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The neural representation of a repeated stimulus is the standard against which a deviant
stimulus is measured in the brain, giving rise to the well-known mismatch response.
It has been suggested that individuals with dyslexia have poor implicit memory for
recently repeated stimuli, such as the train of standards in an oddball paradigm. Here,
we examined how the neural representation of a standard emerges over repetitions,
asking whether there is less sensitivity to repetition and/or less accrual of “standardness”
over successive repetitions in dyslexia. We recorded magnetoencephalography (MEG)
as adults with and without dyslexia were passively exposed to speech syllables in a
roving-oddball design. We performed time-resolved multivariate decoding of the MEG
sensor data to identify the neural signature of standard vs. deviant trials, independent of
stimulus differences. This “multivariate mismatch” was equally robust and had a similar
time course in the two groups. In both groups, standards generated by as few as
two repetitions were distinct from deviants, indicating normal sensitivity to repetition in
dyslexia. However, only in the control group did standards become increasingly different
from deviants with repetition. These results suggest that many of the mechanisms that
give rise to neural adaptation as well as mismatch responses are intact in dyslexia, with
the possible exception of a putatively predictive mechanism that successively integrates
recent sensory information into feedforward processing.

Keywords: dyslexia, mismatch, repetition, adaptation, magnetoencephalography, multivariate pattern analysis,
neural decoding

INTRODUCTION

The neural response to a change in repetitive stimulation – the mismatch response – is a hallmark
of central auditory processing, dependent not only on novel, “deviant” input, but on a sensory-
memory trace of the preceding “standard” stimulus (Näätänen et al., 2005). Studies have suggested
that individuals with dyslexia, a specific reading disability, have a deficit in implicit memory that
limits their perceptual learning in repetitive contexts (Ahissar and Jaffe-Dax, 2018). In this study,
we leveraged the theory that the mismatch response depends on forming a representation of an
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expected “standard” stimulus through repetition in order
to ask whether the neural representation of a standard is
impoverished in dyslexia.

The change-specific component of the cortical evoked
response is termed the mismatch negativity (MMN) when
measured with electroencephalography (EEG) and the mismatch
field (MMF) or magnetic MMN (MMNm) when measured
with magnetoencephalography (MEG) (for reviews, see
Näätänen, 2001; Näätänen et al., 2007; Fitzgerald and Todd,
2020). Elicitation of the mismatch does not require the
participant’s attention, only that the brain discriminate the
deviant stimulus from the standard stimulus. The discovery that
mismatch responses, usually calculated as (amplitudedeviant –
amplitudestandard), are diminished in some clinical populations,
including individuals with dyslexia and young children at risk
for dyslexia, has led to their widespread use in studies of auditory
processing and cognition [reviewed in Näätänen et al. (2012)]. In
these studies, the primary focus is on how the quality or quantity
of stimulus deviance relates to the size of the mismatch (e.g.,
Kujala et al., 2006; Bonte et al., 2007; Noordenbos et al., 2012).

However, the flip side of change detection is regularity
violation (Näätänen et al., 2012). It is possible that a relative
insensitivity to repetition contributes to findings of an abnormal
mismatch response in dyslexia, particularly for speech stimuli
(Schulte-Körne and Bruder, 2010; Gu and Bi, 2020). Repetition
can set the stage for an enhanced response to a subsequent novel
stimulus via different mechanisms. For one, it can habituate
the neural response in a primarily feedforward manner, such
that the deviant brings fresh afferent activity and causes a
release from adaptation (May and Tiitinen, 2010). For another,
it can establish an internal model of expected stimulation,
such that each expected repetition further reduces the neural
response [expectation suppression (Todorovic et al., 2011)], while
an unpredicted deviant triggers an increase in neural response
known as prediction error (Wacongne et al., 2012).

Recent work from our lab suggests that neural and perceptual
adaptation deficits in dyslexia (Ahissar et al., 2006; Perrachione
et al., 2016; Peter et al., 2019) are attributable to abnormalities
in the latter mechanism, and specifically to poor integration
of predictions into intact feedforward processing (Beach et al.,
2022). In that study, we measured neural responses to pairs
of stimuli with orthogonal manipulations of the expectation of
repetition (which was explicit) vs. the repetition itself. However,
one question that this paradigm could not address is whether
individuals with dyslexia are less able to extract “standardness”
from the ongoing sensory environment, akin to a deficit in
statistical learning (Gabay et al., 2015; Vandermosten et al.,
2019). A second unanswered question is whether increasing
standardness has a cumulative effect on the processing of
subsequent stimuli. In a predictive coding framework (Rao and
Ballard, 1999; Baldeweg, 2006), such a phenomenon might reflect
successive updates to a model of stimulus consistency that
underlies perceptual inference and learning.

To determine whether the neural processes that generate an
increasingly robust standard representation are compromised
in dyslexia, we analyzed MEG data recorded as adults with
and without dyslexia (Table 1) were passively exposed to a

roving-oddball paradigm composed of “trains” of consonant-
vowel speech syllables (Figure 1). Each train consisted of
four to six repetitions of the same stimulus. The first token
in each train is thus always a deviant, and as it repeats, it
becomes the new standard. Second through sixth presentations
are considered standards at various levels of repetition. We used
multivariate pattern analysis to decode the neural signature of
standardness vs. deviance – what we will call the multivariate
mismatch – with millisecond resolution. The outcome measures
of interest were decoding significance, representing its reliability
within and across individuals; decoding accuracy, representing
the strength of standard-vs.-deviant information; and decoding
latency, representing the efficiency with which the standard-vs.-
deviant distinction arises.

We first lay out some of the characteristics of the multivariate
mismatch: when it arises in the course of auditory processing,
when it peaks, and how long it lasts. We use temporal
generalization to describe its dynamics across the trial. We then
explore the tradeoff between deviance and standardness in neural
responses by determining how many repetitions are needed
to make a standard that is distinguishable from a deviant. If
dyslexia is characterized by a relative insensitivity to repetition,
we might expect to see that a significant mismatch requires a
more established standard in this group. Finally, we investigate
the role of repetition history by comparing the strength of the
mismatch across different levels of repetition. If the incorporation
of predictions is reduced in dyslexia, we might expect to see
that standardness accrues over repetitions in typical readers, but
not in dyslexia.

RESULTS

Standard-vs.-Deviant Decoding Is
Robust in Control and Dyslexia
We first ensured that the roving-oddball paradigm (Figure 1)
elicited neural responses to the deviant that were distinct from
those evoked by all other (standard) stimuli combined. Given
prior reports of diminished or absent mismatch responses in
dyslexia, we compared the accuracy and latency of standard-
vs.-deviant decoding between groups to determine if the
multivariate analog of the mismatch was weaker or delayed
in dyslexia. Decoding was performed on individuals’ MEG
sensor-level data at 1-ms resolution using linear support
vector machines, yielding a measure of standard-vs.-deviant
classification accuracy over time.

The average time course of decoding accuracy is plotted in
Figure 2A, showing remarkable consistency across the groups
from sound onset at 0 ms, where accuracy is near chance, until
the traces begin to diverge slightly around 350 ms. A peak
accuracy of 66% in each group is achieved at 280 ms in Dyslexia
and 286 ms in Control. Two-sample cluster-corrected sign-
permutation tests (cluster-defining threshold p < 0.05, corrected
significance level p < 0.05) confirmed that the groups’ traces did
not differ from one another. Moreover, neither the onset latency
of significant decoding nor the latency of peak decoding accuracy
differed between the groups (two-sample bootstrap tests). Thus,
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TABLE 1 | Behavioral characterization of the Control and Dyslexia groups.

Control Dyslexia Difference

Test Subtest Mean ± SD Range Mean ± SD Range t p d

KBIT-2 Matrices 114.75 ± 13.28 86–130 107.00 ± 15.25 86–132 1.88 0.07 0.54

WRMT-III Word identification 110.17 ± 7.87 98–130 90.63 ± 9.39 77–113 7.82 <0.0001 2.26

Word attack 101.50 ± 8.29 93–121 78.83 ± 9.95 59–107 8.58 <0.0001 2.48

Listening comprehension 107.83 ± 6.75 99–120 102.17 ± 11.03 77–120 2.15 0.04 0.62

TOWRE-2 Sight word efficiency 108.63 ± 12.37 90–130 89.71 ± 9.42 73–111 5.96 <0.0001 1.72

Phonemic decoding efficiency 104.29 ± 6.80 92–115 84.00 ± 8.50 61–97 9.13 <0.0001 2.64

GORT-5 Oral reading index 105.75 ± 8.76 84–121 85.08 ± 11.65 62–105 6.94 <0.0001 2.01

CTOPP-2 Elision 9.63 ± 1.91 4–12 7.92 ± 2.55 3–11 2.63 0.01 0.76

Blending words 11.79 ± 2.30 8–16 10.75 ± 2.74 3–14 1.43 0.2 0.41

Non-word repetition 8.79 ± 2.23 6–13 6.38 ± 1.58 3–10 4.33 <0.0001 1.25

WAIS-IV Digit span total 10.79 ± 2.62 6–19 8.79 ± 2.40 5–16 2.76 0.008 0.80

KBIT-2, Kaufman Brief Intelligence Test – Second Edition (Kaufman and Kaufman, 2004); WRMT-III, Woodcock Reading Mastery Tests – Third Edition (Woodcock, 2011);
TOWRE-2, Test of Word Reading Efficiency – Second Edition (Torgesen et al., 2012); GORT-5, Gray Oral Reading Test – Fifth Edition (Wiederholt and Bryant, 2012);
CTOPP-2, Comprehensive Test of Phonological Processing – Second Edition (Wagner et al., 2013); WAIS-IV, Wechsler Adult Intelligence Scale – Fourth Edition (Wechsler,
2008); d, Cohen’s d. All scores are age-based standard scores.

FIGURE 1 | Stimuli and experimental design. (A) Stimuli were selected for each participant based on their behavioral responses in a categorical perception task in
which participants heard, in pseudorandom order, 40 presentations of each of 10 stimuli forming a /ba/-/da/ continuum. They labeled each token as either ba or da
with a button-press. We fit a logistic function to the response-ratio data to identify the location of the participant’s categorical boundary. The continuum step nearest
the inflection point was selected as stimulus C and the other four stimuli were distributed evenly across the continuum. For Example Participant 1, whose sigmoidal
fit is shown in black, the odd-numbered stimuli were selected (black boxes A–E). For Example Participant 2, whose sigmoidal fit is shown in gray, the even-numbered
stimuli were selected (gray boxes A–E). (B) A schematic for the roving-oddball paradigm shows that trains of length four, five, or six were presented one after another
for the duration of the experiment. Each train consisted of repetitions of the same stimulus (A–E), with the 1st presentation serving as the deviant and the 2nds
through 6ths serving as the standards. The syllable stimuli were 310 ms in duration and the stimulus onset asynchrony was 575 ms. A total of 3,000 stimuli were
presented in approximately 28 min, with all twenty possible standard-to-deviant stimulus transitions sampled.

the multivariate mismatch to speech syllables appears similar in
strength and timing in the two groups.

Temporal Dynamics of the Multivariate
Mismatch
Cluster-corrected sign-permutation tests (cluster-defining
threshold p < 0.05, corrected significance level p < 0.05) were
used to establish that decoding accuracy was above chance in
each group, beginning around 120 ms and continuing for more
than 400 ms (horizontal lines in Figure 2A; Control, p = 0.0002;
Dyslexia, p = 0.0002). Because this effect was protracted in time,
we sought to uncover some of the neural dynamics underlying
the sustained decoding of deviants from standards by evaluating
whether classifiers trained at one time point could generalize

to other time points. The logic of the temporal-generalization
approach is that, if the deviant evokes a series of distinct patterns
of brain activity, a classifier optimized to discriminate stimuli at
one time will be ineffective at other times in the trial. If activity
is persistent, however, a classifier will successfully generalize to
other times in the trial.

Temporal generalization matrices, with classifier training
time on the x-axis and classifier testing time on the y-axis,
are shown in Figure 2B (Control) and Figure 2C (Dyslexia).
The white diagonal line indicates the traditional decoding
analysis in which a separate classifier is trained and tested at
each time point independently. Off-diagonal decoding indicates
generalization across time, with significant periods outlined
in black (one-sided sign-permutation tests, cluster-defining
threshold p < 0.05, corrected significance level p < 0.05).
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FIGURE 2 | Standard-vs.-deviant decoding is similar in Control and Dyslexia. (A) Time course of decoding accuracy averaged over n = 24 Control (blue) and n = 24
Dyslexia (red) participants. For each participant separately and at each time point independently, a classifier was trained to distinguish deviant trials from standard
trials, where deviants were the 1st tokens in a train and standards were the 2nd, 3rd, 4th, 5th, and 6th tokens. Data from all trials were included, so there were no
stimulus differences between deviants and standards. Standard-vs.-deviant decoding is significantly above chance after 100 ms, as indicated by the horizontal lines
in corresponding colors, and reaches its peak accuracy, on average, 282 ms after sound onset. (B,C) Temporal-generalization matrices averaged within the Control
and Dyslexia groups. On the diagonal (white line) is the traditional decoding analysis, in which a classifier is trained and tested at each time point [corresponding to
(A)]. Off the diagonal are decoding accuracies for classifiers trained at one time point (x-axis) and tested at every other time point (y-axis). Regions of significantly
above-chance temporal generalization are outlined in black.

Significant generalization began shortly after 100 ms in both
groups and lasted throughout the trial (Control, p = 0.0002;
Dyslexia, p = 0.0002). The broad diagonal pattern observed in
both Control and Dyslexia denotes successive phases of activity
with a degree of maintenance over time.

The average generalization matrix of each group also
demonstrated an asymmetrical pattern of off-diagonal decoding
(red regions in Figures 2B,C), such that classifiers trained around
300 ms robustly generalized backward in time for approximately
50–100 ms. Classifiers trained around 250 ms did generalize
forward in time, but with lower accuracy. This asymmetry likely
reflects an increase in neural activity causing an improvement in
the signal-to-noise ratio (SNR) from 250 to 300 ms, as accuracy
is higher when a classifier is trained on high-SNR data and tested
on low-SNR data than the converse (King and Dehaene, 2014).
Overall, these results indicate that the neural activity that is
unique to the deviant is both prolonged in time and dynamically
changing over time.

Standard vs. Deviant Is Robustly
Decoded in Control and Dyslexia at All
Levels of Repetition
To determine how deviance declines and standardness emerges
with repetition, we trained linear support vector machines to
classify whether trials were standard or deviant. Across five
separate decoding analyses, we varied the repetition history of
the standards, i.e., whether they were 2nd, 3rd, 4th, 5th, or
6th repetitions of the same stimulus. The deviants were held
constant across analyses: they were always the 1st stimulus in
each train, representing a change from the previous train of
stimuli. Classifiers were trained and tested at each time point
independently and within each participant separately, and thus
we obtained one time course of decoding accuracy per participant
per analysis. To evaluate whether decoding accuracy was above
the 50% chance level in each participant group, we performed
one-sided sign-permutation tests on the subject-specific time

courses, with familywise error controlled across time points with
cluster-based inference. If, for example, 2nd repetitions retain
elements of deviance in their neural representations, we would
expect the classifier to be unable to distinguish them from 1st
presentations. Additionally, if individuals with dyslexia are less
sensitive to repetition, we would expect to see that significant
decoding only obtains after more repetitions of the standard.

Figure 3A shows that significant decoding was obtained
in all five cases for both groups, indicating that the neural
representation of “standardness” has already replaced “deviance”
during the 2nd presentation of a stimulus. Significant time points
are indicated by horizontal lines in corresponding colors below
the traces (one-sample sign-permutation tests, cluster-defining
threshold p < 0.05, corrected significance level p < 0.05; Control
p’s between 0.0002 and 0.039; Dyslexia p’s between 0.0002 and
0.0004). The time courses show a steep rise in decoding accuracy
beginning around 100 ms after stimulus onset, reaching peak
accuracies of 70–80% around 300 ms. Accuracies then reach a
lower plateau between approximately 400 and 500 ms before
declining sharply. As suggested by the groups’ similar traces in
each panel of Figure 3A, decoding accuracy was not significantly
higher in one group than the other for any of the five analyses
(two-sample sign-permutation tests, cluster-defining threshold
p < 0.05, corrected significance level p < 0.05). This indicates that
the multivariate mismatch is similarly robust in the two groups.

The Strength of the Multivariate
Mismatch Depends on the Number of
Trials
The relatively lower decoding accuracies for 1sts vs. 5ths and 1sts
vs. 6ths, in which standardness should be robustly established,
was contrary to predictions. We suspected that these lower
accuracies were because, compared to 2nds, 3rds, and 4ths,
there were fewer 5ths and still fewer 6ths with which to train
the classifier (Table 2), and this resulted in noisier and less
accurate classification. We tested our hypothesis by repeating the
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FIGURE 3 | Decoding deviant vs. standard as a function of repetition history and number of trials. (A) Time courses of decoding accuracy as a function of the level
of repetition of the standard. In each subplot, classifiers were trained to distinguish deviant trials from standard trials, where standards were, from left to right, the
2nd, 3rd, 4th, 5th, or 6th tokens in their train. Within-participant decoding results are shown as group averages (Control, blue; Dyslexia, red). Time points of
significantly above-chance decoding are indicated by horizontal lines in corresponding colors below the traces (one-sample sign-permutation tests with
cluster-based correction). No significant differences between groups in accuracy were identified (two-sample sign-permutation tests with cluster-based correction).
(B) As in (A), but in order to investigate the effect of trial numbers on decoding accuracy, we took a random subset of each participant’s 2nd, 3rd, 4th, and 5th
standard trials equal to their number of usable “6th” before repeating the decoding analysis. This procedure significantly reduced decoding accuracy in every case
[sign-permutation tests on differences from (A) to (B)].

TABLE 2 | Number of usable trials by type and group.

Presented Remaining after artifact rejection

Control Dyslexia Difference

Type Subtype Mean ± SD Range Mean ± SD Range t p d

Deviant 1sts 600 576.75 ± 51.31 340–599 590.04 ± 12.00 554–600 1.24 0.22 0.36

Standard 2nds 600 577.25 ± 50.45 345–599 589.17 ± 12.97 546–600 1.12 0.27 0.32

Standard 3rds 600 577.08 ± 50.93 342–600 589.54 ± 12.28 557–600 1.17 0.25 0.34

Standard 4ths 600 576.75 ± 48.44 355–599 589.75 ± 13.20 548–600 1.27 0.21 0.37

Standard 5ths 400 385.83 ± 31.61 241–400 393.38 ± 7.71 367–400 1.14 0.26 0.33

Standard 6ths 200 193.25 ± 15.84 121–200 196.38 ± 4.08 183–200 0.94 0.35 0.27

d, Cohen’s d.

decoding after randomly subsetting each participant’s 2nd, 3rd,
4th, and 5th trials to match their number of usable (after artifact
rejection) 6th trials.

As anticipated, this procedure substantially reduced decoding
accuracy, although it remained above chance in all but
one case (1sts vs. 2nds in Control) (Figure 3B). Paired
comparisons of the corresponding traces in Figures 3A,B
revealed, in all cases, significantly lower decoding accuracy
when the number of standard trials was reduced (one-sample
sign-permutation tests, cluster-defining threshold p < 0.05,
corrected significance level p < 0.05; 4 tests each in Control
and Dyslexia; p’s between 0.028 and 0.0002). This analysis

suggests that decoding metrics should not be compared across
analyses when the contributing numbers of trials are not well
matched. Therefore, subsequent analyses focused on 2nd, 3rd,
and 4th standards, for which trial numbers were approximately
equal (Table 2).

Standard-vs.-Deviant Information Arises
and Peaks at Similar Latencies in Both
Groups
We next evaluated the possibility that standard-vs.-deviant
information is slower to arise in Dyslexia, which is suggested
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FIGURE 4 | Comparing deviant-vs.-standard decoding as a function of repetition history. (A,B) Decoding-accuracy time series from Figure 3A (all trials), overlaid for
easier comparison within Control (A) and Dyslexia (B) groups. Arrows in the lower portion of each panel indicate the onset latencies, in ms, of significant
deviant-vs.-standard decoding. Arrows in the upper portion of each panel indicate latencies, in ms, of peak decoding accuracy. In Control, there is a significant
difference in accuracy between 1sts-vs.-4ths decoding and 1sts-vs.-2nds decoding. (C,D) Decoding-accuracy time series from Figure 3B (subset of trials), overlaid
for easier comparison within Control (C) and Dyslexia (D) groups. With reduced trial numbers, there is again, in Control, a significant difference in accuracy between
1sts-vs.-4ths decoding and 1sts-vs.-2nds decoding.

by previous findings of significantly delayed onset and peak
latencies of the MMN (Baldeweg et al., 1999; Mittag et al.,
2013). We compared the onset latency of significant decoding
as well as the latency of peak decoding between the groups
at three levels of standard repetition. Onset latencies were
derived from cluster-corrected sign-permutation tests as
in Figure 3A and are labeled with arrows in the lower
portions of Figure 4A (Control) and Figure 4B (Dyslexia),
where the decoding-accuracy traces have been reproduced.
Arrows in the upper portions of Figures 4A,B label peak
latencies. We used bootstrap tests for group differences
in latency to compare the corresponding traces across
Figures 4A,B.

No group differences were identified at any level of repetition,
neither for onset latencies (1sts vs. 2nds, p = 0.82; 1sts vs. 3rds,
p = 0.25; 1sts vs. 4ths, p = 0.46), nor for peak latencies (1sts vs.
2nds, p = 0.50; 1sts vs. 3rds, p = 0.50; 1sts vs. 4ths, p = 0.89).
This indicates that the multivariate mismatch has a similar

time course in both groups, both in terms of when it becomes
statistically reliable and when it reaches its peak classification
accuracy. Across groups and levels of repetition, information in
the neural response that distinguished standards from deviants
arose between 96 and 145 ms and peaked between 257 and 315 ms
with respect to sound onset.

Repetition Strengthens the Standard
Representation in Control
We next asked whether deviant-vs.-standard decoding becomes
significantly stronger as the number of standard repetitions
increases from two to three to four. Within each group separately,
we performed three one-sided sign-permutation tests (cluster-
defining threshold p < 0.05, corrected significance level p < 0.05)
on all post-stimulus time points in the decoding-accuracy time
series (1sts vs. 3rds > 1sts vs. 2nds; 1sts vs. 4ths > 1sts vs. 2nds;
1sts vs. 4ths > 1sts vs. 3rds).
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FIGURE 5 | Stimulus-specific standards vs. deviants cannot be decoded with low numbers of trials. Decoding-accuracy time courses for stimulus-specific
standard-to-deviant transitions in Control (blue) and Dyslexia (red). Rows indicate the standard stimulus (the 4th in its train) and columns indicate the stimulus that
followed it in time, either a deviant 1st or a 5th in the same train. Reliable decoding of standards and deviants above the 50% chance level could not be achieved
with the low numbers of stimulus-specific transitions in our paradigm. Along the diagonal, the classification of identical stimuli yields below-chance classification
performance.

The overlaid time series suggest that decoding accuracy
increases with the number of standard repetitions in Control
(Figure 4A) but not Dyslexia (Figure 4B). Across all six tests,
one significant cluster was identified, indicating that 1sts-vs.-
4ths decoding was significantly more accurate than 1sts-vs.-
2nds decoding in the Control group (p = 0.0004; Figure 4A).
No clusters were identified in the Dyslexia group (Figure 4B).
This pattern of results was robust to reducing the number
of available trials by two-thirds, following the procedure that
yielded Figure 3B: 1sts-vs.-4ths decoding was, again, significantly
more accurate than 1sts-vs.-2nds decoding in the Control group
(two clusters: p = 0.001 and p = 0.04; Figure 4C), and no
significant differences were identified in the Dyslexia group
(Figure 4D). Since the deviant 1sts are held constant across
the three tests in each group, these results suggest that, in
Control, additional repetitions yield more reliable information

about standardness (such that standard trials are reliably
different from deviant trials, reflected in the performance of a
cross-validated standard-vs.-deviant classifier), while in Dyslexia,
there is no effect of repetition level on the multivariate mismatch.

Standard-vs.-Deviant Information Arises
at Similar Latencies Across Levels of
Repetition
Having seen that repetition can strengthen the standard
representation (Henson, 2003), we then asked if it can also
facilitate its processing in time. We evaluated the hypothesis that
standards with more repetitions would have shorter decoding
latencies, and that this too might differ between groups. Within
each group separately, and for onsets and peaks separately, we
used bootstrap tests to compare the latencies at three levels of
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repetition [(1sts vs. 3rds) vs. (1sts vs. 2nds); (1sts vs. 4ths) vs. (1sts
vs. 2nds); (1sts vs. 4ths) vs. (1sts vs. 3rds)].

No significant effects of the standard’s repetition history were
found in either Control (Figure 4A) or Dyslexia (Figure 4B),
neither for onset latency nor for peak latency (p’s between 0.13
and 0.94). Thus, these data provide no evidence that the latency
of the multivariate mismatch is affected by the repetition history
of the standard.

Identifying Stimulus-Specific Multivariate
Mismatches Depends Critically on Trial
Numbers
In a final analysis, we aimed to determine whether the
multivariate mismatch shows stimulus specificity. Because the
roving-oddball paradigm (Figure 1) sampled each participant’s
perception of the /ba/-/da/ continuum, we decoded standards
from deviants as a function of their acoustic-phonetic distance,
hypothesizing that the closer the two stimuli, the smaller the
deviant response and thus the less decodable they would be. Prior
studies have shown parametric effects of deviance magnitude
on the MMN (Jaramillo et al., 2000; Joanisse et al., 2007;
Pakarinen et al., 2013). We also considered the possibilities that
phonological category structure, not strictly acoustic-phonetic
distance, would influence the mismatch responses, and/or that
this would differ in Dyslexia, given prior reports of abnormal
speech-sound discrimination in this population (Werker and
Tees, 1987; Bogliotti et al., 2008).

We conducted 25 separate decoding analyses, pairing each
of five possible standard stimuli (defined as the 4th in
its train) with each of the five possible stimuli that could
follow it (itself as the 5th in the train, or any of the
other four stimuli as subsequent deviants). In this way, we
precisely controlled the stimulus history of the standard as
well as the phonetic distance between it and the deviant.
This came at the cost, however, of severely reducing the
number of trials available for training and testing the classifier.
Specifically, before artifact rejection, there were 120 trials per
standard and no more than 14 trials per deviant. In the
most extreme example, due to stimulus pseudo-randomization,
there were only 5 occurrences of four E’s (standard) followed
by a B (deviant).

As depicted in Figure 5, reliable decoding of standards vs.
deviants above the 50% chance level could not be achieved with
these numbers of trials, neither in Control nor in Dyslexia.
This parallels the results in Figure 3, in which subsetting the
trials yielded lower decoding accuracies. Along the diagonal,
attempts to classify 4th vs. 5th presentations of identical stimuli
yield below-chance performance. Simulations indicate that this
is likely to occur when cross-validated linear classification is
performed on biological data that are low in both sample
size and effect size (Jamalabadi et al., 2016), as we would
expect for physically identical standards. In sum, we found
that these data were not suitable for comparing multivariate
mismatch responses as a function of stimulus differences due
to the low number of trials for each specific standard-to-
deviant transition.

DISCUSSION

Summary of Results
The neural representation of a repeated stimulus is the standard
against which a deviant stimulus is measured in the brain. The
two principal aims of this study were to determine whether
neural responses are less sensitive to repetition in dyslexia, and
whether repetition builds an increasingly robust standard in
dyslexia, as we hypothesized it would in typical readers. We first
demonstrated that multivariate decoding of MEG data recorded
during an auditory roving-oddball paradigm can differentiate
deviant trials from standard trials – a “multivariate mismatch” –
despite no stimulus differences between them. We then showed
that, in both groups, standards generated by as few as two
and as many as six repetitions were distinct from deviants,
inconsistent with the hypothesis that the brain is less sensitive
to repetition in dyslexia. However, we found evidence that
repetition builds a standard that is increasingly different from
a deviant in the typical-reader group only. Throughout these
analyses, we identified no differences in decoding latency between
the groups, inconsistent with the idea that cortical deviance
detection is delayed in dyslexia. Together, these results suggest
that many of the neural mechanisms that give rise to the change-
detection/regularity-violation response are intact in dyslexia,
with the possible exception of a putatively predictive mechanism
that is sensitive to the quantity of prior sensory information.

Comparison of Univariate and
Multivariate Mismatch Responses
The present study differs from numerous prior investigations
of the MMN/MMF in dyslexia [reviewed in Näätänen et al.
(2012)] because of its multivariate rather than univariate
approach to identifying differences between deviant and standard
neural responses (To facilitate comparison with other studies,
topographical plots and waveforms of univariate sensor data are
provided in Supplementary Figure 1). While univariate analysis
follows an activation-based philosophy – looking for monotonic
increases in neural activity as a function of experimental
variables – multivariate analysis exploits any difference between
experimental conditions to conclude that the brain contains
information about the contrast of interest (Hebart and Baker,
2018). Multivariate decoding can succeed on the basis of
spatially distinct neural populations fluctuating in non-uniform
directions, and thus it is generally considered a more sensitive
technique, usually at the cost of less interpretability in the
standard univariate framework. That is all to say that the
multivariate mismatch may or may not bear any resemblance to
the more familiar MMN and MMF components.

However, the multivariate mismatch, which we found to
peak at 282 ms after sound onset, appears not dissimilar in
timing and morphology to other speech-evoked MMFs. For
example, Kujala et al. (2004) identified a sublexical, phonological
mismatch response that originated in left temporal cortex and
peaked between 280 and 300 ms. Paul et al. (2006) presented
near-boundary /ba/ and /da/ tokens in an oddball paradigm to
9-year-old children with and without dyslexia. The difference
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between deviant and standard amplitudes was measured at left
fronto-temporal sensors within three time windows that they felt
best captured the component morphology: the rising slope at
180–230 ms, the peak at 230–280 ms, and the falling slope at 280–
330 ms. As can be appreciated from Figure 2A, these are also
apt descriptors for the time course of decoding accuracy in our
study, and like us, Paul et al. (2006) found no difference in the
mismatch between typical readers and individuals with dyslexia.
Given the similarities between these paradigms and results, it is
possible that the two analytic approaches have identified the same
neural phenomena.

A second important methodological note is that the auditory
mismatch brain response has generators in the temporal lobes,
bilaterally, and the frontal lobes, with a right-hemisphere bias
(Giard et al., 1990). The temporal component is associated with
pre-attentive change detection, while the frontal component is
associated with attentional reorienting and conscious processing.
However, because MEG is insensitive to cortical sources that
are oriented radially (i.e., toward or away from the scalp,
versus tangentially, or parallel to the scalp), it captures the
temporal-lobe component originating from within the Sylvian
fissure but not the frontal component (Hämäläinen et al., 1993;
Näätänen et al., 2012). Therefore, a conservative interpretation
of the multivariate mismatch reported in the present study
is that it reflects, primarily or exclusively, the standard-vs.-
deviant information contained in the activity of bilateral auditory
cortex. It is thus notable that discriminating information lasted
for more than 400 ms. The temporal generalization analysis
further demonstrated that the neural signature of deviance is
dynamically changing, consistent with a hierarchical propagation
of prediction errors throughout this region (King et al., 2014).

Dishabituation, Prediction Error, and
Implicit Learning
Indeed, the prevailing mechanistic view of the mismatch
response is that it represents prediction error (Näätänen et al.,
2005; Wacongne et al., 2012; Parras et al., 2017). As such,
the conditions that provoke a mismatch are thought to be
the result of an active sensory-learning process, mediated by
NMDA-dependent plasticity (Javitt et al., 1996; Wacongne et al.,
2012), rather than passive synaptic habituation (cf. May and
Tiitinen, 2010). However, the multivariate mismatch is agnostic
to the mechanism of mismatch generation. The classification
results could certainly be obtained on the basis of feedforward
habituation of sensor amplitudes, such that neural responses in
both groups habituate from the second repetition, but control
participants demonstrate a cumulative reduction over time. In
this framework, the notion of “the neural representation of a
standard” might refer not to a qualitatively distinct representation
of an expected sensation, but simply to a habituated, lower-
amplitude deviant response.

More likely, however, is that the representation of a standard
stimulus arises though a combination of the aforementioned
feedforward repetition effects and feedback-mediated predictive
processes. The latter may be instantiated in circuits that interface
between descending predictions and ascending stimulation.

Here, the progressive attenuation of prediction error over
repetitions reflects gradual refinements of predictions as these
circuits successively integrate recent sensory information
(Auksztulewicz and Friston, 2016). Thus, perceptual learning
occurs across stimulus repetitions as feedforward processing
is guided by plastic, predictive models. In this framework,
successful decoding of deviants from standards across levels
of repetition may be due to intact feedforward adaptation
processes in both groups, while an additional, parametric effect
of repetition on accuracy is due to a predictive mechanism that
is more efficacious in controls. We favor this interpretation
based on the results of a recent study from our group (Beach
et al., 2022). The goal of that study was to identify the source
of neural adaptation deficits (e.g., Perrachione et al., 2016)
in dyslexia. We orthogonally manipulated the expectation
of stimulus repetition and stimulus repetition itself, then
measured event-related potentials to unexpected repetitions
(reflecting feedforward repetition suppression), expected
repetitions (reflecting stimulus-specific predictions), and
unexpected changes (reflecting prediction error). We found that
while feedforward repetition effects were similar in controls
and dyslexia, prediction error was significantly reduced in
dyslexia. Consistent with the current study, this suggests
that manifestations of rapid plasticity that rely on consistent
reactivation of the same neural populations via stimulus
repetition are intact in dyslexia [Likewise, in the original study
(Perrachione et al., 2016), low levels of neural adaptation
were still measured in individuals with dyslexia]. However,
an available prediction appears to have less of an effect on
feedforward processing in dyslexia than it does in typical readers.
The larger consequences of a deficit in expectation integration
(Beach et al., 2022) may include reduced perceptual efficiency
and diminished learning signals (i.e., prediction error) during
perceptual processing.

These interpretations are in line with a growing literature on
implicit learning deficits in dyslexia. These reports span domains,
including motor learning (Lum et al., 2013), visual statistical
learning (Sigurdardottir et al., 2017), visual noise exclusion
(Sperling et al., 2005), auditory category learning (Gabay and
Holt, 2015), and auditory perceptual learning (Ahissar et al.,
2006). A common thread among these lines of investigation is
that stimulus regularities provide an opportunity to generate
predictions. Ideally, expected input should be processed more
efficiently, while mismatches should trigger an error response
that, in a virtuous circle, improves future predictions (Press
et al., 2020). In dyslexia, however, the availability of predictions
seems to have a reduced effect on perception, and this may be
related to findings, in other studies, of reduced neural mismatch
responses in dyslexia (Hämäläinen et al., 2013; Gu and Bi, 2020).
On the other hand, the overall quality of the MMN evidence
for reduced automatic discrimination of speech in dyslexia has
been criticized (Bishop, 2007). Regarding conflicting results on
the mismatch in dyslexia, it may prove useful to dissociate
speech-perception variables from regularity-detection variables,
and, further, to relate neural indices to behavioral discrimination
measures and wider difficulties with oral and/or written language
(e.g., Tuomainen, 2015).
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Caveats
A clear limitation of this study is that there were insufficient
numbers of trials to investigate the stimulus specificity of
the multivariate mismatch, and whether this varied between
control and dyslexia. Given the field’s longstanding interest in
possible speech-perception deficits in dyslexia, it would have
been desirable to quantify the neural dissimilarity of between-
and within-category tokens from the /ba/-/da/ continuum as
revealed by stimulus-specific decoding accuracy, and to directly
compare those results with ones from the extant MMN/MMF
literature on dyslexia. Future work may succeed in designing a
more sophisticated stimulation paradigm – or simply a longer
one – with adequate power to detect any stimulus-specific effects.
One challenge in this area is that standard effect-size measures
are not easily derived from multivariate decoding accuracies
(Hebart and Baker, 2018).

A related point is that individual differences in speech
perception may have muddied the reported effects. For example,
an individual with underspecified phonemic representations
might show a smaller mismatch response to standard and deviant
stimuli from different linguistic categories (e.g., stimuli A and
E). An individual with atypically good discrimination of within-
category speech tokens (e.g., stimuli A and B, or stimuli D and
E) might show a larger mismatch response to these pairings.
An individual with an underlying auditory sensory impairment,
particularly one related to rapid spectro-temporal processing,
might show less of a mismatch to any change in stimulation
along the /ba/-/da/ continuum, as these tokens are distinguished
by brief (∼40-ms) acoustic transitions between the consonant
and the vowel. All of these “individual” profiles have been
advanced as characteristics of at least a subset of people with
dyslexia (Tallal, 1980; Godfrey et al., 1981; Serniclaes et al., 2004).
Therefore, each of the main findings in this paper is tempered
with the knowledge that some deviants may or may not have
been perceived or encoded as such. But on the other hand,
this makes the series of positive results in the dyslexia group
even more convincing – that is, we identified robust and timely
mismatch responses in this group, despite putative heterogeneity
in auditory perceptual abilities.

Finally, we also investigated a general hypothesis about
the efficiency of predictive perception, but suspect that our
experimental and statistical approaches were not optimized
for this analysis. Prior work in the visual domain found that
stimulus-specific expectations induced decodable representations
even before stimulus onset (Kok et al., 2017). This result
inspired us to ask whether the onset latency and/or peak
latency of significant standard-vs.-deviant decoding shortens
with increasing repetition, presumably as increasingly reliable
predictions pre-activate the expected neural code of the standard.
However, we did not find evidence that the latency of the
multivariate mismatch is affected by the repetition history of
the standard. The fact that speech is a complex stimulus that
unfolds over time (as opposed to a static visual grating that
can be perceived instantaneously) may reduce the inherent
temporal precision of the emergence of speech representations in
MEG data. Future studies could perhaps create distinct cue and
stimulus periods during stimulation for better control.

Conclusion
We used multivariate MEG decoding to identify the neural
signature of standard vs. deviant speech syllables in adults
with and without dyslexia. We found no deficit in dyslexia
in the immediate sensitivity to stimulus repetition, nor any
difference in the latency of standard-vs.-deviant information,
both of which likely rely on a combination of feedforward
and feedback-mediated perceptual mechanisms. However, we
also found evidence that increasing repetition history makes a
stronger standard in typical readers, but not in dyslexia. These
results are consistent with the idea that, in dyslexia, there is a
specific deficit in accumulating short-term statistical regularities
and integrating them into perception to improve performance
and reduce neural processing costs.

MATERIALS AND METHODS

Participants
Individuals with dyslexia (n = 24; 14 female, 10 male; age
18–38 years, mean ± standard deviation = 27 ± 6) and
typical readers (n = 24; 11 female, 13 male; age 19–41 years,
mean ± standard deviation = 26 ± 6) participated in this study.
All were right-handed, native speakers of American English
with a standard score above 85 on the Matrices subtest of
the Kaufman Brief Intelligence Test – Second Edition (KBIT-2;
Kaufman and Kaufman, 2004). To confirm self-reports of normal
hearing, we conducted pure-tone audiometry tests at the standard
frequencies of 250, 500, 1,000, 2,000, 4,000, and 8,000 Hz; all
thresholds were ≤35 Hz. For inclusion in the Dyslexia group,
participants were required to score below 90 (where the mean
standard score is 100 and the standard deviation is 15) on at least
two out of four of the following single-word reading measures:
Word Identification (untimed real words) and Word Attack
(untimed pseudowords) subtests of the Woodcock Reading
Mastery Tests – Third Edition (WRMT-III; Woodcock, 2011)
and Sight Word Efficiency (timed real words) and Phonemic
Decoding Efficiency (timed pseudowords) subtests of the Test of
Word Reading Efficiency – Second Edition (TOWRE-2; Torgesen
et al., 2012). Control-group participants scored 90 or above
on all four of the measures. Table 1 provides a behavioral
characterization of the two groups. By design, the Dyslexia group
scored significantly below the Control group on single-word
reading. They also scored significantly lower on verbal working
memory, oral reading of connected text, and two out of three
measures of phonological processing. Eighteen individuals in the
Dyslexia group reported a prior formal diagnosis of dyslexia. All
participants gave written, informed consent as overseen by the
Committee on the Use of Humans as Experimental Subjects at
the Massachusetts Institute of Technology.

Stimuli
Stimuli were drawn from a /ba/-/da/ acoustic continuum
constructed by Stephens and Holt (2011) from natural-speech
endpoints produced by an adult male speaker of English. We
selected, for each participant, a set of five stimuli (A–E) that
best represented their categorical perception of the continuum
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(Figure 1A). Prior to the roving-oddball experiment, participants
had performed a separate MEG task in which they labeled
40 tokens each of the ten odd-numbered steps of the 20-
step Stephens and Holt (2011) continuum, renumbered for our
purposes as 1 (/ba/) through 10 (/da/). The tokens were pseudo-
randomized and the task was self-paced with no feedback (see
Beach et al., 2021 for a full description). During the break
between tasks, we fit a logistic function to each participant’s
ba/da response ratio. The continuum step nearest the function’s
inflection point was chosen as stimulus C. A and B were selected
from the/ba/end of the continuum, and D and E were selected
from the/da/end of the continuum. A–E were made equidistant
from one another. In practice, there was little variation across
individuals in the categorical perception of the continuum: for 21
of the 48 participants, step 5 was the most ambiguous, and for the
other 27 participants, step 6 was the most ambiguous. Therefore,
21 participants (12 Control and 9 Dyslexia) subsequently heard
the odd-numbered stimuli and 27 participants (12 Control and
15 Dyslexia) heard the even-numbered stimuli in the roving-
oddball paradigm.

Stimuli A–E were then presented in a roving-oddball design
made up of 600 consecutive “trains” of four, five, or six identical
stimuli (Figure 1B). The length and order of trains within the
design was pseudo-randomized such that all possible stimulus
transitions occurred (e.g., five B’s followed by four C’s, four E’s
followed by six A’s, etc.) and were roughly equiprobable. The task
design was the same for all participants. Syllable duration was
310 ms and stimulus onset asynchrony was 575 ms, both within
and between trains. In all, 3,000 stimuli were presented: 600 that
were the 1st token in their train (i.e., deviants, representing a
change in stimulus from the previous train), 600 “2nds,” 600
“3rds,” 600 “4ths,” 400 “5ths,” and 200 “6ths.”

Procedure
Behavioral assessment (Table 1) was performed by an
experienced tester on a separate day prior to MEG recording.
Assessments were audio-recorded and scored for reliability by
a second tester.

During the MEG session, participants were passively exposed
to the stimuli while they watched a silent movie (Wall-
E) for approximately 28 min. Movie onset was jittered
across participants to prevent time-locked visual or semantic
information from contaminating the MEG signal. Auditory
stimuli were delivered over insert earphones (Etymotic Research,
Inc., Oak Grove, IL, United States) at a comfortable listening level
fixed across participants. Participants were told that they would
hear sounds that could be ignored and were asked to keep their
eyes open during the experiment. No responses were required.

Magnetoencephalography Recording
and Preprocessing
Magnetoencephalography was recorded using an Elekta Triux
306-channel system comprising 102 magnetometers and 204
planar gradiometers, with a sampling rate of 1,000 Hz and online
filtering between 0.03 and 330 Hz. Continuous measurements
of head position were made with five coils attached to the

scalp. Prior to recording, anatomical landmarks (nasion, left
preauricular, and right preauricular) were registered with respect
to the head-position coils using a Polhemus digitizer (Colchester,
VT, United States). Maxfilter Software (Elekta, Stockholm,
Sweden) was used to correct for head movement and filter out
noise sources originating from outside the MEG helmet. Using
Brainstorm software (Tadel et al., 2011), eye-blink and cardiac
artifacts were removed from each participant’s continuous dataset
via signal-space projection. Trials were epoched from −200 to
550 ms with respect to stimulus onset. Trials with zero signal
or in which any sensor exceeded a peak-to-peak amplitude of
10,000 fT (for magnetometers) or 2,500 fT/cm (for gradiometers)
were excluded from further analysis. Trials were then low-pass
filtered at 15 Hz. Finally, sensor amplitudes were z-normalized
for the subsequent multivariate pattern analysis using the mean
and standard deviation of the prestimulus period (−200 to 0 ms).

Multivariate Pattern Analysis
Pattern classification was performed using linear support vector
machines (SVM) as implemented in LIBSVM 3.21 (Chang
and Lin, 2011) for MATLAB (MathWorks, Natick, MA,
United States). SVM classification was performed for each
participant separately and at each time point independently, and,
in all cases, to distinguish data from two conditions (e.g., 1sts vs.
all standards, 1sts vs. 4ths, etc.). The data consisted of vectors of
the 306 sensor measurements at each time point, extracted from
each trial of the two conditions under study.

We used a cross-validation procedure in which the data were
randomly assigned to one of five folds; four folds were used for
training the classifier and one fold was used for testing it. To
equalize the noise level across the data, we used the “epoch”
method of multivariate noise normalization (Guggenmos et al.,
2018), whereby the noise covariance matrix is computed for
all time points in the epoch separately within each condition
and then averaged across time points and conditions. To guard
against inflated classification, the noise covariance was estimated
from the training folds and applied to both the training folds
and the test fold. Additionally, because the estimate of noise
covariance can be unstable when there is relatively little data with
respect to the number of features (i.e., sensors), we applied the
shrinkage transformation (Ledoit and Wolf, 2004) to regularize
the estimate and prevent overfitting. To improve the signal-
to-noise ratio, trials from the same condition within each of
the five folds were averaged, yielding one summary trial per
condition per fold. The entire decoding procedure was repeated
100 times, yielding one averaged decoding-accuracy time series
per participant in which 50% accuracy is considered chance
performance of the classifier.

Statistical Inference
Significance of decoding-accuracy time courses was determined
by non-parametric sign-permutation tests applied to the time
window of 0–550 ms. Due to the rapid stimulus presentation,
baseline (prestimulus) time was excluded from analysis because
it was otherwise tested at the end of other trial epochs:
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e.g., 2nds vs. 3rds at −100 ms is equivalent to 1sts vs. 2nds
at 475 ms. Permutation samples were created by randomly
flipping the participant-specific time courses around the null
value (50% for accuracies and 0 for differences in accuracy) and
then averaging across participants. Five thousand repetitions of
this procedure produced an estimate of the empirical distribution
of decoding accuracy with which the true time courses were
converted into p-value maps. The familywise error across time
points was controlled using cluster-based inference: using a
cluster-defining threshold of p = 0.05, suprathreshold clusters
(i.e., contiguous time points) were first identified and then
reported as significant if the sum of their within-cluster values
exceeded a p = 0.05 threshold with respect to the empirical
distribution of the suprathreshold clusters of the permuted
statistical maps.

Temporal Generalization Analysis
To determine the stability of representational neural codes over
time, we employed the temporal generalization approach to
multivariate pattern analysis (King and Dehaene, 2014). To
reduce computational load, MEG data were downsampled by
a factor of 4 for this analysis. As before, SVM classifiers were
trained at each time point, but then tested at every time point
in the dataset. If the neural patterns that distinguish the two
classes (here, deviants and all standards) are stable over time, then
the classifier should successfully generalize to other time points.
Results are depicted in a matrix, averaged over participants,
with training time on the x-axis and testing time on the
y-axis. Regions of significant temporal generalization between
0 and 550 ms were determined by sign-permutation tests as
described above.

Onset and Peak Latency Analysis
To determine whether the onset and/or peak latencies differed
between groups (Control vs. Dyslexia) and/or by repetition (e.g.,
1sts vs. 3rds vs. 1sts. vs. 2nds), we conducted bootstrap tests
(Cichy et al., 2017; Mohsenzadeh et al., 2018). We bootstrapped
the participant-specific decoding-accuracy time series 1000 times
to obtain (a) onset latencies of significant decoding (determined
by sign-permutation tests as described above) and (b) latencies
of peak decoding accuracy, each restricted to the period between
0 and 550 ms, such that we could then calculate an empirical
distribution of latency differences for each between-group or
within-group comparison of interest. We calculated a two-sided
p-value by dividing the number of latency differences that were
smaller (or larger, as appropriate) than zero by the number of
bootstrap samples.
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