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Background: In the study of early cardiac development, it is essential to acquire accurate

volume changes of the heart chambers. Although advanced imaging techniques, such as

light-sheet fluorescent microscopy (LSFM), provide an accurate procedure for analyzing

the heart structure, rapid, and robust segmentation is required to reduce laborious time

and accurately quantify developmental cardiac mechanics.

Methods: The traditional biomedical analysis involving segmentation of the intracardiac

volume occurs manually, presenting bottlenecks due to enormous data volume at high

axial resolution. Our advanced deep-learning techniques provide a robust method to

segment the volume within a few minutes. Our U-net-based segmentation adopted

manually segmented intracardiac volume changes as training data and automatically

produced the other LSFM zebrafish cardiac motion images.

Results: Three cardiac cycles from 2 to 5 days postfertilization (dpf) were successfully

segmented by our U-net-based network providing volume changes over time. In addition

to understanding each of the two chambers’ cardiac function, the ventricle and atrium

were separated by 3D erode morphology methods. Therefore, cardiac mechanical

properties were measured rapidly and demonstrated incremental volume changes of

both chambers separately. Interestingly, stroke volume (SV) remains similar in the atrium

while that of the ventricle increases SV gradually.

Conclusion: Our U-net-based segmentation provides a delicate method to segment

the intricate inner volume of the zebrafish heart during development, thus providing an

accurate, robust, and efficient algorithm to accelerate cardiac research by bypassing the

labor-intensive task as well as improving the consistency in the results.
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INTRODUCTION

Biomechanical analysis is vital during cardiac development,
as assessment of biomechanics is closely associated with
regulation of valve formation, ventricular septum, and
trabecular morphology related to cardiogenic transcriptional
and growth/differentiation factors (1, 2). Lack of intracardiac
biomechanical force could induce genetic programming’s
malfunction resulting in congenital heart defects in humans and
mice (3). For example, understanding potential malfunctions
within the heart’s subcellular structure could point toward
indications of different maladies such as ischemic heart disease
(IHD). Severino et al. (4) reported that IHD is associated with
coronary microvascular dysfunction, which is affected by the
role of ATP-sensitive potassium channel, and this ATP-sensitive
potassium channel modulates the degree of contractile tone in
vascular muscle (5). Thus, investigating biomechanics to link
disease models including contractility is an important assessment
in cardiac research field.

Volume change-based cardiac mechanics measurements (e.g.,
ejection fraction) from the complex trabeculated and beating
heart are most commonly used and play an essential role
in evaluating the cardiac health condition. Such measurement
relies on the accurate reconstruction of the heart’s volume,
which depends on the accurate segmentation of the biomedical
images. Although the segmentation of biomedical images
for volume reconstruction has been extensively studied in
radiation imaging techniques such as MRI or CT (6–8),
these imaging methods are challenging to be adopted for
optical fluorescent images. Although various optical microscopes
have been extensively used to study in biomedical research
due to inexpensive approach, high resolution, and amenable
fluorescent tagging (9–11), it suffers from light scattering and
different intensity of the fluorescent signal. In addition, imaging
dynamic samples is another challenge for microscopes. Unlike
conventional microscopes, however, light-sheet fluorescent
microscopy (LSFM) circumvents these challenges to capture in
vivo dynamic samples, such as zebrafish heart, with a high axial
resolution, deep axial scanning, fast image acquisition, and low
photobleaching (12, 13).

Despite having a two-chambered heart and a lack of
a pulmonary system, the zebrafish represents an emerging
vertebrate model for studying developmental biology (14, 15).
Its transparency and short organ developmental timeline enable
rapid and high throughput analysis of developmental stages with
optical fluorescent technology (16). Such advantages of zebrafish
and LSFM systems make a powerful tool for studying in vivo
cardiac development.

To understand the cardiac function and mechanics and

further analysis, intracardiac segmentation is a necessary step (2,
17). Previously, segmentation of the LSFM images for measuring
cardiac mechanics was accomplished manually by recognizing
different intensities from large amounts of samples or tissue
scatterings engenders many variables (18). The time-consuming

task of manually segmenting the LSFM images is infeasible when
processing high axial resolution data, as the number of images
required is enormous (19, 20). On the other hand, lower axial

resolution degrades the volume measurement’s accuracy, while
inconsistent manual segmentation poses a threat to the cardiac
mechanic analysis’ overall quality. Recently, Akerberg et al. (21)
nicely demonstrated SegNet-based deep-learning segmentation
of zebrafish hearts at the early ventricular developmental
stage before trabeculation. However, accurate segmentation of
complex ventricular morphology after initiating trabeculation
is critical to cardiac mechanics analysis. Therefore, we utilize
the advancements in a specific convolution neural network
(CNN) architecture, namely, U-net (22), which performs binary
classification of the LSFM images’ pixels. Unlike natural images,
in which rich color and texture information are provided, LSFM
images offer limited information. To reliably segment an LSFM
image, the pixel location has to be considered. Our proposed
U-net utilizes such information via a multiscale processing
pipeline, which uses downsampling to extract the features
while using upsampling to convert features to specific pixel
positions. The main contribution of this paper is to propose
and demonstrate a practical and robust U-net architecture for
optical imaging, which is tailored to segment LSFM images
of the developing zebrafish heart. The synchronization of the
LSFM image sequence is applied before segmentation as a
preprocessing step.

For our application, the U-net was trained to utilize LSFM
images of a zebrafish during ventricular development from 2 to 5
days postfertilization (dpf). In this paper, we explore the potential
use of the U-Net architecture to expedite the segmentation of the
intracardiac zebrafish heart, including the atrium and ventricle
and further biomechanical analysis of the extracted results from
the network.

METHODS

Zebrafish Preparation for Imaging
The zebrafish used for this study was raised and maintained
in our zebrafish core facility under the required UT Arlington
Institutional Animal Care and Use Committee (IACUC)
protocol. Transgenic tg(cmlc2:gfp) zebrafish lines were used in
this study to observe myocardium and chamber development.
To ensure a clear image, a medium composed of 0.0025%
phenylthiourea (PTU) was used to suppress pigmentation at 20 h
postfertilization (hpf) (23). Before imaging, zebrafish embryos
were anesthetized in 0.05% Tricaine and immersed in a solution
of 0.5% low-melt-agarose at 37◦C. The embryos were then
transferred to a fluorinated ethylene propylene (FEP) tube
(refractive index, 1.33) to minimize refraction along the path of
light before image acquisition. This FEP tube was then immersed
in water (refractive index, 1.33) and connected to an in-house
LSFM to scan 500 images per slice from the anterior to posterior
of zebrafish heart with 2µm thickness (24).

4D Reconstruction of Beating Zebrafish
Heart
4D reconstruction of in vivo beating zebrafish heart was
performed using previously described methods (18, 25).
Performed 4D reconstruction procedure is based on assumption
that zebrafish heartbeat is regular throughout the image
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acquisition. However, experiments demonstrate that this
assumption is not reliable. To minimize the natural irregularity
of zebrafish heartbeat, we added an extra parameter (δ) to detect
phase lock at period determination to observe irregularity during
the experiments (18, 25). This latent variable window, δ, can be
set roughly −0.3 to +0.3ms after finding the estimated cardiac
period manually (26).

Segmentation of Intracardiac Domain
Well-reconstructed 4D images were selected for manual
segmentation of the intracardiac domain. 3D images of each time
point from the beating heart were loaded into the Amira software
(Thermofisher Scientific, Waltham, MA) or 3DSlicer. First, the
inner cavity of each 2D slice was carefully selected manually
and reconstruct 3D volume segmentation for each time point of
the beating heart. We repeated this process at all developmental
points tomake segmentationmasks.Manual segmentationmasks
were used for training our U-net architecture.

Application of U-Net Architecture
The U-net architecture revolves around two distinct paths: the
contracting path and the expansive path (22). The network takes
the input of size: A × A × n {A = 2k|k∈N} array, where “n”
is the color channel or the depth of image. Since our LSFM
provides a grayscale image of singular depth, “n” was 1. The
input is pushed initially through the contracting path, which
processes the input through a series of 3 × 3 convolutions,
the application of a rectified linear unit (ReLU) following each
convolution, then a 2 × 2 max-pooling operation. This yields
an output of A/2 × A/2 × 2n, expanding the feature channel by
double. This process is repeated four times before the final output
is started to processed by the expansive path, which undergoes a
similar process, with the exception of using a 2 × 2 convolution
operation instead of max pooling (Figure 1). The loss function
used for this particular project was a binary cross-entropy loss
function, and the Adam optimizer was used. The computer used
was an Intel Xeon E5 (CPU) and NVIDIA Quadro P5000 (GPU).
Most of the calculations were done by GPU; it consumes 3.39 GB
of memory, and performance scales with more memory allotted.
With the current setup, it costs around 180ms to train each slice;
the minimal request for training dataset (400 slices) and epoch
number (50 epochs) would be 48minutes. It takes about 60ms to
predict one slice. In a few minutes, the network can process the
whole 4D data.

Network Training With Manually
Segmented Images
Training data for CNN learning is divided into two separate
bins: training volumes and labels. Four individual heart samples
models were used to study the developmental stages from 2 to
5 dpf. The raw data came from 4D images of the beating heart.
From these 4D images, each 3D images were isolated from every
20 equally spaced sample of each heart. For these, we selected
the entire slices of the 20 samples of 3D volume of the heart
from 4D dataset, representing three cardiac cycles, with each
volume containingmnumbers of 2D sliced images (m∈N), which
was dependent on the slice selected. This particular parameter

was related to the spatial depth of the volume being observed.
Following data acquisition, hand segmentation was performed
using 3DSlicer GUI application on the 2D axial plane spanning
the entirety of the zebrafish heart captured. Both of these training
bins were converted into 8-bit format and imported into U-NET
as a 512 × 512 × 1 8-bit array, with bijective correspondence
between volumes and labels. The U-NET program featured
trained blind to the spatial depth of the volume itself, only having
access to segmentation of the 2D axial slice input. From here,
the training data took up approximately 80% of the data used for
experimentation, while 20% was used for future validation.

Dice Similarity Coefficient Correlation
The primary method to which our automatic segmentation was
assessed was using the Dice similarity coefficient correlation,
which compares the amount of space of which the volumes of the
automatic and hand segmentation overlap in comparison with
the summation of the total number of pixels. The calculation of
this is as follows for area A, representing autosegmentation, and
area B, representing our manually labeled segmentation:

Similarity =
2× |(A ∩ B)|

|A| + |B|
(1)

The outcome yields some value x for x ∈ [0, 1], with the value 1
(approximating a near-perfect segmentation match with respect
to the initial hand segmentation used) and 0 (showing essentially
no correlation between the two).

Cardiac Mechanics Analysis
After segmented volume, wemultiplied voxel resolution to obtain
the actual volume of zebrafish heart. We capture the size of
most dilated points and most contracted points as end-diastolic
volume (EDV) and end-systolic volume (ESV), respectively.
Stroke volume (SV) was calculated by subtracting ESV from
EDV. Ejection fraction (EF) is the ratio of blood ejection, which
can be simply calculated from EF= (SV/EDV)× 100.

RESULTS

Manual Segmentation From LSFM for
U-Net Training
Manual segmentation was performed along the 2D axial plane
of the zebrafish heart for each studied sample. The methodology
for manual segmentation, which served as our ground truth
and labels, was performed using a contour-based segmentation
method provided by 3DSlicer and was done in conjunction
with ad hoc edits done on the resulting figures. Manually
segmented images were used as training datasets for U-net
(Figure 1). The concept of U-net architecture was to supplement
a usual contracting network by successive layers, where pooling
operators were replaced by upsampling operators (22). Here,
original 512 × 512 pixels LSFM images were deconstructed to
detect features of intracardiac boundaries. Then, upsampling
of each layer increased the resolution of the output. For
localization, higher resolution features from the downsampling
path were combined with the upsampled output. As the manual
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FIGURE 1 | U-net convolution neural network (CNN) architecture utilized to generate the binary mask of the intracardiac domain of zebrafish. Each box represents a

multichannel feature map that allows for efficient and accurate extraction of anatomical features. In our specific application, the input was a 512 × 512 pixel map.

FIGURE 2 | Sequence of selected light-sheet fluorescent microscopy (LSFM)

images with the manual hand segmentation mask from 4 dpf zebrafish heart.

(A) Diagram showing the anatomical feature of the zebrafish heart as well as a

single axial slice with corresponding binary mask generated by the U-net. It is

observed that there is a clear distinction between the atria and ventricle of the

specimen. (B) A sequence of selected axial slices with corresponding binary

masks generated by our U-net program; the reference scale bar is 50µm.

segmentation images were input for training, a successive
convolution layer learned to assemble a more precise output
based on this information. In addition, a Gaussian 2D filter
of kernel size of 2.0µm was applied to smooth manual
segmentation. Contour interpolation was further applied to the
3D structure output to minimize the step size of later 3D
reconstruction. The fidelity of the manual segmentation was
done observationally through inspecting the spatial comparison
between the label generated and the intracardiac area of the 2D
slice (Figure 2).

Validation of U-Net Based Autosegmented
Image
We visualize the segmentation ability of our networks by
reconstructing the diastolic and systolic stages of zebrafish

(Figures 3A,B; Supplementary Videos 1, 2). Although
there is a small segmentation discrepancy between ground
truth and autosegmentation around fluorescent boundaries
(Figures 3C,D), U-net-based segmentation accuracy for
each frame has a mean Dice coefficient score of 0.95 with a
standard deviation of 0.02 (Figure 3E). Due to trabeculation
in the ventricle at 4 dpf, manual segmentation was more
sophisticatedly segmented in rough fluorescent boundaries.
Although our autosegmentation was performed to detect rough
boundaries in the trabeculated area, the roughness was relatively
smooth. However, the atrium’s smooth surface and innermost
area of the ventricle were captured closer to the fluorescent
signal. This discrepancy could be from the dataset that we used
to train the network, the result of inconsistences from manual
segmentation judged by the user. These statistics demonstrate
our U-net-based segmentation’s remarkable ability to segment
intracardiac chamber with a high dice coefficient score and
reduces inherent manual segmentation.

Automatic Morphology to Separate Inner
Chamber Space
To validate the U-net-based autosegmentation and allow for
further application, it was deemed necessary to derive some
function for separating the inner-chamber structure to allow for
independent analysis of the two-volume components and their
disjoint biomechanical characteristics. This was done using an
in-house Matlab code utilizing an iterative process of applying
an erosion operator relying on a 3D structuring element until
fracturing the single master volume. Following this, a dilation
operator was applied to the individual subvolumes to recover lost
space, and the resulting dilated volumes were intersected in 3D
space with the initial master volume. The output of this program
was the resulting intersected space.

This program’s use proved to be critical in studying the
resulting biomechanical elements of the atria and ventricle,
as it allowed for consistency in determining the chambers
(Figure 4A; Supplementary Videos 3, 4). The methodology was
used successfully to distinguish the atrium and ventricle within
the program on a three-dimensional level (Figure 4B). The
resulting axial scans of the separated atria and ventricle show
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FIGURE 3 | Comparison of U-net based autosegmentation to manual hand segmentation. (A,B) Geometric representation of both the diastolic and systolic stages of

the heart cycle. (C,D) Comparison in the 2D axial plane between autosegmentation of the U-net and ground truth in both the diastolic and systolic stages, respectively.

The blue arrows indicate areas of disjoint space within the segmentations, shown in red (manual segmentation), green (autosegmentation), and yellow (intersection). (E)

Corresponding Dice similarity coefficient comparing the results between our ground truth and automatic segmentation demonstrated the ability of autosegmentation.

FIGURE 4 | Subdivision of atrium and ventricle. (A) Methodology of using the automatic segmentation to define the morphology of inner volume of the zebrafish heart.

This method relies on an iterative process that uses an erosion operator on the 3D structure of the inner volume until division occurs. Following the division of the

volume into two separate components, extraction of each individual piece follows with a dilation operation and intersection with the original volume. (B) 2D axial slices

showing the differentiation of the atrium (teal) and ventricle (blue) of various slices. (C) Area change over time from 2D slice (B) was successfully demonstrated.

a clear distinction between the two different chamber areas per
slice at 4 dpf (Figure 4C).

Volumetric Analysis
We have applied 4D synchronization methods to reconstruct
volume change over time (2, 18). Analysis of the volume
change along three cardiac cycles was provided to study the
biomechanical changes over time (Figure 5A). The volume of
the atria and ventricle and the total intracardiac volume of both

chambers were plotted independently (Figure 5B). Although the
total cardiac volume of 4 dpf is oscillating during pumping, the
mean value is roughly 9.5 × 105 µm3. At 4 dpf, trabeculae
developed in the ventricle; thus, 4D reconstruction showed the
motion of the corrugated surface of the ventricle. Due to the

lack of trabeculae (27), the atrium has a relatively tranquil
curvature motion during atrial contraction and relaxation. Our

results reveal the potential power of complex morphology and
functional analysis.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 June 2021 | Volume 8 | Article 675291

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Zhang et al. Deep-Learning Based Automatic Cardiac Segmentation

FIGURE 5 | Representation of the contraction to dilation of zebrafish heart volume change over time. (A) Autosegmented successfully reconstructed 4D image

captured the rough inner surface of zebrafish due to trabeculation after merging with fluorescent-labeled tg(cmlc2:gfp) zebrafish from light-sheet fluorescent

microscopy (LSFM) images. (B) Volume change in the ventricle and atrium was measured from autosegmentation. Total volume of atrium and ventricle represented

around 9.5 × 105 µm3 when zebrafish was at 4 dpf.

FIGURE 6 | Cardiac mechanics analysis of developing zebrafish heart. (A–D) Volume change of developing zebrafish heart was measured by U-net-based

autosegmentation, showing consistent increase in volume in both the atrium and ventricle. (E,F) After notable morphology change after cardiac looping, end-diastolic

volume (EDV) and end-systolic volume (ESV) were increased significantly in both the atrium and ventricle. At 5 dpf, ESV was also significantly increased compared to 4

dpf. (G) While SV of the ventricle showed an increasing trend, that if the atrium remained at a similar level from 2 to 5 dpf. (H) Ejection fraction (EF) analysis

demonstrated a decreasing trend from high EF at 2 dpf. *p ≤ 0.05.

Assessment of Cardiac Mechanics of
Developing Zebrafish Heart
In studying the volumetric change of the zebrafish heart during
early-stage development between 2 and 5 dpf, observations
allowed for the analysis of the atria and ventricle volumetric
loads. Interestingly, we recognize that the ventricular contraction
pattern shifts left from 2 to 3 dpf and shifts right from 4 to
5 dpf. Similarly, a pattern was observed within the atrium’s
volumetric change, albeit in an inverse manner (Figures 6A–D).
Furthermore, based on volume change data, we have performed
cardiac mechanics analysis during development. We first analyze
the end-diastolic volume (EDV) and end-systolic volume (ESV)

of the atrium and ventricle. Although the EDV and ESV

trend of both the atrium and ventricle consistently increased,
there was a significant increase between 2 and 3 dpf where
morphology changed by cardiac looping (28) (Figures 6E,F).

The active trabeculation process (18, 27), which increases
the ventricle’s contractility, affects the ESV of the ventricle
at 5 from 4 dpf. Interestingly, the ventricle’s stroke volume
(SV) consistently increased, while the SV of the atrium
remains consistent around 3.6 × 105 µm3 during early

cardiogenesis (Figure 6G). We have further analyzed ejection

fraction (EF) from EDV and ESV of the atrium and ventricle
to understand how much blood each chamber pumps out with
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each contraction. Although, at 2 dpf, EF was high in both
the atrium and ventricle, it continuously decreased throughout
development (Figure 6H).

DISCUSSION

Our U-net-based segmentation methods successfully provided
intracardiac 3D volume structure for studying the biomechanics
of zebrafish hearts trained with manually segmented LSFM
images. The previously created manual segmented volume was a
tedious and taxing process for the researcher, leading to a possible
room for error as time requirements increase. Furthermore,
inconsistency would be induced between individuals, yielding
different results of the same volume for two people. Although
Akerberg et al. (21) used a SegNet-based autosegmentation
nicely segmented zebrafish intracardiac volume and analyzed
the cardiac function, their application was visualized in
an early stage of zebrafish heart before trabeculation. We
have adopted U-net for the segmentation to apply complex
geometry of inner ventricular surface until 5 dpf zebrafish
heart. This study relies on a fully convolutional neural
network, which allows for quick segmentations with as little
as five datasets. Within this experiment, our application
revolved around pairing U-net with LSFM. This particular
study’s novelty was the new relation between the LSFM
and U-net structure, which allows for high-level sectioning
capabilities of the LSFM to generate the 3D structure of
the complex zebrafish heart with ease, followed by automatic
morphological analyses.

There are currently a few limitations to our approach from this
paper, which we feel necessary to touch upon. A limitation to the
algorithm is that it relies on manual segmentation as its ground
truth. Furthermore, the quality of the manual segmentation also
depends on the image quality of each raw LSFM image slice.
If the raw images are perhaps not precise enough for various
reasons, the algorithm may not be able to generate the most
precise results it is capable of. As for manual segmentation,
there is a high possibility of human error. There are many
variables that change in the manual segmentation depending on
the user. One aspect of this is smoothing of the 2D slices in
the manual segmentation. The smoothing is done based on each
user’s discerning eye, which can lead to minor discrepancies in
the manual segmentation. In addition, the data for the algorithm
are trained separately by day instead of a single dataset, which
limits efficiency due to the complex nature of the morphology
and different developmental environment. As a consequence
of the change in morphological structure observed over the
time period of which this project was performed, it was not
feasible to create some singular model that could automatically
segment any 2D axial input for any developmental stage. As
a consequence, we found it necessary to create four different
models, one for each corresponding developmental stage for
independent processing. This limitation required extra work in
terms of computational requirements; however, we see it as
necessary for the moment. Despite these limitations, the current
algorithm designed has been able to create highly accurate

autosegmentation from the use of manual segmentation of four
different developmental datasets.

This study’s primary objective was to determine if the
conjunctional use of this modality-program pair provided
feasible results. This objective was satisfied with a high degree of
success, as seen from the Dice similarity correlation coefficient
having a value perceived as exceptional, showing similarity
between our perceived ground truth and the autosegmentation
(Figure 3E). Although we have observed errors between manual
and autosegmentation, we assume that the fluorescent intensity
threshold point was vague when segmentation was performed
manually (Figures 3C,D). Therefore, our autosegmentation
network could help to process more detailed cardiac mechanical
analysis compared to manual segmentation. Most interestingly,
in our cardiac mechanics analysis, relatively rapid contraction
and slower relaxation of the atrium at 2 and 3 dpf transitions
to slower contraction and rapid relaxation at 4 and 5 dpf
(Figures 6A–D). At 2 and 3 dpf, zebrafish atrium pumps blood
in peristaltic motion due to lack of valves, while it relies on
impedance pumping mechanism at 4 and 5 dpf (29). Therefore,
we may observe that the atrial volume change curve shifts left
at 2 and 3 dpf and shifts right at 4 and 5 dpf. In addition, after
cardiac looping, cardiac function significantly changed as the
ventricle developed faster in size. In the heart’s tubular shape
before cardiac looping, the atrium is bigger than the ventricle
(21). At 5 dpf, when active trabeculation increases the ventricle’s
contractility, contraction of the ventricle increased significantly
in corroboration with previous findings (Figure 6F) (18). Atrial
SV stayed consistent during development in the interim of
increasing SV of the ventricle (Figure 6G).

Despite rapid process and consistent results, the experiment
conducted has some mild limitations when considering the
overall capabilities being used. The most critical component
for this study, including any deep-learning-based segmentation
process, requires a high-quality input dataset, as the output test
labels are only as good as those they are trained from. In our
case, using the fluorescent label zebrafish, tg(cmlc2:gfp), yielded
overall strong results from the ventricle but, on occasion, could
have issues with the atria due to lower cardiomyocyte density and
its location deeper in the chest, leading to more imaging issues.
Circumventing this issue was not a trivial action, as exploring
extensive preprocessing methods was required to be able to
find the boundary of the inner volume of the heart (30). Other
limitations that could be found in the experimentation process
could be issues within the imaging process, in which user and
systematic errors could hinder image fidelity.

Our methods will be compatible with other fluorescent
optical imaging, such as z-scanned confocal microscopy images,
providing quality 3D reconstruction. Our powerful U-net-based
segmentation could be a new tool for studying a variety of future
biomedical research applications. To begin, the parameters of the
U-net could be tweaked to increase the accuracy and precision of
the program for the zebrafish hearts; this would lead to a better
quality autosegmentation, which would lead to progress in the
field of mechanobiology by using computational fluid dynamics
to understand the shear stress or pressure that could affect cardiac
morphogenesis (2, 17).
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CONCLUSION

Our U-net-based segmentation provides a delicate method
to segment the intricate inner volume of zebrafish heart
during development, thus providing an accurate and convenient
algorithm to accelerate cardiac research by bypassing the labor-
intensive task as well as improving the consistency in the results.
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