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Abstract: Nano- and microscale ZnO demonstrate robust antibacterial action, although the driving
mechanisms remain undetermined. In this study for commercial ZnO nano-powders and home-
grown ZnO microparticles of varying morphologies we probe the response to bacterial growth
media in isolation and with Staphylococcus aureus bacteria. ZnO microparticles are synthesized
via a controllable hydrothermal method and subjected to biological assays with varying microbial
environments. Changes in the optoelectronic, structural and chemical properties of these crystals
before and after such exposure are characterized utilizing temperature-dependent photoluminescence
spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. This is done to
evaluate the impact of surface-surface interactions in antibacterial assays and the role ZnO surface and
morphological properties play in these processes. In our experiments various bacterial environments
are employed to elucidate the effects of media interactions on the cytotoxic efficacy of ZnO. In
particular, minimum inhibitory concentration assays with Staphylococcus aureus reveal that microscale
particles exhibit antibacterial efficacy comparable to that of the nano-powders, indicating that intra-
bacterial internalization is not necessary for antimicrobial action. In our studies we determine that
the nature of structural and optoelectronic changes in ZnO depends on both the media type and the
presence (or absence) of bacteria in these media. Further evidence is provided to support significant
cytotoxicity in the absence of particle internalization in bacteria, further highlighting the role of
surface and media interactions in this process.

Keywords: ZnO; antibacterial; bacterial growth media; Staphylococcus aureus; surfaces

1. Introduction

Bacterial infections pose an increasing threat to global health and food security as
antibiotic resistant strains become both more prevalent and difficult to treat. The issues
associated with the treatment of such resistant strains using traditional antibiotics stem
from powerful bacterial adaptive responses in the form of genetic mutations and lateral
gene transfer. This makes the development of novel antibiotics increasingly difficult and
less profitable, thus necessitating the search for non-traditional antibacterial agents for
usage in sanitation and medicines. Such agents should exhibit reduced toxicity, increased
selectivity and efficacy against existing antibiotic-resistant strains. This can be achieved
through simultaneously implementing multiple modes of action or bypassing resistance
mechanisms through activation of alternative pathways from traditional antibiotics. Effec-
tiveness against a wide range of both Gram-positive and Gram-negative bacteria as well
as inhibition of biofilm formation would greatly expand the range of microbial species in
which growth inhibition could be attained. Additionally, it is desirable to employ materials
which are inexpensive, readily available, and whose synthesis is both simple and scalable.
In this regard inorganic nanoparticles (NPs) are particularly promising. Size reduction
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effects in NPs lead to new mechanical, chemical, and optoelectronic properties as the
increased surface-to-volume ratio magnifies the substantially increased contribution of
surface characteristics. The latter, in turn, are interesting from an antibacterial perspective
as various nanomaterials have demonstrated bactericidal efficacy in vitro, in vivo, and in
animal models [1,2]. The scale factor alone provides a massive active and dynamic interface
between the NPs and the bacterial cell wall, leading them to be critical components of
various antibacterial coatings [3,4]. Many inorganic NPs have the additional benefit of
high biocompatibility and possess novel antibacterial modalities on their own, thus further
adding to their utility as an alternative to organic antibiotics.

Nanomaterials currently play a key role in such industries as healthcare, water treat-
ment, textiles, food storage and transportation due to their antibacterial properties [3–6].
A particularly promising set of compounds are those based on ZnO [2–4,7,8]. A wide
range of ZnO compounds demonstrate notable antibacterial action against antibiotic re-
sistant strains of Gram-positive and Gram-negative bacteria under various conditions
with selective toxicity [9–11] and effectiveness in combating biofilm formation. ZnO is
an abundant, low-cost material with significant photocatalytic efficiency and high bio-
compatibility, being recognized as a safe substance for exterior applications by the US
Food and Drug Administration [12,13]. Additionally, ZnO is a stable compound of high
durability and heat resistance leading to widespread usage in antibacterial coatings for
food storage, biomedicine, metallurgy, and chemical industries [3,4,9,10,12,14–16]. Despite
ubiquitous applications and abundant scientific attention, there exists a significant debate
about the fundamental mechanisms behind the observed antibacterial behavior. Such gaps
in understanding limit the scope and effectiveness of current bactericidal applications and
hinder the development of new ones. Much work has been done to isolate the driving
antimicrobial mechanisms by focusing on the bacterial response in biological assays with
NPs [17–20]. Presently, the prevailing theories as to the nature of these interactions point to
a number of mechanisms.

The most commonly referenced mechanism is generation of reactive oxygen species
(ROS) [17,19]. ROS disrupt bacterial function via internalization and subsequent destruction
of vital cellular components such as DNA, proteins and lipids. In ZnO, the predominant
explanation for the ROS production is photocatalytic generation mediated by ultraviolet
(UV) light. In this process excited electrons dissociate water molecules allowing for dis-
solved O2 to react with free ions and form potent ROS such as H2O2. This explanation,
however, is incomplete since the observation of notable antibacterial activity occurs even in
the absence of UV radiation [20–22]. Few alternative explanations have been suggested. In
particular, some authors proposed that ROS generation may be linked to superoxide anion
production at the ZnO surface [23]. Such explanations require further investigation and
raise questions as to the role of the free crystalline surface in this process. At present, ROS
generation mechanisms in ZnO are not well understood leaving many questions about
generation pathways and the significance of such processes in the antibacterial action as
such.

Another often cited mechanism is that of a cellular dysfunction stemming from the
cation toxicity [17,24,25]. Zn2+ ions possess biomimetic properties with well-established
pathways for internalization. Zn2+ can appropriate the Fe2+ ion channels and subsequently
replace Fe2+ during DNA transcription. This causes inability to repair the cellular mem-
brane leading to cell dysfunction and death. However, this explanation is challenged by
the general insolubility of crystalline ZnO in water with only partial solubility observed
in biologically relevant media [26]. Additionally, attempts to quantify the free ion activity
demonstrated that inhibition is weak and generation of zinc ions is too low to explain the
observed level of cytotoxicity [27,28].

Additionally, as stated in the literature, cell internalization of ZnO NPs can result in a
disruption of cellular processes through physical contact or generation of harmful chemical
species such as ROS and Zn2+ ions. This determination is supported by a clear relationship
between particle size and antibacterial activity for ZnO NPs [17,20,26]. Yet, it is unclear if
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internalization of ZnO NPs leads to degradation of the cell wall or if external disruptions
of the cell wall allow for the observed internalization. Studies into this phenomenon
indicate that the latter may be more likely. Previous work has shown that for Staphylococcus
aureus (S. aureus), ZnO microparticles (MPs) far too large to be internalized by the bacteria,
demonstrated cytotoxic efficacy comparable to those at the nanoscale [29]. These studies
indicate that cell internalization of ZnO is not a driving force in the observed antibacterial
behavior, pointing to other mechanisms that scale with particle size [29,30].

One such mechanism could be associated with interactions between growth media,
bacteria and ZnO, as they all relate to antibacterial action. In particular, interactions with
the crystalline free surface might be vital [18,20,21]. Such surface specific mechanisms
are difficult to isolate through bacterial studies as ZnO possesses an anisotropic wurtzite
lattice structure, resulting in two distinctive surface types. These are either polar hexagonal
faces or relatively non-polar rectangular faces. These surface types possess differing
electrochemical properties that may cause them to participate in antibacterial interactions
preferentially/differently. As of today, studies in this area are rather scarce, nevertheless
some promising results have been obtained in which antibacterial activity was linked to
general abundance of surface oxygen vacancies affecting charge dynamics at the bacterial
cell wall [20]. Such findings indicate that there remains a need to evaluate both the
overarching role of the free surface in the antibacterial action of ZnO and if/how these
interactions differ between prevalent surface types.

While all the aforementioned mechanisms are plausible and prevalent within the
literature, conflicting evidence has led to vigorous debate. It should be noted that the
non-specificity of particle activity may mean that these behaviors are explained by more
than one mechanism, further complicating the task of interpreting the underlying behavior.
The interdependence and complexity of these interactions highlight the importance of
studying not just the response of the bacteria being acted upon but also that of the ZnO
particle surfaces. To address this matter, we shift the focus towards the response of the
antibacterial agent to microbial environments. This is a novel approach since previous
studies in the field concentrated primarily on the response of bacteria or the corresponding
bacterial environments. In our work, we investigate the influence of the ZnO free surfaces in
antibacterial interactions and changes therein. These investigations differentiate themselves
from the current landscape of research in this area as we utilize microscale particles to
both eliminate internalization and to better elucidate the interactions at the free crystalline
surface with a specific polarity. We focus on not just the influence of growth media on
cytotoxicity but on isolating those interactions between just ZnO and growth media as well
as those with bacteria.

As such, we utilize temperature-dependent photoluminescence (PL) spectroscopy,
field emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spec-
troscopy (EDXS) to study changes in the optoelectronic, structural and chemical properties
of varying morphologies of commercially acquired and home grown ZnO NPs and MPs,
the latter being used to control for effects related to internalization. These studies are
performed before and after antibacterial assays with S. aureus in Mueller Hinton Broth
(MHB), saline, and phosphate-buffered saline (PBS) growth media solutions. This is done
to elucidate what modifications of ZnO characteristics are responsible for bacterial growth
inhibition and evaluate the role of interactions between ZnO and bacterial growth media.
Identical investigations are performed with ZnO particles exposed to growth media alone
(without bacteria) to probe the nature of interactions between ZnO and bacterial growth
media. Herein we find that biological assays and structural changes in ZnO confirm that
the microbial environment plays a substantial role in both the nature of and capacity for
bacterial growth inhibition of ZnO. Optical studies point to the differing nature of interac-
tions between bacteria and those of varying growth media. We also demonstrate a reduced
dependency on internalization of ZnO particles than previously reported. These results
described below, are indicative of the existence of competitive processes between aqueous
phosphates in the bacterial growth environment and S. aureus bacteria that influence the
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driving mechanisms of antibacterial action. We demonstrate interactions with optically
active defects associated with the production of excess Zn2+. The changes resulting from
these interactions are shown to occur due to either direct interactions of S. aureus with ZnO
surface oxygen deficiencies or the increased solubility of associated surfaces leading to
excess Zn2+ in the bacterial environment.

2. Materials and Methods
2.1. ZnO Synthesis

Commercial ZnO NPs (with the average size < 100 nm) were provided by Sigma
Aldrich (SA, St. Louis, MO, USA) and Zochem Inc (Dickson, TN, USA). MPs were syn-
thesized in-house using a bottom-up hydrothermal growth method previously described
in [29] as follows. ZnO microcrystals were grown from a D.I. water, a Zn salt in the form of
1 M Zn(CH3CO2)2·H2O and 1M (CH2)6N4 with 99.999% pure Zn foil supplied by Sigma
Aldrich as an additional Zn source. This solution was then allowed to react in an autoclave
at temperatures in excess of 90 ◦C to catalyze the reaction. After which, the resulting
solution underwent centrifugation and removal of the supernatant. The remaining solid
was then washed and dried with D.I. water and acetone. Adjustment of such parame-
ters as relative precursor concentrations, temperature, reaction time, pressure and pH
allowed for synthesis of ZnO MPs with a high quality of the crystalline free surface, tunable
size/morphology and a well-controlled relative abundance of polar and non-polar surfaces.

2.2. Bulk Physical and Chemical Characterization

Confirmation of the predominant surface morphology and chemical composition
of ZnO crystals was done by the SEM and EDXS techniques, utilizing a JEOL FE-SEM
instrument (JEOL, Peabody, MA, USA) at an operating voltage of 15 kV and a probe current
of 9.6 A. Samples were mounted onto a carbon tape on an aluminum mount before being
placed into the chamber. Alternate preparation was made for samples exposed to bacteria.
To prepare these for FE-SEM imaging, the remaining cultures from bacterial assays were
washed and then fixed in 1.6% glutaraldehyde for 1 h at room temperature. The samples
were dehydrated in a series of 10-min ethanol incubations at the following concentrations:
30%, 50%, 70%, 85%, 90%, and two times at 100%. The samples were then incubated with
hexamethyldisilazane overnight with the lid open until the excess liquid evaporated. The
dry pellets were crushed, transferred to a metal pedestal and sputter-coated with 8 nm
of gold in order to produce images of the bacteria. Surface area calculations and polarity
abundances were determined employing the ImageJ software (version 1.51) on the SEM
images. These tools were used before and after bacterial assays with ZnO incubated with S.
aureus in MHB, saline, or PBS.

2.3. Antimicrobial Assays

The baseline bactericidal potential in our samples was established by performing MIC
assays on S. aureus Newman strain, a methicillin-susceptible S. aureus strain. These assays
were performed in 3 different mediums; MHB (Fisher Scientific), saline, or PBS. Saline and
PBS were prepared by dissolving 4.0 g NaCl, 0.1 g KCl (saline) or 4.0 g NaCl, 0.1 g KCl, and
0.72 g anhydrous sodium phosphate-dibasic (PBS) in 500 mL of water, adjusting the pH to
7.4 and autoclaving. S. aureus was grown to early log phase (OD600 of 0.4) in MHB, washed,
and resuspended in MHB, saline or PBS and then diluted 1:100 in the respective medias.
Diluted S. aureus cultures were incubated at a 1:1 ratio with 5 mg/mL of ZnO suspended
in the same media-type for a final concentration of 2.5 mg/mL ZnO and 1:200 dilution of
log-phase S. aureus in 1.5 mL. Tubes were mixed by rocking or inverting at 37 ◦C and 200 µL
of culture from each tube was removed at the indicated time points, centrifuged at 100 rcf
for 2 min to pellet the ZnO particles, and serial dilutions of the supernatant were plated to
enumerate surviving CFU/mL. Larger volumes of ZnO samples used for optoelectronic
characterization used the same ratios as the survival assays but were scaled up to a larger
volume (2 × 50 mL tubes per condition).
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2.4. Optoelectronic Characterization

PL spectra were taken at temperatures ranging from 10 K to 300 K. ZnO powders were
pressed and mounted inside of an evacuated Janis CCS150 cryostat. Excitation at 325 nm
was achieved using a Kimmon IK HeCd continuous wave (CW) laser and an accompanying
optical train. The resulting luminescence spectra were collected by a Horiba Jobin Yvon
T64000 Triple Raman Spectrometer (Horiba, Piscataway, NJ, USA) with a Synapse CCD.
These optical studies were performed on the ZnO samples before and after their exposure
to the bacterial growth media both with and without the presence of S. aureus.

3. Results & Discussion

As previously reported [29], we employed the hydrothermal growth technique to
produce ZnO MPs of tunable size and morphology to probe the influence of ZnO surface
polarity on the underlying antibacterial behavior of ZnO at the micro and nanoscale. The
synthesized MPs, in conjunction with commercial NPs, were then used in antibacterial
assays and underwent optoelectronic characterization. Samples were characterized via FE-
SEM, EDXS and temperature-dependent PL to confirm size, crystal quality, surface polarity,
composition and optoelectronic properties. MIC and other bacterial exposure assays were
utilized to evaluate the antibacterial efficacy of different morphologies. Characterization
was performed before and after these assays to elucidate how such exposures impact
morphological and optoelectronic properties of ZnO.

FE-SEM was used to determine morphology and particle size distributions in the
investigated specimens, with some results shown in Figure 1. Commercial ZnO samples
(Figure 1a) have a relatively random distribution of NP morphologies, whereas the hy-
drothermally grown MPs span a range of rather well-defined morphologies. Figure 1b
depicts ZnO MPs with a characteristic hexagonal prism structure and a relative balance of
surface area between polar and non-polar surfaces. Figure 1c shows an example of MPs
with an elongation along the c-axis (rod-like structures) and hence an increased relative
abundance of non-polar faces. The opposite case is shown in Figure 1d where the radial
growth of MPs has outpaced the growth along the c-axis resulting in flatter plate-like
structures with predominantly polar free surfaces. These results demonstrate our ability to
produce crystals of tunable morphology with high quality of crystalline surfaces and edges.

In characterizing the MP samples, we sought to classify them according to their relative
abundances of polar to non-polar surface types (P/N ratio). For this, ImageJ surface area
analysis was performed, the results of which are shown in Table 1. We classify those with
a P/N ratio of >1.2 as hexagonal plates (HP), those with a P/N ratio of <0.6 as long rods
(LR) and those with intermediate values as balanced (B). We will use these classifications to
refer to the morphologies of the hydrothermally grown MP samples throughout this text.

Table 1. Ratio of polar and non-polar surface areas for selected hydrothermally grown samples.

Morphology Hexagonal Plates Balanced Long Rods

P/N ratio 4.22; 3.426 0.845; 0.677 0.475; 0.255

Electronic structure of ZnO NPs and MPs was studied by PL spectroscopy in a wide
range of temperatures and photon energies. E.g., Figure 2 juxtaposes luminescent properties
of ZnO NPs and MPs in the near-band edge (NBE) region and in the temperature range
from 10 K to 300 K. Nanoscale ZnO (Figure 2a) exhibits highly structured spectra at lower
temperatures. Here, along with the free excitonic (FEx) emission (at ~3.37 eV for 10 K)
one can see at lower energies well-defined bound exciton (BEx) peaks and their associated
phonon replicas. As the temperature increases, BEx luminescence gradually dissociates and
the broad FEx band dominates. This is in contrast with the NBE spectra shown in Figure 2b
for ZnO MPs. Here, we see a suppression of the FEx luminescence in conjunction with
significant broadening of the BEx spectral feature. This behavior could be associated with
a high concentration of surface-bound excitons as opposed to those bound to bulk point
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defect sites. Excitons bound to surface trap states exhibit broader spectral lines due to the
decreased localization [31]. Such observation points to possibly a greater abundance of
surface trap states in hydrothermally grown ZnO MPs compared to their commercial NP
counterparts, which in turn could affect interactions between bacteria and ZnO crystalline
surfaces.
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Figure 2. Temperature dependencies of PL spectra for: (a) as-received commercial ZnO NPs and
(b) as-grown ZnO MPs.

Furthermore, we observed that the NBE luminescence changes with the MP sample
morphology. Figure 3 illustrates this trend in the room temperature (RT) NBE emission.
One of the explanations of this behavior could be associated with changes in the crystal field
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or the orbital symmetry of the vacant Zn2+ 4s and the occupied O2− 2p states as we change
scales. Depending on the relative abundance of polar vs. non-polar surfaces in ZnO MPs,
such a change can be attributed to either differences in the charge carrier concentrations at
and near the surface or the density of occupied surface trap states. It has been reported [32]
that an excess of surface trap states at polar surfaces influences the core level binding
of the Zn 2p orbital energy, shifting it toward higher values. In particular, this has been
demonstrated for the surface states related to oxygen vacancies [32,33]. Alternatively, such
trap states may preferentially attract passivating compounds from the ambient during
growth. These adsorbates would act as acceptor states depleting surface states, which
results in surface band bending [34,35].
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Figure 3. Room temperature PL spectra, normalized to the peak NBE emission, of the NBE region for
as-grown ZnO MPs with different morphologies.

In addition, comparing the deep defect luminescence of samples with primarily polar
to primarily non-polar morphologies (Figure 4), one can observe a comparable intensity
of an emission band centered around ~2.1 eV (Figure 4a), attributed by many authors to
Zn vacancies [36–38]. These defects do not appear to be dependent on the predominant
surface polarity, but rather on the crystal nucleation and growth conditions.
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Significant differences appear at higher energies, especially when subtracting the two
spectra (Figure 4b). One can see for the more polar morphology a pronounced increase of
the intensity of the emission band centered at ~2.46 eV. This peak is commonly attributed to
oxygen deficiency [39]. This observation is consistent with the observed shifts in the NBE
peak energy shown in Figure 3, whence the presence of such deficiency and the previously
noted abundance of surface trap states would suggest an excess of Zn2+ ions at the polar
surfaces of ZnO MPs. Thus, this is an indication of chemical and electronic distinction of
the polar surfaces from their non-polar counterparts.

All of the samples studied here were exposed to S. aureus bacteria. OD600 results from
MIC assays with ZnO NPs are depicted in Figure 5. We find that nanoscale particles exhibit
an MIC at ca. 2.5 mg/mL, which is comparable to the MIC previously reported for our
hydrothermally grown ZnO microparticles [29]. It should be noted that those results do not
indicate differences detectable at this stage in antibacterial action for samples of different
synthesis origins and morphological nature.
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This result appears contradictory as the current literature reports on the increasing
growth inhibition with the decrease of particle size [4,40,41]. This contradiction could be
explained by the fact that in our MIC studies we utilized a novel approach of continuous
inversion to maintain contact between bacteria and ZnO particles. Moreover, it is possible
that there exist simultaneously multiple modes of antibacterial action in ZnO. Accepting
proposed models of NPs internalization [42,43] to explain the reported correlation between
the size and cytotoxicity, one should take into consideration the enhancement of other
modes such as surface-surface interactions in our microparticle solutions. By using inver-
sion during incubation, we ensure a consistent interaction between crystalline free surfaces
and bacteria by increasing the frequency of such interactions, hence improving the overall
cytotoxicity. Such an increase may not be observed at the nanoscale as FE-SEM images in
Figure 6a show that ZnO NPs do not exhibit the significant, large-scale surface degradation
observed in ZnO MPs (Figure 6b). This could be attributed to differential effects of particle
solubility.
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Figure 6. FE-SEM images comparing the differences in bacterial interaction of S. aureus with the free
crystalline surface of differing scales of ZnO in MHB where (a) shows interaction with commercial
ZnO NPs and (b) shows interactions with hydrothermally grown ZnO MPs [29].

The aforementioned surface degradation in MPs demonstrates that they undergo only
partial dissolution of the crystalline surfaces. NPs, on the other hand, experience more
complete solubility due to the much smaller volume of available bulk and hence they do
not exhibit a notable increase in surface area. Additionally, these SEM images indicate
adsorption of ZnO NPs to the bacterial surface not observed in MP samples. This behavior
may further limit availability of surface-surface interactions as NPs occupy interaction sites
of the bacterial surfaces thus restricting areas available for potential interaction with other
surfaces or uptake of potentially cytotoxic ions and compounds.

Besides and importantly, in addition to differences in ZnO particle responses to bacte-
rial environments we observe formation of secondary crystalline phases in solutions after
such interactions. These new crystals, depicted in Figure 7, are orders of magnitude larger
than the initial ZnO particles and exhibit pyramidal morphologies regardless of that of the
ZnO precursors.

The secondary crystalline phase crystals are found in all biological environments
utilized in this study except the saline solution without bacteria. It should be noted that only
a very small concentration of such crystals was observed in saline environments containing
S. aureus. We find that the quantity of these crystals is increasing with the concentration
of aqueous phosphates. The secondary crystalline phase is the most prevalent in PBS
containing S. aureus. This lines up well with the EDXS results shown in Figure 8. Here, one
finds significant concentrations of Zn, O and P with residual carbon from the tape utilized
in mounting for SEM. Obviously, phosphorus is not originally present in saline media in
any appreciable quantity. The morphology and chemical composition of these pyramidal
crystals are indicative of monoclinic zinc phosphides [44–46] though further structural
studies are needed to confirm their exact nature. Observation of such crystalline phases
has been reported previously for ZnO NPs within metal–organic frameworks [47]. In those
studies, the phosphorus-containing phase was classified as zinc phosphate hydrate, was
present at negligible abundances and thus was not the focus of the discussion about its
effect on antibacterial action. Moreover, this phase was present in a form of a relatively
random assortment of nanoscale morphologies as opposed to the pyramidal microparticles
observed herein.
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Figure 8. EDXS analyses of secondary crystalline phases following exposure to biological environ-
ments. SEM images indicate the EDXS scan area, in blue, on the observed secondary crystalline
phase resulting from commercial ZnO NPs after exposure to (a) PBS and (b) PBS containing S. aureus
bacteria. The resulting EDXS spectra are shown for commercial ZnO NPs after exposure to (c) PBS
and (d) PBS containing S. aureus bacteria. For both spectra the reported atomic concentrations are as
follows: Zn 8 ± 1%, O 64 ± 1%, P 7 ± 1%, C 21 ± 1%.
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Formation of these crystals can be attributed to two different processes. In one of them,
ZnO particles serve as nucleation sites for development of the secondary larger structures.
Alternatively, partial dissolution of ZnO particles results in excess Zn2+ ions which then re-
act with the aqueous phosphorus compounds and crystallize. Considering the composition
and structure of the secondary phase crystals in addition to the solubility of ZnO observed
in biological environments (Figure 6), an argument for the latter explanation can be made.
Formation of these larger crystals in bacteria-free environments further demonstrates that
these crystals are the result of media-specific interactions. PBS alone produces significant
concentrations of this phase without bacteria to mediate any interactions with the ZnO
particles. That is not to say that bacteria are irrelevant in this process. They do produce
secondary phase crystals in saline solution although not in any meaningful quantity. This
may be the result of bacteria-bacteria interactions or ZnO-bacteria interactions. In low
phosphate environments S. aureus has been shown to produce teichoic acid degrading
enzymes thus leading to leaching of phosphate compounds from the bacterial cell wall of
other staphylococci [48]. These compounds may potentially interact with free Zn2+ ions
and crystallize. Additionally, interactions with ZnO particles or their products result in
disruption of the cellular membranes releasing phosphorus compounds into solution for
crystallization to occur. Differences in the surface quality of this secondary phase are seen
in the presence of bacteria. This may indicate differences in the phosphate compounds
present in the media compared to those freed from the cell wall. To that, a slight increase
in the concentration of aqueous phosphorus compounds due to bacteria leads to more
favorable growth conditions. More detailed studies into the nature and growth mechanics
of these crystals are required to make a definite determination.

The development of this crystalline phase is significant in the context of the antibacte-
rial mechanisms of ZnO as it is associated with a significant decrease in bacterial growth
inhibition (Figure 9). One can observe a decrease in the bacterial growth inhibition over
the range of two orders of magnitude in PBS solutions where these secondary crystals are
abundant as opposed to the case of saline which is comparatively sparsely populated with
the secondary phase. Inclusion of controls for bacterial growth in media without ZnO
particles demonstrates that this is not a byproduct of media interactions with bacteria but
rather an interplay between media, ZnO and bacteria.
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We suggest that there exist competitive processes between ZnO, bacteria and growth
media. The competition for “resources” toxic to bacteria or changes in the interaction
intensity between bacteria and ZnO caused by the presence of aqueous phosphates, or
the development of the secondary phase would result in a decrease in bacterial growth
inhibition. Aqueous phosphates may occupy surface trap states hence restricting them
from serving as interaction sites with bacteria. Alternatively, formation of the phosphorus-
containing crystals may reduce free ion concentration of Zn2+ in solution thus reducing
their availability for toxic uptake of these ions by S. aureus. Furthermore, the secondary
phase crystals themselves may serve as interaction sites for bacteria. In Figure 7d we see
a significant interaction of bacteria with these crystals creating extended surface defects
that may propagate deeper into the bulk. Such interactions replace potential harmful
interactions with ZnO thus increasing survivability of the bacterial population.

Further evidence of such competitive interactions is seen in the room temperature PL
spectra of ZnO particles after exposure to these biological environments. At both the nano-
and microscale we observe significant shifts in the NBE peak luminescence energy. For ZnO
NPs (Figure 10) we observe a redshift in the NBE emission at RT for both saline and PBS
environments with and without the presence of S. aureus. Spectra for saline environments
exhibit a minor shift of ~25 meV with little to no difference observed in the presence of S.
aureus. For the case of PBS, a larger shift of ~100 meV in the peak energy is observed and
the presence of bacteria has a more significant impact. In this environment, the addition of
S. aureus reduces the observed shift to only ~50 meV.
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Figure 10. Room temperature PL spectra of the NBE region normalized to the NBE peak intensity for
commercial ZnO NPs after exposure to biological environments.

On the other hand, for ZnO MPs there is a blue shift in the peak energy in response to
exposure to the environments studied (Figure 11). This difference in directionality of the
observed shift is not necessarily indicative of differences in the nature of their interactions
but more likely a size effect as the extended surface defects observed in Figure 6 would
serve to increase the free surface area in ZnO MPs whereas the more complete dissolution
of NPs reduces the free surface area with accompanying changes in their respective band
gap energies.
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Figure 11. Room temperature PL spectra of the NBE region normalized to the NBE peak intensity
for a type B ZnO MP sample after exposure to S. aureus in PBS as well as PBS and saline media in
isolation.

This blue shift may also be attributed to adsorption of aqueous phosphate molecules
and complexes to surface trap states. As discussed previously, this would result in the
passivation of these states and would influence the surface band bending. Despite this
change, the effects of bacteria would remain the same as in the case of NPs where a
negligible effect is observed in saline environments and a notable reduction of this shift
in PBS. This suggests identical interactions of bacteria, either with ZnO or with those
media components responsible for the observed shift in PBS. It is known that S. aureus
requires phosphates for certain metabolic processes [49,50]. Therefore, bacteria may actively
desorb the adsorbed phosphorus-containing compounds from the ZnO surfaces. It can
be concluded that bacteria may be interacting with and thereby freeing the surface traps
occupied by aqueous phosphates or merely consuming compounds involved in their
passivation. This model supports the idea of competitive interactions between bacteria and
PBS with ZnO.

One possible route of this competition may be contest for the free Zn2+ ions. Previous
studies addressed the role of growth media on Zn2+ production as a means to determine the
overall solubility of ZnO NPs [51–53]. It was reported that in PBS there exist negligible free
ion concentrations, despite the introduction of ZnO NPs. The authors concluded that ZnO
is relatively insoluble in such environments or that aqueous phosphates in solution either
preferentially bind to ZnO surfaces that would ordinarily act as a source of free ion release
or that such compounds are highly reactive with Zn2+ ions [53]. The clearly observed
surface degradation of our MPs (Figure 6), in addition to the observed development of
the secondary crystalline phase (Figure 7) rules out the notion that ZnO is insoluble in
phosphate-rich environments. Our results indicate that aqueous phosphates both react
significantly with free Zn2+ ions and bind to surface trap states which would ordinarily act
as sources of free ion release.

In Figure 12 we show room temperature PL spectra of the deep defect region after
exposure to bacterial growth environments. One can observe that the intensity of the
deep defect luminescence is modified following the exposure to biological environments.
There is a significant increase of the overall intensity of the deep defect luminescence in all
exposed samples with those exposed to saline exhibiting the greatest luminescence and to
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PBS—the lowest. An increase in deep defect luminescence is consistent with the extended
degradation of the free crystalline surfaces shown in Figure 6.
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Figure 12. Room temperature PL spectra of deep defect luminescence regions normalized to the noise
floor for a type B ZnO MP sample at 300 K after exposure to S. aureus in PBS as well as PBS and saline
media in isolation.

The presence of S. aureus bacteria again counteracts the effects of PBS by enhancing
the luminescence in samples exposed to bacterial growth environments while having a
negligible impact in saline. The nature of the deep defect luminescence is also modified.
Prior to the exposure there was an imbalance in peaks attributed to Zn and O deficiencies.
O deficiency was rather pronounced in the PL spectra, especially in samples with more
polar surfaces (Figure 4). These morphology differences may impact their potential for
bacterial growth inhibition. An abundance of surface trap states and presence of oxygen
deficiencies at the surface would lead to an excess of Zn atoms at polar surfaces which can
be released and taken in by S. aureus. This can be mediated by the solubility of the crystalline
surface in the ambient or a direct surface contact with bacteria. After exposure we see in
all environments a reduction of the relative intensity of the peak at ~2.46 eV associated
with O deficiency. This is indicative of media interactions resulting in the dissolution of
the free crystalline surface releasing free Zn2+ ions into solution. The decrease in deep
defect luminescence in PBS may point to a decreased solubility of ZnO in this environment
or, more likely, a stabilization of the crystalline structure via surface defect occupation
by aqueous phosphates. Such occupation of surface defect trap states occurs likely at
the expense of bacterial interactions since in the presence of bacteria the deep defect
luminescence increases (i.e., increased interaction with the surface states).

Therefore, the source of competition between the phosphate-rich growth media and
S. aureus may center around the direct interaction with the surface trap states instead of,
or in addition to, the free Zn2+ ion consumption. Earlier in this paper (cf. discussion of
Figure 2) we considered discrepancies in the excitonic spectral structure of as-received
ZnO MPs vs. NPs and suggested influence of different abundances of surface trap states.
When comparing the low temperature excitonic spectra for ZnO NPs before and after
exposure to S. aureus bacteria in MHB one can see a significant suppression of luminescence
in this spectral region after exposure (Figure 13). This difference is most prominent in
the surface BEx region ~3.368 eV (surface defect bound excitons) followed by the FEx
emission ~ 3.378 eV with a more minor effect on the bulk defect bound excitonic peaks.
The suppression in the intensity of the surface BEx emission may indicate adsorption of
various compounds onto the surface defect traps or removal of these sites by bacteria.
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When considering the large shift in ZnO NP NBE luminescence in phosphate rich
media and the suppression of this shift in the presence of S. aureus in conjunction with the
decrease of antibacterial efficacy in these environments one can conclude that interaction
with the surface trap states is a highly competitive process between both phosphate rich
media and S. aureus bacteria. Occupation of defect sites by aqueous phosphates would
prevent their interaction with bacteria and thus the abundance of surface trap states may
contribute to bacterial growth inhibition. If so, this mechanism would be enhanced at the
microscale, supporting our hypothesis that the similarities in cytotoxicity can be explained
by different competing mechanisms with relative dominance depending on the particle
scale.

We investigated the effects of bacterial exposure on the optoelectronic response of
ZnO MPs with different morphologies. In Figure 14 showing the NBE PL spectra for type
LR and HP samples before and after exposure to S. aureus in MHB, it can be seen that
regardless of the predominant surface type a blue shift in the NBE peak energy is observed.
The crystals with more polar surfaces are less influenced by this interaction (Figure 14a)
in comparison to their less polar counterparts (Figure 14b). This may occur due to an
increase in the surface charge carriers or due to occupation of surface trap states at the
non-polar surfaces. In the first case, the more polar samples exhibit a higher initial excess
of surface and near-surface charge thus saturating much quicker whereas the non-polar
surfaces can experience a larger shift before reaching this point. In this case, interactions
with the bacterial growth media result in a charge transfer to the ZnO free surface either
from the bulk or the bacterial cell wall. In the second case, the more non-polar surfaces,
initially less saturated with oxygen deficiency (cf. Figure 4a), will be more susceptible to
develop additional oxygen vacancy and zinc interstitial defects, leading to greater shifts
of the NBE peaks (Figure 14b). On the other hand, the more polar surfaces, with initially
greater amount of such defects, will gain less of oxygen deficiency leading to smaller shifts
of the NBE peaks (Figure 14a). The generation of such surface defects may be the result of
the particle solubility due to the media interactions discussed above. Thus more sites for
bacterial interaction could be created leading to a comparable growth inhibition observed
for our MPs in previous studies [29]. We suggest that in the absence of the growth media
effects, the antibacterial interactions occur at higher rates on polar surfaces where the
surface trap states are of greater abundance. Such impact of surface polarity could explain
the driving mechanisms behind the observed bacterial growth inhibition and merits further
investigation.
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4. Conclusions

ZnO particles at the nano- and microscale demonstrate potential to serve as critical
components of antibacterial coatings and agents capable of combatting both wild type and
traditionally antibiotic-resistant strains of bacteria. As such, the findings herein provide
insight as to conditions of both the media and free crystalline surfaces that could maximize
performance in these applications. In this work we studied commercial ZnO NPs and
hydrothermally in-house grown MPs before and after exposure to PBS, saline and MHB
bacterial growth media with or without S. aureus bacteria. These hydrothermally grown
MPs exhibit a greater abundance of surface defects than the commercial NPs. Differences
in the NBE and deep defect regions of PL spectra for differing morphologies of ZnO MPs
point to the polar surfaces being more oxygen deficient than non-polar surfaces. Despite
these differences, MIC antibacterial assay results show comparable levels of cytotoxicity
across scales and morphologies. Based on these observations we suggest that multiple
competing mechanisms of antibacterial action in ZnO may be at play. Moreover, particle
sizes and/or morphologies may affect which of the inhibitory mechanisms dominate. This
hypothesis is supported by differences in the post-assay surface degradation observed
with FE-SEM and discrepancies in the spectral signatures of optically active defects probed
with PL. Our results demonstrate significant defect-mediated growth media-bacteria-ZnO
interactions at all scales. Additionally, we find a significant development of a secondary
phosphorus-containing crystalline phase during these interactions. Formation of this phase
strongly correlates with a decreased bacterial growth inhibition. This fact emphasizes the
role of the growth media, particularly those containing aqueous phosphates, in both the
solubility of ZnO and its interactions with bacteria. We propose that competitive processes
exist between aqueous phosphates and S. aureus bacteria affecting driving mechanisms of
antibacterial action. In particular, changes observed for optically active defects points to
production of excess Zn2+. This, in turn, may occur either due to the direct interaction of
S. aureus with surface defects or the increased solubility of associated surfaces leading to
excess Zn2+ in the environment.
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