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Abstract: The broadband spontaneous emission of excitons in CdSe quantum dots (QDs) is of great
interest for the spectral imaging of living organisms or specific substances in the visible spectral
region as well as in the biological optical window near the infrared spectral region. Semiconductor
QDs that are near the bulk Bohr radius exhibit wide spectral tunability and high color purity due
to quantum confinement of excitons within the dot boundary. However, with reducing dot size,
the role of the surface-trapped state increases. The temperature-dependent photoluminescence (PL)
confirms this with a ~3:1 emission intensity decrease from the surface-trapped state compared to
the band edge. Large crystal irregularity, dangling ions, and foreign molecules can introduce new
electronic transitions from surface-trapped states that provide broad spontaneous emission in the
spectral region from visible to near IR in addition to the band edge emission. The time-resolved PL
analyzed the fractional contributions of band edge, surface-trapped states, and possible intermediate
trapped states to the broad spectral emission in order to characterize the CdSe QDs.

Keywords: quantum dots; time-resolved spectroscopy

1. Introduction

Cadmium chalcogenide (Te, Se, and S) semiconductor quantum dots (QDs) typically
possess high color purity, wide optical tunability, and large quantum yield in the visible
and near infrared spectral region, which allows for various applications in photonics, LED
and solar cell development, as well as optical sensing and bio-imaging [1–12]. The large
quantum yield of cadmium chalcogenide colloidal QDs has been reported in the past
two decades [13]. Exciton recombination is the origin of emission in CdSe QDs while
the bandgap is tunable based on quantum confinement of the charge carriers. Bulk CdSe
exhibits a bulk bandgap of 1.74 eV, while CdSe QDs near the bulk Bohr radius (~5.8 nm)
displays large blue shift from the bulk bandgap. It is widely known that the bandgap is
the main emission site for CdSe QDs; however other radiative transition may occur on the
surface of the nanocrystal due to atomic vacancies, local lattice mismatches, adsorbates at
the surface, dangling bonds, or imperfect crystallization during the time-sensitive synthesis
process [14–16]. Incomplete crystalline structure can lead to defect sites which provide
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more non-radiative channels during recombination. To enhance the quality and remove
non-radiative decay in CdSe QDs, typically the surface defects are passivated with neutral
ligands such as trioctylphosphine oxide (TOPO) or capped with high bandgap materials
such as ZnS, which reduce non-radiative recombination and result in narrow spectral
emission [17]. However, without such passivators or capping agents, the dangling bonds
are free to exist and, consequently, surface defects are highly influential to the overall
photoluminescence (PL) at longer wavelengths. Thus, tailoring to a specific spectral region
is not only achieved by size control of the QDs during synthesis, but also by the defects
present at the surface [18]. The PL of the QDs is strongly dependent on the surface-trapped
state, which is itself largely affected by the chemical or physical interactions which take
place on or near the surface of the QDs. Thus, the surface environment plays a crucial role
in PL activation or quenching [14]. Interactions with the QD’s surface-trapped state can
be easily measured or observed through time-resolved and temperature-dependent PL
studies. However, the surface-trapped state emission has a strong temperature dependence
and gives broad emission due to the multiplicity of surface irregularities. While the
temperature dependent bandgap is well known for bulk and QDs of CdSe, the dynamics
of the surface-trapped state is less familiar.

In this article, temperature dependent PL measurements were performed to character-
ize the behavior of the bandgap and surface-trapped state of CdSe QDs. Time-resolved
spectroscopy was also utilized to analyze the fractional contributions from the surface-
trapped state to the overall PL.

2. Materials and Methods

The CdSe QDs were synthesized according to pre-established procedures [4]. The QDs
in toluene were allowed to dry on a piece of cover glass and then placed on a thermally
conducive arm and holder located within a vacuum chamber. A pressure gauge (Duniway
Stockroom Corp., Model DTC-531-115-BX, Fremont, CA, USA) monitored the pressure
drop to 20 mTorr via a mechanical vacuum pump. A closed helium refrigeration unit
(Sumitomo CNA-11, Type SRDK-101 He, Tokyo, Japan) was then activated to bring the
ambient temperature inside the chamber to 6 K, recorded with a temperature controller
(Lakeshore 331, Westerville, OH, USA). Excitation source was supplemented with a HeCd
laser (Melles Griot, Omnichrome Series 74, Carlsbad, CA, USA) operated at a wavelength
of 442 nm with an average power reading of 31.7 mW. A beam chopper operated at 300 Hz
was introduced before excitation. The optical spectra of the CdSe QDs were filtered using
a 455 nm long wavelength pass filter and collected using an optical fiber (Ocean Optics
P600-2-SR, Orlando, FL, USA) fed to a spectrometer (Ocean Optics, USB4E00675, Orlano,
FL, USA) with a spectral range of 200–1100 nm and a resolution of 1 nm.

The time-resolved PL measurements of were performed utilizing a FluoTime 200 flu-
orometer (PicoQuant, Inc., Berlin, Germany) with a 470 nm diode laser excitation source
with a pulse width of 120 ps and a 100 KHz repetition rate. The chosen PL measurement
wavelengths were 575 nm, 675 nm, 750 nm, 815 nm, 815 nm, 855 nm, and 890 nm for
the CdSe QD samples. The amplitude average lifetimes of CdSe QDs were determined
using tail fitting of the multi-exponential equation and a nonlinear least square function to
the decay measurements described in the literature [19–22], using the FluoFit4 program
(PicoQuant, Inc., Berlin, Germany).

3. Results

In Figure 1, the absorption and PL spectra of CdSe QDs are displayed. The ab-
sorption features three prominent peaks at 551 nm, 515 nm, and 455 nm. According to
Yu et al. [23,24], the calculated diameters of the nanocrystals in this study are ~3.1 nm. In
Figure 1, the absorption spectrum shows the blue-shifted (QDs: 2.25 eV) bandgap of CdSe
(Bulk: 1.74 eV) which is attributed to quantum confined carries near the bulk Bohr radius
(5.8 nm for CdSe).
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Figure 1. Absorption and photoluminescence spectra of CdSe QDs. 

The PL peak observed at 576 nm originates from the band edge transition while the 
long tail spanning from 625 nm to 950 nm is due to the surface-trapped state transition. 
The surface-trapped state exists due to the surface irregularities formed during the crystal 
synthesis/growth processes. The PL from the surface-trapped state is attributed to carrier 
recombination at the defect sites, while the band edge transition is related to recombina-
tion closer to the bandgap. It is clear from the figure that the band edge transition domi-
nates the PL spectra with 5-fold PL intensity compared to that of the surface-trapped state 
at room temperature. Figure 2 shows temperature dependent photoluminescence of CdSe 
QDs measured from 6 K to 300 K. The temperature dependent band edge transition at 568 
nm at 6 K to 575 nm at 300 K was observed for increasing temperature in correspondence 
with the literature [25]. 
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Figure 1. Absorption and photoluminescence spectra of CdSe QDs.

The PL peak observed at 576 nm originates from the band edge transition while the
long tail spanning from 625 nm to 950 nm is due to the surface-trapped state transition.
The surface-trapped state exists due to the surface irregularities formed during the crystal
synthesis/growth processes. The PL from the surface-trapped state is attributed to carrier
recombination at the defect sites, while the band edge transition is related to recombination
closer to the bandgap. It is clear from the figure that the band edge transition dominates the
PL spectra with 5-fold PL intensity compared to that of the surface-trapped state at room
temperature. Figure 2 shows temperature dependent photoluminescence of CdSe QDs
measured from 6 K to 300 K. The temperature dependent band edge transition at 568 nm at
6 K to 575 nm at 300 K was observed for increasing temperature in correspondence with
the literature [25].
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Figure 2. (a) Temperature-dependent photoluminescence of CdSe QDs at select temperatures. (b) In-
tegrated PL intensity as a function of the inverse temperature.

However, the band edge transition displayed a 2.6-fold decrease in emission intensity
from 6 K to 300 K while the surface-trapped state displayed much more rapid thermal
quenching with an 8.9-fold decrease in emission intensity from 6 K to 300 K. The surface-
trapped state’s emission intensity decreases 3.4 times faster with increasing temperature
than the band edge transition. This may be due to the large number of non-radiative
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recombination sites on the surface attributed to the numerous defects. While the bandgap
is an intrinsic property of the semiconductor QDs, the surface-trapped state is heavily
reliant upon the surface environment which, at room temperature, has higher non-radiative
contributions compared with that of the band edge transition. The inset in Figure 2 displays
the integrated PL intensity as a function of the inverse temperature for CdSe QDs. The
fitting is based on the PL thermal quenching equation in the literature [11]. From the
fitting, the fractional amplitudes (Ci) of activation ionization energy (Eact,i) are E1~20.5 meV
with C1~0.7, E2~26 meV with C2~100, and E3~50 meV with C3~10 for CdSe QDs. The
common phenomenon of PL thermal quenching is attributed to the increased non-radiative
recombination probability of electrons and holes [26]. The radiative decay of CdSe QDs
is further analyzed with time-resolved spectroscopy in order to specify the contributions
from the surface-trapped state to the overall PL.

The temporal properties of CdSe QD emission which originate from the band edge and
surface-trapped state transitions are investigated through time-resolved photoluminescence
spectroscopy. In this study, the temporal decays were examined at six different observation
wavelengths in order to account for the broad nature of the PL spectrum. Each observation
wavelength exhibits a fast lifetime component (τ1) related to the band edge to valence
band transition, an intermediate lifetime component (τ2) related to the surface-trapped
state to valence band or band edge to valence trapped state transition and a slow lifetime
component (τ3) related to the surface-trapped state to valence trapped state transition. The
fast component is heavily attributed to the band edge transition due to its relatively short
lifetime and large fractional amplitude. As the band edge transition dominates the PL
spectrum at room temperature, the largest fractional amplitude is accredited to the band
edge. Time-resolved spectroscopy was performed at several observation wavelengths of
575 nm, 675 nm, 750 nm, 815 nm, 855 nm, and 890 nm shown in Figure 3a–f, respectively.
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and (f) 890 nm.

In Figure 3a, the lifetimes at 575 nm are τ1~1.60 ns, τ2~7.52 ns, and τ3~35.54 ns with
fractional amplitudes of 71.18%, 26.29%, and 2.53%, respectively. The large fractional
amplitude of 71.18% indicates a strong influence from the band edge with noticeably
less effect from the surface-trapped state which is reasonable considering the observation
wavelength with respect to the PL spectrum in Figure 1. In Figure 3b, the lifetimes at
675 nm are τ1~3.16 ns, τ2~16.04 ns, and τ3~92.39 ns with fractional amplitudes of 63.40%,
30.84%, and 5.76%, respectively. The observable drop in the fractional amplitude associated
with the band edge transition from 71.18% at 575 nm to 63.40% at 675 nm is likely due
to a higher contribution from the surface-trapped state at 675 nm. It is concluded that
PL in this spectral region has obvious contributions from both band edge and surface-
trapped state transitions however, the influence of the band edge to longer wavelengths
is diminished. In Figure 3c, the lifetimes at 750 nm are τ1~3.69 ns, τ2~18.53 ns, and
τ3~108.65 ns with fractional amplitudes of 56.44%, 34.72%, and 8.84%, respectively. In
this spectral region, the surface-trapped contribution is enhanced while the band edge
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transition is further decreased as the observation wavelength is increased. In Figure 3d, the
lifetimes at 815 nm are τ1~3.98 ns, τ2~26.06 ns, and τ3~120.2 ns with fractional amplitudes
of 54.42%, 35.52%, and 10.06%, respectively. While the trend of increased surface-trapped
state contribution becomes more evident, Figure 3e displays an increased contribution from
the band edge transition compared to Figure 3d. However, when compared to the overall
surface-trapped state contribution of 36.6% (addition of fractional amplitudes from τ1
and τ2) from Figure 3b, the overall surface-trapped state contribution is 37.61% at 855 nm.
While there may be some additional contribution from the band edge transition, the overall
surface-trapped state contribution is increased in this spectral region. In Figure 3f, the
lifetimes at 890 nm are τ1~1.39 ns, τ2~5.38 ns, and τ3~26.47 ns with fractional amplitudes
of 45.74%, 40.73%, and 13.52%, respectively. In this spectral region, the total trapped
state (transitions not including band edge to valence band) contributions given by the
total fractional amplitudes of τ2 and τ3 dominate the spectrum with combined fractional
amplitude of 54.25%. This implies that, at 890 nm, the decay rate of the trapped state
transitions is larger than that of the band edge transition; however, the band edge transition
immensely influences the overall PL spectrum indicated by its high fractional contribution.
The lifetimes of the band edge, surface-trapped state, and deeper trapped states have been
explained by Jones et al. and Nirmal et al. through a dark exciton state or delayed exciton
emission via thermalization of trapped states [27,28]. The average lifetime of the band edge
transition is 30 times shorter than the average lifetime of the surface-trapped state transition.
This suggests that the surface-trapped state has increased non-radiative contributions due
to the defects on the surface of the nanocrystal, but the band edge transition is still the
main contributor to the PL. This indicates that while the surface-trapped state provides
the spectral coverage for broadband applications, the average lifetimes over the entire PL
spectrum, remain fast due to the band edge dominance.

4. Conclusions

Temperature dependent PL spectra of CdSe QDs were studied for the purpose of
developing efficient sensors and/or photonic devices. The wide PL spectrum qualifies them
for various broadband applications resulting from the surface-trapped state contribution
to the PL spectrum. The PL was observed to have a 3.5-fold contribution from the band
edge transition compared to the surface-trapped state at room temperature. It was revealed
through temperature dependent spectroscopy that the surface-trapped state exhibited
strong thermal quenching with 8.9-fold decrease in emission intensity from 6 K to 300 K
while the band edge transition displayed 2.6-fold decrease in emission intensity in the same
temperature range. Time resolved spectroscopy further elucidated the dynamics of the
surface-trapped state by exposing the large influence from the band edge transition to the
entire PL spectrum while the surface-trapped state increasingly dominates in the longer
wavelength spectral region. This indicates non-radiative decay at the surface-trapped
state due to defects on the nanocrystal structure, which is also confirmed with an average
lifetime 30 times longer than that of the band edge transition.
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