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Chapter I: Introduction 

1.1 Endurance Performance – Definition and Measurement 

Endurance can be defined as “the ability to sustain a prolonged stressful effort or activity”.1 

When addressing human endurance exercise, the term is often used to describe activities powered 

mainly by aerobic energy production or oxidative phosphorylation (OXPHOS). However, these 

activities exist on a wide spectrum: OXPHOS becomes the predominant metabolic pathway for 

energy production in activities lasting more than 90-120 seconds2 and can provide energy for 

activities lasting hours to days.3,4 This dissertation investigates events lasting ~5 minutes (one-

mile run in recreationally active participants) to ~60 minutes (30-km cycling time trial (TT) in 

recreationally active cyclists). Additionally, this document examines the maximal metabolic 

steady-state (critical power (CP)) in cyclists and triathletes as a marker of endurance performance 

potential.5 Positive performance outcomes include 1) maximizing mechanical power output or 

speed over a given time, distance, or at the maximal metabolic steady-state, 2) maximizing time 

to task failure during constant-load exercise, and 3) minimizing time to complete a given distance 

or a prespecified amount of work (typically measured in kilojoules).6,7  

1.2 Determinants of Endurance Performance 

The factors influencing human endurance performance can be grouped into system-wide 

concepts and their underlying cellular and molecular processes; the three most important system-

wide determinants of endurance performance are maximal oxygen consumption (V̇O2max), the 

ability to maintain a high fractional utilization of V̇O2max during prolonged exercise – often 

represented by a threshold concept (e.g., lactate thresholds, ventilatory thresholds, CP, etc.), and 

gross mechanical efficiency or movement economy.8 An additional emerging factor in the 

determination of endurance performance, which is traditionally not included in the determinants 
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of endurance performance, is fatigue resistance or durability.9 Underlying organ-level, cellular, 

and molecular factors mainly reflect the body’s ability to deliver oxygen to the working muscles 

(cardiovascular), extract oxygen from the blood (cardiovascular and cellular), and use oxygen, 

nutrients, and reducing equivalents efficiently for energy production (metabolic).2 

1.2.1 Maximal Oxygen Consumption (V̇O2max) 

An individual’s V̇O2max represents the greatest rate of oxygen the individual’s body can 

consume, which is typically measured during incremental exercise to exhaustion.10 V̇O2max is 

governed by the components of the Fick equation 

𝑉̇𝑉𝑂𝑂2 = 𝑄̇𝑄  ×  𝑎𝑎 − 𝑣𝑣 𝑂𝑂2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

where Q̇ is the cardiac output and the a-v O2 difference (arterio-venous oxygen difference) is the 

difference in oxygen content between the arteries and veins. Q̇ is the product of heart rate (HR) - 

the number of heart beats per minute – and stroke volume (SV) – the amount of blood ejected with 

each heart beat measured in milliliters (mL).10 Thus, Q̇ represents the body’s ability to deliver 

blood to the working muscles, while the a-v O2 difference represents the body’s ability to extract 

oxygen.  

While not the sole determinant of athletic success, V̇O2max is one of the major factors 

determining endurance performance, especially in heterogenous populations.11,12 In those 

situations, individuals with a higher V̇O2max perform better than those with a lower V̇O2max.13,14 

However, among groups of elite athletes with similar V̇O2max values, aerobic capacity becomes 

less of a factor.15,16 Thus, it stands to reason that V̇O2max is a better predictor of endurance 

performance among recreational athletes, so-called age-group athletes, whose aerobic capacity 

might exhibit large inter-individual differences. Among elite athletes, who might have to achieve 

a certain V̇O2max as a prerequisite for reaching their elite status, the homogeneity of aerobic 
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capacity decreases the predictive value of V̇O2max for performance. In the latter, other factors, 

including fractional utilization of V̇O2max and gross mechanical efficiency, become more 

important. 

1.2.2 Fractional Utilization of V̇O2max 

The ability to maintain a high workload over extended periods of time lies at the heart of 

endurance exercise performance.13 This ability is governed by an individual’s capacity to fuel 

exercise using OXPHOS.13 Several different threshold concepts have been applied to demarcate 

the exercise intensity at which the body begins relying on anaerobic energy production to the extent 

that fatigue processes are accelerated and time to task failure becomes shorter.17 Originally 

conceptualized by Wasserman18 as the anaerobic threshold (AT), thresholds concepts now include 

ventilation-based thresholds (e.g., ventilatory threshold (VT) and respiratory compensation point 

(RCP)), power/speed-based thresholds (e.g., the critical power/speed (CP/CS) and functional 

threshold power (FTP)), and blood lactate-based thresholds (e.g., lactate threshold (LT), lactate 

turnpoint (LTP), and maximal lactate steady-state (MLSS)).17 

The highest sustainable fractional utilization of V̇O2max – is a strong predictor of 

endurance performance: the higher the intensity at which an individual can achieve a metabolic 

steady-state5,19, the better they can perform in an endurance event, as they can maintain higher 

work outputs for longer periods of time. The fractional utilization of V̇O2max at the LT correlates 

strongly with time to task failure;20 similarly, fractional utilization capability, measured in the 

laboratory as the power output at VT, was a strong positive predictor for time to completion in 

three Tour de France time trials performed by professional cyclists.21 Elite marathon runners 

exhibit extremely high fractional utilization – up to 92% of V̇O2max at the LTP.22 To break the 

coveted 2-hour mark in a marathon, runners have to achieve a metabolic steady-state at a running 
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speed of 21.1 km, a feat which only the highly elite can attain.22 This evidence shows that fractional 

utilization is an important factor in determining endurance exercise performance. Physiologically, 

a high fractional utilization capability is positively correlated with greater skeletal muscle capillary 

density20, mitochondrial density, and mitochondrial fat oxidation rates.23 

1.2.3 Mechanical Efficiency and Movement Economy 

The final major factor in determining endurance performance is gross mechanical 

efficiency.24 Gross mechanical efficiency is typically measured using a cycle ergometer;25 it is the 

ratio of the work generated to the total metabolic cost of the activity. Thus, it is a measure of work 

achieved for the amount of energy expended; this translates directly to performance, as a higher 

efficiency allows more of the overall energy cost to produce work rather than heat. Cycling gross 

efficiency ranges approximately from 18-23% of total energy expenditure in trained cyclists, and 

is strongly correlated with fiber type composition of the working muscle: the greater the percentage 

of Type I (oxidative) fibers, the higher the gross efficiency.26 Variation in gross efficiency in 

cycling explains approximately 30% of the variation in power output during cycling time trials.24 

 In running, gross efficiency cannot be directly measured, since work output can only be 

estimated; thus, running economy (RE) is used as a similar measure: RE measures energy 

expenditure (V̇O2 in mL of oxygen per kilometer or per minute) at a given running speed.27 Better 

RE (lower energy expenditure) has been shown to directly affect running performance: 

Hoogkammer et al.28 showed that a 1.1% increase in energy expenditure equates to a reduction in 

performance of 0.78%. Similarly, di Prampero et al.29 reported that an improvement of 5% in RE 

lead to an improvement of 3.8% in running performance. Observational studies have shown that 

elite athletes have better RE than highly trained and recreationally trained runners27,30, and that 

East African runners have better RE than European athletes.31 RE is affected by morphological 
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factors such as calf circumference31, limb length body mass distribution, and Achilles tendon 

moment arm.27 Physiological factors influencing RE include muscle fiber type composition, neural 

signaling and motor programming, and elastic energy storage.27 Stride length, foot strike patterns, 

vertical oscillation, lower body kinematics, and footwear can also affect RE.27,28 

1.2.4 Durability 

The traditional determinants of endurance performance are typically measured in a well-

rested state, with participants in studies and athletes in the applied setting refraining from heavy 

exercise prior to testing. However, due to the nature of many prolonged endurance events and 

tactical considerations, endurance performance in races often requires athletes to perform multiple 

spurts of high-intensity efforts interspersed throughout an event (“high-intensity repeatability”) 

and/or a finishing surge at the end of an event (“fatigue resistance”).9,32–35 Therefore, recent 

research efforts have begun to investigate the effects of prior acute and/or chronic exercise on the 

traditional determinants of endurance performance and on the ability to repeatedly perform and 

recover from high-intensity efforts within a longer bout of submaximal exercise.9,36–41 

In the first study examining the effect of acute exercise on the maximal metabolic steady-

state, Clark et al. found that CP and work capacity above CP (W’) were reduced following two 

hours of heavy-intensity exercise by approximately 8% and 20%, respectively.37 In follow-up 

studies they confirmed the reductions in CP and W’ and showed that carbohydrate supplementation 

during the heavy-intensity bout attenuated this effect;36 however, the change in CP and W’ was 

not correlated with decreases in muscle glycogen.42 Similarly, in an analysis of race data, Leo et 

al. found that in under-23 year old (U23) cyclists, maximal mean power output (MMP) over five, 

10, and 30 seconds, as well as over one, two, five and 12 minutes decreased significantly after 

1,000 kJ accumulated work.41 Their 20-minute MMP dropped significantly after 1,500 kJ 
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accumulated work and 30-minute MMP after 2,500 kJ. Among professional riders in the same 

race, only 5- and 12-minute MMP decreased after 1,000 kJ, with MMP over all other durations not 

dropping until 2,000 or 3,000 kJ accumulated work.   

To investigate the effects of chronic workload accumulation over a season on MMP over 

10 seconds, and one, five, and 20 minutes, van Erp et al. analyzed training and race data from 26 

professional cyclists over eight seasons.38 They showed that 10-second MMP declined following 

30 kJ/kg body mass accumulated work in successful and less successful climbers and sprinters. 

However, 1-minute, 5-minute and 20-minute MMP declined after less accumulated work in 

unsuccessful climbers (10-20 kJ/kg) and sprinters (10-30 kJ/kg) when compared with successful 

climbers (40-50 kJ/kg) and sprinters (10-50 kJ/kg). This difference was greater among climbers, 

suggesting a heightened importance of durability among this rider type. Similarly, in a field-based 

study of professional cyclists, Rodríguez-Marroyo et al. found decreases in V̇O2max, power output 

and HR at V̇O2max, and power output at VT and RCP following participation in a three-week 

cycling grand tour (Vuelta a España) when compared to pre-competition values.43  

These studies demonstrate the importance of durability for endurance performance. 

Additional research is needed to better understand the effect of prior work on the traditional 

determinants and other markers of endurance performance. Additionally, studies should 

investigate how to improve durability in a range of sports and populations.  

1.3 Factors Affecting the Determinants of Endurance Performance 

1.3.1 Genetics 

While there is no current evidence of a common genetic profile specific to world class 

endurance athletes44, there is no doubt that there is a sizeable influence of genetics on human 

athletic performance and its determinants.45 Based on data from family and twin studies, 
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approximately 40-93% of the variation in baseline V̇O2max can be explained by genetics with a 

recent meta-analysis estimating heritability at approximately 72%.46–51 Additionally, at least 97 

genes have been identified that appear to predict the trainability of V̇O2max, i.e., the increase in 

V̇O2max in response to endurance training.52 Bouchard et al. were among the first to employ a 

family study to investigate the effect of genetics on the response of V̇O2max to a standardized 20-

week exercise training program; they discovered a panel of 21 single-nucleotide polymorphisms 

(SNPs) that accounted for approximately 47% of the variance in V̇O2max trainability.53 

Participants who carried at least 19 of the favorable alleles associated with these SNPs improved 

their V̇O2max significantly more (0.60 L/min) than those carrying less than 10 favorable alleles 

(0.22 L/min). While additional genetic markers for V̇O2max trainability have been found in more 

recent investigations, only 13 genetic variants have been reproduced by more than two studies.52 

Thus, additional research is needed to further elucidate the effect of genetics on V̇O2max 

trainability. 

Similar to V̇O2max and its trainability, there appears to be a genetic component 

determining RE. As described above, cycling gross efficiency26 and RE27 are positively correlated 

with the proportion of Type I fibers present in skeletal muscle. A study by Simoneau and Bouchard 

showed that approximately 45% of the variance in fiber type composition can be attributed to 

genetics.54 Gene variants associated with increased proportions of Type I muscle fibers include the 

following alleles: ACE I, ACTN3 577X, HIF1A Pro582, PPARA rs4253778 G, VEGFR2 472Gln.55 

In twin studies, the heritability estimates of oxygen consumption at submaximal intensities, i.e., 

RE, ranges from 3.5% to 67%;47,56 the wide range of heritability estimates can in part be attributed 

to methodological variation with some experimental conditions including exercise at intensities 

that might have elicited a significant anaerobic component of energy production. Nevertheless, 
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there appears to be a moderate to strong influence of genetics on RE, which needs to be further 

investigated. 

Mitochondrial content, an important correlate of fractional utilization capacity, is 

influenced by genetics as well.23 Curren et al. estimated the heritability of mitochondrial content 

to be approximately 33%.57 Another factor in the ability to maintain high percentages of V̇O2max 

during submaximal exercise, is capillary density in skeletal muscle. Capillary length density 

appears to be influenced by the ACE rs1799752 and TNC rs2104772 SNPs. A direct investigation 

of the heritability of fractional utilization capacity has not been performed.  

In general, there are several SNPs and polygenic profiles that appear to be beneficial for 

endurance exercise performance. In rodent studies, the heritability of endurance performance has 

been estimated around 39-50%.58,59 Studies investigating the effect of genetics on endurance 

performance in humans have generally looked at the over- or underrepresentation of certain 

genotypes in groups of highly endurance trained or elite endurance athletes compared with 

strength/power athletes and/or control groups from the general population. Ben-Zaken et al. found 

that the IGF-1R (rs1464430) AA genotype was significantly overrepresented among endurance 

athletes (49%) when compared with power athletes (33%), but not when compared with general 

population controls (46%).60 The A allele in this SNP is related to left ventricular (LV) 

hypertrophy, which is beneficial for endurance performance.61 Further, Guilherme et al. showed a 

decreased frequency of the FTO (rs9939609) AA genotype in long-distance athletes (9.5%) 

compared with middle distance athletes (14.6%) and controls (14.2%).62 The A allele in this SNP 

is related to increased fat mass and obesity, which would be detrimental to endurance performance 

in weight-dependent sports such as running, cycling, and triathlon.63–65 Another allele 

overrepresented among elite endurance athletes is ACE (rs4341) I. 66,67 The presence of this allele 
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has been linked to lower angiotensin-I converting enzyme (ACE) activity.68 ACE breaks down 

vasodilator kinins and upregulates the formation of the vasoconstrictor angiotensin II, thereby 

increasing vasoconstriction.69 If this occurs in the working muscle, it is detrimental to exercise 

performance; thus, the downregulation of ACE by the ACE I allele is proposed to be beneficial for 

endurance performance.  

While several studies, including the aforementioned, have compared allele and genotype 

frequencies between elite athlete cohorts and non-athlete controls, these studies only give a 

glimpse at possible genetic determinants of endurance performance. Few studies have directly 

compared endurance performance or markers of endurance performance/capacity between 

individuals with different genotypes. Falahati and Arazi found no association of the ACE I allele 

with V̇O2max among trained and untrained men.70 Jin et al. reported greater 20m shuttle-run 

distance, a marker of endurance performance, in individuals with the PPARGC1A (rs8192678) GG 

genotype compared with the other two genotypes.71 Presence of the G allele appears to be 

beneficial for lipid oxidation, providing a mechanism for improved endurance performance.72 

Additional studies comparing direct measures of endurance performance between individuals with 

different genotypes implicated in elite endurance athlete status are required to further elucidate the 

effects of these genes on actual performance. 

1.3.2 Nutrition 

The goal of nutrition interventions to improve endurance performance is to prolong the 

fatigue process at submaximal intensities, i.e., to increase an individual’s ability to maintain a high 

fractional utilization of V̇O2max for long periods of time, repeatedly throughout and event, or 

following chronic and/or acute prior heavy exercise. 9,73,74  Undoubtedly, the most studied and 

most important nutritional factor for endurance performance is carbohydrate availability to the 
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working muscle.75 While fat oxidation typically predominates at intensities below the LTP, 

carbohydrate oxidation from muscle glycogen and blood glucose prevails at intensities above the 

LTP;76,77 given the nature of most endurance sports events, the ability to resist fatigue at these 

higher intensities is the principal determinant of endurance performance. Muscle glycogen 

functions as the body’s most important fuel storage site to provide energy substrates at higher 

exercise intensities, and additionally fulfills regulatory roles, including the acute regulation of 

metabolic substrate use and catecholamine release, as well as the chronic adaptation to training.78 

In low muscle glycogen states, circulating catecholamines (epinephrine and norepinephrine) are 

elevated79, muscle protein breakdown is increased to facilitate amino acid release, and plasma free 

fatty acid concentration and whole-body fat metabolism are upregulated.80–82 Training in glycogen 

depleted states appears to increase the body’s ability to metabolize fat, specifically of muscle-

derived triacylglycerol.83 However, it remains unclear whether this improved fat oxidation 

capability translates to improved endurance performance.83,84 Crucially, acute glycogen depletion 

is one of the best-established causes for fatigue and diminished performance in endurance 

activities.85–88 

Glycogen depletion and hypoglycemia causes fatigue and affect performance in two 

general ways: 1) it causes fatigue associated with the central nervous system (CNS), so-called 

central fatigue and 2) it causes fatigue associated with alterations in metabolism and skeletal 

muscle contraction, so-called peripheral fatigue.75,89 The major central fatigue mechanism 

associated with low glycogen and blood glucose states is a decrease in central motor drive (CMD), 

i.e., a reduction in the neural activation signal sent to the exercising muscle which leads to a decline 

in force production and thus diminished performance.90 Three mechanisms have been suggested 

to play a role in the decreased CMD associated with reduced glycogen states during exercise: 1) 
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Group III and IV afferent nerve fibers in the locomotor muscles inhibit CMD in response to 

metabolic disturbances91–93, 2) a decrease in brain glycogen and blood glucose during prolonged 

endurance exercise reduces the CMD89,90,94, and 3) reduced blood glucose and muscle glycogen 

increase the perceived effort leading to a conscious down-regulation of power output or movement 

speed and thus decreased performance.95 The major peripheral fatigue mechanisms include 1) the 

inability to maintain the necessary rate of ATP synthesis at higher exercise intensities as muscle 

carbohydrate availability is reduced and ATP production from free fatty acids is too slow to match 

the demand of the working muscle96, and 2) the negative impact of glycogen depletion on the 

excitability of the muscle membrane and the release of calcium from the sarcoplasmic 

reticulum.75,97 

Researchers and athletes have employed a variety of acute and chronic nutritional strategies 

to maximize carbohydrate availability to the working muscle and brain during endurance 

exercise.73 Acute interventions include carbohydrate loading – increased carbohydrate 

consumption in the days leading up to an endurance event with or without prior glycogen depletion 

– and carbohydrate intake during the event.74,98 Following carbohydrate loading, muscle glycogen 

stores, which typically range from 80-120 mmol/kg of muscle wet weight (ww), can increase to 

above 200 mmol/kg ww.99,100 This in turn has been shown to improve performance in events lasting 

longer than 90 minutes by 2-3% compared with lowered or normal glycogen availability.101–103 

Ergogenic effects of carbohydrate consumption during an endurance event have been described 

for exercise bouts lasting more than 60 minutes.73,74 While some studies show reduced muscle 

glycogen use with carbohydrate intake during endurance exercise104, i.e., muscle glycogen sparing, 

this does not appear to be universally the case.105 However, there is strong evidence that acute 

carbohydrate intake does increase plasma glucose concentration and carbohydrate oxidation 
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during exercise106 with greater amounts of carbohydrate consumed leading increased plasma 

glucose concentrations and oxidation rates.105 Similarly, performance appears to improve in a 

dose-dependent manner.107 Recommendations for carbohydrate intake during exercise suggest 

intakes of up to 30 g/hr are appropriate for events lasting one to two hours, up to 60 g/hr for events 

lasting 2-3 hours, and up to 90 g/hr for events of longer duration.73 While 60 g/hr appears to be the 

upper limit for glucose absorption in the intestinal tract108, the inclusion of alternative carbohydrate 

sources, e.g., fructose, is necessary to successfully achieve these higher supplementation rates;109 

in fact, a recent study showed that intakes of 120 g/hr of combined glucose and fructose are 

tolerable.110 During shorter events lasting up to one hour, specifically when performed in low 

glycogen states, carbohydrate mouth rinse interventions, have been effective to improve exercise 

performance.111 

In contrast to the more traditional approach of maximizing carbohydrate intake and 

oxidation, endurance athletes and researchers have attempted to employed an opposing strategy: 

they minimize carbohydrate intake by following extremely low carbohydrate – ketogenic – diets 

or training in low-glycogen states to induce so-called fat adaptation.112–115 The proposed benefit of 

fat adaptation is an improved ability to oxidize fat as the main energy substrate at exercise 

intensities where carbohydrate oxidation typically predominates.115 This would in essence give an 

individual access to near limitless energy resources – the body can store more than 74,000 kcal in 

subcutaneous, visceral, and intramuscular fat – and would practically eliminate the negative effects 

of glycogen depletion on endurance performance.116 While studies have consistently shown 

increased fat oxidation in response to low-carbohydrate diets, the effect of these interventions on 

performance are less clear.113,117–124. It appears that in endurance events at intensities above 70% 
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of V̇O2max, potential benefits of increased fat oxidation are negated by impaired economy, thus 

leading to a failure to improve performance.119,120  

In addition to chronic low-carbohydrate diets, athletes and researchers have experimented 

with performing individual sessions in low-carbohydrate states to improve metabolic flexibility, 

i.e., the body’s capability to change energy substrate utilization based on needs and 

availability.125,126 Mitochondrial adaptations suggesting improved metabolic flexibility are 

greatest when pre-exercise muscle glycogen concentration is less than 300 mmol/kg dry weight 

(dw); however, pre-exercise muscle glycogen levels less than 200 mmol/kg dw might impair 

training intensity and thereby negate some of these beneficial adaptations.127 Thus, there appears 

to be a glycogen window in which to perform these low-carbohydrate training sessions, which 

should be employed sparingly to avoid low energy availability and impaired adaptations in the 

long-term.128 An additional strategy employed by athletes and researchers to increase fat oxidation 

and improve endurance performance is the ingestion of exogenous ketone ester supplements.129–

132 While exogenous ketone consumption increases intramuscular fat oxidation during exercise, 

even when adequate muscle glycogen is present, it is unclear whether this positively influences 

endurance performance.129,131  

Other supplements used commonly by endurance athletes include caffeine and nitrates.133 

Caffeine is a well-established ergogenic aid, which improves endurance performance, muscle 

strength, and power.134 Some studies suggest that a SNP in the CYP1A2 gene might moderate the 

ergogenic effect of caffeine on endurance performance.135,136 However, the effects presented in 

these studies are small and inconsistent.137 The mechanisms of caffeine erogenicity are poorly 

understood.138 Original investigations suggested an increase in the mobilization and oxidation of 

free fatty acids allowing the sparing of muscle glycogen; however, this hypothesis lacks sufficient 
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support.139 An alternative mechanism is the effect of caffeine on the central nervous system and 

its role as an adenosine-receptor antagonist in delaying central fatigue.140 Finally, caffeine has 

consistently been shown to increase catecholamine release, which could potentially have a 

beneficial effect on endurance performance.141–144  Dietary nitrates, often administered as beetroot 

juice, have been shown to increase the bioavailability of nitric oxide in the body, thus improving 

vasodilation and potentially the blood flow and oxygen delivery to working muscle.145 Early 

studies described improvements in exercise economy following three days of nitrate 

supplementation.146,147 While some studies demonstrate improved endurance performance 

following acute and chronic nitrate supplementation, others do not.145 Although these and other 

supplements appear to have beneficial effects on performance in certain situations, it seems clear 

that the biggest improvements in endurance performance can be made by manipulating dietary 

carbohydrate intake to optimize exercise metabolism; additional studies are needed to further 

elucidate the role of low-carbohydrate diets, acute low-carbohydrate training, and exogenous 

ketone supplementation.   

1.3.3 Training 

Adaptations to endurance or aerobic training include central and peripheral processes,148 

the main central adaptations are morphological changes to the heart, while peripheral adaptations 

comprise changes in the vasculature and skeletal muscles, including improvements in their cellular 

and molecular makeup.149–152 

1.3.3.1 Central Adaptations 

A major central adaptation to endurance training is cardiac remodeling, specifically an 

increase in the size of the heart muscle and its compliance.149 Endurance trained individuals 

consistently exhibit healthy LV hypertrophy, which includes greater LV chamber size, LV wall 
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thickness, and LV mass compared with untrained individuals.153–156 Additionally, Arbab-Zadeh et 

al. showed that previously sedentary individuals significantly increased their LV chamber size, 

wall thickness and mass in response to one year of progressively increasing volume and intensity 

of endurance training.149 Further, these individuals experienced an improvement in myocardial 

compliance, a measure of the heart’s ability to stretch and quickly accept incoming blood. This 

increase in compliance, along with an increase in plasma volume, allowed participants to raise 

their maximal SV from 98 mL to 115 mL. It has been shown that endurance training leads to faster 

LV filling,157–159 which can at least partially be attributed to this increase in compliance and a 

change in the pressure gradient between the left atrium (LA) and LV.160 In the study by Arbab-

Zadeh, the increase in SV led to an improvement in maximal Q̇ from 20 L/min to 22 L/min.149 As 

described above, the increase in Q̇ is the major reasons for improved V̇O2max following endurance 

training; indeed, participants in the study increased their V̇O2max from 40.3 mL/kg/min to 47.4 

mL/kg/min. 

1.3.3.2 Peripheral Adaptations 

Endurance training leads to several adaptations of the vascular system. It has been shown 

that endurance athletes’ arteries have a greater diameter and decreased wall thickness compared 

with sedentary individuals.161 This allows for increased blood flow to the working muscle and thus 

improved oxygen delivery. In addition to the diameter and wall-thickness of arteries, endurance 

trained individuals show an increase in the number and density of skeletal muscle capillaries, 

which again improves blood and oxygen delivery to the working muscle.162,163 This increase in 

capillary density is strongly correlated with improved exercise performance.20 Andersen and 

Henriksson showed a 20% increase in capillary density along with a 16% increase in V̇O2max 

following eight weeks of endurance training.162 
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The most important hematological adaptation to endurance training is increased total blood 

volume, which is almost entirely driven by increased plasma volume.164 Elite athletes can have 

blood volume of more than 50% larger than those of sedentary individuals; typical blood volumes 

for untrained individuals is approximately 5 L, whereas trained individuals can reach 6 L and elite 

athletes up to 8 L.165 Plasma volume expansion can occur within 24 hours of a single training 

session166 and typically plateaus after 10-14 days.164 While hematocrit initially falls due to the 

rapid plasma volume expansion, erythrocyte volume follows this increase within 30 days164, but 

hematocrit typically remains below pre-training levels and lower than that of untrained 

individuals.165 As discussed above, hemoglobin mass does not further increase based on sea-level 

training in normothermia, but altitude training and heat training can increase hemoglobin mass, 

and thus hematocrit, in athletes.167–169 Thus, the major hematological factor improving endurance 

performance due to training is increased blood volume, which leads to increased SV, and thus 

increased oxygen delivery to the blood based on an increased Q̇. This allows for an increase in 

VȮ2max, which is beneficial to endurance performance. Coyle et al.170 showed that 2-4 weeks of 

detraining in endurance trained men led to a 9% decrease in blood volume, which lead to a 12% 

decrease in SV resulting in a 6% decrease in V̇O2max; restoration of blood volume by infusing 

saline resulted in almost complete recovery of V̇O2max. 

Cellular and metabolic adaptations to endurance training include, among others, 

mitochondrial biogenesis, improved skeletal muscle buffering capacity, and mitochondrial enzyme 

activity.152,171,172 While the exact mechanisms of mitochondrial biogenesis are still debated, it 

appears clear that mitochondria cannot be synthesized de novo.173 Nevertheless, endurance training 

has consistently been shown to increase mitochondrial volume  density in skeletal muscle, 

specifically intermyofibrillar mitochondria.172 This increase in volume density is achieved by 
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increased mitochondrial cross sectional area and length.172 The increase in mitochondrial density 

has been shown to be an important factor in improved exercise performance;174 it improves muscle 

respiratory capacity and fat oxidation capability, which in turn improve fractional utilization and 

performance in prolonged efforts.171,172 This improvement in fractional utilization is represented 

by a right-shift of the lactate curve in incremental exercise tests showing the body’s ability to rely 

on OXPHOS at higher intensities. 175 

Endurance-trained muscle exhibits increased respiratory capacity, specifically the capacity 

to oxidize fatty acids, ketones, and pyruvate.171 One mechanism explaining this increase is the 

heightened activity of mitochondrial enzymes. Spina et al.176 showed that 7-10 days of endurance 

training increased the activities of beta-hydroxyacyl-CoA dehydrogenase, mitochondrial thiolase, 

and carnitine acetyltransferase by approximately 30% which coincided with an increase in 

V̇O2max of approximately 9% and a reduction in lactate at four different submaximal intensities. 

In another study, citrate synthase increased significantly following 12-weeks of endurance training 

in young and older men177. Wibom et al.178 reported a 40% increase in citrate synthase, a 78% 

increase in cytochrome-c oxidase, an 18% increase in succinate cytochrome c reductase, and a 

45% increase in glutamate dehydrogenase following six weeks of endurance training; these 

changes were concomitant with a 70% increase in the mitochondrial ATP production rate. Thus, 

increased mitochondrial enzyme activity leads to increased V̇O2max, increased fractional 

utilization, and improved ATP production during submaximal exercise. 

Human skeletal muscle contains three muscle fiber types: Type I (oxidative) fibers, Type 

IIa (oxidative-glycolytic) fibers, and Type IIx (glycolytic fibers), which are typified by their 

myosin heavy chain (MHC).179 Type I fibers, who possess the greatest oxidative potential, are 

beneficial for endurance performance; individuals with greater Type I fiber content display greater 
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gross efficiency26, running economy180, and improved oxygen uptake kinetics.181 All of these are 

mechanisms that can explain the positive link between greater Type I muscle fiber content and 

endurance performance.182 Endurance training has been shown to lead to a transformation of Type 

IIX fibers toward Type IIa fiber characteristics, which includes increased oxidative capacity, 

making them more like Type I fibers.183,184 While a transformation from Type II to Type I MHC 

in response to endurance exercise has not been experimentally demonstrated in humans, Schantz 

and Dhoot185 showed the co-existence of MHCI and MHCII proteins in single muscle fibers 

following a prolonged endurance task (800 km mountain skiing in 36 days); the authors called 

these fibers “intermediate fibers”. Additionally, the participants in the same study, reported no 

change in Type I fiber distribution, but a significant increase in intermediate fiber content 

following the exercise task; at the same time, Type IIa and Type IIx distribution decreased.186 This 

suggests that, while a complete transition of Type II to Type I fibers might not be induced by 

endurance training, Type II fibers will acquire some of the same properties as their Type I 

counterparts.  

1.3.3.3 The Influence of Training Parameters on Endurance Training Adaptations 

Endurance training parameters include the volume (distance or time), intensity (absolute 

or relative workload), and frequency (number of sessions over a given time) of training. The 

following section details the influence of these parameters on endurance performance. It is 

important to note that these factors are interconnected and in practice are difficult to manipulate in 

complete isolation; thus, the distribution (volume and frequency) of exercise at different intensities 

is discussed. 

When considered in isolation, increasing exercise volume progressively leads to greater 

adaptations in V̇O2max with proportionally increasing improvements in V̇O2max, maximal O2 
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pulse (a correlate of SV), and time to task failure with increasing exercise duration.187,188. Hickson 

et al. showed that reducing training duration while keeping frequency and intensity constant had 

negative effects on cycling time to task failure, but not on V̇O2max.189 More recently, some 

laboratories have begun investigating the minimal effective duration of exercise for improvements 

in V̇O2max with as little as ten minutes of exercise including three 20-second sprints – three times 

per week showing marked improvements in central and peripheral factors.190 Following the 

exercise intervention, participants increased their V̇O2max by 12% concomitant with an increase 

in citrate synthase and ß-hydroxy acyl CoA dehydrogenase activity and cytochrome oxidase 4 as 

well as glucose transporter type 4 (GLUT-4) protein content. When frequency and intensity are 

held constant, it appears that increasing duration will produce proportionally increasing 

adaptations in V̇O2max and submaximal exercise performance. 

When considering training frequency in isolation, it appears that increasing frequency leads 

to progressively greater adaptations up to six sessions per week.30,187,191 Pollock et al. showed that 

training 30-45 minutes at the same intensity two, three or four times a week elicited progressively 

larger improvements in V̇O2max.192 Similarly, training one, three, or five times per week for 30 

minutes at 85-95% of HRmax over the course of 20 weeks produced augmented adaptations in the 

higher frequency groups compared to the lower frequency groups.191 Wenger and Bell argued that 

the optimal frequency for all intensities of training is four times per week.187 

With the ever-increasing use and popularity of high-intensity interval training (HIIT) and 

sprint interval training (SIT), the effects of exercise intensity on endurance performance and 

physiological adaptations are an important topic in the prescription of endurance training.193 

Similar to volume and frequency, when intensity is studied in isolation it has been shown that 

increasing exercise intensity in the range from 50% to 100% V̇O2max leads to progressively 
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increasing adaptations in aerobic capacity.187 When holding frequency and duration steady, 

training at 50-70% of maximal oxygen uptake improves V̇O2max by approximately 4.5 

mL/kg/min, whereas training at 90-100% improves V̇O2max by approximately 7 ml/kg/min over 

the same duration of training. It appears that using supramaximal intensities, i.e., intensities above 

those eliciting V̇O2max, improve V̇O2max to a lesser degree (~5.5 mL/kg/min) compared with 

training close to or at V̇O2max.187,194  

When work is matched between moderate-intensity continuous training (MICT) and HIIT 

or SIT, the training with higher intensities (HIIT and SIT) produced greater training adaptations 

compared with lower intensities.151 When work is not matched between HIIT and MICT and SIT, 

HIIT and SIT have been shown to require less exercise volume to elicit similar changes to 

MICT.151 Interestingly, it does appear that MICT and HIIT lead to greater central adaptations when 

compared with SIT, whereas the latter produces more peripheral changes.195,196 In summary, 

exercise intensity is an important regulator of the adaptive response to endurance exercise. It 

appears that an intensity of at least 50% of V̇O2max is necessary to elicit adaptations in maximal 

aerobic capacity197,198 and that the greatest adaptations are in V̇O2max  are achieved with intensities 

of 90-100%  of maximal oxygen uptake.187 Additionally, it appears that HIIT and SIT elicit 

superior adaptations compared with lower intensity training when work is matched and can elicit 

similar adaptations to MICT even with reduced exercise volume.151  

Based on the above discussion about volume, intensity, and frequency it would be prudent 

to say that increasing and maximizing all three of these training parameters would lead to the 

greatest adaptations. Thus, more frequent, longer training sessions at higher intensities would 

appear to be the best training prescription based on purely looking at the variables in isolation. 

However, as discussed before, in practice these variables are interconnected and cannot be seen in 
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isolation.187 Additionally, maximizing all three parameters is impossible and inadvisable in 

practice: 1) time constraints limit athletes to a certain frequency and volume of training199, 2) 

overtraining and injuries can result from too much volume, too much intensity, and too little 

recovery, leading to injury and illness200,201, and 3) even if illness and injury can be avoided, too 

much or too frequent high-intensity training can lead to inadequate autonomic recovery, which 

could lead to blunted adaptations.202 Thus, it is critical to find the right balance in the manipulation 

of training variables to maximize performance and minimize the risk of overtraining and 

maladaptation. 

When prescribing training intensities, coaches and athletes often use training intensity 

zones based on physiological parameters from exercise testing (e.g., LT, LTP, MLSS, CP, FTP).203 

A variety of models have been proposed including 3-zone, 5-zone, 6-zone, and 7-zone models.203–

206 In a simplified 3-zone model, Zone 1 typically refers to exercise below LT or VT, Zone 2 

comprises intensities between LT/VT and LTP or MLSS, and Zone 3 includes intensities above 

MLSS; in a 5-zone model, Zones 1 & 3 are further divided into transitionary zones, which often 

don’t correspond to a directly measured physiological event.206 For the rest of this document, a 3-

zone model will be referenced for simplicity. 

Historically, training at the upper end of Zone 2, i.e., threshold training, was considered 

one of the most potent stimuli to improve endurance performance, specifically by improving 

fractional utilization.207 However, recent research has shown that this type of training makes up 

only a minimal amount of the overall training regimen of highly successful elite athletes.203 These 

studies showed that typical training distributions among elite athletes comprise approximately 80% 

low-intensity (Zone 1) training and 20% high-intensity (Zone 3) training in a variety of endurance 

sports including cross-country skiing208, rowing209,210, running211,212, orienteering213, and 
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triathlon214. In fact, Seiler coined the term “polarized training” to describe this training pattern.215 

Several training studies have confirmed improved adaptations and exercise performance following 

polarized training when compared with interventions relying more heavily on threshold 

training.216–220 Thus, it appears that polarized training, i.e., spending approximately 80% of 

training time in Zone 1 and 20% of training time in Zone 3 leads to improved adaptations and 

better direct indicators of endurance performance than threshold-focused training. Important 

considerations in the interpretation of the amount of training performed in each zone include the 

variable used to determine zones (HR, power, speed) and the strategy to quantify the training 

volume in each zone. The latter can be approached from a session-goal perspective, i.e., how many 

of the total sessions are targeted at high-intensity, medium-intensity, or low-intensity exercise, or 

from a time-in-zone perspective, i.e., how many minutes does an individual spend in each zone.221 

The aforementioned 80-20% distribution is more appropriate for the session-goal approach, 

whereas the percentage of high-intensity training in a time-in-zone approach can be much lower 

(e.g., 2-4% vs. ≥ 90% low-intensity training).203,212 However, there is active debate on whether 

TID in the original studies investigating this paradigm was mischaracterized and whether a 

polarized TID is indeed optimal for endurance athletes.222,223 

1.3.4 Environment 

Environmental factors, including altitude and temperature, and their influence on exercise 

performance. V̇O2max exhibits a linear decrease with increasing altitude due to the decrease in 

partial pressure of oxygen and the resulting decline in arterial hemoglobin oxygen saturation; 

specifically, V̇O2max decreases by approximately 6-11% per 1,000 m of altitude.116,224 The 

hypoxia experienced at altitude leads to a reduction in absolute power output at LT and LTP, but 

due to the concomitant decrease in V̇O2max, the relative exercise at which LT and LTP occur 
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remain the same 225. Thus, fractional utilization capacity does not change with acute altitude 

exposure. However, the absolute power output or running speed eliciting this fractional utilization 

decreases. In the laboratory setting, cycling gross efficiency and running economy at altitude 

appear to be similar to sea-level values.226,227 However, it could be argued that due to the decrease 

in air density at altitude, the resulting loss of aerodynamic drag, and the subsequent decrease in 

energy requirements to maintain the same exercise intensity, field-based gross efficiency and 

running economy are improved at altitude.228 This decrease in air density also leads to improved 

performances in sprint and power sports as well as shorter running distance at altitude.229,230 In 

endurance sports, however, the decreased arterial oxygen saturation leads to performance 

decrements that become larger the longer the distance of the event.230 Physiological adaptations to 

living and/or training in hypoxic conditions, mainly an increase in hemoglobin mass, have the 

potential to improve performance at altitude and at sea-level;231,232 however, this is outside of the 

scope of this document. 

Analogous to altitude, V̇O2max is decreased in hot conditions; this is most likely due to 

increased skin blood flow, which 1) reduces the portion of Q̇ perfusing the working muscle, and 

2) reduces venous return and subsequently cardiac output 233. This reduction in V̇O2max remains 

even after heat acclimation.233 The increase in skin blood flow has also been linked to decreased 

cycling gross efficiency high ambient temperatures.234 As with altitude, the relative intensity at LT 

and LTP remains the same in hot environments, but the absolute intensity is decreased.235 

Concomitantly, endurance performance is decreased in hot environments: hyperthermia, 

dehydration, and physiological and mental heat stress can reduce performance by approximately 

6-7%.236,237 Researchers and athletes have used a variety of strategies, including heat acclimation 

protocols, hydration protocols, and cooling protocols, to reduce the ergolytic effect of hot 
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environments on endurance performance.238,239 Additionally, heat training has been proposed as a 

means to improve exercise performance in normothermic environments.238 However, these 

approaches are outside of the scope of this document. 

1.4 Summary of Aims, Purpose, and Hypotheses 

The purpose of this dissertation was to examine the influence of genetics, nutrition, and 

training on endurance exercise performance. Studies include investigations of the effects of 

ACTN3 genotype, diet composition, and training parameters on running and cycling performance. 

Study 1 (Chapter 2) examined the association of ACTN3 genotype with self-reported one-

mile and 5-km running personal records (PRs) in 94 recreationally active men and women using a 

cross-sectional design. We hypothesized that those with the ACTN3 XX genotype would report 

faster running PRs compared with those exhibiting the RX and RR genotypes. 

Study 2 (Chapter 3) investigated the effects of diet composition (habitual vs. high-

carbohydrate vs. ketogenic diet) on cycling performance in a simulated 30-km TT in recreationally 

competitive cyclists and triathletes. This study employed a randomized cross-over design with 

two-week diet intervention periods. We hypothesized that the high-carbohydrate diet would 

significantly improve cycling performance when compared with the ketogenic diet. 

Study 3 (Chapter 4) analyzed raw training and racing data provided by 232 male and female 

Strava© and Golden Cheetah users to investigate the training intensity distribution among 

recreational cyclists and triathletes. Additionally, this study examined the effects of age, and 

training characteristics (volume, intensity, and intensity distribution) on cycling performance. We 

hypothesized that, when adjusting for age, performance may be predicted from greater total 

volume, greater average intensity, and greater training polarization.  
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1.5 Significance 

Endurance sports, including running, cycling, and triathlon, are popular among recreational 

athletes in the USA. Prior to the COVID-19 pandemic the number of race registrations in running 

and triathlon alone was estimated between 22 and 30 million annually.240 USA Cycling (USAC) 

members amassed over 300,000 racer days in 2019.241 According to the Outdoor Industry 

Association, Americans spend close to $14 billion per year on cycling gear and almost $83 billion 

on cycling-related travel.242 Competitive recreational cyclists spend on average 12.04 hours per 

week across 5.3 days for pleasure and to improve their performance.243 Runners have been shown 

to spend approximately $1,000 on the preparation for and participation in a single marathon. These 

recreational endurance athletes strive to perform their best in so-called age-group races and spend 

a significant amount of their time and disposable income to improve their performance. Thus, it is 

important to investigate the influence of genetics, nutrition, and training on performance in this 

population and to provide these athletes with the most accessible and actionable information to 

optimize their performance.  
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2.1 Abstract 

This investigation examined the effect of ACTN3 genotype on self-reported distance 

running personal records (PR). Out of ninety-four (n = 94) recreationally active men and women, 

eighty-two (f = 42, m = 40; age: 22.6 ± 4.5 years; BMI: 23.5 ± 3.4 kg/m2) reported one-mile 

running personal records (PRs), while fifty-seven (f = 33, m = 24; age: 23.4 ± 5.3 years; BMI: 22.9 

± 9.3 kg/m2) reported 5K running PRs. Subjects were grouped by presence (ACTN3+) or absence 

(ACTN3-) of α-actinin-3, as well as by individual genotype (RR, RX, XX). Among female 

participants, ACTN3- reported 64.5 seconds faster (p = .048) one-mile PRs compared with their 

ACTN3+ counterparts. No differences were found when comparing 5K PRs between genotypes. 

Our study confirms a reportedly greater prevalence of XX benefits for endurance performance in 

females when compared with males, but fails to strongly link ACTN3 genotype to endurance 

performance. Practitioners should continue to be cautious when using genetic information for 

talent identification and sport selection. 

  
 
 
Key words: endurance performance; exercise genetics; alpha-actinin-3; R577X  
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2.2 Introduction 

Alpha-actinins serve as Z-disk proteins that form a crosslink between actin filaments of 

adjacent sarcomeres.1 In addition to their structural function, α-actinins are involved in signaling 

and metabolic pathways, where their roles are determined based on the isoform presen.t2 One 

isoform of particular interest in humans, α-actinin-3, is encoded by the ACTN3 gene and only 

present in fast-twitch type II fibers.3 A polymorphism in the ACTN3 gene results in a cytosine to 

thymine transition that converts arginine (R) to a stop-codon (X) and is referred to as R577X.4 

Homozygosity for the 577X allele (XX genotype) results in complete deficiency of α-actinin-3 and 

compensatory upregulation of α-actinin-2, whereas heterozygosity (RX genotype) and 

homozygosity for the 577R allele (RR genotype) provide for the production of α-actinin-3.5–7 RR 

homozygotes have been reported to possess a greater number and greater relative Type IIx fiber 

surface area than XX homozygotes.8  

Recent research efforts have demonstrated relationships between different ACTN3 

genotype frequencies in human populations and geographic location as well as athletic 

performance.9–15 An association between ACTN3 and athletic performance was first established in 

2003 when Yang et al. demonstrated that allele frequencies differed significantly between elite 

sprint and endurance athletes.16 The authors reported fewer XX genotypes among elite sprint 

athletes with zero prevalence in those sprinters competing at the Olympic level. The XX genotype 

was overrepresented in female endurance athletes when compared to controls and sprint/power 

athletes. Similarly, Ben-Zaken et al. reported a significant difference in R577X polymorphism 

frequencies between long-distance runners and sprinters.11 Among short distance runners, RR and 

RX genotypes were expressed by 83.3% of subjects, whereas only 64.6% of the long-distance 
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runners expressed at least one R allele. Conversely, 35.4% of the long-distance runners expressed 

the XX genotype, which was significantly greater than the 16.7% frequency in sprinters.  

Human association studies have consistently shown an underrepresentation of the XX 

genotype among sprint/power athletes,17–20 whereas an overrepresentation of the X allele among 

endurance athletes has been found in some,11,16,17,21 but not all cohorts.22–24 A number of 

researchers have studied ACTN3 genotype and allele frequencies in different types of sports11,25,26 

and competition levels.17,27 However, fewer studies have investigated the association between 

ACTN3 genotype and quantitative measures of sprint/power14,28 and endurance performance in 

humans.24,29 Papadimitriou et al. found no associations between ACTN3 polymorphisms and 

distance running times in Caucasian endurance athletes.29 Conversely, in the animal model, 

MacArthur et al. showed greater intrinsic exercise capacity in ACTN3 knockout (KO) mice 

genetically modified to be devoid of α-actinin-3.7 KO mice on average ran 33% further than Wild 

Type (WT) mice, whose Type IIx muscle fibers contained α-actinin-3, in a treadmill test to 

exhaustion. Further, Hogarth et al. reported a dose-dependent effect of ACTN3 genotype on 

endurance capacity in mice.5 Heterogeneous (HET) mice, generated by crossing KO with WT, 

showed intermediate endurance running capacity compared to KO and WT mice in accordance 

with intermediate expression of α-actinin-2 and α-actinin-3 on the muscle level. Based on the 

paucity of similar endurance performance-related studies in humans and the equivocal findings in 

human association studies, further investigation of the effect of ACTN3 genotype on human 

endurance performance is warranted. 

Thus, the primary purpose of this study was to investigate the effect of ACTN3 on self-

reported distance running records (PR) in a diverse sample of young, recreationally active men 



49 

 
 

and women. We hypothesized that participants with the XX genotype would report faster distance 

running PRs than those with the RX and RR genotypes. 

2.3 Methods 

2.3.1 Experimental Approach to the Problem 

To test our hypothesis that the XX genotype would report faster distance running times 

than those with the RX and RR genotypes, we asked subjects to self-report PRs for a variety of 

distances. Further, we determined their ACTN3 genotype from buccal swabs, and compared mean 

running types based on genotypes. Subjects were recruited from Kinesiology courses, activity 

classes, local running races, and running groups. Data were collected either in the laboratory or in 

the field. Prior to inclusion in the study, subjects completed an informed consent form and a 

medical history questionnaire including details on current physical activity level to determine 

activity status. Those qualifying as recreationally active provided a buccal swab for later 

genotyping as well as a running PR questionnaire detailing personal records for distances ranging 

from the 100m dash to the marathon. PRs were accepted from races and personal training. Due to 

the scope of our study and the availability of data, independent validation of self-reported running 

PRs was not performed. Sufficient data for statistical analysis were reported only for the one-mile 

and 5K distances. DNA extraction and ACTN3 genotyping were performed in batches and are 

detailed in the following sections. Subjects were informed of their ACTN3 genotype following 

analysis. 

2.3.2 Subjects 

This study was approved by the Institutional Review Board for use in human subjects. All 

subjects were informed of the benefits and risks of the study before signing an approved informed 

consent form. Ninety-four recreationally active men and women between the ages of 18 and 35 
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years participated in the study. To be classified as recreationally active, subjects must have 

engaged in a minimum of three 40-60-minute exercise sessions per week as verified by a 

questionnaire. Subjects reported participation in a wide range of moderate to high intensity 

physical activity including recreational resistance training, running, and a variety of individual and 

team sports. Eighty-two subjects (African American: n = 2; Asian: n= 1; Caucasian: n = 67; 

Hispanic: n = 11; Native American: n = 1) reported one-mile running personal records (PR), while 

fifty-seven (Asian: n= 1; Caucasian: n = 47; Hispanic: n = 9) reported 5K running PRs. Subjects 

characteristics are presented in Table 2.1. For analysis, subjects were grouped by presence 

(ACTN3+) or absence (ACTN3-) of the ACTN3 R allele to test the effect of α-actinin-3 on running 

times, as well as by individual genotype (RR, RX, XX).  

2.3.3 Procedures 

2.3.3.1 Buccal Swabs 

Subjects refrained from eating, drinking, and nicotine use for 30 minutes prior to buccal 

swab collection. Researchers inserted a sterile flocked collection device (Puritan® PurFlock® 

Ultra, Puritan Diagnostics, Guilford, ME) into subjects’ mouths and performed rigorous ten-

second swabs of the inside of each cheek. Swabs were stored at 3-5°C for subsequent DNA 

isolation in batches.  
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Table 2.1 Subject Characteristics 

Subjects reporting One-Mile Personal Records 

 n Age (yr) Height (cm) Weight (kg) BMI (kg/m2) 

All 82 (f=42, m=40) 22.6±4.5 172.8±11.2 70.6±14.3 23.5±3.4 

ACTN3+a 63 (f=29, m=34) 22.9±4.8 172.8±12.1 71.6±15.1 23.8±3.5 

ACTN3-b 19 (f=13, m=6) 21.5±3.4 172.1±8.0 67.3±10.5 22.4±2.4 

RR 12 (f=6, m=6) 22.3±3.3 171.5±11.5 68.1±11.0 23.0±2.11 

RX 51 (f=23, m=28) 23.0±5.1 173.1±12.3 72.4±15.9 23.9±3.8 

XX 19 (f=13, m =6) 21.5±3.4 172.1±8.0 67.3±10.5 22.4±2.4 

Subjects reporting 5K Personal Records 

 n Age (yr) Height (cm) Weight (kg) BMI (kg/m2) 

All 57 (f=33, m=24) 23.4±5.3 171.5±10.7 67.7±13.0 22.9±3.3 

ACTN3+a 42 (f=22, m=20) 24.2±5.6 171.9±11.5 68.8±13.9 23.1±3.6 

ACTN3-b 15 (f=11, m=4) 21.3±3.6 170.2±8.0 64.4±9.8 22.1±2.2 

RR 7 (f=5, m=2) 22.3±4.2 168.4±10.2 61.9±10.5 21.7±2.5 

RX 35 (f=17, m=18) 24.5±5.9 172.6±11.8 70.2±14.2 23.4±2.5 

XX 15 (f=11, m=4) 21.3±3.6 170.2±8.0 64.4±9.8 22.1±2.2 

aR allele (α-actinin-3) present (RR+RX)  
bR allele (α-actinin-3) not present (XX) 

 

2.3.3.2 DNA Isolation  

DNA isolation was performed using a kit based (QIAamp® DNA Mini Kit, QIAGEN, 

Germany) extraction procedure. Samples were processed in batches with each batch including a 

negative control sample. The tip of each swab was transferred to a 2.0 mL microtube, and 400 µL 

Phosphate Buffered Saline (AMRESCO, Solon, OH) was added. Subsequently, 20 µL Proteinase 

K Solution (QIAGEN) and 400 µL lysis buffer (Buffer AL, QIAGEN) were added to each tube, 
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which were then incubated at 56°C for 10 minutes. The microtubes were then centrifuged briefly 

to remove drops from inside the lid. Thereafter, 400 µL absolute ethanol (MilliporeSigma, 

Billerica, MA) was added to all tubes.  

 Approximately 700 µL of the resulting mixture was applied to a QIAamp Mini spin 

column, which was subsequently centrifuged at 6000 x g for one minute. The resulting filtrate was 

discarded and the spin column was placed in a new collection tube. This step was repeated with 

the remaining mixture resulting in centrifugation of a total of approximately 1,100 µL per sample. 

Following the addition of 500 µL wash buffer 1 (Buffer AW1, QIAGEN) and centrifugation at 

6000 x g for one minute, 500 µL wash buffer 2 (Buffer AW2, QIAGEN) was added to the spin 

column, which was subsequently centrifuged at 20,000 x g for three minutes. Centrifugation at 

20,000 x g was repeated for an additional minute with a new collection tube to eliminate the change 

of Buffer AW2 carryover. For the final step, the QIAamp Mini spin column was placed in a clean 

1.5 mL microcentrifuge tube. After addition of 150 µL of elution buffer (Buffer AE, QIAGEN), 

samples were incubated at room temperature for one minute and subsequently centrifuged at 6000 

x g for one minute. Eluate containing the DNA was stored at -20°C in the 1.5 mL microcentrifuge 

tube until ACTN3 genotyping. 

2.3.3.3 ACTN3 Genotyping 

ACTN3 genotype was determined using a four-primer polymerase chain reaction (PCR) 

protocol and gel electrophoresis as previously described by Schadock et al.30 Briefly, PCR was 

performed using external primers hACTN3f (5’-CGCCCTTCAACAACTGGCTGGA-3’) and 

hACTN3r (5’-GATGAGCCCGAGACAGGCAAGG-3’) at 0.5 µM, and internal primers 

hACTN3Tif (5’-CAACACTGCCCGAGGCTGACTG-3’) and hACTN3Cir (5’-

CATGATGGCACCTCGCTCTCGG-3’) at 0.125 and 0.25 µM respectively. All primers were 
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manufactured by Integrated DNA Technologies, Inc. (Coralville, IA). Ten microliters of primer 

mix, 20 µL of 2x GoTaq® Green Matermix (Promega, Madison, WI), and 10 µL of DNA sample 

were combined in PCR tubes and subjected to the following PCR conditions on a Bio-Rad T100TM 

Thermal Cycler (Bio-Rad, Hercules, CA): 95°C for 2 minutes, 35 cycles at 95°C for 10 seconds, 

68°C for 10 seconds, and 72°C for 45 seconds, with a final step of 72°C for 2 minutes. PCR product 

was analyzed in a 2% agarose gel stained with 1:10,000 SYBR® Safe DNA gel stain (Invitrogen, 

Carlsbad, CA) at 120V for 45 minutes, and compared to a 100-bp ladder (Invitrogen). 

2.3.3.4 Statistical analysis 

For statistical analysis, subjects were grouped by sex, presence (ACTN3+) or absence 

(ACTN3-) of the ACTN3 R allele, as well as by individual genotype (RR, RX, XX). Group means 

among individual genotype were compared using a one-way analysis of variance (ANOVA) with 

Tukey’s post-hoc test to elucidate significant differences between genotype groups. Independent-

samples t-tests were employed to compare ACTN3+ and ACTN3-. The alpha level was set at 0.05. 

Statistical tests were performed using SPSS® Statistics Version 24 (IBM, Armonk, North Castle, 

NY) and R Statistics Version 3.5.1 with RStudio Version 1.1.456.31,32 Effect sizes were calculated 

using spreadsheets provided by Lakens, while 95% Confidence Intervals for the effect sizes were 

calculated using the MBESS package in R.33,34 To address the suggested sex-difference in the 

effect of ACTN3 polymorphisms on endurance performance, we performed additional analyses of 

genotype effects within male and female cohorts.16 Further, to address possible effects of training 

status, sub-group analyses were performed on a more homogenous, faster group of subjects 

reporting one-mile times <420 seconds. Similar to Papadimitriou et al. sub-groups with very small 

sample sizes (n < 6) were not analyzed.29 Thus, we performed further analyses on one-mile PRs 
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among fast subjects, and within male and female cohorts, but were unable to do the same for 5K 

PRs. 

Along with all t-tests, two one-sided tests (TOST) were performed to test for statistical 

equivalence of the means as described by Lakens using the TOSTER package in R.35 Briefly, the 

TOST procedure specifies lower and upper bounds, “such that results falling within this range are 

deemed equivalent to the absence of an effect that is worthwhile to examine”.35 The alpha-level 

for TOST was set at 0.05, and a significant p-value in this test was considered indicative of 

statistical equivalence35. The lower and upper bounds for smallest effect size of interest (SESOI) 

in race PRs was calculated based on publically available results of age-group road race USA 

national championships in the respective distances. Based on the public availability of results, 

finishing times in the one-mile national championships from 2014-2017 and finishing times in the 

5K national championships from 2007-2017 were included in the analysis. To calculate threshold 

values, time differences between the top three finishers in every year were averaged. When 

comparing all subjects by genotype, time differences among male and female top three finishers 

were included, whereas time differences between males only and females only were averaged to 

obtain threshold values for within-sex analysis respectively.  

2.4 Results 

Self-reported one-mile PRs are shown in Table 2.2. No statistically significant differences 

[F(2,79) = 0.075, p = 0.928, η2
p = 0.002 (95% CI of η2

p: 0.000 – 0.026)] were found between 

individual genotypes when comparing PRs among all subjects. Similarly, no difference [t(80) = 

0.386, p = 0.701, Cohen’s d = 0.102 (95%CI for Cohen’s d: -0.413 – 0.614] was found between 

the ACTN3- and ACTN3+ groups. In a subset of faster subjects, who reported one-mile PRs <420 

seconds, no differences [F(2,48) = 0.790, p = 0.460, η2
p = 0.032 (0.000 – 0.043)] were found 
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between individual genotypes. Further, the independent t-test revealed no difference [t(49) = 

1.257, p = 0.215, Cohen’s d = 0.452 (-0.256 – 1.138)] between ACTN3- and ACTN3+. 

In the within-sex sub analysis (Table 2.3), ANOVA revealed no significant difference 

between individual genotypes [F(2,37) = 0.357, p = 0.702, η2
p = 0.019 (0.000 – 0.129)] among 

males. Similarly, the independent t-test revealed no differences [t(38) = -0.852, p = 0.400, Cohen’s 

d = 0.387 (-1.247 – 0.497)] between ACTN3- and ACTN3+ 

Among female subjects, those in the ACTN3- group reported significantly faster [t(40) = 

2.041, p = 0.048, Cohen’s d = 0.698 (0.006 – 1.348)] one-mile PRs (-64.5, ±53.0 seconds) than 

those in the ACTN3+ group. ANOVA showed no significant differences [F(2,39) = 2.120, p = 

0.134, η2
p = 0.098 (0.000 – 0.264)] based on individual genotypes among females. 

TOST equivalence testing of reported one-mile PRs revealed that none of the detected 

effects were equivalent to zero. Figure 2.1 shows all TOST results regarding one-mile PRs. 
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Table 2.2. Self-Reported One-Mile Personal Records - All  

All subjects  

 n male female timea (sec) 95% CI M (sec) 95% CI Mdiff (sec) p 

ACTN3+c 63 34 29 418.7±99.1 393.7 – 443.6 
-40.9 – 60.5 .701 

ACTN3-d 19 6 13 408.8±91.0 365.0 – 452.7 

RR 12 6 6 417.4±83.4 364.4 – 470.4 
-77.7 – 94.9 .969 

XX 19 6 13 408.8±91.0 365.0 – 452.7 

RR 12 6 6 417.4±83.4 364.4 – 470.4 
-76.6 – 73.5 .999 

RX 51 28 23 419.0±103.2 389.9 – 448.0 

RX 51 28 23 419.0±103.2 389.9 – 448.0 
-52.8 – 73.0 .922 

XX 19 6 13 408.8±91.0 365.0 – 452.7 

Fast subjects (<420 sec)  

 
n male female timea (sec) 95% CI M (sec) 95% CI Mdiff (sec) p 

ACTN3+b 41 31 10 362.6±42.3 349.2 – 375.9 
-11.7 – 50.8 .215 

ACTN3-c 10 4 6 343.0±51.4 306.2 – 379.8 

RR 7 6 1 359.9±52.4 311.4 – 408.3 
-36.3 – 70.0 .725 

XX 10 4 6 343.0±51.4 306.2 – 379.8 

RR 7 6 1 359.9±52.4 311.4 – 408.3 
-48.0 – 41.5 .983 

RX 34 25 9 363.1±40.9 348.9 – 377.4 

RX 34 25 9 363.1±40.9 348.9 – 377.4 
-18.7 – 58.9 .427 

XX 10 4 6 343.0±51.4 306.2 – 379.8 

aMean time ± standard deviation 

bR allele (α-actinin-3) present (RR+RX)  
cR allele (α-actinin-3) not present (XX) 
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Table 2.3. Self-Reported One-Mile Personal Records By Sex 
 
Male subjects  

 
n timea (sec) 95% CI M (sec) 95% CI Mdiff (sec) p 

ACTN3+c 34 365.3±57.3 345.3 – 385.3 
-89.2 – 36.4 .400 

ACTN3-d 6 391.7±124.8 260.7 – 522.6 

RR 6 367.5±52.9 312.0 – 423.0 
-77.7 – 94.9 .826 

XX 6 391.7±124.8 260.7 – 522.6 

RR 6 367.5±52.9 312.0 – 423.0 
-76.7 – 73.5 .996 

RX 28 364.8±59.1 341.9 – 387.7 

RX 28 364.8±59.1 341.9 – 387.7 
-52.8 – 73.0 .826 

XX 6 391.7±124.8 260.7 – 522.6 

Female subjects  

 n timea (sec) 95% CI M (sec) 95% CI Mdiff (sec) p 

ACTN3+b 29 481.3±101.8 442.6 – 520.0 
0.6 – 128.4 .048 

ACTN3-c 13 416.8±75.6 371.1 – 462.5 

RR 6 467.4±80.8 382.5 – 552.1 
-64.5 – 165.6 .538 

XX 13 416.8±75.6 371.1 – 462.5 

RR 6 467.4±80.8 382.5 – 552.1 
-124.4 – 89.3 .915 

RX 23 484.9±107.8 438.3 – 531.5 

RX 23 484.9±107.8 438.3 – 531.5 
-12.7 – 149.0 .113 

XX 13 416.8±75.6 371.1 – 462.5 

aMean time ± standard deviation (sec) 

bR allele (α-actinin-3) present (RR+RX)  
cR allele (α-actinin-3) not present (XX) 
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No statistically significant differences were found when comparing self-reported 5K 

running PRs between groups in the ANOVA [F(2,54) = 0.645, p = 0.529, η2
p = 0.023 (0.000 – 

0.081)] or the t-test [t(55) = 0.261, p = 0.795, Cohen’s d = 0.080 (-0.512 – 0.668)]. All 5K running 

PRs among all subjects are shown in Table 2.4.  

  

Figure 2.1 One-Mile PR Equivalence Tests. Mean difference in self-reported one-mile Personal 
Records (black squares), 90% confidence intervals (CIs; thick horizontal lines), and 95% CIs (thin 
horizontal lines) with equivalence bounds (dark dashed vertical lines) comparing ACTN3+ and ACTN3- 
in (A) all subjects reporting one-mile times, (B) fast subjects reporting one-mile times <420 seconds, 
(C) male subjects reporting one-mile times, and (D) female subjects reporting one-mile times. If a 
NHST interval does not cross zero, the test is statistically significant. If the TOST interval lies within 
its equivalence bounds the effect is considered statistically equivalent to zero. 
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Table 2.4. Self-Reported 5K Personal Records - All 

All subjects  

 
n male female timea (sec) 95% CI M (sec) 95% CI Mdiff (sec) p 

ACTN3+b 42 20 22 1421.5±327.1 1319.5 – 1523.4 
-180.3 – 234.2 .795 

ACTN3-c 15 4 11 1394.5±388.7 1179.2 – 1609.7 

RR 7 2 5 1290.6±292.6 1019.6 – 1561.5 
-492.0 – 284.2 .787 

XX 15 4 11 1394.5±388.7 1179.2 – 1609.7 

RR 7 2 5 1290.6±292.6 1019.6 – 1561.5 
-508.1 – 194.0 .515 

RX 35 18 17 1447.6±331.1 1333.9 – 1561.4 

RX 35 18 17 1447.6±331.1 1333.9 – 1561.4 
-208.5 – 314.8 .871 

XX 15 4 11 1394.5±388.7 1179.2 – 1609.7 

aMean time ± standard deviation 

bR allele (α-actinin-3) present (RR+RX)  
cR allele (α-actinin-3) not present (XX) 

 

While no statistically significant differences were found in reported 5K PRs when 

comparing ACTN3+ and ACTN3-, TOST revealed that the observed effect was not statistically 

equivalent to zero (Figure 2.2). 
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2.5 Discussion 

Our results show that ACTN3 genotype may influence self-reported one-mile running times 

in recreationally active women, with those subjects devoid of α-actinin-3 reporting significantly 

faster one-mile PRs than those with α-actinin-3 present. Similar genotype effects were not present 

among male subjects. While Papadimitriou et al. reported no effect of ACTN3 genotype on 

personal best times for distances from 1,500m to the marathon among male and female Caucasian 

endurance athletes, the present study is the first to directly assess the relationship between ACTN3 

Figure 2.2. 5-km PR Equivalence Test. Mean difference in self-reported 5K Personal Records (black 
squares), 90% confidence intervals (CIs; thick horizontal lines), and 95% CIs (thin horizontal lines) with 
equivalence bounds (dark dashed vertical lines) comparing ACTN3+ and ACTN3- in all subjects 
reporting 5K times. If a NHST interval does not cross zero, the test is statistically significant. If the 
TOST interval lies within its equivalence bounds the effect is considered statistically equivalent to zero. 
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genotype and distance running PRs in a racially diverse, recreationally active sample.29 Saunders 

et al. reported no association of ACTN3 genotype with Ironman triathlon performance in Caucasian 

male triathletes.24 However, the authors did not directly analyze genotypic effects on individual 

race times, but rather divided their subjects into fast, middle of the field, and slow triathletes and 

examined genotype frequency within those groups. Further, they did not investigate the effects of 

ACTN3 genotype in female triathletes. 

Our results are partially in agreement with observations in rodents that complete deficiency 

of α-actinin-3 is associated with increased endurance exercise capacity.5,7 Further, Hogarth et al. 

reported a dose-dependent effect of ACTN3 genotype on endurance exercise capacity, such that 

mice who were heterozygous for the R577X polymorphism showed intermediate endurance 

running capacity compared to KO and WT mice in accordance with intermediate expression of α-

actinin-2 and α-actinin-3 on the muscle level.5 Our data did not confirm a dose-dependent effect 

of ACTN3 polymorphisms on endurance exercise performance in humans. This is potentially due 

to inter-species variations and the exercise task at hand. Hogarth et al. employed a time-to-

exhaustion protocol with increasing treadmill speed and compared total distance run between mice 

with differing genotypes.5 Conversely, the present study analyzed self-reported running PRs, a 

time-to completion task. Bertuzzi et al. reported that total energy production explained 84.1% of 

the shared variance in time-to-exhaustion at velocity corresponding to V̇O2max in recreational 

long-distance runners.36 In rodents, α-actinin-3 deficiency results in structural and metabolic 

changes in fast twitch fibers, such that Type IIx fibers of knockout (KO) mice experience a shift 

toward the metabolic properties of slow twitch fibers, as evidenced by increased activity of the 

mitochondrial enzymes citrate synthase, succinate dehydrogenase, and cytochrome c oxidase.7,37,38 

Additionally, KO mice display increased activity of the glycolytic enzymes hexokinase and 
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glyceraldehyde-6-phosphate, but decreased activity of the anaerobic metabolism enzyme lactate 

dehydrogenase. These phenotypic differences alter energy production processes and thus might 

provide an explanation for the dose-dependent effect reported by Hogarth et al., particularly 

considering the intermediate muscle characteristics found in ACTN3 heterozygotes. Conversely, 

in a heterogeneous sample of recreationally active subjects similar to the one in the present study, 

maximal oxygen uptake (V̇O2max) has been shown to predict approximately 72% of 5K running 

performance men and 64% in women.39 Baseline V̇O2max and V̇O2max trainability are strongly 

influenced by genetic variation, with as many as 97 genes implicated in trainability.40 Thus, 

differences in V̇O2max may have masked a dose-dependent relationship in our sample. 

Similar to prior research, our results demonstrate an effect of ACTN3 genotype on 

endurance phenotype in female subjects, but not in male subjects.16,41 While prior investigations 

have reported this relationship between ACTN3 genotypes and endurance performance in elite 

female athletes, our study established a similar finding in recreationally active individuals.16,41,42  

We have shown that the α-actinin-3 deficiency is associated with endurance running 

performance as assessed by self-reported one-mile PRs in female runners. One limitation of our 

investigation is the nature of our performance data. While no scientific data are available on the 

validity of self-reported running times, an investigation of the validity of self-reported training 

duration in recreationally active adults showed that 24% of subjects overestimated while 17% of 

subjects underestimated time spent training in their sport.43 Further, differences in course profiles, 

environment, and motivational factors influencing self-reported PRs could not be accounted for. 

Due to the scope of our study and the availability of data, independent validation of self-reported 

running PRs was impossible. Future research should attempt to collect prospective performance 

data or attempt to independently validate reported times. Further, the heterogeneity of our sample 
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might have introduced additional variables, such as V̇O2max phenotype and training status, which 

could have influenced our results.  

In conclusion, our results suggest that the ACTN3 XX genotype, i.e. the absence of α-

actinin-3, might be beneficial for one-mile running performance in female runners. Further, none 

of the observed effects comparing ACTN3+ and ACTN3- were statistically equivalent, warranting 

additional investigation of the influence of α-actinin-3 deficiency on endurance performance. 

Future research should examine this relationship in a larger, racially diverse, but athletically more 

homogeneous sample, such as recreational runners or a diverse sample of athletes, to further 

elucidate the role of genetic polymorphisms on endurance performance. 

2.5.1 Practical Applications 

Our study failed to strongly link ACTN3 genotype with human endurance performance. 

The current scientific consensus among sport and exercise genetics researchers is that genetic tests 

are not a satisfactory tool for talent identification or individualized training prescription, 

specifically when employed as Direct-to-Consumer testing without adequate genetic counselling.44 

While knowledge in the field of exercise genetics and genomics is continuously evolving, our 

current understanding of the association between genetics and performance-related phenotypes is 

insufficient to predict individual responses. Thus, practitioners should continue to be cautious 

when using genetic information for talent identification and sport selection.   
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3.1 Abstract 

Endurance athletes frequently employ nutritional strategies to enhance performance. While 

professional organizations recommend high carbohydrate (HC) diets to maximize performance, 

many athletes, and researchers have recently shown renewed interest in the ketogenic diet (KD) in 

hopes to promote “fat adaptation”, which would allow athletes to make use of the essentially 

unlimited energy resources from stored body fat. This would circumvent one fatigue mechanism, 

the depletion of muscle glycogen stores, that has been considered central to performance outcomes 

in endurance events. The present study investigated the effects of participants’ habitual diet (HD), 

HC, and KD on endurance performance in a 30-km simulated cycling time trial (TT), physiological 

responses during the TT, and muscle session fuel percentile (SFP) before and after the TT using 

ultrasonic imaging. Due to the COVID-19 pandemic, data collection ceased after only six 

recreational cyclists and triathletes (f = 4, m = 6; age: 37.2 ± 12.2; V̇O2max: 46.8 ± 6.8 ml/kg/min; 

weekly cycling distance: 225.3 ± 64.2 km). Due to the small sample size, we do not report 

inferential statistics for our primary outcome measure, cycling performance. Participants 

completed the KD at the lowest power output. Oxygen consumption (V̇O2), heart rate (HR), and 

perceived exertion (RPE) during the TT were similar in all conditions. FATox rates were highest 

in the KD condition and lowest in the HC condition. SFP was lower during KD compared with 

HD and lower following the TT compared with fasted resting values across all conditions. We 

discuss methodological considerations into the use of exercise equipment, nutritional 

interventions, and statistical analysis strategies for study designs like the present. Further research 

is needed to assess the impact of HC and KD on TT performance in this population. 

ClinicalTrials.gov Identifier: NCT04097171; OSF preregistration: https://osf.io/ujx6e/  

https://osf.io/ujx6e/
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3.2 Introduction 

Nutritional interventions remain at the forefront of strategies employed by athletes to 

enhance their performance.1 Commonly approaches among endurance athletes include a high daily 

intake of dietary carbohydrate (CHO; 6-10 g/kg/day) and carbohydrate loading (10-12 g/kg/day) 

before an event, since low muscle glycogen is a well-established cause of fatigue.2,3 Contrary to 

this traditionally favored strategy, endurance athletes and researchers have recently began 

expressing increased interest in a low carbohydrate, high-fat ketogenic diet (KD) again, for the 

third time since the 1980s.4 When following a KD, athletes typically limit their CHO intake to <50 

g or 5-10% of their total daily energy intake.5 The proposed benefit of this diet approach is “fat 

adaptation”, enabling the oxidation of fat as the main energy substrate at exercise intensities (e.g. 

>70% of  maximal oxygen consumption [V̇O2max]) where the oxidation of CHO would typically 

predominate.6–8 This would essentially create unlimited energy resources, as the body can store 

more than 74,000 kcal in subcutaneous, visceral, and intramuscular fat.9 Despite its recent 

resurgence in popularity, the KD’s restrictive nature counters the current dietary recommendations 

of several professional organizations, which state that low CHO availability before exercise is a 

significant component of diminished exercise capacity and performance.1,10,11   

Two factors influencing the effect of low CHO diets (LCDs) on endurance performance 

appear to be the length of adaptation and the duration and intensity of the event. Short-term LCDs 

of one to four days lead to impaired glycogen storage, which can cause substantial decreases in 

exercise performance.12,13 However, even with as little as five days of implementing LCDs, 

increased fat oxidation (FATox) rates have been reported.14–16 While this increase in FATox is a 

consistent finding among most studies investigating the effect of LCDs in endurance athletes, the 

results regarding exercise performance are less clear.6,17–24 
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Recent studies comparing KD to habitual (HD) or mixed control diets have shown 

decreases25 or no differences26 in time to exhaustion (TTE) following prolonged diet adherence. 

However, early studies employing a direct comparison of KD and high carbohydrate diet (HC) and 

their effects on prolonged endurance exercise performance have produced ambiguous 

results.7,12,27,28 Lambert et al. reported improved TTE at moderate cycling intensity (50% of peak 

power output [PPO]) following two weeks of KD compared with HC, but not at high intensity (85 

% of PPO).7 Similarly, Burke et al. reported no difference in 7 kJ·kg-1 TT performance 

immediately following 120 min of steady state cycling at 70% of V̇O2max in eight well-trained 

male cyclists and triathletes, who adhered to a five-day LCD (2.4 g/kg/day CHO; 4 g/kg/day fat) 

with one-day CHO restoration compared with an isoenergetic HC (9.6 g/kg/day CHO; 0.7 g/kg/day 

fat).18 Prins et al. compared the effects of a 42-day KD and HC on 5 km TT performance at four 

separate points of each diet in seven male recreational distance runners and found that running 

time was significantly faster during HC  (60–65% CHO; 20% fat) when compared with KD (< 50 

g/day CHO; 75-80% fat) on day four of each diet, but not at any other point during the diets.23 This 

again indicates that exercise performance might be maintained at higher intensities. However, in a 

more recent study, Burke et al. compared the effect of a 3-week HC (8.6 g/kg/day CHO; 1.2 

g/kg/day fat), a periodized CHO diet (8.3 g/kg/day CHO; 1.2 g/kg/day fat), and a KD (< 50 g/day 

CHO; 4.7 g/kg/day fat) on 10 km race performance in 21 elite male race walkers; they found that 

race time improved significantly in the HC and periodized CHO groups, but remained unchanged 

in the KD group.19 A recent replication study produced similar results, with HC and periodized 

CHO leading to performance improvements and KD leading to a performance decrement.20 

Additionally, Burke et al. have elucidated a potential mechanism for performance impairment 

following a KD at higher intensities; specifically, they showed that exercise economy is reduced 

following a KD compared to HC and periodized CHO diets.16,19,20 
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While a number of studies have investigated the effect of KD and HC on exercise 

performance, results remain conflicting, in part due to small sample sizes, limited participation of 

female athletes across a wide age range, heterogenous interventions, and testing protocols.7,16,18–

20,22,23 Our current study employed a performance assessment (TT) that was representative of the 

type of races in which our population competes. This approach maximized the external validity of 

our study while still allowing measurements in a controlled laboratory setting. Finally, to our 

knowledge, no studies have used a randomized crossover design that directly compares the effects 

of HD, KD, and HC on prolonged endurance performance.  

We intended to address the gaps in the literature with the present study and aimed to collect 

data from 30 male and female cyclists across a wide age range (18-70 years old). We hypothesized 

that the HC would lead to improved performance (faster TT completion) compared with the KD 

and HD. However, due to restrictions on data collection caused by the COVID-19 pandemic, the 

results presented in the present manuscript should be considered as insights from a pilot study 

only, i.e., we were unable to address the issues of small sample sizes in this area of research. Since 

the originally estimated sample size to detect a meaningful difference in performance (see Power 

Analysis section) was not achieved, primary outcomes are presented as means and standard 

deviations only; reflections on potential inferential statistical analysis techniques and other 

methodological considerations regarding performance measurement, muscle glycogen estimation 

in response to the diets using high-frequency ultrasound, and participant adherence to the 

interventions are presented.29  
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3.3 Method 

3.3.1 Study Preregistration 

This study was preregistered at Open Science Framework (https://osf.io/ujx6e/) and at 

ClinicalTrials.gov (NCT04097171). 

3.3.2 Experimental Design 

The study employed crossover design, where each participant served as their own control. 

Participants adhered to 14 days each of a KD and an HC in a counter-balanced randomized order. 

Diet order was randomized employing block randomization in the blockrand package in R. 30,31 

The syntax for the block randomization can be found at https://osf.io/ujx6e/. Participant eligibility, 

anthropometric measurements, and V̇O2max were determined during two screening visits. During 

the third visit, all participants completed the experimental procedures following their HD and 

ingesting a test meal with macronutrient contents similar to a typical American diet.32 During the 

KD and HC trials, participants underwent the same procedures, but consumed a test meal 

corresponding to their diet condition. A diagram showing the experimental design is presented in 

Figure 3.1. The study was approved by the TCU Institutional Review Board (IRB). All procedures 

were performed according to the Declaration of Helsinki principles for research involving human 

participants.  

 

https://osf.io/ujx6e/
https://osf.io/ujx6e/
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Figure 3.1. Study Design. ET = Experimental Trial; KD = ketogenic diet (<5-10% of total energy 
intake from carbohydrates); HC= high carbohydrate diet (65-75% of total energy intake from 
carbohydrates); V̇O2max = maximal oxygen consumption 

3.3.3 Participants 

Endurance-trained recreational cyclists and triathletes were recruited from the local cycling 

and triathlon community using flyers, social media, and word of mouth. A total of 46 individuals 

were assessed for eligibility, 19 of which were unable to begin the study due to COVID-19 

restrictions on in-person research. A further six participants started the study, but were unable to 

finish the entire protocol due to these restrictions. Thus, six participants (m = 2, f =4) completed 

the study. The study was unable to achieve the originally estimated sample size of 30 participants 

due to data collection restrictions caused by the COVID-19 pandemic. Figure 3.2 presents a 

CONSORT diagram for the present study 

Participants were considered endurance trained if they self-reported ≥ 100 km/wk of 

cycling for the past year and achieved a V̇O2max above the 80th percentile for their sex and age 

group according to guidelines put forth by the American College of Sports Medicine with a 5% 

adjustment for comparing cycle ergometry values to the treadmill derived ACSM norms. 33,34 
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Figure 3.2. CONSORT Diagram. TT = time trial 

 

Participants included one male in Performance Level (PL) 2 and one male in PL 1 as 

described by De Pauw et al.35 Further, our study included three female participants in PL 3 and 

one in PL 1 according to criteria established by Decroix et al.36  We used relative V̇O2max as the 

primary criterion for categorization of our participants.35,36 However, it is important to note that 

all participants achieved at least PL 3 based on weekly mileage and cycling experience. Further, 

the male participant classified as PL 2 would have achieved PL 4 or PL 5 based on absolute or 

relative PPO respectively. Participant characteristics are shown in Table 3.1 and have in part been 

previously reported elsewhere.37 
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Table 3.1. Participants Characteristics at Screening. 

 Total (n=6) Male (n=2) Female (n=4) 

 Mean ± SD Mean ± SD Mean ± SD 

Age (y) 37.2 ± 12.2 41.5 ± 20.5 35.0 ± 9.5 

Height (cm) 172.3 ± 10.0 183.5 ± 1.0 166.8 ± 5.0 

Body mass (kg) 68.5 ± 17.5 89.1 ± 7.1 58.2 ± 8.3 

BMI (kg/m2) 22.7 ± 3.4 26.5 ± 2.3 20.9 ± 2.0 

Body fat (%) 21.3 ± 4.6 21.1 ± 7.2 21.4 ± 4.2 

Fat-free mass (kg) 53.8 ± 13.2 70.1 ± 0.8 45.6 ± 5.0 

Fat mass (kg) 14.7 ± 5.9 19.07 ± 7.9 12.6 ± 4.2 

V̇O2max (mL/kg/min) 46.8 ± 6.8 47.2 ± 6.7 46.6 ± 7.9 

V̇O2max (L/min) 3.2 ± 0.9 4.2 ± 0.5 2.7 ± 0.2 

PPO (W) 295.5 ± 73.1 372.5 ± 74.2 257.0 ± 33.7 

PPO (W/kg) 4.4 ± 0.7 4.2 ± 1.2 4.5 ± 0.6 

Cycling experience (years) 6.0 ± 4.3 6.5 ± 4.9 5.8 ± 4.8 

Cycling frequency (days/wk) 4.5 ± 1.0 4.5 ± 0.7 4.5 ± 1.3 

Cycling distance (km/wk) 225.3 ± 64.2 217.0 ± 33.9 229.5 ± 80.0 

RMR (kcals/d) 1617.3 ± 314.7 1999.5 ± 68.6 1426.3 ± 132.0 

SD = standard deviation; BMI = body mass index; V̇O2max = maximal oxygen consumption; 
PPO = peak power output; RMR = resting metabolic rate 

 

Exclusion criteria included the self-reported use of medications or supplements to lose 

weight, following a ketogenic (<10% or less of total energy intake from carbohydrates), a high 
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carbohydrate diet (>65% of total energy intake from carbohydrate), or weight loss diet. Further, 

nicotine use or heavy alcohol consumption (>14 drinks/week for males; >7 drinks/week for 

females) were considered reasons for exclusion. Potential participants were also excluded if they 

self-reported any food allergies to ingredients used in our test meals. Known cardiovascular 

disease was cause for exclusion unless participation was approved by the participant’s cardiologist. 

Self-reported presence of diabetes, stroke, anemia, eating disorders, uncontrolled hypertension, or 

pulmonary, liver, kidney, and untreated thyroid disease, or orthopedic, arthritis, or musculoskeletal 

problems that would have prevented exercise excluded prospective participants from enrolling in 

the study. Potential participants were also excluded if they had undergone surgery that had lasting 

effects on swallowing or digestion. 

3.3.4 Power Analysis 

We performed a simulation-based power analysis using the Superpower package in R 31,38. 

Based on unpublished data collected in our lab in a representative sample, we expected the TT to 

take approximately 60 ± 6 min. The within-subjects correlation between repeated time trials in our 

pilot work was 0.98; high within-subjects correlations (r = 0.89) have been shown in the existing 

literature.18 To employ a conservative approach, we elected to use the average of the within-

subjects correlation in our pilot work and in Burke et al., resulting in r = 0.93 for our power 

analysis.18 We analyzed finishing times from the past four years (2015-2018) of the Texas State 

Time Trial Championships to establish a practically meaningful effect size. In male and female 

athletes of age groups up to 55+ years old, the average finishing time of the top 10 riders was 61 

± 6 min. On average, an improvement of 1.5 min would have resulted in a rider moving up by one 

place in the final standings. Therefore, we decided on a meaningful difference of 90 seconds for 

our power analysis. All finishing times used in our analysis can be found at https://osf.io/ujx6e/. 

https://osf.io/ujx6e/
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At an alpha level of 0.05, our power analysis revealed that 30 participants would have yielded 90% 

power for the omnibus linear model for time to completion (TTC) of the 30-km TT. The syntax 

for the power analysis can be found at https://osf.io/ujx6e/. As discussed, we were unable to reach 

our desired sample size due to COVID-19 restrictions on in-person research. Therefore, we do not 

present any inferential statistics for our primary outcome measure. 

3.3.5 Screening 

3.3.5.1 Visit 1 

Following a 12-hour overnight fast, participants reported the laboratory for Visit 1, which 

included completing informed consent and demographic, behavioral, and health questionnaires. 

Additionally, participants underwent anthropometric measurements (height, body mass, waist, and 

hip circumference) and blood pressure (BP) measurements. Further, we assessed participants’ 

body composition using air displacement plethysmography (ADP) with measured thoracic lung 

volume (BOD POD, COSMED USA Inc., Concord, CA). Following body composition and 

anthropometric measurements, we assessed participants’ resting metabolic rate (RMR) via indirect 

calorimetry using the ParvoMedics TrueOne® 2400 metabolic cart (ParvoMedics, Sandy, UT, 

USA) with a ventilated hood system. BP measurements were performed in triplicate, using an 

automated blood pressure monitor (Omron M6 Comfort IT, Omron, Milton Keyes, UK) as 

described by the American College of Cardiology/American Heart Association Task Force.39 

3.3.5.2 Visit 2 

At Visit 2, participants performed an incremental exercise test to task failure to determine 

V̇O2max using a CompuTrainer® ergometer (RacerMate Inc., Seattle, WA). Participants were 

instructed to refrain from any exercise in the 24 hours leading up to V̇O2max testing and to only 

perform light or moderate exercise 24-48 hours before testing.  

https://osf.io/ujx6e/
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3.3.6 Experimental Trials 

Participants reported to the laboratory following a 12-hour overnight fast. Additionally, 

they performed only light to moderate exercise 24-48 hours prior to testing and refrained from all 

exercise in the 24 hours leading up to the experimental trials (ET). Upon arrival, participants 

underwent measurements of body mass, BP, and capillary beta-hydroxybutyrate (BHB) 

concentration, and an ultrasonic assessment of the right and left rectus femoris (RF). Following 

resting measures, participants consumed a liquid test meal approximately 180 min prior to the start 

of the TT. They were allowed 10 min to consume the test meal in its entirety; time to consume the 

meal was standardized between trials based on the time taken for consumption of the meal during 

the initial trial. Following 180 min of supine rest and postprandial measures described elsewhere, 

participants underwent RF ultrasound assessment and provided capillary samples for BHB 

measurement.37 Then, they completed a 30-km simulated cycling TT. A diagram showing all 

measures performed during each experimental trial is presented in Figure 3.3. 

  

Figure 3.3. Experimental Trial Procedures. RPE = Rating of Perceived Exertion; BHB = beta 
hydroxybutyrate. 
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3.3.7 Dietary Interventions, Compliance, and Physical Activity 

Dietary interventions, compliance measures, and experimental controls regarding physical 

activity are described in detail elsewhere.37 Briefly, participants completed 3-day dietary records 

to quantify their HD before ET 1. Thereafter, they followed a KD (<10% CHO, 75-85% FAT, 15% 

PRO) and HC (>65% CHO, <20% FAT, 15% PRO) in randomized order. We considered 

participants to be compliant with the diet if they met CHO macronutrient percentages on at least 

80% of days. Compliance with the diets was assessed by a registered dietitian (RD) via daily diet 

logging and daily check-ins using mobile applications (WhatsApp, WhatsApp Inc., Mountain 

View, CA; NutritIO, Bucharest, Romania). Further, participants provided capillary BHB samples 

at each ET and seven days into each diet, as well as daily images of urinary ketone body test strips 

(VALI, CA) to test for ketosis, i.e., urinary BHB concentration ≥ 0.5 mmol/L.40 We instructed 

participants to attempt to maintain body mass throughout the study and considered weight 

maintenance as a body mass loss or gain of no more than 5%. 

During experimental trials, participants consumed liquid test meals containing 60% of the 

participants’ measured RMR (kcals/day). Test meal compositions corresponded to a standard 

American Diet for HD (31.4% FAT, 53.4% CHO, 15.2% PRO) and to the respective dietary 

interventions following HC (15.7% FAT, 69.1% CHO, 15.2% PRO) and KD (75.1% FAT, 9.5% 

CHO, 15.4% PRO); test meal volumes and caloric content were the same across conditions. Test 

meals were consumed in the same amount of time in each condition. Participants consumed 

standardized amounts of water during the postprandial period and were provided with and 

instructed to ingest the same volume of water during each TT.  

We instructed participants to keep their training levels stable throughout the study and 

monitored physical activity using self-reported written training logs including distance covered, 
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time spent, and rating of perceived exertion for the session (RPE; 1-10). We calculated session 

RPE (sRPE) by multiplying the indicated RPE by the time elapsed during the session. 

3.3.8 Measures 

3.3.8.1 Exercise Equipment 

To ensure familiarity with the exercise equipment and to avoid learning effects across 

trials, participants completed all testing on their personal bicycles mounted to a CompuTrainer® 

cycling ergometer (RacerMate Inc., Seattle, WA), which has previously been shown to be reliable 

in TT tasks similar to the present study.41 The CompuTrainer® was calibrated according to 

manufacturer’s recommendations, and tire pressure was standardized for each trial at 100 psi. 

Participants were asked to remove devices from their bicycles or deactivate any devices that could 

give them feedback on their exercise performance, such as power meters and cycle computers. The 

only data displayed to participants during the TT were distance and gradient of the road. 

3.3.8.2 V̇O2max Testing 

For the 24 hours leading up to testing, participants were asked to refrain from all exercise. 

For the initial incremental maximal exercise test, participants warmed up for 5 min at a self-

selected intensity. Thereafter, participants began the incremental test at a load of 50-100 watts (W). 

Exercise intensity was increased by 25 W per minute until task failure. Oxygen uptake (V̇O2) was 

continuously monitored using a TrueOne 2400 metabolic cart (Parvo Medics, Sandy, UT, USA) 

and heart rate (HR) was collected throughout the test using a Polar H7 HR monitor (Polar Inc., 

Lake Success, NY). V̇O2max was defined as the highest 30-second V̇O2 value obtained during the 

test. To ensure validity of the V̇O2max measurement, participants performed a validation bout at 

110% of their peak power output (PPO) achieved in the initial test following at least 15 min rest 

as described by Poole & Jones.42 PPO was calculated as described by Hawley & Noakes43: 
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𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + � 𝑡𝑡
60

 × 25�, 

where Pfinal is the highest work rate achieved and t is the time completed in the final stage.  

Following a two-minute warmup at 100 W, participants performed a steady work rate test that 

achieved exhaustion within three to six min. If the greatest V̇O2 measured during this validation 

test did not exceed the V̇O2max measured during the incremental test, considering a possible ~3% 

measurement error based on the equipment used, the achievement of a V̇O2 plateau was accepted. 

When the V̇O2 achieved during validation exceeded that measured during the incremental test, a 

new incremental test was performed on a separate day. 

3.3.8.3 Performance Assessment 

Participants completed a simulated 30-km time trial (TT) 180 min following ingestion of 

the test meal. With their personal bicycle mounted to the CompuTrainer® and tire pressures 

standardized at 100 psi, participants performed a 10-minute warm up followed by calibration of 

the press-on force (POF) of the load generator per manufacturer’s guidelines. Participants then 

completed the 30-km TT on a virtual course in the RacerMate One™ software (RacerMate Inc., 

Seattle, WA). A copy of the course file can be found at https://osf.io/ujx6e/. Participants were 

instructed to complete the TT as quickly as possible and were verbally encouraged throughout the 

trial. Participants’ HR was monitored continuously using a Polar H7 HR sensor and chest strap 

(Polar Electro Oy, Kempele, Finland). Respiratory gas measurements and ratings of perceived 

exertion (RPE) on a 6-20 Borg Scale were collected at 3 km and every 6 km thereafter.  

3.3.8.4 Respiratory Gas Analysis 

Respiratory gas measurements were collected using an open circuit automated gas analysis 

system (TrueOne2400, Parvo Medics, Sandy, UT). Participants breathed through a two-way valve 

https://osf.io/ujx6e/
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(Hans Rudolph, Shawnee, KS) attached to a 7450 Series Silicone V2TM Oro-Nasal Mask (Hans 

Rudolph) for three min at each collection time point. Substrate oxidation was calculated using the 

following equations, which assume a non-protein RER44: 

CHO oxidation (g/min) = 4.585 x V̇CO2 - 3.226 x V̇O2 

Fat oxidation (g/min) = 1.695 x V̇O2 - 1.701 x V̇CO2 

3.3.8.5 Muscle Ultrasound 

Session fuel percentile (SFP) was determined using ultrasonic assessment of the right and 

left rectus femoris (RF). SFP provides an estimate of the muscle content of glycogen and other 

constituents based on the mean pixel intensity of an ultrasound image. Ultrasonic imaging was 

performed with a diagnostic high-resolution GE LOGIQ-e (GE Healthcare, Milwaukee, WI) using 

a 9L transducer at 8 Hz. Images from both RF were taken in triplicate. Ultrasound images were 

uploaded via DICOM to a secure cloud-based web application (MuscleSound Inc, Denver, CO), 

which analyzes the echogenicity of the ultrasound image as an estimate of the content of muscle 

glycogen and other constituents. This method has been shown to correlate highly with glycogen 

content measured by muscle biopsy.29,45 However, some studies have questioned the validity and 

utility of this technique.46,47 In the present study, we investigated whether the MuscleSound® 

system was able to detect assumed changes in muscle glycogen content resulting from dietary 

interventions and a 30-km TT. Following recommendations in personal communications with the 

company, we used the SFP score, which was implemented after publication of the MuscleSound® 

position stand on the application of the system.48  
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3.3.8.6 Resting Metabolic Rate 

RMR was measured by indirect calorimetry using the TrueOne® 2400 (ParvoMedics, 

Sandy, UT, USA) indirect calorimeter with a ventilated hood system following a 12-hour overnight 

fast from food, supplements, and medication and a 24-hour abstinence from exercise. The first ten 

min of the 30 min measurement period were used to allow the participants to achieve resting status; 

the final 15 min were used for analysis.  

3.3.8.7 Air Displacement Plethysmography 

Participants entered the BOD POD (COSMED USA Inc., Concord, CA) wearing a bathing 

suit or cycling kit with all hair collected into a swim cap. Thoracic lung volume were measured 

during the test using the BOD POD system. 

3.3.9 Data Analysis 

3.3.9.1 Time to Completion and Average Power Output 

As described above, the study was powered based on a TTC analysis of finishing times at 

the Texas State Time Trial Championships. Thus, we deemed TTC for the present TT our primary 

outcome measure. However, following the completion of three participants, we identified an error 

in our protocol that caused assigned rider weights (RW) in the RacerMate One™ software to be 

incorrect for some participants/conditions. The software calculates the speed the avatar achieves 

on the virtual course using RW, bike weight, road gradient, and measured power output. Thus, 

several finishing times were incorrect. Therefore, we present the average power outputs during the 

TT as our measure of endurance performance below. Further, we discuss considerations regarding 

the calculations that produce speed output from power input in the RacerMate One™ software in 

the Discussion section. As detailed above, since we did not achieve the desired statistical power, 
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we only present means and standard deviations for these outcome measures; inferential statistics 

are not presented. 

3.3.10 Statistical Analysis 

All analyses were performed in the R statistical environment.31 One participant with 

missing data for one TT (tire failure at 26 km) was removed from the analysis of average power 

output. All analysis scripts and data used in this manuscript can be found at https://osf.io/ujx6e/. 

3.3.10.1 Exploratory Analyses 

Missing data for exploratory analyses (e.g., SFP) were imputed using the MICE package 

in R 49 using the PAN method created by Schafer and Yucel.49,50 Exploratory variables were 

analyzed using a linear mixed-effects model with a Holm-Bonferroni post hoc test using the lme4 

and emmeans packages in R.51,52 Fixed effects for these models include diet (HD, KD, HC) and 

TT time points (3km, 9km, 15km, 21km, 27km). Participant intercept was treated as a random 

effect. While prior research would have allowed the generation of directional hypotheses regarding 

RER, substrate oxidation, and RPE, we treated these variables as exploratory, since we did not 

power the study to these variables. Alpha level was set at 0.05 for all exploratory analyses. 

3.3.10.2 Control Variables 

Dietary intake, body mass, physical activity, environmental conditions during the TT, and 

capillary BHB were treated as control variables. Potential mean differences in body mass by diet 

condition, dietary intake, and capillary BHB were analyzed using linear mixed-effects models as 

explained above. Differences in environmental conditions (humidity and fluid intake), were 

analyzed using standard linear models. We did not perform statistical analysis of lab temperature, 

since the temperature was 22.0 degrees during all but four trials, where the temperature was 21.0 

https://osf.io/ujx6e/
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degrees. Potential mean differences in physical activity (total distance and sRPE) between diet 

conditions were assessed using paired t-tests. 

3.3.10.3 Assumption Checks 

Visual inspection of residual plots confirmed that normality and homoscedasticity 

assumptions were met for all analyses. 

3.4 Results 

3.4.1 Cycling Performance 

3.4.1.1 Average Power Output 

Five participants completed all three TT (m = 1, f = 4). One additional participant 

completed the TT in the HD and HC conditions but had to abort the trial in the KD condition due 

to a tire failure at 26 km; he completed all other measures in the KD condition. Average power 

output was greatest in the HC condition (199.7 ± 92.2 W), followed by HD (188.0 ± 80.6 W) and 

KD (172.0 ± 93.2 W). A raincloud plot of average power outputs is presented in Figure 3.4.  

3.4.2 Physiological Responses during the TT 

3.4.2.1 Oxygen Consumption 

V̇O2 during the TT was similar in all conditions across all time points. During the HD and 

HC condition, participants relative V̇O2 was 29.9 ± 7.1 ml/kg/min (63.8 ± 10.0% V̇O2max) and 

29.9 ± 7.1 ml/kg/min (63.6 ± 6.9 % V̇O2max) respectively. In the KD condition, participants cycled 

at 58.6 ± 15.4 % of their V̇O2max (27.8 ± 7.1 ml/kg/min). There were no main effects for 

condition, F(2, 69) = 1.853, p = 0.165, η2
p = 0.05, or time, F(4, 69) = 0.995, p = 0.416, η2

p = 0.05, 

and no time x condition interaction F(8, 69) = 0.556, p = 0.810, η2
p = 0.06. 
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Figure 3.4. Average Power Output During the Time Trial. n = 5; HD = habitual diet; HC = 
high carbohydrate diet; KD = ketogenic diet. 

 

3.4.2.2 Heart Rate 

There was no main effect for condition, F(2, 69) = 0.387, p = 0.680, η2
p = 0.01, and no 

time by condition interaction, F(8, 69) = 0.270, p = 0.974, η2
p = 0.03, for HR during the TT. 

Participants’ HR was 163 ± 17 beats/min, 161 ± 22 beats/min, and 162 ± 21 during HD, KD, and 

HC respectively. Mean HR rose throughout all trials (3km: 159 ± 17 beats/min; 27km: 167 ± 23 

beats/min), but this increase was not statistically significant, F(4, 69) = 2.439, p = 0.055, η2
p = 

0.12. 
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3.4.2.3 Substrate Oxidation 

There were main effects for condition (F(2, 69) = 118.178, p < 0.001, η2
p = 0.77) and time 

(F(4, 69) = 6.855, p < 0.001, η2p = 0.28) for CHOox, but not time x condition interaction (F(8, 69) 

= 1.177, p = 0.326, η2
p = 0.12). During KD, participants oxidized significantly less CHO compared 

with HD (Mean Difference [MD] = -1.11 g/min; 95% CI [95CI] = -1.37, -0.86; t(69) = -10.856; p 

< 0.001) and HC (MD = -1.53 g/min; 95CI = -1.78, -1.28; t(69) = -14.9; p < 0.001). Additionally, 

CHOox was significantly greater in the HC condition compared with HD (MD = 0.42 g/min; 95CI 

= 0.06, 1.58; t(69) = 3.41; p < 0.001). Across all condition, CHOox decreased significantly 

following the 3km measurement (1.87 ± 0.75 g/min) with the lowest average CHOox measured at 

21km (1.54 ± 0.76. g/min). 

FATox opposed the pattern of CHOox: it was greatest in KD (0.62 ± 0.11 g/min), followed 

by HD (0.32 ± 0.11 g/min), and HC (0.14 ± 0.11 g/min), F(2, 69)  = 69.101, p < 0.001, η2
p = 0.74. 

Averaged across conditions, FATox was lowest at 3km (0.26 ± .12 g/min) and highest at 15km 

(0.41 ± 0.12 g/min); a main effect for time was observed, F(4, 69)  = 3.629, p = 0.010, η2
p = 0.17. 

There was no time x condition interaction for FATox, F(8, 69)  = 0.445, p = 0.890, η2
p = 0.05. 

Substrate oxidation during the TT is presented in Figure 3.5. 
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Figure 3.5. Substrate Oxidation During the Time Trial. n = 5; A = Carbohydrate oxidation 
(CHOox); B = Fat oxidation (FATox). HD = habitual diet; HC = high carbohydrate diet; KD = 
ketogenic diet. 
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3.4.2.4 Perceived Exertion 

RPE was similar across all three conditions, F(2, 69) = 2.244, p = 0.114, η2
p = 0.06; 

participants reported RPEs of 14.5 ± 1.2 for HD, 14.9 ± 0.8 for KD, and 15.0 ± 1.1 for HC. 

Perceived exertion significantly increased throughout the trial from 13.1 ± 1.2 at 3km to 16.3 ± 

1.0 at 27km (time main effect: F(4, 69) = 23.655 p < 0.001, η2
p = 0.58). RPE throughout the TT is 

shown in Figure 3.6. 

 

 

Figure 3.6. Rating of Perceived Exertion During the Time Trial. n = 6; HD = habitual diet; HC 
= high carbohydrate diet; KD = ketogenic diet. Data are presented as estimated marginal means ± 
SD. 
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3.4.2.5 Muscle Ultrasound 

Figure 7 shows estimated mean differences in SFP by condition and time following 

100 imputations of missing data using the MICE package with the PAN method, as described 

above. Pooled estimates across the 100 imputations were compatible with a lower SFP 

following two weeks of KD compared with HD, MD = -10.0, 95CI [-21.0, 0.6], p = 0.063. 

Similarly, pooled estimates were compatible with lower SFP following the TT compared with 

baseline measures, MD = -8.8, 95CI [-19.0, 1.3], p = .0085. SFP was similar between HD and 

HC, as well as between baseline and PRE-TT measures. There appeared to be no interactions 

between condition and time. 

 

Figure 3.7. Estimated Mean Difference in Session Fuel Percentile. n = 6; based on 100 impu-
tations of missing data. Error bars represent 95% Confidence Intervals. HD = habitual diet; HC = 
high carbohydrate diet; KD = ketogenic diet. BASE = fasted baseline measure; PRE-TT = 180 min 
following the test meal, immediately prior to the TT; POST-TT = immediately following the TT. 
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3.4.3 Control Variables 

Means and standard deviations for all control variables are reported in Table 3.2 and have 

been in part reported elsewhere.37 

Table 3.2. Control Variables for the Three Diet Conditions.  

 HD KD HC 

Total Energy Intake (kcal) 2140 ± 555 2447 ± 509 2418 ± 652 

Carbohydrate (% total energy) 45.8 ± 6.9 8.7 ± 2.9 63.3 ± 8.8 

Fat (% total energy) 38.2 ± 7.8 64.1 ± 5.4 20.8 ± 7.6 

Protein (% total energy) 16.5 ± 4.2 26.0 ± 2.9 14.4 ± 3.2 

Body Mass (kg)  68.7 ± 17.5 66.4 ± 16.8 68.6 ± 17.3 

Average Training sRPE (A.U.) - 482 ± 225 579 ± 262 

Total Training Volume (km) - 339 ± 165 365 ± 188 

Fluid Intake During TT (mL) 383 ± 74 352 ± 146 343 ± 100 

Fasting BHB (mmol/L) 0.27 ± 14 0.99 ± 61 0.10 ± 18 

Ambient Temperature (°C) 21.8 ± 0.4 21.7 ± 0.5 21.8 ± 0.4 

Relative Humidity (%) 51.3 ± 6.0 36.8 ± 8.4 36.5 ± 12.2 

n = 6; data are presented as means ± SD. HD = habitual diet; KD = ketogenic diet; HC = high-
carbohydrate diet; sRPE = session RPE; TT = time trial; BHB = beta hydroxybutyrate. 

3.4.3.1 Dietary Intake and BHB 

Detailed dietary intake and BHB results are reported elsewhere 37. Briefly, participants 

consumed similar amounts of total daily energy. Further, participants had the greatest protein 

intake during KD when compared with HD and HC. As intended, CHO consumption was greatest 

in HC and lowest in KD. Fat consumption was highest in KD and lowest in HC. 
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Capillary BHB was greater following KD compared with HC and HD, indicating successful 

compliance with the diet. This is further reflected in the daily urinary ketone measurements during 

the KD, which averaged 1.82 ± 0.52 mmol/L during the KD. 

3.4.3.2 Body Mass 

Detailed changes in boy mass during the interventions are reported elsewhere.37 Briefly, 

participants weighed significantly less following the KD compared with HD and HC. There was 

no significant difference in body mass between HD and HC conditions. It is important to note that, 

while all participants lost weight during the KD, none of them surpassed our threshold of 5% body 

mass loss. 

3.4.3.3 Training 

As reported elsewhere, participants’ training was similar between HC and KD.37 There 

were no significant differences in total kilometers cycled or sRPE when comparing the two diet 

conditions. 

3.4.3.4 Water Intake during the TT 

Water intake during the TT was similar between conditions, F(2, 15) = 0.214, p = 0.810, 

η2
p = 0.028. Participants consumed 383 ± 74 mL, 352 ± 146 mL, and 343 ± 100 mL of water during 

HD, KD, and HC respectively. 

3.4.3.5 Environmental Conditions during the TT 

Temperature in the lab was consistent across all trials averaging 21.8 ± 0.4 °C during HD, 

21.7 ± 0.5 °C during KD, and 21.8 ± 0.4 °C during HC. There was a significant effect of condition 

on relative humidity during the TT, F(2, 15) = 5.037, p = 0.021, η2
p = 0.402. Humidity was greatest 

during HD (51.3 ± 6.0 %); it was similar between KD (36.8 ± 8.4 %) and HC (36.5 ± 12.3 %). 
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3.5 Discussion 

3.5.1 Methodological Insights and Considerations 

3.5.1.1 Equipment and Outcome Measure Selection 

3.5.1.1.1 Cycle Ergometer. 

Based on participant feedback during previous studies and pilot work as well as to 

minimize learning effects, we chose to use the CompuTrainer® cycle ergometer as our testing 

device. This allowed participants to mount their own bicycle to the ergometer maximizing 

familiarity with the equipment. In prior work in our laboratory, some participants had voiced 

concerns that bicycle fit was suboptimal with other ergometers, such as the Velotron Pro 

(RacerMate Inc., Seattle, WA) and Monark Ergomedic 894e (Monark, Sweden). In a meta-analysis 

by Hopkins et al. cycle ergometers that allowed participants to use their own bicycles produced 

some of the smallest coefficients of variation (CV) in the study.53 Participants in the present study 

expressed that they favored using their own equipment over using other ergometers, validating our 

choice of equipment.  

However, certain challenges can come with the use of ergometers that allow participants 

to use their own bicycles. First, tire inflation pressure, and press-on force (POF) between the tire 

and the friction roller of the load generator must be standardized for each condition between 

conditions. The manufacturer’s manual for the CompuTrainer® suggests inflating tires to the 

maximum rated tire pressure and provides a guide for setting the POF based on maximal road 

gradients or maximal expected power output during the exercise bout. We decided to standardize 

tire pressure at 100 psi unless the tires were rated for lower pressure. However, unbeknownst to 

the investigators present at the trial, one of our participants used an inner tube in a tubeless tire 

during one TT, causing over inflation and tire failure. This illuminates another challenge in 
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allowing participants to use their own bicycles: the need to ensure that participants do not make 

changes to their equipment between trials. One of our participants changed tires between 

conditions; the new tires were rated at a lower pressure than the ones he used in the initial trial. 

However, the participant had discarded the old tires, thus making it impossible to keep tire pressure 

constant across trials. Data for this participant are not included in this manuscript, since we had to 

terminate the study prior to his final ET due to COVID-19 regulations.  

3.5.1.1.2 Performance Measure. 

To maximize external validity, we decided to use a TT that was similar in length (time) to 

what our participants typically experience in competition. To align our statistical inference with 

this strategy, we powered our study to be able to detect a practical meaningful difference of 90 

seconds between the HC and KD conditions, which, on average, reflected an improvement of one 

position in the final standings of the Texas State Time Trial Championships across the past four 

years. Thus, we selected time to completion (TTC) as our primary outcome measure. While we 

have used TTC successfully in previous work using the Velotron and Monark 894e, the use of this 

measure with the CompuTrainer® created additional challenges. As described above, an error in 

our protocol caused inconsistencies in the rider weight (RW) used during CompuTrainer® setup. 

While the RacerMate One™ software manual provides load curves for the ergometer, we were 

unable to determine the exact formula to translate power output (W) to speed (km/h); one factor 

influencing this is the built-in Drag FactorTM (DF) function, which allows users to set a percentage 

based “drag factor” equivalent to an estimated coefficient of aerodynamic drag multiplied by the 

frontal area of the rider (CdA). The default value for this and rolling resistance are unknown to the 

authors. Our initial strategy was to recalculate finishing times for each participant by using the 

speed achieved per watt measured during the initial TT (following their HD). We applied this 
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speed-per-watt factor to the measured power outputs for all other trials to recalculate finishing 

times (Table 3.3). Calculation scripts and speed-per-watt data for each rider by road gradient can 

be found at https://osf.io/ujx6e/.  

Using the crude estimation of speed-per-watt employed for our recalculation of TTC, it 

appears that even when setting the RW and POF to nearly identical values a meaningful difference 

in speed and finishing time arises. Participant 17 completed the KD (RW: 68.0 kg; bike weight 

(BW): 10 kg; POF: 3.06 lbs.; DF: 100%) and HC (RW: 68.0 kg; BW: 10 kg; POF: 3.07; DF: 100%) 

with nearly identical settings but received meaningfully different speed-per-watt values. This is in 

part due to the increase in CdA with increasing speed, as the wind resistance experienced by a 

rider becomes greater at higher speed. 

With the participant riding slower during KD, the software correctly generated greater 

speed-per-watt in this condition compared with HC. To control this factor and to further investigate 

the speed achieved for the power applied, we analyzed speed-per-watt at different power outputs 

across the two trials. Further, we compared these numbers to a model of overground road cycling, 

which allows manual entry of all parameters associated to cycling (Figure 3.8).54  

 

  

https://osf.io/ujx6e/
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Table 3.3. Recalculation of Time-to-Completion 

ID COND 
RW 
(kg) 

POF 
(lbs) 

AVG 
POW 

(W) 

AVG 
SPD 

(km/h) 
TTC 
(min) 

AVG 
SPD/W 

(km/h/W) 

AVG 
SPD 
REC 

(km/h) 

TTC 
REC 

(min) 
 

08 HD 57.2 3.20 173.84 31.56 57.03 0.183 31.87 56.48 

 HC 94.8 3.12 188.26 30.53 58.96 0.165 34.51 52.16 

 KD 54.0 3.15 148.87 29.54 60.94 0.200 27.29 65.96 

12 HD 83.0 4.67 328.31 37.38 48.15 0.115 37.81 47.60 

 HC 83.9 4.67 355.31 39.45 45.63 0.112 40.92 43.99 

 KD 83.9 4.43 331.63 38.54 46.70 0.117 38.20 47.13 

14 HD 57.6 3.38 162.66 30.33 59.35 0.188 30.55 58.92 

 HC 54.9 3.17 191.67 33.04 54.48 0.173 36.00 50.01 

 KD 54.9 3.24 159.31 30.19 59.62 0.192 29.92 60.16 

17 HD 68.9 3.01 151.95 29.37 61.29 0.196 29.71 60.59 

 HC 68.0 3.07 144.29 28.38 63.41 0.199 28.21 63.81 

 KD 68.0 3.06 131.31 27.35 65.82 0.208 25.67 70.12 

28 HD 68.9 2.87 123.60 25.55 70.46 0.210 25.98 69.30 

 HC 67.9 2.71 118.88 25.58 70.36 0.217 24.98 72.05 

 KD 68.0 2.75 88.87 21.60 83.33 0.2443 18.68 96.38 

RW = rider weight; POF = press-on force; AVG POW = average power output; AVG SPD = 
average speed; TTC = time-to-completion; AVG SPD/W = average speed-per-watt;  
REC = recalculated based on AVG SPD/W achieved in HD. 

 



98 

 
 

We limited the analysis to flat stretches of the TT to eliminate the effect of road gradient 

and only included power outputs between 100 W and 200 W. It was apparent, that speed-per-

watt values fluctuated greatly immediately following return from a descent to a flat stretch on the 

course After removing the 20 seconds following each descent and large outliers based on visual 

inspection of the graph, we fit a power function for all three analyses.  

 

 

Figure 3.8. Speed-per-Watt at Different Power Outputs. HC = high carbohydrate diet; KD = 
ketogenic diet; road = speed-per-watt modeled using a road cycling model calculator. 

 

As Table 3.4 shows, even small differences in the speed-per-watts conversion, can have 

meaningful effects on finishing time during a simulated TT. At a fictitious power output of 150 in 

a flat TT, the conversion alone would lead to a difference of 44.4 seconds in TTC. These 

conversion calculations were highly sensitive to the inclusion/exclusion of individual datapoints 
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as the same power input can result in different instantaneous speed output. Actual differences 

might not be as large, as individual datapoints account for only one second of the speed achieved. 

However, in the HC trial shown above, power output was measured at 150W on flat road sections 

41 times, with speed-per-watt ranging from 0.179 km/h/W (26.8 km/h) to 0.202 km/h/W (30.3 

km/h). It is important to note, that despite these challenges, the CompuTrainer® very closely 

mirrors the time achieved in an overground road cycling TT. 

 

 

 

 

 

 

Despite some limitations regarding the conversion of power output to speed and the 

challenges of standardizing between conditions, we believe the CompuTrainer® is an effective 

tool for performance analysis. The familiarity of participants with their own equipment and the 

positive feedback regarding bicycle fit and feel may outweigh any challenges faced with 

implementing this performance assessment. Based on our experience in this project, we 

recommend using mean power output during a TT as the performance outcome variable rather 

than TTC. We also suggest extensive piloting of the TT course and protocols to ensure all 

important factors are kept constant between conditions. Further, we recommend giving participants 

written instructions to avoid any changes to their equipment and checking all aspects of the bicycle 

setup (including tires) on the day of the trial.   

Table 3.4. Speed-per-Watt Comparisons. 

 POW (W) Formula SPD/W (km/h/W) TTC CALC (min) 

HC 150 y = 4.1121x-0.61 0.193485 62.02 

KD 150 y = 5.6561x-0.676 0.1912 62.76 

Road model 150 y = 4.0696x-0.601 0.200318 59.90 

HC = high-carbohydrate diet; KD = ketogenic diet; POW = power output;  
SPD/W = speed-per-watt; TTC CALC = calculated time-to-completion. 



100 

 
 

Additionally, we would recommend researchers employing a repeated measures design use 

participant’s actual body mass on the day of each trial as RW. Since the RacerMate One™ software 

accurately models differences in RW, potential benefits from decreased body mass on cycling 

speed, especially during uphill sections of a course, should be captured by the performance 

assessment. 

3.5.1.2 Nutrition Intervention 

A multi-week nutrition intervention like the one applied in the present study requires 

considerable labor and time from the investigators as well as personal investment from 

participants. The following section discusses insights and considerations regarding the nutritional 

intervention. 

3.5.1.2.1 Diet Tracking and Meal Planning. 

Following dietary interventions like the ones employed in the present study requires careful 

tracking of nutrition intake and exercise energy expenditure. The participants in our study provided 

verbal feedback that tracking their dietary intake and finding foods to match the macronutrient 

requirements for each diet added a sizeable burden to their daily routines. With this in mind, it is 

unsurprising that less than 20% of recreational cyclists regularly track their nutritional intake 

(unpublished data from a survey study conducted in our laboratory). In fact, in our pre-study 

screening questionnaire, none of the participants in the present study reported tracking total energy 

intake or macronutrients nor following a specific diet. It stands to reason that keeping a record of 

dietary intake and planning meals to achieve certain nutritional goals might create a steep barrier 

for recreational athletes trying to follow HC or KD. 
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3.5.1.2.2 Diet Adherence. 

Our three-day dietary records indicated that participants followed the intervention diets as 

prescribed, with the exception of higher-than-desired protein intake during the KD (Table 3). Yet, 

based on levels of BHB in urine and blood during the KD, participants met our requirement of 

being in a ketogenic state. Based on verbal and written feedback from our participants, even with 

the daily feedback they received from the RD, participants struggled to find high-fat foods that 

limited their intake of protein. However, it appears that the protein intake in our KD condition 

(26.0 ± 2.9% of total energy intake) was similar to what other studies have reported when 

participants were allowed to consume protein ad libitum.55–57 Thus, allowing ad libitum intake of 

protein during the KD condition appears to be a practical way to reduce the burden on participants 

to find low-protein high-fat foods. To control for the effect of changes in fat-free body mass, which 

could have an impact on exercise performance, we suggest measuring body composition following 

each diet, if resources allow it. In the present study, equipment availability prohibited us from 

performing these measurements. 

Similarly, participants reported struggling to consume the high percentage of CHO to fulfill 

the requirements of the HC without resorting to sugary drinks and foods. This could be one reason 

why our own findings and those of other researchers, that free-living recreational endurance 

athletes consume less CHO than what is recommended for optimizing performance.1,58 The 

strongest experimental design regarding diet adherence would include supplying food for 

participants throughout the study. This would take the burden of diet tracking and meal planning 

off the participants. However, with a free-living cohort such as ours, this is difficult and costly. 
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3.5.1.2.3 Blinding. 

Blinding of participants to the study condition is impossible in a study design like the 

present. Participants’ effort during training and performance assessment could be influenced by 

preconceived opinions about the interventions employed. Recent research has shown that 

recreational endurance athletes are more aware of the effects of CHO intake before, during, and 

after events than the general public.59 Thus, participants might have expected to perform worse 

during the KD. This became apparent in the present from verbal comments by the participants, 

who mentioned not looking forward to completing the KD condition. Additionally, during the KD, 

they reported feeling like they could not produce the same amount of power and fatiguing more 

quickly during training rides. One participant completed the TT approximately 13 min slower 

during the KD than during the HD and HC. This participant specifically expressed feeling fatigued 

during the KD. It is unclear whether a preconceived notion of the KD on endurance performance 

might have impacted the participant’s effort during the TT or whether the participant truly 

experienced such strong effects of the diet.  

3.5.1.3 Statistical Analysis 

3.5.1.3.1 Sample Heterogeneity and Statistical Power. 

Our goal for the present study was to collect data from men and women across a wider age-

range than previously reported in the literature. However, this has important implications on 

statistical power. Based on our analysis of the Texas State Time Trial Championships, finishing 

times and standard deviations of the top 10 athletes in male and female age groups up to 55+ years 

old (61 ± 6 min) was similar to pilot work on the CompuTrainer® course in our own lab (60 ± 6). 

However, our final sample comprised athletes with much greater heterogeneity in the main 
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performance outcome. This sample heterogeneity has a drastic impact on statistical power in a 

frequentist framework.60,61  

We attempted to limit sample heterogeneity by requiring minimum training experience and 

distance along with a V̇O2max criterion for enrollment in the study. Average TTC was similar to 

what we expected, but standard deviations in our sample ranged from 8.0 min (HD) to 13.2 min 

(KD). Simply raising the standard deviation in our power analysis from 6.0 to 10.2 (average of our 

observed standard deviations), while leaving all other parameters the same would decrease 

statistical power for the omnibus test with 30 participants from 90% to 45%. One avenue to further 

limit this heterogeneity and increase statistical power, would be employing a TT as part of the 

screening process to ensure participants can complete the course in a predetermined maximal time 

or at a predetermined minimal average power output. This trial could also serve as a familiarization 

trial for participants to become accustomed to the laboratory and the bike setup. 

3.5.1.3.2 Analysis Options. 

A common strategy to analyze data like the present is to employ repeated measures analysis 

of variance (RM-ANOVA). However, other fields including psychology, biology, and medicine, 

have transitioned to using linear mixed-effects models (LMM) for designs similar to ours.62 In the 

following section we present different analysis options for our primary outcome (TTC) and for 

one example of a secondary outcomes (CHOox). To avoid reporting inferential statistics based on 

observed data of our primary outcome, we used simulated data to show the different analysis 

options. All simulations and analysis scripts can be found here: https://osf.io/ujx6e/ .  

  

https://osf.io/ujx6e/
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We investigated the outcome of three statistical methods to analyze our primary outcome 

(TTC) with simulated data based on the following parameters using the faux package in R63: 

n = 18 

HD: µ = 61.0 min; σ = 8.0 min 

HC: µ = 60.0 min; σ = 9.0 min 

KD: µ = 62.5 min; σ = 10.5 min 

These parameters are loosely based on our actual data in combination with the practically 

meaningful effect size of 90 seconds discussed above. The three methods investigated were: 1) 

LMM using the lme4 package, 2) standard RM-ANOVA using the afex package, and 3) analysis 

of covariance (ANCOVA), as recommended by Senn 64 using the rstatix package.64,65  As an 

example of the secondary outcome analysis, we chose observed data for CHOox and analyzed 

them using 1) LMM and 2) condition x time RM-ANOVA. Inferential statistics for all analyses 

are shown in Table 3.5. 
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To further analyze statistical outcomes of these strategies, we investigated pairwise 

comparisons of the estimated marginal mean differences using the emmeans and statix packages. 

Results for TTC are shown in Table 3.6. We used a Holm correction for multiple comparisons and 

a Bonferroni correction for the 95% confidence intervals reported. 

  

Table 3.5. Inferential Statistics for Different Analysis Options. 

Outcome and model NumDF DenDF F p 

TTC     

 LMM 2 34 6.06 0.006 

 RM-ANOVA 2 34 6.06 0.006 

 ANCOVA (BASE) 1 33 533.29 <0.001 

 ANCOVA (COND) 1 33 8.12 0.007 

CHOox     

 LMM     

  COND 2 69 118.18 <0.001 

  TIME 4 69 6.86 <0.001 

  COND X TIME 8 69 1.18 0.326 

 RM-ANOVA     

  COND 2 8 100.76 <0.001 

  TIME 4 16 4.02 0.019 

  COND X TIME 8 32 1.54 0.184 

NumDF = numerator degrees of freedom; DenDF = denominator degrees of freedom; LMM 
= Linear mixed-effects model; RM-ANOVA = repeated measures analysis of variance; 
ANCOVA = analysis of covariance; BASE = baseline time from HD trial; COND = condition; 
TTC = time to completion; CHOox = carbohydrate oxidation 
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Results for the pairwise comparisons and estimated mean differences between time points 

is shown in Table 7. For pairwise comparisons by time point, we have limited the table to those 

that were statistically significant in at least one analysis strategy. Full results can be found using 

the analysis script at https://osf.io/ujx6e/. 

  

Table 3.6. Estimated Mean Differences for Time-to-Completion Between Conditions 

Comparison and model DF t EMD 95%CI p 

HD – HC      

 LMM 34 1.99 1.28 -0.34, 2.90 0.109 

 RM-ANVOA 17 3.07 1.28 0.18, 2.39 0.021 

 ANCOVA  - - -  - 

HD – KD      

 LMM 34 -1.48 -0.95 -2.57, 0.67 0.149 

 RM-ANOVA 17 -1.37 -0.95 -2.79, 0.89 0.187 

 ANCOVA - - - - - 

HC - KD       

 LMM 34 -3.47 -2.23 -3.86, -0.61 0.004 

 RM-ANOVA 17 -2.90 -2.23 -4.28, -0.19 0.021 

 ANCOVA 33 2.85 -2.23 -3.83, -0.64 0.007 

DF = degrees of freedom; t = t ratio; EMD = estimated mean difference; 95%CI = 95% con-
fidence limits; LMM = Linear mixed-effects model; RM-ANOVA = repeated measures 
analysis of variance; ANCOVA = analysis of covariance; 

https://osf.io/ujx6e/
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Table 3.7. Estimated Mean Differences for Carbohydrate Oxidation Between Conditions 

and Time Points. 

Comparison and model DF t EMD 95%CI p 

CONDITION      

 HD - HC      

  LMM 69 -4.09 -0.42 -0.66, -0.17 <0.001 

  RM-ANVOA 4 -3.41 -0.39 -0.83, 0.06 0.027 

 HD – KD      

  LMM 69 10.86 1.11 0.86, 1.37 <0.001 

  RM-ANOVA 4 10.15 1.15 0.70, 1.60 0.001 

 HC - KD       

  LMM 69 14.90 1.53 1.28, 1.78 <0.001 

  RM-ANOVA 4 13.78 1.54 1.10, 1.98 0.001 

TIME      

 3km – 9km      

  LMM 69 3.57 0.47 0.09, 0.85 0.005 

  RM-ANOVA 4 2.63 0.45 -0.51, 1.41 0.525 

 3km – 15km      

  LMM 69 4.25 0.56 0.18, 0.94 0.001 

  RM-ANOVA 4 2.61 0.47 -0.54, 1.47 0.525 

 3km – 21km      

  LMM 69 4.45 0.58 0.20, 0.96 <0.001 

  RM-ANOVA 4 2.32 0.48 -0.68, 1.64 0.570 

 3km – 27km      

  LMM 69 3.98 0.53 0.15, 0.92 0.001 

  RM-ANOVA 4 3.25 0.39 -0.82, 1.06 0.314 

DF = degrees of freedom; t = t ratio; EMD = estimated mean difference; 95%CI = 95% 

confidence limits; LMM = Linear mixed-effects model; RM-ANOVA = repeated measures 

analysis of variance; ANCOVA = analysis of covariance. 

 



108 

 
 

All three strategies result in similar omnibus test for TTC leading to the same inferential 

interpretation. As expected, the results for TTC were nearly identical between models. 

Interestingly, there were important differences in the comparisons for estimated marginal mean 

differences. While the point estimates for mean differences between conditions were exactly the 

same for LMM and RM-ANOVA, the 95% CI differed considerably, leading to a different 

inferential interpretation (see Table 3.6) The RM-ANOVA yielded a statistically significant 

difference between HD and HC, whereas the LMM did not. Confidence intervals were wider in 

the LMM for the HD and HC comparison only, but narrower for the other comparisons. One 

downside to the ANCOVA approach is that it only allowed for pairwise comparison between HC 

and KD, since the TTC HD trial was used as a covariate.  

When analyzing CHOox, the omnibus tests for both models indicated main effects for 

condition and time without an interaction. However, only the LMM showed significant differences 

in the follow-up pairwise comparisons. The results for post hoc comparison of estimated marginal 

means in the LMM indicated significant difference when comparing CHOox at the 3km mark in 

the TT compared with all other time points. Interestingly, while the omnibus test for the RM-

ANOVA did indicate a main effect for time, none of the follow-up pairwise comparisons were 

statistically significant. 

Based on this analysis, we suggest researchers explore the option of using an LMM in 

similar designs. The LMM as applied here allows for a random intercept for each participant; 

further benefits of LMM allow the specification of additional random effects (e.g., participant-

level slopes) and using multiple imputation to handle missing data as employed in our analysis of 

the muscle ultrasound data.66 When deciding between an RM-ANOVA and an ANCOVA, 

researchers should consider the study design and research questions. In the present study, we chose 
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the LMM over ANCOVA to allow for the pairwise comparison of all three conditions. It could be 

argued, that an ANCOVA approach would have been prudent, since we did not control diet in the 

HD condition; thus, the HD condition would have lent itself as a true baseline test used as a 

covariate in the comparison of HC and KD. However, we believe that this also allowed a true 

comparison of a truly habitual condition compared to two controlled conditions.  

3.5.2 Performance 

To avoid any inferential interpretation of our TTC data, we will discuss our results in 

directional terms only. Our data suggests similar trends to the studies of Burke et al. in elite 

racewalkers.19,20 Those studies showed improvements in 10-km race walk finishing times in HC 

conditions with decrements in performance in the KD condition; those performance trials were 

approximately 15 min shorter than ours and likely completed at a similar or higher relative 

intensity. In contrast, McSwiney et al. showed a greater improvement in a 100 km TT in the KD 

group compared with the HC group following a 12-week nutritional intervention.22 Similarly, in a 

crossover study, Lambert et al. reported greater TTE in a moderate-intensity cycling task (50% of 

PPO) following two weeks of KD compared with two weeks of HC.7 In the same study TTE in a 

high-intensity cycling task (85% of PPO) was greater following HC compared with KD. In the 

present study, participants cycled at 65.7 ± 10.9 %, 59.7 ± 15.0%, and 69.0 ± 12.2% PPO in the 

HD, KD, and HC conditions respectively. Thus, it appears that endurance athletes might benefit 

or see no decrements from a KD during longer, lower-intensity events; during shorter, higher-

intensity tasks, exercise performance appears to be impaired secondary to decreased 

economy/efficiency.19,26 A recent review by McSwiney et al. details the effect of KD on a variety 

of exercise tasks across different populations.67 
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3.5.3 Physiological Responses 

3.5.3.1 Oxygen Consumption 

While elite cyclists can maintain relative intensities of > 90% of V̇O2max, we expected our 

participants to perform at intensities > 70% V̇O2max during our TT. The lower-than-expected 

relative intensities achieved during the TT, especially during KD, was in part driven by a single 

participant, who completed the KD TT at < 30% V̇O2max.68 After removal of this participant’s 

data, average V̇O2 was 66.2 ± 8.9 %, 64.4 ± 6.7 %, and 65.9 ± 4.4 % during the HD, KD, and HC 

conditions respectively. This was still lower than the relative exercise intensity achieved during a 

similar TT in a study by Coyle et al.; however, their “good state” cyclists were more highly trained 

than our cohort.68 

3.5.3.2 Substrate Utilization 

CHOox in our sample was greatest during the HC condition and lowest during the KD 

condition with the opposite pattern emerging for FATox. This is similar to what has been reported 

in other investigations.6,16–24 FATox rates during the KD in the present study were lower (0.60 ± 

0.15 g/min) compared with data from Carey et al., who reported FATox rates of 1.06 ± 0.29 g/min 

to 1.16 ± 0.32 g/min during the first 60 min of a 4-hour cycling task at similar intensities to our 

TT (65% V̇O2max).6 Participants in that study ate a breakfast containing 3 g/kg BM of CHO and 

ingested a glucose solution every 30 min during exercise. It is important to consider that 

participants in the study by Carey et al. performed exercise at a constant load/intensity, whereas 

participants in the present study attempted to complete the TT as quickly as possible. FATox 

during KD in our study was similar to that reported by Prins et al., who also employed a TT task, 

albeit using a different mode of exercise (running) for a shorter duration (5 km; ~20 min) at higher 

relative intensities (84.2 ± 8.0% V̇O2max); during the TT performed on day 14 of their study, Prins 
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et al. reported FATox rates of 0.71 ± 0.23 g/min.23 Removing our participant, who worked at a 

noticeably lower relative intensity during KD and thus expended less total energy, FATox rates in 

the present study averaged 0.68 ± 0.12 g/min. FATox rates dropped to 0.14 ± 0.05 g/min during 

HC, similar to what was reported by Prins et al.23  

3.5.3.3 Perceived Exertion 

RPE during the TT was similar in all conditions in the present study, and increased steadily 

throughout the performance tests. Thus, participants perceived the same amount of exertion while 

working at a lower power output during the KD compared with the HD and HC. This was in 

accordance with verbal feedback provided by our participants, who reported feeling fatigued and 

unable to produce their usual power outputs during the TT as well as during their training sessions 

outside the lab. Stepto et al. similarly reported higher RPE throughout nonlaboratory training in 

their KD condition and during laboratory testing on Day 4 of the KD.24 

3.5.3.4 Muscle Ultrasound 

Despite initial validation studies showing a strong correlation between MuscleSound® 

estimates of muscle glycogen content and direct measurements via muscle biopsy, some 

researchers have questioned the utility of this technique.29,45,47 Routledge et al. were unable to 

detect changes in MuscleSound® score in response to an 80-minute competitive rugby league game 

(Study 1) nor in response to glycogen-depleting cycling protocol followed by 36 hours of low 

compared with high CHO intake (Study 2), while glycogen content measured by biopsy decreased 

significantly in both studies.47 It is unclear, which MuscleSound® measure Routledge et al. 

employed and whether SFP was available as an analysis option in the MuscleSound® cloud 

application at the time of that study. While we did not measure muscle glycogen content directly, 

and thus cannot speak to the relationship between SFP and muscle glycogen directly, we believe 
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that SFP is a measure that is sensitive enough to detect changes induced by exercise and diet. Due 

to its non-invasive nature and ease of application, this ultrasonic technique appears to be a valuable 

tool that allows athletes and practitioners to estimate muscle “fuel” changes in response to dietary 

and exercise interventions. 

3.5.4 Conclusions 

We found that participants completed a simulated 30-km TT at the lowest mean power 

output following two weeks of the KD. We also showed that FATox was greatest during the TT 

following KD and lowest following HC. Further, MuscleSound® SFP, an estimate of muscle “fuel” 

was lower following KD compared to HD; additionally, SFP was lower following the TT 

compared to fasted baseline measures and 3-hour post-meal measures. In summary, while this 

study did not achieve the desired sample size to make inferential claims about the effect of the KD 

and HC on endurance exercise performance, we believe that the insights gained from our work 

could be valuable to other researchers, athletes, and practitioners. We argue that allowing 

participants to use their own bicycles for studies like this on a cycle ergometer such as the 

CompuTrainer® reduces learning effects and minimizes the need for familiarization; further, it 

provides a valid measurement of endurance exercise performance, as long as standardization 

protocols are followed and appropriate outcome measures (e.g., mean power output during a TT) 

are selected. Further, we contend that employing LMM should be the preferred analysis technique 

for repeated measures design in a frequentist framework. LMM offer the option to include random 

intercepts at the participant level, which allows modeling of inter-individual response differences 

better than using a fixed intercept. Further, LMM allow multiple imputation of missing data, 

providing a route for researchers to use partial data for participants rather than being forced to 

delete data listwise, as is typically done using RM-ANOVA. Depending on the study design and 
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research question, ANCOVA with baseline performance as the covariate also offers a valid 

analysis strategy. Finally, we believe that using muscle ultrasound for a determination of muscle 

“fuel” using the MuscleSound® SFP offers a valuable and easy-to-use tool for practitioners and 

athletes. 

3.5.5 Practical Applications 

From a practical perspective, following strict diets in the long-term adds considerable 

burdens to recreational athletes’ lives. Thus, a more reasonable approach might be to “fuel for the 

work required”, as proposed by Impey et al.69 In this paradigm, athletes base their CHO 

requirements on the work anticipated and/or performed on a given day. Often, recreational cyclists 

will complete longer training sessions (five to six hours) on weekends and more intense sessions 

on one or two days during the week. To minimize the added labor and stress of daily macronutrient 

and energy tracking, athletes could increase CHO intake on the day prior to and during longer 

and/or more intense training sessions, while eating entirely ad libitum on days with easier rides. 

Recreational athletes using power meters, could calculate energy expenditure based on the average 

power produced during a ride. In fact, most exercise tracking applications, which are popular 

among this population, already provide energy expenditure measures based on actual work 

performed when power meter data are included. Those who do not use power meters, could use 

heart rate and/or the talk test to estimate energy expenditure and exercise intensity.70,71 These 

calculations would allow recreational athletes to fuel longer and harder sessions adequately, while 

not needing to invest the time and energy to plan and track dietary intake on shorter and easier 

days.  

Single-session CHO restriction for certain low to moderate intensity workouts, i.e., 

“training low”, has been shown to be effective in augmenting gene expression, cell signaling, and 
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oxidative enzyme activity related with improved endurance performance.69,72 These strategies 

might be more feasible and sensible for elite athletes, who typically work with nutrition 

professionals and often have already optimized all other aspects of their training and racing. 

However, recreational cyclists looking to use this strategy could implement a higher intensity 

training session in the morning followed by CHO restriction and a lower intensity training session 

in the evening.72  

In summary, recreational athletes looking to improve their cycling performance using nutrition 

interventions might be better served by focusing on “fueling for the work required” and 

interspersing occasional training session with low CHO availability than by trying to implement a 

daily diet designed to restrict or enhance the intake of CHO.69 
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4.1 Abstract 

There is active scientific debate about whether a polarized training intensity distribution 

(TID; time in intensity Zone 1 > Zone 3 > Zone 2) is the optimal strategy for endurance 

performance. The training characteristics among recreational athletes and their impact on 

performance are unclear. Thus, the purpose of this study was to analyze the training characteristics 

among recreational cyclists and triathletes and to estimate the associations of these characteristics 

with endurance performance. We analyzed raw training and race data from 232 recreational 

athletes (age = 41.8 ± 11.0 years; body mass = 71.1 ± 8.2 kg, relative Critical Power [CPrel] = 4.3 

± 0.6 W·kg-1) using R statistical language. We investigated the associations of volume 

(hours·week-1), intensity (mean heart rate [HR] as a percent of maximal HR [HRmax]), frequency 

(sessions·week-1), and polarization (polarization index [PI]) over 20 training weeks with CPrel 

calculated from maximal mean power (MMP) outputs over 2, 5, and 12 minutes. Only 17 

participants employed a polarized training approach as defined by a PI > 2.0. Time spent below 

80% of HRmax was considered Zone 1 (Z1) training. Z2 spanned from 80-87% HRmax with Z3 

including time spent above 87% HRmax. Athletes completed 70.6 ± 11.5% of their training in Z1, 

17.4 ± 6.5% in Z2, and 12.1 ± 7.3% in Z3. They trained 9.4 ± 3.2 hours per week over 5.9 ± 2.3 

training sessions and amassed 233 ± 82 km per week. When controlling for age, volume exhibited 

the most consistent positive association with CPrel (b (SE) = .052 (.012); 90% compatibility 

intervals (90CI) = [.032; .071]). Training polarization was also positively associated with CPrel, 

albeit with considerable uncertainty (b (SE) = 0.184 (.134); 90CI = [-.037; .404]. Our model 

explained only 21.5% of the variance in CPrel; similarly, out-of-sample performance was 

unsatisfactory (RMSE = .53 W·kg-1). In summary, few recreational athletes employ a polarized 

TID despite potential benefits. However, training volume appears to be the most important factor 

to optimize performance in this population.  
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4.2 Introduction 

Cycling and triathlon remain popular among competitive recreational endurance athletes 

in the United States; according to the 2021 Outdoor Foundation participation report1, 

approximately 48.6 million Americans participated in cycling activities (Road/Mountain 

Bike/Bicycle Motocross) and 3.6 million Americans in triathlon (Road/Off-Road) in 2020. 

According to the Outdoor Industry Association, Americans spend close to $14 billion per year on 

cycling gear and almost $83 billion on cycling-related travel.2 Competitive recreational cyclists 

train on average 12.04 hours per week across 5.3 days to improve their performance.3  

Professional and recreational cyclists manipulate a variety of training variables to improve 

performance.4 Training characteristics include frequency (number of sessions per week), volume 

(distance or time spent cycling), and intensity (power output or speed during a given training 

session); all are collectively used to establish a training load. However, an imbalance between 

training load and recovery can cause overtraining, which can lead to a decrease in physiological 

adaptation to training and performance, as well as potential injury or illness.5 Thus, recent research 

has focused on the distribution of intensity across sessions.6,7 This training intensity distribution 

(TID) is often measured using time spent in training zones based on physiological thresholds. 

Scientific analyses of TID frequently employ a three-zone model, with Zone 1 (Z1) corresponding 

to intensities below the first ventilatory/lactate threshold (VT1/LT1), Z2 corresponding to 

intensities between VT1/LT1 and the second ventilatory/lactate threshold (VT2/LT2), and Z3 

corresponding to intensities above VT2/VT3.6–9 These zones then roughly correspond to exercise 

in the moderate, heavy, and severe intensity domains established using VT1/LT1 and critical 

power (CP).10   



124 

 
 

While some research has suggested that a polarized TID (time in Z1 > Z3 > Z2) might be beneficial 

for endurance performance and success in endurance sport,6–8,11–18 there is active scientific debate 

whether TID was misclassified in some of these studies and whether training polarization is truly 

an optimal strategy.19,20  

Competitive recreational athletes often rely on planning and monitoring their own training. 

They frequently use field tests to structure their training sessions and track progress, which, if not 

properly standardized, can introduce considerable error.21 Additionally, the TID among 

competitive recreational cyclists and triathletes and their association with cycling performance are 

unknown. The recent success of workout tracking and analysis apps and websites such as Strava© 

(Strava, Inc., San Francisco, CA), has made abundant data from this population publicly 

accessible. The use of this kind of data for scientific analysis has become more commonplace and 

allows the analysis of actual training patterns and their association with performance in a large 

cohort of recreational athletes.18,22,23 

Therefore, the purpose of the present study was to use raw longitudinal training and racing 

data to investigate the TID among recreational cyclists and triathletes. Further, the study assessed 

the effects of training characteristics (volume, intensity, and TID) on cycling performance as 

measured by relative critical power (CPrel; W·kg-1) while controlling for age, as it is known to be 

negatively associated with endurance performance.24 We expected the training polarization among 

this group to be low. Further, we hypothesized that, when adjusting for age, greater total volume, 

greater average intensity, and a polarized TID would have positive associations with cycling 

performance. 
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4.3 Method 

4.3.1 Study Design 

We analyzed raw cycling activity data recorded by participants with their own devices to 

find the highest estimated CPrel achieved over the course of a single week (“performance week”). 

We then investigated the association of training volume (hours·week-1), average training intensity 

(% of HRmax), and TID (% of time in HR-based zones) during the 20 weeks leading up to the 

performance week with CPrel while controlling for participant age. 

4.3.2 Participants and Data Inclusion 

We combined data from a large publicly available dataset of raw activity data for cycling, 

running, swimming, and other exercise (GoldenCheetah OpenData; GCOD; http://goldencheetah-

opendata.s3-website-us-east-1.amazonaws.com/), with data (https://osf.io/ez6x5/) collected under 

a protocol approved by the Texas Christian University Institutional Review Board (Protocol ID 

#1810-031-1810). For the purpose of this document, we consider the latter our “local data”. The 

participants providing local data (n = 65) signed an IRB-approved informed consent, and provided 

raw activity files, which they had downloaded from their Strava© accounts. GCOD was accessed 

on Feb. 14, 2022, and included 2,398,134 activity files from 6,043 athletes. 

To ensure sufficient data availability for power and heart rate (HR) analysis, we limited 

inclusion of participants to those athletes who had provided at least 500 cycling files and for whom 

power and HR data was available. Among our local participants, 20 (m = 16, f = 4) athletes fulfilled 

these criteria. The GCOD contained 1,014 athletes (m = 990, f = 24) meeting these criteria. We 

further cleaned the dataset by removing participants who had not provided their age or had reported 

their age as <18or >100 years. We then removed athletes with unrealistic power output values as 

follows: 1) 1-second power > 2,500 W; 2) 1-second power exactly 1,000W or 2,000 W, which 

http://goldencheetah-opendata.s3-website-us-east-1.amazonaws.com/
http://goldencheetah-opendata.s3-website-us-east-1.amazonaws.com/
https://osf.io/ez6x5/
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indicates a virtual power algorithm rather than measured power; 3) 4-minute power ≥ 500 W 

(greater than the current track-cycling pursuit world record); 4) 5-minute relative power ≥ 7.5 

W/kg and 1-minute relative power ≥ 11.5 W/kg (greater than maximal power outputs reported for 

professional international cyclists).25,26 The final sample from the GCOD included 695 men and 

23 women. Due to this unfortunate large difference in data availability, we limited our analysis to 

male participants.  

During individual data analysis and based on pilot work, we further removed athletes who 

did not have power and heart rate data for at least 30% of their data points and those who did not 

have HR measurements during the time period in which we analyzed their training and 

performance. We also removed those whose performance occurred during a time when they were 

younger than 18 years old, those whose CP-model exhibited a poor fit (R2 < 0.9), and those whose 

power profile did not resemble the typical curve described by the omni-domain power-duration 

model.27 We additionally removed participants whose training volume appeared too low (< 5 

hours·week-1 or < 100 km·week-1), as this might indicate that they did not record or share all of 

their activities. Figure 4.1 presents a CONSORT diagram for the study. Our final sample, 

combining local data and GCOD, included 232 participants with a total of 270,070 activity files 

and 224,262 cycling files. An additional 273 were left to be analyzed at the time of submission of 

this document. 

4.3.3 Data Handling 

GCOD data were provided as individual comma-separated values files (CSV) for each 

activity with one data point per second. Participants submitted local data in sport activity file 

formats including “.gpx”, “.tcx”, and “.fit”. We imported these files into Golden Cheetah V3.5 and 

converted them to CSV files with the same properties as those downloaded from the GCOD. We 
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then imported all CSV files for each participant into R statistical software V4.1.228. We used the 

data.table V1.14.229, tidyverse V1.3.130, and lubridate V1.8.031 packages for training and 

performance data analysis.  

 

Figure 4.1. CONSORT Diagram 

4.3.4 Power Profiling and Critical Power 

We collected absolute and relative maximal mean power outputs (MMP) for the following 

durations for all participants: 5 seconds, 10 seconds, 30 seconds, 1 minute, 2 minutes, 5 minutes, 

6 minutes, 10 minutes, 12 minutes, and 20 minutes. Using the 2-, 5-, and 12-minute MMP values, 

we calculated weekly absolute and relative CP and work capacity above CP (W’) using a linear 

regression of power vs. the inverse of time, where the y-intercept equals CP and the slope of the 

regression line equals W’.32 We further investigated CPrel values that were more than 2.5 standard 

deviations (DV) greater than the participant’s mean CPrel across all of their data and removed 

those who appeared to be caused by power output spikes or unrealistically high MMP values. We 
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deemed the highest CPrel achieved over a single week our performance measure. When CP-model 

fit during that week was poor (R2 < 0.9), we evaluated the weeks with CPrel values that fell within 

0.2 W·kg-1 of the highest CPrel measured. Out of those additional measurements, we selected the 

highest CPrel with acceptable model fit (R2 ≥ 0.9). If no CPrel values within 0.2 W·kg-1 of the 

highest CPrel exhibited acceptable model fit, we removed the participant from the final analysis 

as indicated above. 

4.3.5 Body Mass 

Participants reported body mass at the time of file submission. Some participants provided 

up-to-date body mass measurements throughout the time of their data availability. Others had the 

same body mass associated with all of their files. When available, we used body mass reported 

during the performance week for relative CP and MMP calculations. 

4.3.6 Performance Age 

For participants in the GCOD, only year of birth was available. Thus, we calculated their 

“performance age” based on the year of each individual’s performance week. Local participants 

reported exact dates of birth, which allowed us to calculate exact performance age based on their 

date of birth and the final day of the performance week. 

4.3.7 Maximal Heart Rate Determination 

We determined maximal HR (HRmax) by visually analyzing HR and power output plots 

from all sessions that contained recorded HR above age-predicted HRmax based on the Tanaka 

formula (208-0.7*age) using participants’ performance age.33  We disregarded all sessions with 

obvious HR spikes and HR values not matching power output measures. We considered the highest 

HR achieved during one or multiple training sessions with a clean HR curve indicative of maximal 

testing or high-intensity intervals as HRmax for the individual. If a participant did not record any 
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HR > than age-predicted, we visually inspected sessions with the highest ten HR achieved by the 

individual and applied the aforementioned criteria to set HRmax. 

4.3.8 Analysis of Training Characteristics 

We considered the 20 weeks leading up to the performance week the training period for 

each participant. 

4.3.8.1 Training Frequency   

We determined the number of training sessions over the course of the training period based 

on the number of individual workout files submitted by each participant. Since our dataset included 

a mix of cyclists and triathletes, we included all types of activities in the training frequency count. 

We calculated the number of sessions per week based on these data. 

4.3.8.2 Training Volume  

We extracted training volume as hours spent exercising and the distance covered over the 

course of the training period. While volume based on time and distance were strongly correlated 

(r = 0.87), we chose to use only training hours for statistical analyses, since distance achieved over 

a certain time varies markedly by type of activity (cycling, running, swimming) and athlete ability. 

4.3.8.3 Training Intensity 

We estimated training intensity as the average training HR as a percentage of HRmax over 

the course of the training period. We removed any HR data above HRmax and below 50 bpm from 

the analysis to eliminate HR spikes and drop-outs. We considered 50 bpm the lower bound for 

measured HR to include lower HR potentially achieved during downhill coasting, while 

eliminating any HR that would be indicative of measurement errors. 
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4.3.8.4 Training Intensity Distribution 

We determined TID based on a 3-zone model using HR data to calculate time-in-zone. We 

established training zones based on %HRmax thresholds suggested by Sylta et al. and Seiler:34,35 

Zone 1: <80% HRmax 

Zone 2: 80-87% HRmax 

Zone 3: >87% HRmax 

Additionally, we established power-based training zones based on %CP as adapted from a 6-zone 

model proposed by Skiba:36 

Zone 1: ≤75% CP 

Zone 2: 76-100% CP 

Zone 3: >100% CP 

Further, we calculated a polarization-index (PI) as described by Treff et al. based on time 

spent in the three timing zones.37 A PI > 2 indicates polarized training, whereas a PI ≤ 2 indicates 

non-polarized training. We used HR-based values for statistical analyses to allow the inclusion of 

HR recordings from cycling sessions that did not contain power data and from activities performed 

in other sports. Additionally, we compared TID between HR and power-based models for athletes 

with ≥ 90% of HR and power availability in their data to gain a better understanding of how they 

correspond in real world data. 
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4.3.9 Statistical Analysis 

We performed all statistical analyses in R statistical language. We analyzed the association 

of training intensity (%HRmax), volume (hours·week-1), and TID with CPrel while controlling for 

age using ordinary least squares (OLS) multiple linear regression. Further, we performed simple 

linear regression to estimate the effect of age on CPrel. 

Based on the well-established effects of age and training on performance, applying a 

statistical model under the assumption of a true null hypothesis appeared nonsensical. Further, 

overemphasizing null-hypothesis significance testing and making inferences about the 

dichotomized existence of an effect has been strongly criticized.38 Therefore, as suggested by 

Gardner & Altman and the American Statistical Association, we focused on the magnitude and 

uncertainty (90% compatibility intervals; CIs) of the association of each explanatory variable on 

cycling performance.39–42 Thus, when interpreting results, we considered implications of all results 

that are compatible with the present data, from the lower limit to the upper limit of the CI, with 

the greatest emphasis placed on the point estimate.  

We visually inspected residual and Q-Q plots to confirm that the assumptions of normality 

and heteroskedasticity were met for the linear model. Further, we found no multicollinearity in our 

final model using bivariate correlations of all predictors and the variance inflation factor (VIF). 

We employed leave-one-out cross-validation (LOOCV) using the caret package to investigate the 

out-of-sample performance of our model.43 We report root mean squared error (RMSE), mean 

absolute error (MAE), and LOOCV R2
 as out-of-sample performance metrics.  

Since it has been reported that CP estimated exclusively from training data is less reliable than that 

estimated from data including races and formal testing, we performed a sensitivity analysis to 

ensure that potential CP estimation errors did not have undue effects on our model coefficients.44  
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To achieve this, we also employed linear regressions in the full data set with the same explanatory 

variables using individual MMP values (1-minute, 2-minute, 5-minute, 6-minute, 10-minute, 12-

minute, 20-minute) extracted over the entire length of the training and performance period as the 

response variables. 

Additionally, we compared TID established using HR data compared with that using power 

data. We employed an estimation approach to investigate mean differences between methods and 

present data in a Cumming estimation plot.45   

All GCOD data are already publicly available at http://goldencheetah-opendata.s3-website-us-

east-1.amazonaws.com/. Local data and GCOD IDs for all participants included in the study as 

well as all analysis code are available at https://osf.io/ez6x5/.  

4.4 Results 

We included 232 participants in the final analysis. Participant characteristics are presented in 

Table 4.1.  

Table 4.1. Participant Characteristics (n = 232) 
 Mean (SD) 

Age (years) 43.7 (11.1) 

Age at performance measure (years) 41.8 (11.0) 

Body mass (kg) 71.1 (8.2) 

Number of raw activities submitted 1,164 (678) 

Number of cycling sessions  967 (553) 

Availability of heart rate data (% of total data)  90.4 (11.9) 

Availability of power data (% of total data) 76.7 (20.8) 

 

  

http://goldencheetah-opendata.s3-website-us-east-1.amazonaws.com/
http://goldencheetah-opendata.s3-website-us-east-1.amazonaws.com/
https://osf.io/ez6x5/
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4.4.1 Training and Performance Characteristics 

Participants completed on average 5.9 ± 2.3 sessions per week over the 20-week training 

period. They trained for 9.4 ± 3.2 hours and covered 233 ± 82 km each week. Participants spent 

70.6 ± 11.5 % of their training time in heart rate Z1, 17.4 ± 6.5% in Z2, and 12.1 ± 7.0% in Z3, 

which is consistent with a pyramidal TID. Only 17 participants (7.3%) followed a polarized TID 

as defined by a PI > 2. Average absolute CP in our final sample was 302 ± 41 W and average 

relative CP was 4.3 ± 0.6. Table 4.2 presents training and performance characteristics. 

Table 4.2. Training & Performance Characteristics (n = 232) 
Training characteristics Mean (SD) 

 Training frequency (sessions·week-1) 5.9 (2.3) 

 Training volume (hours·week-1) 9.4 (3.2) 

 Training distance (km·week-1) 233 (82) 

 Time in HR-Zone 1 (% of total) 70.6 (11.5) 

 Time in HR-Zone 2 (% of total) 17.4 (6.5) 

 Time in HR-Zone 3 (% of total) 12.1 (7.0) 

Performance characteristics  

 Absolute critical power (W) 302 (41) 

 Relative critical power (W·kg-1) 4.28 (0.59) 

 Critical power model R2 0.97 (0.03) 

4.4.2 Association of Training Characteristics with Performance 

An ordinary least-squares multiple linear regression evaluated the association of training 

volume (hours·week-1), training intensity (% of HRmax), training polarization (Yes/No) with 

estimated relative critical power (W·kg-1) while controlling for age. The results of the regression 

revealed a point estimate of 0.052 [0.032; 0.071] for training volume. Thus, our results are 

compatible with a 0.032 – 0.071 W·kg-1 increase in CPrel for each additional hour of training per 

week. The point estimate for the coefficient of training intensity suggests no association of average 



134 

 
 

intensity with CPrel, while the 90% CIs are compatible with a 0.016 W·kg-1 decrease to a 0.016 

W·kg-1 increase in CPrel for each one percent increase in average training intensity. Training 

polarization exhibited the largest uncertainty of any of the variables included in the model. The 

90% CI for changing from a non-polarized to a polarized TID was compatible with a decrease of 

0.037 W·kg-1 to an increase of 0.404 W·kg-1. While there is considerable uncertainty in the 

association of TID with cycling performance, the point estimate (0.184 W·kg-1) and 90% CI 

suggest a potential beneficial effect of changing from a non-polarized to a polarized-approach. 

Table 4.3 presents unstandardized regression coefficient estimates, 90% CIs, and VIF for the 

multiple regression. In both the multiple and simple linear regressions, the coefficient for age 

indicated that CPrel decreases by .020 [.015; .025] W·kg-1 per year. 

Table 4.3.  Multiple Linear Regression on Relative Critical Power (n = 232) 
 b (SE) 5% 95% B* R2 VIF 

Age (years) -.020 (.003) -.025 -.015 -.218 .137 1.012 

Training Intensity (% HRmax) .000 (.010) -.016 .016 -.001 .000 1.195 

Training Volume (hours·week-1) .052 (.012) .032 .071 .162 .064 1.190 

Training Polarization (No  Yes) .184 (.134) -.037 .404 .184 .006 1.028 

Model Fit 

R2 = .215 Adj. R2 = .202 AIC = 364.9 BIC = 385.6 

Out-of-Sample Performance 

RMSE = .53 LOOCV R2 = .18 MAE = .42 

b = unstandardized regression coefficient; SE = standard error; B = standardized regression 
coefficient (*Note: Training Polarization is a binary variable and could not be standardized); 
AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion; VIF = Variance 
Inflation Factor; RMSE = Root Mean Squared Error; LOOCV = Leave-One-Out Cross-
Validation; MAE = Mean absolute error 
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4.4.3 Explanatory and Predictive Performance of the Model 

The multiple linear regression model including age, training intensity, training volume, and 

TID was able to explain 21.5% of the variance in CPrel among participants. LOOCV revealed an 

RMSE of 0.53 W·kg-1 and a MAE of 0.42 W·kg-1. The LOOCV R2 was 0.18. 

4.4.4 Sensitivity Analysis 

To assess the sensitivity of our analysis to estimation errors in CPrel and to using MMP 

values of different lengths as markers of performance, we compared regression coefficients and 

90% CIs between models with the same explanatory variables while using CPrel and MMP values 

between one and 20 minutes extracted over the entire length of the training and performance period 

as the response variables. All models produced similar point estimates for all explanatory 

variables. The 90% CIs were similar for all models except the 1-min MMP model, which exhibited 

wider CIs across all explanatory variables (see Figure 4.2). 

4.4.5 Time-in-Zone Comparison 

We compared time-in-zone using HR-based analysis and power-based determination in 36 

participants who had at least 90% availability of power and HR data, and whose power and HR 

availabilities differed by less than 2% to ensure comparability between the two approaches. When 

using HR, these participants spent 72.3 ± 8.8% of their training time in Z1, 15.9 ± 4.6% in Z2, and 

11.8 ± 6.5% in Z3. Using the power-based approach, participants spent 76.1 ± 7.7% in Z1, 17.4 ± 

5.8% in Z2, and 6.5 ± 3.3% in Z3. 
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Figure 4.2. Sensitivity Analysis. CPrel = relative critical power; MMP = maximal mean power 

The Cumming estimation plot in Figure 3 shows estimated mean differences with 90% 

CIs between the two approaches. In our sample, the power-based approach led to more time 

recorded in Z1 (MD = 3.79% [1.96; 5.70]) and Z2 (MD = 1.47% [0.10; 2.83]), and less time 

recorded in Z3 (-5.3% [-6.87; -3.88]). 
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Figure 4.3. Time-in-Zone Measured Using Heart Rate vs. Power 

 

4.5 Discussion 

To our knowledge, this is the first study to investigate the training characteristics among a 

large group of recreational athletes and their effects on cycling performance using raw activity 

data. We showed that few recreational athletes employ a polarized TID. Further, training volume 

and a polarized TID were positively associated with cycling performance, as measured by CPrel. 

However, there was a large amount of uncertainty in the association of training polarization with 

performance, as evidenced by a large 90% CI. Yet, the CI, spanning from -0.037 to 0.404 and the 
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point estimate at 0.184 are compatible with data suggesting only a small potential decrease, but a 

large potential increase in CPrel when switching to a more polarized TID. Interestingly, there did 

not appear to be an association of training intensity with CPrel.  

4.5.1 Association of Training Characteristics with CP 

Our results are congruent with laboratory and field studies investigating the effect of TID 

on performance and durability.6,7,12–14,16–18 Esteve-Lanao et al. investigated the effect of five 

months of polarized vs. threshold training in runners.17 While the group that had been prescribed 

polarized training in fact arrived at a pyramidal TID (Z1: 80.5 ± 1.8%; Z2: 11.8 ± 2.0%; Z3: 8.3 ± 

0.7%), the performance improvement in that group was greater than in the second group, which 

spent twice the amount of time in Z2 (Z1: 66.8 ± 1.1%; Z2: 24.7 ± 1.5%; Z3: 8.5 ± 1.0%). 

Similarly, Neal et al. found greater improvements in mean power output during a 40-km cycling 

time trial and submaximal markers of endurance performance following six weeks of polarized 

training compared with six weeks of threshold training.13 Correspondingly, Röhrken et al. reported 

consistent improvements in running velocity at LT2 following six weeks of polarized training 

compared with a more varied response following six weeks of threshold training.6 Further, Muñoz 

et al. found greater improvement in 10-km running time in a group performing ten weeks of  

polarized training compared with a threshold training group.12 

In a 16-week training study, Filipas et al. investigated the effects of polarized training 

alone, pyramidal training alone, and a combination of the two TIDs in opposing sequences (8 

weeks polarized  8 weeks pyramidal; 8 weeks pyramidal  8 weeks polarized) on 5-km running 

time V̇O2peak and running velocity at 2 and 4 mmol·L-1 blood lactate concentration.7 The authors 

reported the greatest improvements in 5-km running time and velocity at blood lactate thresholds 

from baseline to the end of the study in the pyramidal  polarized group, followed by the polarized 
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only group. Interestingly, in the combined TIDs, they reported the greatest improvement following 

the polarized portion of the training. Further, Stöggl & Sperlich showed improvements in V̇O2peak 

and velocity/power at 4 mmol·L-1 blood lactate following nine weeks of polarized training and 

high-intensity interval training, but not high-volume or threshold training.14 While not statistically 

significant for all comparisons, the improvements in the polarized training group were greater than 

those in the high-intensity interval group. In a recent study of professional cyclists, Spragg et al. 

found that a shift toward a more polarized TID was positively correlated with 12-min MMP in 

unfatigued and fatigued states and CP in a fatigued state.16 In an analysis of raw running data, 

Altini & Amft demonstrated a positive association of training polarization with running 

performance.18 These findings are consistent with our finding that a change to a polarized TID 

might be positively associated with CPrel. 

The benefits of employing a polarized TID have been suggested to be two-fold: 1) 

improved recovery status and 2) more time spent at power outputs/speeds that elicit a high 

percentage of V̇O2max. Recovery of the autonomic nervous system, as measured by heart rate 

variability is delayed similarly following all training above VT1, i.e., in Z2 or Z3 when compared 

with Z1 training.46 The greatest improvements in V̇O2max can be achieved by maximizing the 

time spent training at or near V̇O2max.47–49 Employing a polarized TID might allow athletes to 

maximize recovery while also maximizing the time spent at or near V̇O2max. In fact, the 

participants who employed a polarized TID in our study spent more time in Z1 (72.4 ± 12.2%) and 

Z3 (17.1 ± 8.0%) compared with those employing a pyramidal TID (Z1: 70.4 ± 11.5%; Z3: 11.7 ± 

6.8%). Thus, participants with a non-polarized approach spent more time above VT1 (29.6 ± 

11.5%) than those following a polarized TID (27.6 ± 12.2%), potentially requiring more recovery 

time or possibly blunting adaptations from training performed in an under-recovered state. 
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Additionally, they spent less time near or at V̇O2max compared with those following a polarized 

TID, potentially leading to lesser cardiovascular adaptations. 

Further, our finding that increased training volume is positively associated with endurance 

performance has been consistently reported in the literature. Milesis et al. were among the first to 

show an improvement in V̇O2max and time to task failure in a treadmill test that was proportional 

to increased training volume.50 Similarly, Wenger & Bell suggested increasing improvements in 

V̇O2max with increasing exercise volume.51 Applying the opposite approach, Hickson et al. 

reported a proportional negative effect of reduced training volume on cycling time to task failure.52 

Altini & Amft found a positive association of training volume with running performance.18 These 

findings are in line with our finding that an increase in weekly training volume is positively 

associated with CPrel. 

The positive association of increased volume we detected by analyzing raw training data 

matches results from mechanistic studies investigating the effect of training volume on skeletal 

muscle adaptations.53 Granata et al.54 demonstrated that skeletal muscle mitochondrial content 

increased following a switch from normal-volume to high-volume training, an adaptation that was 

quickly reversed when participants reduced their training volume below normal-volume levels. In 

contrast, an increase in exercise intensity does not appear to elicit the same mitochondrial 

adaptations.53 The increase in mitochondrial content seen with greater training volume allows 

individuals to rely predominantly on oxidative phosphorylation for energy production during 

exercise at higher intensities, i.e., increase their maximal metabolic steady state (MMSS).55 It has 

been argued that CP, our performance outcome, is the gold standard measure of MMSS. In our 

sample of recreational athletes, the increase in volume might be more important than a focus on 

exact TID or an overall increase in average intensity.  
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Interestingly, we were unable to detect an association of training intensity with CPrel. To 

test the sensitivity of our model to estimation errors in average intensity as a percentage of HRmax, 

we also included intensity as a percentage of 6-minute MMP. This did not change the magnitude 

or uncertainty of any of the model coefficients in a meaningful way (see supplementary material). 

This is in contrast to a finding by Wenger & Bell, who suggested that, when holding frequency 

and volume constant, an increase in exercise intensity is related to an increase in V̇O2max.51 The 

discrepancy in our finding could be explained by the nature of the outcome measure used in the 

present investigation and by Wenger & Bell. The latter used V̇O2max, a maximal measure of 

oxygen consumption, whereas we investigated CP, a submaximal measure. Thus, increasing 

average training intensity might have a greater impact on maximal measures than submaximal 

measures. Additionally, our measure of average intensity across all training does not necessarily 

capture the relative amount of time spent at high intensities or the intensities achieved during those 

high-intensity training sessions. Therefore, our measure of TID and time spent in Z3 might be 

stronger indicators of the actual amount of high-intensity training performed than average 

intensity, and thus have a stronger association with improved performance. 

4.5.2 Explanatory and Out-of-Sample Performance of Our Model 

Our model including age and basic training characteristics explained only approximately 

21.5% of the variance in CPrel. This confirms that the factors influencing endurance performance 

are multi-faceted. Specific training characteristics play only a small part in the bigger picture of 

performance improvement, with genetics and nutrition playing additional roles. V̇O2max remains 

an important factor in endurance performance, especially in heterogenous samples like the 

present.56,57 Heritability of V̇O2max has been estimated to be 66% after adjusting for 
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anthropometrics and weekly hours of sport participation.58 Thus, a large portion of the variance 

unaccounted for by our model could be explained by genetics. 

Further our model’s out-of-sample performance was suboptimal, with relatively large 

prediction errors (RMSE = 0.53 W·kg-1). Thus, it appears that knowledge of an individual’s age 

and training characteristics is not enough to predict cycling performance. This is similar to findings 

by Altini & Amft, who reported that the RMSE for models predicting 10-km running time 

improved as more information was included.18 Their model including only anthropometrics (BMI, 

age, sex) produced an RMSE of 6.27 minutes. Adding resting physiology (resting HR and HR 

variability), training volume and intensity, training physiology, and training polarization 

incrementally improved predictive accuracy, but still produced a final RMSE of 3.64 min. Only 

when adding a previous 10-km running performance, a variable that was determined by all 

pertinent factors (genetics, training, nutrition, motivation, environment, etc.), did the model’s 

prediction error drop below three minutes. Similarly, Smyth & Muniz-Pumares estimated critical 

speed (CS) from training data of >25,000 runners and used it to predict race time in big city 

marathons.23 Their best-performing model predicted marathon time with an error of approximately 

8%. At an average marathon time of approximately 233 minutes among their sample, this amounts 

to a misprediction by approximately 18.6 minutes. Thus, performance prediction using only data 

available from training does not appear to be practically meaningful. However, including 

parameters from training and previous races to predict future performance appears to be a more 

promising tool, as shown by Emig & Peltonen, who were able to predict performance to within 

2%.22  
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4.5.3 TID Measurement: HR vs. Power 

We showed that TID measured using power time-in-zone and HR time-in-zone produce 

similar results when zone transitions are based on 75% and 100% CP and 80% and 87% HRmax 

respectively. Interestingly, in contrast to previous findings, among our participants time in Z1 and 

Z2 was greater when using power compared to HR.9,59 Respectively, time in Z3 was greater when 

using HR to delineate zone transitions. The discrepancy might be due to the fact that the previous 

studies used power/running speed and HR determined during incremental exercise tests. Thus, the 

zone transition criteria for HR and power/speed were based on the same laboratory measurement, 

rather than on the estimated thresholds used in our study. Interestingly, this difference caused a 

meaningful change for classifying training as polarized or non-polarized based on the PI. When 

using power, none of our participants would have been classified as employing a polarized TID. 

However, it stands to reason that using HR as the zone-delineation criterion is the preferred 

method, as this reflects the physiological state of the body at a given moment, i.e. an internal load, 

rather than an external load placed on the body.60  

One potential limitation of using HR to establish time in zones lies in the discrepancy 

between work rate changes and HR kinetics, i.e., the lag of heart rate response to increased or 

decreased workloads.61 Thus, a training session structured to focus on Z3 work with rest periods 

in Z1, i.e., high-intensity interval training, might lead to a HR profile that includes extended 

periods in Z2: HR drifts through Z2 and often remains in Z2 for extended periods of time, while 

the actual work performed based on power output is completed in Z1 or Z3. Thus, a session-goal 

approach, as originally suggested and employed by Seiler, appears to be more practical for training 

prescription.62 However, as in the present investigation, this approach might be near impossible to 
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use in studies analyzing raw training data without access to training diaries or communication with 

participants, who would need to provide their goal for each individual training session. 

4.5.4 Limitations 

One limitation to our study was the lack of a controlled performance measure. The accuracy 

of CPrel estimated from raw MMP data appears to depend on whether only training or training 

and racing data are included in the calculations.44 We attempted to control for this by eliminating 

unrealistic MMP values and participants with poor model fit for CPrel estimation. Additionally, 

we performed a sensitivity analysis by comparing regression coefficients and CIs between models 

using CPrel and individual MMP values as the outcome measure. We were able to show that 

coefficients and CIs were not sensitive to the outcome measure used; thus, we believe our model 

presents accurate estimates of the influence of training characteristics on CPrel. However, we did 

not investigate performance in a particular event, where training specificity might become an 

important factor in performance. While an increase in the maximal metabolic steady state could 

be considered beneficial for performance in most events, Z2 training might be more important for 

those events that are predominantly performed in the heavy exercise intensity domain, as suggested 

by Burnley et al.19 

Additionally, the thresholds we used to delineate our training zones were not based on 

laboratory tests. Thus, some of our participants’ times in zones might have been misclassified.  

However, we used 80 and 87 % of HRmax as our zone-transitions based on previous literature and 

recommendations by physiologists and coaches.34,35 An added limitation for our study was that 

HRmax was not measured during a standardized test, but rather determined based on maximal 

heart rates achieved during training. However, we carefully visually evaluated heart rate and power 

during individual training sessions to find sessions that either indicated high-intensity interval 
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training, maximal efforts, or maximal testing for HRmax determination. We ensured that that HR 

spikes were excluded and that power output was sustained above estimated CPrel for HRmax 

determination. 

Further, we were unable to confirm what particular devices were used by participants to 

measure HR and power output and whether these devices were appropriately calibrated. 

Additionally, we did not have a direct way of evaluating whether power output values were true 

measurements or created by a power estimation algorithm. However, we believe that our data 

cleaning procedures, i.e., removing spikes, unrealistic values, and one-second MMPs indicative of 

power algorithms, sufficiently controlled for the potential confounding effects of these limitations. 

We also did not have access to activity data outside of training for our participants. Treff 

et al. have suggested that TID calculations should integrate measures from activities of daily living 

and work.63 They showed that off-training activities, which can raise HR above resting levels and 

sometimes into Z3 for non-trivial amounts of time, can alter estimated TID, volume, and training 

impulse.  

An additional limitation was the uncertainty about self-reported data in the GCOD: body 

mass and age might have been misreported. Additionally, we did not have access to information 

regarding GCOD participants’ training status, training age, or sport affiliation. Further, we do not 

know how many sessions were not recorded or included in the dataset; thus, it is possible that 

training time and frequency were underestimated for some participants. We addressed all of these 

concerns by thoroughly cleaning the data and removing participants with unrealistically low 

training volumes or distance, unrealistically high body mass, and unrealistic ages (e.g., >100 

years). While we cannot guarantee that none of our participants are in fact professional athletes, 

we classified our athletes as recreationally competitive based on their power profile and training 
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volumes. We excluded participants whose CPrel was > 5.5, which might indicate domestic or 

international professional cyclist status.25 Among our remaining athletes, only than 1.3% trained 

for more than 20 hours per week and only 3.9% trained for more than 15 hours per week, which 

could indicate professional or semi-professional athlete status. We believe that our thorough 

vetting of the data has produced results that are generalizable to male recreational athletes.  

Regrettably, our biggest limitation is the lack of data from female athletes. Since we only 

had data for 27 women across both databases, we excluded female participants from the analysis. 

Thus, our results are not generalizable to female recreational athletes. 

4.5.5 Conclusions 

Despite some of the limitations of our study, we believe our large dataset, thorough data 

cleaning, and sensitivity analyses makes this the first study to use raw training and racing data to 

provide a strong indication of the association of individual training characteristics with cycling 

performance. It appears that among recreational athletes, training volume is the most consistently 

associated with cycling performance. While in elite athletes, who necessarily include a large 

amount of volume in their training, average intensity and a specific TID might be important factors 

to induce additional adaptations and performance improvements, there is considerable uncertainty 

in the role of these variables among recreational athletes. While there was some indication in our 

study that a polarized TID is positively associated with cycling performance, the uncertainty 

surrounding this effect was also the largest among all training characteristics examined. Our study 

confirmed a decline in CP as individuals age. Further, we showed that TID estimated using 

commonly recommended thresholds based on HR and estimated CPrel provide similar results; 

however, the times-in-zone were sufficiently different to cause differences in the binary polarized 

vs. non-polarized classification achieved by using the PI.  
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Future studies should attempt to combine large-scale raw training and racing data from 

recreationally competitive participants with standardized performance tests and threshold 

determination. This could be achieved by interacting virtually with participants who own a smart-

trainer and could perform performance tests and threshold determination employing a standardized 

protocol while recording or live-streaming their test efforts on video-communication platforms. 

Most importantly, this research should be expanded to include female participants. With the recent 

increase in the popularity of women’s road cycling and the fast growth in NCAA-sanctioned 

collegiate women’s triathlon, it is important to analyze training characteristics and their effects on 

cycling performance among women, who are notoriously understudied in the sport and exercise 

science literature. 

4.5.6 Practical Applications 

Given our findings that raining volume is most reliably associated with increased 

performance, recreational endurance athletes should emphasize consistency in their training, 

which will help them achieve adequate training volumes to improve performance. Those already 

achieving relatively high training volumes might then include a polarized TID to potentially 

achieve additional training benefits. However, it is important to note that a polarized TID might 

not be the ideal prescription across an entire year or season; rather, a periodized training approach 

including separate training blocks that focus on high-volume-low-intensity, moderate intensity, 

and high intensity respectively, as often employed by endurance athletes, appears to remain the 

preferred training strategy.64 A polarized TID can then be incorporated as appropriate in high-

volume and high-intensity training blocks. 
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Chapter V: Discussion 

5.1 Summary 

In this dissertation, I examined the effect of genetics, nutrition, and training on endurance 

performance in recreationally active and competitive runners, triathletes and cyclists.  

In our first study, we demonstrated that there is no strong association of ACTN3 genotype with 

endurance performance in recreationally active runners. While women with the ACTN3 XX 

genotype reported faster 1-mile running personal records (PRs) than those with the ACTN3 RR or 

RX genotypes, a similar observation could not be made for men. Additionally, there did not appear 

to be any influence of ACTN3 genotype on 5-km running time in either men or women.  

In the second study, recreationally competitive cyclists and triathletes completed three simulated 

30-km time trials (TT) following their habitual diet (HD) and a two-week high-carbohydrate diet 

(HC) and a two-week ketogenic diet (KD). Participants exhibited higher fat oxidation during the 

TT following the KD when compared with the HD and the HC. However, this did not translate 

into improved performance following the KD. In fact, participants; average power output during 

the TT was highest after the HC and lowest after the KD.  

In our third study, we analyzed raw training and racing data of a large number of recreational 

cyclists and triathletes. We showed that, when controlling for age, training volume exhibited the 

most consistent positive association with endurance performance as measured by estimated 

relative critical power (CPrel; W·kg-1). A more polarized training intensity distribution (TID) 

appeared to be positively associated with CPrel, but there was considerable uncertainty in this 

estimate. Despite the potential benefit of training polarization, few recreational cyclists and 

triathletes employ this approach.  
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5.2 Contribution to Knowledge Base, Gaps, and Future Research 

5.2.1 Genetics 

A number of studies have investigated the effects of single-nucleotide polymorphisms 

(SNPs), a DNA sequence variation in a single nucleotide, on physical performance, as reviewed 

recently by Appel et al.1 Early studies of one such SNP, a cytosine to thymine transition in the 

ACTN3 gene that converts arginine (R) to a stop codon (X), demonstrated that homozygosity for 

the 577X allele (XX genotype) results in complete deficiency of a structural protein found in Type 

II muscle fibers, α-actinin-3.2 Human association studies have consistently shown an 

underrepresentation of the 577X allele in athletes participating in sprint/power sports.3–6 While 

rodent studies indicated a potential benefit of the XX  genotype for endurance performance,7,8 

human association studies produced mixed results,3,9–14 Few studies have directly investigated an 

effect of ACTN3 genotype on quantitative measures of endurance performance.14–18 To our 

knowledge, our study remains the first and only investigation of the association of ACTN3 

genotype with middle-distance and distance running times in a diverse sample of young, 

recreationally active men and women. We showed a positive association of the ACTN3 XX 

genotype with running performance only for one-mile running times in female participants. We 

did not detect an effect of ACTN3 genotype on one-mile times in male participants nor on 5-

kilometer running times in men or women. 

Our findings align with the observations of Papadimitriou et al., who found no association 

of the 577X allele with running times from 1,500m to the marathon in male and female Caucasian 

endurance athletes.15 Similarly, Saunders et al. found no association of ACTN3 genotype with 

long-distance triathlon performance in a sample of male Caucasian athletes.14 Studies investigating 

the association of ACTN3 genotype with proxy measures of endurance performance have shown 
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no associations of ACTN3 genotype with V̇O2peak,17,18 ventilatory threshold (VT),18 or energy 

cost of running.16  

While there is some evidence of greater 577X allele frequency among female endurance 

athletes compared with female controls,11,19 our study remains the only investigation to show a 

potential association using a direct marker of endurance performance (running times). However, 

one limitation of our study is that we used self-reported running times for competitions with 

relatively short distances. Thus, future research should investigate directly measured endurance 

performance, e.g., TT performance, across a wide range of distances and in diverse samples. 

Further, studies examining individual SNPs in other genes, e.g., ACE, PPARGC1A, TFAM, 

ACVR1B, and NRF, have shown no or only modest associations with endurance performance.1 

Thus, it appears that the effect of genetics on endurance performance appears to be conferred in a 

polygenic fashion. However, studies into these associations have so far failed to establish a clear 

polygenic profile that could predict endurance performance.20–22 Therefore, additional genetic 

markers should be investigated and incorporated into polygenic profiles to test their association 

with endurance performance. 

5.2.2 Nutrition 

Nutrition plays an important role in optimizing endurance performance.23 Traditionally, 

endurance athletes have employed strategies to maximize carbohydrate (CHO) availability to the 

exercising muscle during competition, which has been shown to delay fatigue and improve 

performance.23,24 However, an opposing strategy is to employ low-CHO or ketogenic diets (KD) 

to induce fat adaptation, i.e., to increase the ability of the body to oxidize fat at intensities which 

typically elicit high CHO oxidation rates.25,26 Researchers have proposed that this would unlock 

essentially unlimited energy resources in the form of large stores of subcutaneous, visceral, and 
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intramuscular fat.27 While studies of low-CHO and KD have consistently demonstrated improved 

fat oxidation capabilities following adaptation, the findings regarding the diet’s effects on 

performance are equivocal.25,28–37 Additionally, studies investigating the effects of high-CHO diets 

(HC) and KD in women are rare.34 Further, to our knowledge, no studies have compared the effects 

of participants’ habitual diet (HD), HC, and KD in a within-participant design.  

Therefore, our study aimed to address some of the gaps in the literature by aiming for a 

large sample including male and female participants across a wide age range and by including a 

performance measurement following participants’ HD. While research-restrictions due to the 

COVID-19 pandemic did not allow us to reach our proposed sample size, we believe that this study 

is the first to assess metabolic and performance responses to a HD, KD, and HC in recreationally 

competitive female and male cyclists and triathletes. Additionally, we maximized external validity 

of the study by employing a performance measure that was modeled closely after real-world 

competitions that our population frequently competes in, while maintaining a high level of 

experimental control. We showed that power output during a 30-km simulated cycling TT was 

lowest following the KD despite fat oxidation being greatest. This is in line with the findings of 

Burke et al., who showed improved fat oxidation but reduced performance in race walkers 

following a KD.32,33 A potential reason for this performance decrement or failure to improve 

performance appears to be impaired exercise economy.32,33,38  

One important factor moderating the effect of a KD on endurance performance appears to 

be the duration, and thus the intensity, of the performance bout.39 The KD appears to be detrimental 

for shorter, higher-intensity performance, but appears to preserve or potentially improve exercise 

performance in longer, lower-duration bouts.32,33,35,38,40 However, these findings have been 

established across multiple studies which employed differing diet interventions and heterogenous 
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performance measures. Therefore, further studies comparing the effects of KD on exercise 

performance at different durations and intensities should be performed using consistent diet 

interventions and testing protocols. 

An additional factor in the effectiveness of the KD is the duration of the diet intervention. 

While fat-adaptation in the form of increased fat oxidation rates can be achieved in as little as five 

days, some athletes and practitioners argue from anecdotal evidence, that endurance benefits might 

not materialize for months or even years after starting a KD.29,41,42 In practice, these long-term 

interventions are essentially impossible to implement for professional athletes, whose livelihood 

depends on being competitive every year. However, longer-term diet interventions could be a 

potential tool for performance enhancement in recreational athletes. To our knowledge, the longest 

intervention used to test the effects of a KD on endurance performance was a 90-day diet employed 

by McSwiney et al, 35 who reported similar 100-km TT results following a HC and a KD. While 

difficult to perform and control, future studies should investigate long-term diet interventions to 

further elucidate the effect of KD on endurance performance.  

Conversely, an idea emerging in the scientific and lay literature is that short-term dietary 

interventions such as the KD, fasting, and time-restricted eating have the potential to flip a so-

called metabolic switch, i.e., increase fat oxidation and decrease reliance on CHO, which could 

persist even after HD is resumed.43,44 Thus, some endurance athletes and coaches have begun 

employing short-term KD to increase fat oxidation rates with the hope of preserving this metabolic 

advantage even after resuming their HD. Burke et al. investigated the effects of short-term CHO 

restoration (1-day) following five days of KD.25,31 They reported similar pre-exercise muscle 

glycogen levels between KD and HC diets following CHO restoration, but lower glycogen 

utilization in the KD condition during two hours of steady state cycling at 70% of V̇O2max. This 
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suggests that fat adaptation was maintained despite adequate glycogen availability for the exercise 

bout. However, the CHO restoration period was limited to a single day. Thus, future research 

should investigate the effects of prolonged CHO restoration or resumption of HD following short-

term KD to examine how long the effects of fat adaptation can be preserved. 

5.2.3 Training 

Several studies have investigated the effect of training characteristics and specifically 

training intensity distribution (TID) on endurance performance in elite athletes.45–55 Several of 

these studies have indicated a beneficial effect of so-called polarized training, where athletes spend 

most of their training time in Zone 1 (Z1) and most of the remainder in Z3, i.e., time in Z1 > Z3 > 

Z2. However, there is a strong debate whether TID was misclassified in some of these studies and 

whether training polarization is in fact an optimal strategy for endurance athletes.56,57 Little is 

known about the TID employed by recreationally competitive athletes and its impact on endurance 

performance.  

Therefore, our final study used a large set of raw activity data from recreational athletes to 

investigate the training characteristics in this population and its effects on CPrel. When controlling 

for age, we found that training volume had the most consistent positive association with CPrel. 

While there was considerable uncertainty surrounding the estimate, our results are compatible with 

a positive association of a polarized TID with CPrel. This is in accordance with findings from 

laboratory and field studies suggesting a beneficial effect of increased training volume58–63 and 

polarized training55,58,64–68. To our knowledge, we were the first to analyze a large amount of raw 

training and racing data to establish the TID employed by recreational athletes and its impact on 

their cycling performance.  
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While we attempted to tightly control for potential errors introduced by the nature of our 

data, there remain certain limitations to our findings that should be addressed with future studies. 

We performed a sensitivity analysis that showed that our results are robust to errors in the 

estimation of CPrel from raw activity data.69 Additionally, we were unable to establish individual 

training zone thresholds based on physiological responses in a standardized test. Therefore, future 

studies should combine the use of crowdsourced raw data to analyze actual training patterns with 

standardized performance and threshold testing. A potential means of obtaining large-scale data 

without the need for laboratory testing would be to devise standardized testing protocols that 

participants could perform on their home-trainer with supervision using video recordings or live-

streams using video-communication platforms. This would still allow to analyze naturally 

occurring training characteristics in a “free-living” environment while improving the validity of 

performance measures and zone threshold determination by employing remote standardized 

testing.58 

Most importantly, future research of the training characteristics and performance of 

recreational athletes should focus on the inclusion of female participants. While women make up 

a substantial fraction of recreational athletes, few data are available on their training and 

performance.70 Thus, recruitment for future studies should focus on obtaining data from female 

recreational athletes to investigate whether patterns detected among male athletes are reproducible 

among women. 

5.3 Implications for Recreational Endurance Athletes 

The results of our studies have implications for recreational endurance athletes. We 

confirmed that ACTN3 genotype does not appear to have a strong association with endurance 

performance. In fact, when combining our results with findings from other studies, it appears that 
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there are no evidence-based indications for recreational athletes to employ direct-to-consumer 

genetic testing in hopes to match their purported genetic potential to a specific sport. The effect of 

genetics on endurance performance appears to be polygenic. However, even studies investigating 

the effect of polygenic scores have not been able to definitively establish a genetic profile that is 

beneficial for endurance performance. Thus, direct-to-consumer genetic tests are currently not able 

to accurately predict endurance performance and should not be employed for talent identification 

or sport selection.  

While the KD has become a popular strategy for performance improvement in recreational 

and professional endurance athletes, the evidence produced by our study and other investigations 

does not support this approach. The KD has been shown to improve fat oxidation capability even 

after short-term adaptation, but this does not appear to translate to improved endurance 

performance. Further, following strict long-term diets can be disruptive for recreational athletes’ 

personal and professional lives. Therefore, a better option for recreational athletes might be to 

employ the approach to “fuel for the work required”.71 This would allow individuals to eat ad 

libitum for most days of the week, and target high CHO and occasional low CHO days to specific 

workouts. We argue that recreational athletes already use tools, such as exercise tracking apps, 

heart rate monitors, and power meters, that would allow them to calculate their energy and CHO 

requirements and plan their food intake based on their training plan. 

Our study investigating the association of training characteristics among recreational 

athletes and their association with cycling performance suggests that training volume is the most 

important parameter for recreational athletes. Once these athletes consistently achieve a sufficient 

weekly training volume, additional factors, such as TID might become more important. Further, 

race specific training remains important and might require increased training time in Z2, i.e., 
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“threshold training”. This appears to be best achieved by employing a periodization strategy to 

structure athletes’ annual training programs based on their most important competitions.72 In 

training phases focusing on high-volume Z1 training, i.e., “base building”, and those focusing on 

the improvement of maximal aerobic capacity (V̇O2max), which requires maximizing training time 

at or near V̇O2max (i.e., in Z3), a polarized TID could help athletes balance training load and 

recovery. Thus, a polarized training approach should be employed in a targeted fashion, rather than 

as a year-long strategy.   

5.4 Conclusions 

In conclusion, a multitude of factors, including genetics, nutrition, and training, impact 

endurance performance in recreational athletes. While consistent and well-structured training is 

clearly important to optimize performance, our statistical model based on raw training and racing 

data from recreationally competitive cyclists and triathletes could only explain approximately 30% 

of the variance in performance. Thus, a large portion of the differences in performance in this 

population must be attributed to other factors, with genetics potentially playing the biggest role. 

In a heterogeneous population such as this, V̇O2max is an important factor in determining success 

in competitions. Studies suggest that this measure of cardiorespiratory fitness is determined to a 

substantial degree by genetics. A large number of genes have been associated with differences in 

V̇O2max, but a definite polygenic profile that elicits high V̇O2max values has not been established. 

Further, the associations of SNPs in individual genes such as ACTN3, ACE, and PPARGC1A are 

modest at best. We showed that ACTN3 genotype was not strongly associated with endurance 

performance in recreationally active individuals. 

While genetics undoubtedly play an important role in endurance performance, scientific 

inquiries have so far failed to establish definite markers to predict success in endurance sports. 
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This suggests that there is a large number of genes that may have small effects on endurance 

performance, and that the exact combination of genes might depend on the way performance is 

measured. Since very few individuals are likely to have optimal or entirely detrimental 

combinations of these genetic variants, it stands to reason that genetic differences are not an 

absolute limiting factor for endurance performance.  

Thus, training and nutrition continue to play an important role for success in endurance 

sports. We showed that optimizing training volume and potentially including a polarized TID are 

associated with better endurance performance. We further demonstrated that the long-standing 

strategy of maximizing CHO availability before endurance events remains the most effective 

approach to improve performance, and that a low-carbohydrate ketogenic approach might be 

detrimental. 

In summary, recreational athletes should not rely on direct-to-consumer genetic tests for 

talent identification or sport selection. Those competing in races, should focus on maximizing 

training volume while ensuring adequate recovery; a polarized TID appears to be a valuable option 

to achieve this in certain phases of an athlete’s training cycle. Lastly, recreational endurance 

athletes should attempt to maximize CHO availability before and during races to improve 

performance. Additionally, “fueling for the work required”, i.e., basing caloric and CHO intake on 

anticipated or completed training loads, appears to be a sensible approach for this population. This 

strategy would allow recreational athletes to vary their diet based on personal and social 

requirements while still optimizing adaptations to training.  
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Abstract 

 Endurance sports, including running, cycling, and swimming, remain popular among recreational 

athletes in the U.S. and across the world. Many of these athletes compete in local, regional, and national 

races throughout the year. Their performance in competitions is affected by many factors, including 

genetics, nutrition, and training. Often, recreational athletes receive conflicting recommendations regarding 

strategies to optimize performance. Direct-to-consumer genetic testing companies promise to give insights 

into supposed genetic markers of endurance ability; blogs and social media tout the latest diet strategies to 

lose weight and perform better; virtual coaches and performance-improvement websites sell training plans 

with sometimes contradictory training strategies. It remains unclear which of these strategies actually bene-

fit endurance athletes. Therefore, this dissertation examined the effects of genetics, diet composition, and 

training characteristics on endurance performance in recreational athletes, who often spend a considerable 

percentage of their disposable income and their time on improving race outcomes. 

Single-nucleotide polymorphisms (SNPs), variations in a single base pair of a gene, have been 

proposed to affect physical performance. A SNP in the ACTN3 gene (XX genotype), results in deficiency 

of α-actinin-3, a structural muscle protein that appears important for explosive movements. Studies in 

rodents suggest that this deficiency could be beneficial for endurance performance. Yet, few studies in 

humans have directly assessed the effects of ACTN3 genotype on endurance performance. In our first study, 

we compared self-reported 1-mile and 5-km running personal records (PR) between participants expressing 

the three different ACTN3 genotypes. Among women, those with the ACTN3 XX genotype reported faster 

1-mile PRs compared to those with the RR and RX genotype.  We found no differences between genotypes 

for 1-mile PRs among men or 5-km PRs among either sex. 

A long-standing strategy to improve endurance performance is to increase carbohydrate (CHO) 

availability before and during competition to slow the fatigue process. An opposing approach introduced 

by researchers, coaches, and athletes, is to increase fat oxidation (FATox) capacities by employing a low-

CHO or ketogenic diet (KD). This improved ability for FATox at typical race-intensities would open access 

to an essentially limitless supply of energy substrates stored in the body as fat. However, studies 
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investigating the effects of KD and high-CHO diets (HC) on endurance performance have found conflicting 

results. In our second study, participants followed an HC and a KD for two weeks each in a random order. 

They performed a simulated 30-km cycling time trial (TT) at baseline and following each intervention. 

Participants’ average power output or endurance performance during the TT was substantially lower 

following the KD when compared with the HC. 

 Endurance training is the main mechanism to improve general cardiorespiratory fitness and 

performance in races. Training characteristics include frequency, volume, intensity, and training intensity 

distribution (TID). TID can be determined by the time spent in the easy (Zone 1), moderate (Zone 2), and 

hard (Zone 3) training zones. Recently, a polarized TID (time in Z1 > Z3 > Z2) has gained popularity, after 

research suggested that many elite endurance athletes appear to follow this approach. However, the TID 

employed by recreational athletes and its association with performance is unknown. In our third study, we 

analyzed the training characteristics of recreational cyclists and triathletes. We investigated their association 

with endurance performance as measured by estimated relative critical power (CPrel). In our sample, very 

few recreational athletes followed a polarized TID. When controlling for age, we found that increased 

training volume and polarization were positively associated with CPrel.  

 In conclusion, ACTN3 genotype does not appear to have a strong effect on endurance performance. 

Our results, along with findings from other studies investigating so-called endurance SNPs, suggest that 

individual genetic markers are not good indicators of endurance performance ability; thus, athletes and 

coaches should not rely upon direct-to-consumer genetic testing for talent identification and sport selection. 

Further, based on the results of our second study, the KD appears to decrease endurance performance. While 

additional research using longer nutrition interventions and different performance measures is needed, it 

appears that maximizing CHO availability remains the best strategy to improve endurance performance. 

Finally, we found that few recreational athletes follow a polarized TID despite its potentially beneficial 

effect on performance.  
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