses

that transmit via cell to cell transmission, with ODE (Allen and Schwartz 2015, Ko-

marova and Wodarz 2013, Iwami et al. 2015), stochastic (Graw et al. 2015), and ABM

(Kumberger et al. 2018, Blahut et al. 2021) models developed to study how cell to cell
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transmission alters infection dynamics. There are also viruses that cause cells that form

syncytia, which are cells that have fused into a single multi-nucleated cell. Not much

is known about how syncytia alter infection dynamics, with a recent ODE model at-

tempting to assess the effect of syncytia on viral time course (Jessie and Dobrovolny

2021), but spatial effects really need to be included for a proper assessment of the role

of syncytia. Finally, advection can be added to the diffusion of the virus particles to

more closely mimic the respiratory tract. Recent PDE (Quirouette et al. 2020) and ODE

(González-Parra and Dobrovolny 2019) models both indicate that the addition of advec-

tion can limit the spread of respiratory viruses towards the lower respiratory tract, but

the stochasticity included in an ABM might affect this result.

While the model is able to replicate a typical viral time course during an infection, it

is missing many components that play important roles in the infection. For example, the

immune response of the host has not been added to the model. The immune response

is a large, if not the main, contributing factor to symptoms experienced during a viral

infection (Manchanda et al. 2014, Zheng and Perlman 2018), but also limits spread of

infection itself (Dobrovolny et al. 2013). ABMs are already used to model various aspects

of the immune response (Whitman et al. 2020, Kerepesi et al. 2019, Levin et al. 2016),

so the immune response can be incorporated into the existing ABM/PDM framework.

Cell tropism, the preference of virus for one cell type over another, is another feature of

viral infections that can be incorporated into the ABM. ODE modeling indicates that

cell tropism can lead to longer lasting infections (Dobrovolny et al. 2010), but will also

likely affect the spatial dynamics of infection. Finally, variation in production of virus by

individual cells (Timm and Yin 2012) can be incorporated to determine how this type of
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cell heterogeneity affects spatiotemporal infection dynamics.

4.3 Future Work

A goal of this research is to not only be able to predict viral infection, but it is to find

ways to uncover potential causes of disease severity. The novel coronavirus, SARS-CoV-2,

originated in Wuhan, China in late 2019 and rapidly spread around the world (Chen et al.

2020, Wu et al. 2020). This virus causes the Covid-19 disease, which can lead to severe

illness needing long hospitalization (Sun et al. 2020, Goyal et al. 2020, Jiang et al. 2020),

but at the same time a significant fraction of those who contract the virus experience

an asymptomatic Covid-19 disease (He et al. 2020). It is still not entirely clear who is

at risk for developing severe disease, although correlations of disease severity with levels

of vitamin D (Ilie et al. 2020), levels of various immune components (Liu et al. 2020b;a,

Zhang et al. 2020, Yang et al. 2020), and age (Borghesi et al. 2020, Zhang et al. 2020)

have been noted. There has also been investigation of the possibility of disease severity

being linked to initial viral inoculum (Little et al. 2020, Guallar et al. 2020, Gandhi et al.

2020).

The difference in viral inoculum between patients could be caused by varying amounts

of virus in airborne droplets. The major route of transmission for SARS-CoV-2 is by

airborne droplets (Morawska and Cao 2020). One study indicates that sneezing and

coughing creates a turbulent gas cloud that can cause viral-laden droplets to spread up

to 27 feet (7–8m) (Bourouiba 2020), and allows the virus to get into the ventilation system

of a building. A review of literature on droplet and airborne viral spread concludes that 8

38



of 10 studies showed that droplets spread further than the 6 foot (Bahl et al. 2020) social

distancing recommendation. While personal protective equipment is helpful in reducing

the ability of virus to enter the respiratory tract, it is not perfect (Mittal et al. 2020). All

of these factors lead to exposures to vastly different quantities of virus when people are

going about their daily activities. Thus it is important to understand whether different

initial inocula lead to different viral dynamics in patients.

There is some evidence from other respiratory viruses that the size of the initial

inoculum could play a role in the severity of the illness. An influenza epidemiological

modeling study suggests that a higher initial dose can lead to a higher mortality rate

(Paulo et al. 2010). This is corroborated by an influenza in-host modeling study that

also finds a correlation between the initial viral dose and survival rate (Price et al. 2015).

Other modeling studies have found dependence of other measures of infection severity

on initial dose for influenza (Moore et al. 2020), respiratory syncytial virus (Wethington

et al. 2019), adenovirus (Li and Handel 2014), and porcine reproductive and respiratory

virus (Go et al. 2019). There are also experimental studies that find a link between dose

and infection severity. Experiments using influenza have found inoculum dose dependence

of total number of infected cells and area under the curve (Manicassamy et al. 2010),

peak viral titer (Ginsberg and Horsfall 1952, Iida and Bang 1963, Ottolini et al. 2005),

viral growth rate (Ginsberg and Horsfall 1952), and time of viral peak (Iida and Bang

1963, Ginsberg and Horsfall 1952). Experiments with other viruses, such as adenovirus

(Prince et al. 1993), and parainfluenza (Ottolini et al. 1996), have also shown correlations

between initial inoculum and various measures of disease severity. If SARS-CoV-2 shows

a similar pattern, initial inoculum should be considered as a possible contributor to
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infection severity and adverse outcomes. With this model different scenarios can be

tested to help narrow down and rule out causes a different viral infection severities.

4.4 Conclusion

In this thesis, I’ve presented the testing, validation, and application of a GPU accelerated,

hybrid, agent-based and partial differential equation model. I demonstrated that the

model incorporates the spatial spread of viruses and produces accurate simulations in

a few seconds or minutes, by utilizing parallel processing on GPUs. From the speed

increase, standard model-fitting techniques, such as “Minimizing the SSR”, can be used

to fit the model to experimental data. Now viruses can be studied in a more accurate

way and parameterized in hours. By creating this model, the foundation of a modeling

and simulation tool has been developed to study viruses. This work will be deployed to

study different aspects of a virus, how different viruses affect infection, and what may

lead to different severities of infections. Now that I’ve created a new in-host viral model,

when the next flu season, epidemic, or pandemic comes; there will be one more tool that

can help to gain insight and hopefully help end or slow the spread of the virus.
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For many years, infectious disease modelers have used agent-based models to study

the spread of viruses, but the models were too computationally intensive to fully replicate

even in vitro experiments. Now, with technological advancements and accessible software,

agent-based models can be used to their full potential. This thesis shows an agent-

based model that expresses viral transmission and diffusion, can manipulate and track

individual cells, and can be fit to real experimental data in a timely manner due to

acceleration of computation with graphics processing units (GPUs). The use of GPUs

allows simulations to run on desktop computers in a few seconds or minutes, while still

simulating an accurate number of cells to replicate in vitro viral infection experiments.

This model can now be used to study in-host infections quickly, so that in the event of

an outbreak or epidemic a treatment plan and course of action can be developed in less

time.


