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EScope: Effective Event Validation for IoT Systems
Based on State Correlation

Jian Mao�, Xiaohe Xu, Qixiao Lin, Liran Ma, and Jianwei Liu

Abstract: Typical Internet of Things (IoT) systems are event-driven platforms, in which smart sensing devices sense

or subscribe to events (device state changes), and react according to the preconfigured trigger-action logic, as

known as, automation rules. “Events” are essential elements to perform automatic control in an IoT system. However,

events are not always trustworthy. Sensing fake event notifications injected by attackers (called event spoofing

attack) can trigger sensitive actions through automation rules without involving authorized users. Existing solutions

verify events via “event fingerprints” extracted by surrounding sensors. However, if a system has homogeneous

sensors that have strong correlations among them, traditional threshold-based methods may cause information

redundancy and noise amplification, consequently, decreasing the checking accuracy. Aiming at this, in this paper,

we propose “EScope”, an effective event validation approach to check the authenticity of system events based on

device state correlation. EScope selects informative and representative sensors using an Neural-Network-based

(NN-based) sensor selection component and extracts a verification sensor set for event validation. We evaluate our

approach using an existing dataset provided by Peeves. The experiment results demonstrate that EScope achieves

an average 67% sensor amount reduction on 22 events compared with the existing work, and increases the event

spoofing detection accuracy.
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1 Introduction

In a nutshell, Internet of Things (IoT) is the
network consisting of “things” (physical objects that
are embedded with sensors), software, and other
techniques for the purpose of connecting, controlling,
and exchanging data with other devices or systems
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over Internet[1]. In typical IoT systems (e.g., smart
home, industrial IoT system, etc.), devices usually
include sensors that sense the physical environment[2, 3]

and activators that interact with the environment. To
enable automatic control in IoT systems, Trigger-Action
Programming (TAP) logic is deployed in the IoT control
system (e.g., a cloud back-end or a local server).
Typical TAP logic-enabled IoT platforms are event-
driven, such as Samsung SmartThings[4] and open source
home automation platform Home Assistant[5]. In these
event-driven platforms[6], an event-bus is used as the
information hub, and events are published by devices
to inform the state changes to the IoT control system.
When a device has a state change, it sends an event
notification to the event bus. According to automation
rules, devices subscribe trigger events and perform
actions correspondingly.
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As events are received by the IoT control systems for
subsequent actions, the authenticity of event notifications
is essential to IoT system security. Recently, several
event-related security threats have been reported[7], such
as event losses[8], event interceptions[9], and event
spoofing[10]. Typically, event spoofing is that attackers
inject and send forged event notifications via malicious
apps[10, 11] or compromised devices[12]. Sensing mistakes
caused by devices or fake event notifications injected
by attackers (called event spoofing attack) can trigger
sensitive actions through user pre-defined automation
rules without user authorization[13].

In IoT systems, the event notifications are accepted
by the control system without validation. This allows
attackers successfully launch event spoofing attacks.
To validate an event notification and detect event
spoofing attacks, event fingerprint-based solutions are
proposed. Existing approaches explore the inner-
relationship between events and data from different
sources, including encrypted network traffic data[14–17]

and heterogeneous sensor data[13, 18–20], and validate
events using classification[21] or clustering methods.

Intuitively, a physical event will inevitably affect
surrounding sensor readings. Such influences on
assemble devices can be extracted and formulated as
fingerprints for event validation. Existing fingerprint-
based event validation methods use a fixed time window
to select sensor data and extract features from the
data sequence. Informative devices are selected as
“verification sensor set” according to correlation metrics
(such as mutual information) and a preset threshold for
validation. However, due to the neglect of inter-sensor
correlations, if a system has homogeneous sensors that
have strong correlations among them, such threshold-
based methods may select similar sensors repeatedly.
As a result, the verification sensor set consists of large
amount of high-informative but correlated sensors, rather
than a small amount of independent and representative
sensors, which will bring information redundancy and
amplify noisy features. Consequently, this decreases the
checking accuracy. How to determine a “verification
sensor set” that consists of informative and independent
sensors is the key problem in fingerprint-based event
validation approaches.

In this paper, we propose “EScope”, an effective
event validation approach to check the authenticity
of system events based on device state correlation.
EScope filters informative and efficient sensors using
an Neural-Network-based (NN-based) sensor selection

component and extracts a verification sensor set for
event validation. We implement and evaluate EScope
based on a public dataset provided by Peeves[13]. The
experiment results show that EScope achieves an average
67% sensor amount reduction on 22 events compared to
Peeves[13]. Meanwhile, EScope increases the F1-score
and Area Under Curve (AUC) by more than 0.1. We
simulate typical event spoofing attacks and demonstrate
that EScope can more effectively detect event spoofing
attacks.

Our contributions are as follows:
� We identify the key problem of fingerprint-based

event verification based on systematic analysis, and
propose EScope, an effective event validation approach
to check the authenticity of system events based on
device state correlation.
� We develop an NN-based sensor selection method

that effectively selects informative and representative
sensors for event validation.
� We evaluated our approach using an existing dataset

provided by Peeves. The experiment results demonstrate
that EScope performs more accurately than existing
solutions with fewer verification sensors.

The rest of this paper is organized as follows.
Section 2 discusses related works. Section 3 discusses
the background, preliminaries, and the threat model.
Section 4 presents the design of our effective event
validation approach, Escope. Section 5 describes the
implementation details of Escope. In Section 6, we
evaluate Escope and analyze the experiment results.
Section 7 concludes the paper.

2 Related Work

(1) Security of IoT devices. IoT devices are usually
small in size, power consumption, and computing
ability, thus strong cryptography-based authentication
or encryption algorithms are hard to implement, which
brings unreliability and insecurity. There are extensive
researches focusing on the IoTs security. By collecting
information on user forums and recent researches, Fu et
al.[7] and Can and Zheng[22] concluded typical anomalies
of IoT resulting from device malfunctions and adversary
attacks. Numerous sensors are the most vulnerable part
of the IoT system. Debes et al.[23] proved that sensor
data can be used to monitor user Activities of Daily Life
(ADL), which could lead to privacy leaks. They also
suggested that cameras and microphones are the most
influential sensors of user privacy. Islam et al.[24] and
Zheng et al.[25] introduced security threats to the wireless
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sensor networks, including eavesdropping, denial of
service, and node compromise. Sivaraman et al.[26]

managed to developed an iOS app to automatically find
vulnerable IoT devices in victims’ local networks.

(2) Security of IoT events. Fu et al.[7] introduced
event-related security threats in IoT systems, including
event losses, event interceptions, faulty events, and
fake events. Fernandes et al.[10] introduced event
spoofing in Samsung SmartThings. They pointed out
that when the system do not enforce access control
around event notifications or verify the integrity of
the origin of the events, an unprivileged entity can
spoof device events to escalate its privileges. Gu et
al.[27] proposed IoTGase, which uses wireless context to
consider security problems in IoT. They simulated event
spoofing in their evaluation by inserting malicious code
into the apps, proving the effectiveness of their method.
Wang et al.[28] proposed IoT-Praetor, a Device Usage
Description (DUD) model to detect undesired behavior
for IoT devices, which is also effective for event spoofing
according to their evaluation.

(3) Traffic data based event fingerprints. Acar
et al.[14] proposed a method to steal users’ privacy
via encrypted network traffic data of different
communication protocols in smart homes. The method
first recognizes devices of each traffic package using
state-of-the-art methods, then recognizes device events
based on a machine learning algorithm to further infer
users’ activities. Zhang et al.[16] proposed a third-
party monitoring system called Homonit to detect
illegal behavior of SmartApps using encrypted network
traffic data, including verifying events sent from these
apps. They hypothesized that there is a one-to-one
mapping between events and traffic package groups,
then further proposed a mathematical model to depict
the event fingerprint model, which can be used to
calculate features and do matching between events
to be verified and a flag value. Trimananda et al.[17]

proposed PingPong to extract packet-level signatures
from encrypted traffic. They suggested that a unique
sequence of packet lengths can usually describe certain
simple events and be used as an event fingerprint.

(4) Sensor data based event fingerprints. Yasaei
et al.[20] proposed IoT-CAD, which utilizes sensors
in IoT systems to capture physical environments to
identify anomalies. Sensors are required for continuously
monitoring, and snapshot vectors in small time windows
are extracted for fingerprints. Laput et al.[18] proposed
synthetic sensors to detect events and user’s activities
from sensor data. They choose different features for high
sampling rate sensors and low sampling rate sensors. In
the aspects of machine learning algorithms, classification
and clustering can both be used to verify the events.
Birnbach et al.[13] proposed Peeves that selects time
windows and features to build a machine learning dataset,
which is for further classification. This is a close related
work of our approach.

We summarize and compare the existing fingerprinting
approaches in Table 1. Overall, traffic-based
fingerprinting methods deploy a centralized gateway
that captures packet headers from traffic packets and
extracts information such as timestamp, length, address,
and protocol as fingerprint features. Such methods aim
at behavior inference and abnormal behavior detection.
Sensor-data-based fingerprinting methods capture
the raw surrounding sensor data sequences and their
frequency domain to extract features, set thresholds on
indicators such as mutual information to select sensors,
and create fingerprinting for validation. However,
neglecting the strong correlation among homogeneous
sensors, threshold-based sensor selection may cause
information redundancy and noise amplification. To
solve this problem, EScope proposes an NN-based
sensor selecting method that fully considers the
contribution to event validation of each sensor. In this
way, EScope avoids selecting homogeneous sensors

Table 1 Analysis of existing approaches on event fingerprints.

Fingerprint source Approach
Packet feature Sensor featue

Learning algorithm
TS L AD P TD FD

Network traffic data
Peek-a-boo[14] X X � � – – KNN
Homonit[16] X X X � – – DFA
PingPong[17] X � � X – – DBSCAN

Sensor data

Peeves[13] – – – - X � SVM
Synthetic sensors[18] – – – - X X SVM/EM

IoT-CAD[20] – – – – X � RNN
EScope (Our approach) – – – – X � SVM

Note: TS denotes timestamp; L denotes packet length; AD denotes address; P denotes protocol; TD denotes time domain; and FD
denotes frequency domain.
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repeatedly, reduces information redundancy, and
improves accuracy.

3 Background and Threat Model

3.1 Background

(1) Event driven mechanisms in IoT systems. Most
IoT platforms support both direct control commands
and automation rules in the “trigger-condition-action”
pattern. For example, a light can be turned on by directly
clicking the button in the User Interface (UI), or triggered
by automation rules, e.g., “if the door is opened then turn
on the light”. To enable a heterogeneous architecture
that supports different communication protocols, packet
structures, and device working modalities, IoT systems
use “events” as essential control elements. Events in
an IoT system are denoted as device state changes.
For example, when a door is opened, the event “Door
opened” is sent to the control system. Such event triggers
the automation rule, “if the door is opened then turn on
the light”, consequently, the light is turned on and a
“Light on” event is sent to the IoT control system.

(2) Event spoofing attacks. A typical event spoofing
attack is shown in Fig. 1a. In an IoT system, the
attacker sends a forged event notification “Light off”
to the control system, triggering the automation rule

Authentic event Forged event

Light offLight off

if (Light off):
Window shade up

Automation rule

Shade up
Shade up

(a) Event spoofing attack

Fingerprint 
model

Sensor

if (Light off):
Window shade up

Automation rule

Light offLight off

Illuminance 
decrease

Shade up

(b) Event verification by using sensor fingerprints

Fig. 1 Examples of event spoofing attack and its defense
solution.

to make the window shade to go up. The lack of an
authentication mechanism to validate the authenticity of
an event notification facilitates event spoofing attacks.
Intuitively, the authenticity of an event notification can
be validated according to the influences on assemble
devices caused by the event. For example, in Fig. 1b,
a “Light off” event affects the state of the illuminance
sensor. Such influences can be extracted and formulated
as fingerprints for event validation. If the system
receives an event notification without a valid/proper
event fingerprint from surrounding sensors (in this
example, the illuminance sensor), the notification will
be rejected. Accordingly, only valid events (e.g., caused
by user operation in Fig. 1b can be processed and trigger
automation rules.

(3) Sensor state based event fingerprint. Physical
events in the real world will cause IoT sensors to
fluctuate according to a certain pattern. Further, this
impact only happens in a short time window around
the event timestamp. As shown in Fig. 2, opening and
closing the door will cause the accelerometer to fluctuate,
but the acceleration only occurs after the event “Door
opened” and before the event “Door closed”. The time
range indicated by the arrow below represents the time
window of the events, and the small flat of the curve in
the middle represents the gap between “Door opened”
and “Door closed”, that is, the door is not subject to
acceleration. Therefore, a time window based sensor
data feature extraction method can be used to depict the
correlation between sensor data and physical events, in
which sensor data are used to build event fingerprints.
Learning-based methods are usually deployed to extract
fingerprint models.

3.2 Threat model

We consider a scenario that the IoT system receives
a forged event notification, i.e., the state of the event
corresponding device does not actually change. This
can further trigger certain IoT automation rules. Event
spoofing is a typical measure to inject forged events into
the victim IoT system. In this case, the attacker needs
to have some preliminaries about the victim, such as

Door opened Door closedA
cc
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er
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n 
(m

s--2
)

Fig. 2 Sensor data fluctuation caused by events.
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the corresponding automation rules of its attack goal, so
that the attacker can choose which event to forge. For
example, as illustrated in Fig. 1a, if the attacker knows
about the rule “if the door is opened then turn on the
light”, he/she will exploit a forged “Light off” event to
change the window shade state indirectly.

In an event spoofing attack, the attacker is not able
to make any device state to change in the physical
space, but he/she can deceive the system by sending
forged event notifications through cyber-attacks, such
as malicious apps, traffic packet forgery, compromised
weak sensors, etc. Sivaraman et al.[26] showed that
malicious smartphone apps can exploit vulnerable IoT
devices through the Internet, which can send forged
events to the control system. Some typical local-server-
based IoT systems, such as Home Assistant[5], have
weak security mechanisms on network traffic, i.e., they
usually use unencrypted Hyper Text Transfer Protocol
(HTTP) for inter-device communications, which gives
opportunities for traffic packet forgery[29]. Furthermore,
the attacker can choose to compromise a weak sensor to
spoof events to trigger a secure sensitive action[13].

The goal of this paper is to validate event authenticity
and detect anomaly event notifications caused by the
aforementioned event spoofing attack or device errors.

4 System Design

In this section, we present the system design of our
approach, EScope. The goal of our approach is to
effectively validate the target event with the assistance
of closely related surrounding sensors (i.e., verification
sensors). As shown in Fig. 3, EScope consists of five
modules: (1) data labelling; (2) feature construction;
(3) sensor selection; (4) fingerprint generating; and (5)

training and checking. Data labelling module labels
the features according to the event logs. Meanwhile,
feature construction module takes event timestamps
and raw sensor data as input, uses grid search to
select optimal sensor windows, and computes features.
Sensor selection module trains a neural network to
select “representative” features, and selects sensors
with corresponding features as the verification sensor
set. Fingerprint generating module generates event
fingerprints from the selected sensors. Training and
checking module trains classifiers and outputs the
checking results.

In EScope, we consider each event individually. In
this section we denote the target event as E. Assume
there are k sensors in the IoT system, we denote their
time sequences of sensor si as Si .t/; i 2 f1; 2; : : : ; kg.
Suppose an eventE occurs n times, the timestamp of the
j -th event occurrence is denoted as tj ; j 2 f1; 2; : : : ; ng.
We summarize the definition of all parameters applied
in our approach in Table 2.

4.1 Data labelling

Data labelling module takes event logs as inputs and
outputs event tuples. In our approach, an event tuple
consists of three elements, an event nameE, a timestamp
tj , and a label lj 2 f0; 1g. Such event tuple means
the event status at the moment t . We label the event
timestamp as “1” (positive) to represent the event
did occur. We label the timestamp between event
occurrences at a certain interval as “0” (negative)
to represent the event did not occur. We generate
event tuples for every n records in the event log, and
the corresponding event tuple sequence is denoted as
.E; tj ; lj /; j 2 f1; 2; : : : ; ng.

Sensor selectionFeature Construction

Sensor window selection
Features

& labels
Optimal 
(𝑡−, 𝑡+)

Feature computing

Event log

Offline training

Online checking

Surrounding sensors

All surrounding 

sensors

Verification
sensor set

Representative sensors

Labels

Feature selection

Sensor selectionData Labelling

Training & checking

Classifier 

training

Event 

tuples

( � , � )

Average RMI
computing

T-window
sliding

Feature 
extraction

RMI

Sensor 
data

Feature 
extraction

Sensor 
data

{Features}

� 	� 	� 	� 	� 	�
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�
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Fig. 3 Overall architecture of EScope.
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Table 2 List of the major variables.
Variable Definition
E Event to be verified
k Total amount of sensors
n Total amount of event occurrences

Si .t/ Data sequence of the i -th sensor si
tj Timestamp of the j -th event occurrence
lj Label of the j -th event occurrence
l Label sequence composed of lj

.t�
E;Si

; tC
E;Si

/ Time window for event E and sensor Si
EFSi .tj / Feature vector of sensor Si at tj

fSi ;m.tj / The m-th feature value of sensor Si at tj
fSi ;m The m-th feature value sequence of sensor Si
EF.tj / Feature vector including all sensors at tj
Ex Neural network input vector
y Neural network output value
Ex0 Output vector of the one-to-one layer
E! Weight vector of the one-to-one layer

E!1; E!2; E!3 Neural Network weight vectors
Eb1; Eb2; Eb3 Neural network bias vectors
J Neural network loss

�0; �1 Neural network learning rates
� Neural network L1-regularization penalty

4.2 Feature construction

The purpose of this module is to obtain features and their
labels. This module takes event logs and raw sensor data
sequences as inputs and outputs features of all sensors
and the corresponding labels. This module consists of
two sub-components, sensor window selection, and
feature computing.

(1) Sensor window selection. This sub-component
takes event tuples and raw sensor data as inputs and
outputs optimal sensor selection window. Since the
events can only affect sensor state values in a short time
interval, as described in Fig. 2, we use time windows to
select informative pieces for event verification from the
sensor data sequences.

We denote a time window as .t�E;Si
; tCE;Si

/, which
means for event .E; tj ; lj / and sensor Si , the window
begins at tj C t�E;Si

and ends at tj C tCE;Si
.

Since the baseline value of the sensor data fluctuates
over time and physical environment (for example, the
value of the air pressure sensor is relevant to the ambient
atmosphere), we compute features from the relative
change of sensor readings between windows, which is
calculated by subtracting the sensor data in the current
window by the previous one. Denote the current event
timestamp as tj and the previous event timestamp as tj�1,
the current window and the previous window are denoted

as .tj C t�E;Si
; tj C t

C

E;Si
/, .tj�1 C t

�
E;Si

; tj�1 C t
C

E;Si
/,

respectively. For the sensor data sequences Si .t/, the
sensor relative change is Si .t1/ � Si .t0/, where t1 2
.tjCt

�
E;Si

; tjCt
C

E;Si
/ and t0 2 .tj�1Ct

�
E;S ; tj�1Ct

C

E;S /,
in which � means the average value of a sequence.

As each event-sensor pair has its own data change
pattern, to determine a proper time window for each
event-sensor pair is critical for feature extraction.
We traverse and select the best time window from
the candidates. We use Relative Mutual Information
(RMI) as the metrics, which represents the the ratio
of information provided by the sensors to the total
information of an event.

To compute RMI, specifically, for an event E,
a sensor Si , and a window candidate .t�E;Si

; tCE;Si
/,

we first add window to the raw sensor data at
each timestamp tj , then compute features from the
sequence in the corresponding time window .tj C

t�E;Si
; tj C tCE;Si

/. We compute five features for
each sequence, which are maximum, minimum, sum,
average, and standard deviation. The five features are
aggregated into a feature vector denoted as EFSi .tj / D

ffSi ;1.tj /; fSi ;2.tj /; fSi ;3.tj /; fSi ;4.tj /; fSi ;5.tj /g.
RMI.EISi / between event E and sensor Si is

calculated as follows:
RMI.EISi / D max.RMI.EIfSi ;m// (1)

where RMI.EIfSi ;m/ D
I.lIfSi ;m/

H.l/
, and m 2

f1; 2; 3; 4; 5g.
The maximum of all features is taken as the

metric for this candidate window. We take all features
fSi ;m.t/ into consideration, computing the maximum
value of RMI.EIfSi ;m/ for all m 2 f1; 2; 3; 4; 5g.
RMI.EIfSi ;m/ represents the ratio of information
provided by feature fSi ;m to the total information of
event E, which calculates from the event label sequence
l and the corresponding feature sequence fSi ;m. I.�/
represents the mutual information between two sequence,
and H.�/ represents the entropy of a sequence.

Figure 4 gives an example of sensor window
selection. The example illustrates a grid search of events
“Door opened” and “Door closed” with data from the
accelerometer on the wall next to the door and from
the accelerometer on the door. Figure 4 shows that
the RMI of the accelerometer on the wall with “Door
opened” is lower, and the RMI of “Door closed” is
higher. This is because the physical influence between
the door and the wall is usually smaller when opening
the door than closing it. On the other hand, The RMI
of the accelerometer on the door with “Door opened”



224 Big Data Mining and Analytics, June 2023, 6(2): 218–233

(a) Door opened vs. Accelerometer on the wall

(b) Door opened vs. Accelerometer on the door

(c) Door closed vs. Accelerometer on the wall

(d) Door closed vs. accelerometer on the door

Fig. 4 Typical result of sensor window grid search.

is higher when tC is greater than 0, that is, when the
end of the time window is after the moment the “Door
opened” event happens. It is obvious that the door itself
is not accelerated before it is opened, so only under the

condition that the end of the time window is after the
event occurs, the RMI can get a high value. Similarly, the
RMI of “Door closed” event and data from the sensor on
the door are higher when t� is less than 0, because the
door does not move after closure. These phenomena
are following real world situations and illustrate the
rationality of the sensor window selection method as
well.

(2) Feature computing. This sub-component
computes all features from event timestamp, raw
sensor data, and selected time windows from sensor
window selection. After obtaining the optimal
time windows, we compute features based on the
aforementioned sensor relative variation. For each event
.E; tj ; lj /, we take maximum, minimum, sum, average,
and standard deviation as features in each window
.tj C t

�
E;S ; tj C t

C

E;S /. Feature values are denoted as
fSi ;m.tj /;m 2 f1; 2; 3; 4; 5g. The component computes
these features for all sensors and outputs feature vector
EF.tj /.

4.3 Sensor selection

Sensor selection module is to determine the
representative sensors for effective event validation
and reduce the noise introduced by unrelated sensors.
To achieve this, sensor selection uses a multi-layer
perceptron Neural Network (NN) to analyze the
importance of features, selects informative sensors as
representative sensors and outputs a verification sensor
set for event validation.

(1) Feature selection. Generally, layers with L1-
regularization[30] can make the weight vector sparse (i.e.,
most elements of a vector are zero) to select features, and
naturally avoid repeatedly selecting too many similar
(or homogeneous) sensors. Thus by adding a one-to-
one layer right after the input layer, the contribution
of each feature input can be learned and reflected to
corresponding weights. Such one-to-one weighting layer
can select a more small subset of features comparing to
traditional fully-connected networks[31]. In the proposed
NN, the one-to-one layer is deployed to extract/output a
sparse result after training, in which a 0 weight means
that this feature has no contribution to the NN classifier
and should be discarded.

Our proposed NN is illustrated in Fig. 5. The
network includes a one-to-one layer, several hidden fully-
connected layers, and one output node. The network
takes all features as input and event labels as supervision
(output). In the proposed network, the input feature
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Fig. 5 Structure of the feature selection neural network.

vector is denoted as EF , the weight vector of the one-to-
one layer is denoted as E!, and the output of this layer is
denoted as EF ı E!, where ı represents Hadamard product,
i.e., element-wise multiplication. The output layer uses
a sigmoid activate function to get a result between 0 and
1, and the rest layers use the ReLU function.

Empirically, the weight vector can hardly achieve a
sparse result. The values will be very close to zero. This
is due to the computing error introduced from gradient
estimation. To solve this problem, we use an improved
optimizer “SGD-L1(clipping)”[32, 33]. The idea is to limit
the weight value to cross zero during back-propagation,
in order to avoid the weight oscillating near zero and
enhance the sparseness.

The training process of our neural network consists
of two hidden layers and an output layer. We denote
the weight vector of one-to-one layer as E!, the weight
vectors of other layers as E!1; E!2; and E!3, and the bias as
Eb1; Eb2; and Eb2. Note that all vectors aforementioned are

column vectors in default.
During forward propagation, the input vector Ex is

weighted by E!, and is denoted as Ex0 D Ex ı E!. the
weighted vector Ex0 is put into a fully-connected multi-
layer network. We denote the loss function as follows:

J D l.ytrue; y/C �k E!k1 (2)

where ytrue is the ground truth label, J is the sum of a
criterion l.�/ that measures the prediction error and L1-
regularization that is the weight E! times coefficient �.

The neural network parameter update procedure is
listed in Algorithm 1. In update algorithm, we use back-
propagation to compute the gradient for each parameter
in the neural network. We compute parameter weight
after update using separated learning rates for the one-
to-one layer and the other layers. Finally, for the one-to-

Algorithm 1:���������Algorithm 1 Neural network parameter update procedure
Input: Model parameters from the last iteration: E!; E!1;

E!2; E!3; Eb1; Eb2; Eb3, loss J , and learning rate �0 and
�1

Output: Model parameters after update E!0; E!0
1
; E!0
2
; E!0
3
; Eb0
1
;

Eb0
2
; and Eb0

3

1 for each parameter p 2 . E!; E!1; E!2; E!3; Eb1; Eb2; Eb3/ do
2 compute gradient ıJ

ıp
using back-propagation;

3 end
// parameters excluding one-to-one layer

4 for each parameter p 2 . E!1; E!2; E!3; Eb1; Eb2; Eb3/ do
5 p0 D p � �1

ıJ
ıp

;
6 end
// parameters in one-to-one layer, using SGD-L1(clipping)

7 for each parameter p 2 E! do
8 p0 D p � �0

ıJ
ıp

;
// limit the parameter sign changes

9 if (p � p0 < 0) then
10 p0 D 0;
11 end
12 end

one layer, we verify whether the sign of weight changes
during the update, and if so we set its value to be 0.

(2) Sensor selection. The selected verification sensor
set consists of the sensors that possess all non-zero
weights. After we obtain the verification sensor set,
the NN model is no longer useful that can be discarded.

4.4 Fingerprint generating, training, and checking

These modules use selected verification sensor set from
above as the event fingerprint, and verify the event
authenticity from the fingerprint by training classifiers.

(1) Offline training. In this phase, for each event
tuple .E; tj ; lj /, we collect readings from the verification
sensor set corresponding to the event near the timestamp
tj and generate the feature vector EF.tj / by the feature
construction module. We train binary support vector
machine (SVM) classifiers to validate the authenticity of
events. In the training phase, we use the feature vector
EF.tj / as the input and lj as the supervised learning

label (1 represents the event did occur and 0 represents
the event did not occur). We apply different penalty
parameters for two classes to deal with the situation that
samples are imbalanced. Also, we do normalization for
all samples to reduce the convergence time.

(2) Online checking. After feature construction and
sensor selection modules are well pre-trained, the
window selection and sensor selection results can be
directly used for online preprocessing and checking.
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In this phase, when we receive an event Etest for
testing at the timestamp t test , we collect its verification
sensor data, generate its feature vector EF.t test / by the
fingerprint generating module and input them to the
classifiers (double line arrow in Fig. 3). The output “0”
represents that the testing event Etest is a forge event.
The system only takes a small set of sensors as input and
uses the pre-trained event verification classifiers, which
reduces the complexity of online checking significantly.

5 Implementation

To evaluate our approach, we implement EScope and
another existing solution, Peeves for comparison. In this
section, we present the implemental design of EScope.

(1) Dataset. We used the dataset collected and shared
by Birnbach et al. of Oxford University in their study[13].
This dataset, collected by a laptop and 12 Raspberry Pis
(树莓派加s) in an office in 13 days, includes 49 sets
of sensor data and 22 sets of event records. To ensure
the accuracy, we conduct data cleaning and remove the
abnormal/corrupted data, such as a continuous outlier
over a long period of time and device failure.

(2) Preprocessing. Preprocessing aims to create three
sub-datasets and generate sample labels from event
records. As described in Section 4.2, we manually add
negative samples at intervals on the time axis between
positive samples. The total amount of samples is about
10 000. We separate it into three parts: the development
set, the training set, and the testing set. The development
set contains data collected in 1 day (i.e., 1/13 of the
whole dataset) and is used to select time windows. As
for data splitting of the training and the testing set, we
conduct an experiment varying in different splitting
proportions. The experiment shows no significant
accuracy changes for the SVM when the proportion
of the training set ranges from 40% to 80%. Real
events rarely occur in the dataset (for example, the event
“Radiator on” occurs only 18 times), and the amount
of 1-samples is very small. Therefore, other splitting
strategies (for example, 80% training/20% testing or 70%
training/30% testing) will cause insufficient 1-samples in
the testing set. Considering the sufficiency of 1-samples
in the testing set and the minimization of the training
time, we select 60% of the remaining 12 days as the
training set and the other 40% as the testing set.

(3) Sensor window selection. The time window is
the interval .t�; tC/, with t� ranging from Œ�4; 3�, and
tC ranging from Œt� C 1; 4�. We traverse 36 windows in

the range and select the window with the largest RMI of
all features.

(4) RMI calculation. We calculate the mutual
information between events and sensor features and
divide mutual information by the information entropy of
the event to get RMI. Generally, mutual information is
calculated as described in the following:

I .AIB/ D
X
b2B

X
a2A

p .a; b/ log
�

p.a; b/

p .a/ p.b/

�
(3)

when random variables are discretely distributed. Yet, in
practical, most sensors feature values follow continuous
distribution.

Peeves uses a k-nearest-neighbors-based method to
calculate the discrete-continuous mutual information.
However, the testing result shows the method causes
a high false rate in calculating the discrete-discrete
mutual information. To process the discrete data more
adequately, we divide them into bins and use the
statistical frequency instead of probability to calculate
the mutual information. We also evaluate another
accurate estimation algorithm of mutual information
for arbitrarily distributed data[35], which can be
applied to the case of discrete and continuous mixing
of eigenvalues of this work. However, based on
our experiment, the time cost of the algorithm is
unacceptable for our state correlation-based sensor
selection.

(5) Sensor selection. We implement our neural
network by PyTorch[36]. The number of the input nodes,
i.e., the number of features, is 1340. We use a two-
hidden-layer structure that has 400 and 100 nodes,
respectively. Stochastic Gradient Descent (SGD) is
used as the optimizer and Binary Cross Entropy (BCE)
is used for the criterion, and we adjust it by adding
the L1-norm of one-to-one layer. The loss function is
J D BCE.ytrue; y/C �k E!k1, where � is the penalty
of the L1-regularization and E! is the weight vector of
the one-to-one layer. This loss function will adjust the
high value of the weight vector to get a sparse result.
Furthermore, by adjusting � we can change the degree
of sparseness and control the number of selected features,
and then control the size of verification sensor sets.

As for hyper-parameters, we tried different optimizers
and learning rates. We found that changing optimizers
has little impact on convergence performance. We
adjust the learning rate of one-to-one layer separately
for a faster weight vector update. According to our
experiment, setting a higher learning rate of one-to-
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one layer compared to other layers gains a more sparse
result. Since we only need the weight vector, we only
consider whether the loss is stable and well-reduced
during training, which means the model converges.

(6) SVM classifier. We use scikit-learn[37] in Python
to build the SVM classifier. The class weight

parameter is introduced to apply different penalty C s in
two classes of samples, so as to avoid the deviation of the
classification boundary caused by the imbalance of the
sample numbers. According to our tests, changing C has
little effect on classification performances, and changing
class weight has a slight impact on the model test
results: the results improve as class weight increases
from 1, however, after reaching a certain threshold, not
only the model test results hardly improve with the
increase of class weight , but the training time cost
increases.

(7) Parameter tuning. To determine NN
hyperparameters (including learning rate and �),
we traverse all candidates and deal with the trade-off
between performance (F1-score) and sensor amounts.
In detail, we set an F1-score baseline at 0.95, and a
sensor amount baseline at 10. We denote the score as
s D jF1-score � 0:95j1:5 C jamounts � 10j, where
anount s represents the amount of selected sensors, this
encourages high F1-scores and low sensor amounts, and
pick the hyperparameters with the highest score. We
use grid search to adjust the parameters in our SVM
(including the kernel, C , and class weight) for each
event separately, in order to get the best performances.

(8) Online checking deployment. As the event
authentication mechanism, the online checking
component might be deployed in the IoT control system,
following the event notification receiver component.
When the event notification receiver passes an event
notification to the online checking component, it will
collect the selected representative sensors’ data, generate
the feature vector as the classifiers’ input, and output
the verification result. If the result is “0”, the event will
be treated as a forged one that cannot pass through the
authentication and will be intercepted before triggering
succeeding actions.

6 Evaluation and Discussion

In this section, we conduct experiments to evaluate the
performance of EScope and illustrate the advantages of
our approach by answering the following questions:
� Q1: Is EScope effective to detect forged events?

� Q2: Does EScope manage to build more accurate
event fingerprints?
� Q3: Is our NN-based sensor selection method

better compared to threshold-based methods?
� Q4: What is the influence of neural network

parameters on sensor amounts?
We re-implement the prior work, Peeves[13], on the

same dataset for comparison. We follow the same
procedure in Peeves, in which it uses RMI thresholds to
select features, and set 40% by default, to limit the noisy
features and reduce the time burden.

6.1 Forged event detection performance

To answer question Q1, we replay event spoofing attacks
by simulation and evaluate the detection performance of
EScope.

(1) Dataset preparation. The dataset we used
includes event records and sensor data. We add 20 items
randomly in time to the event record as forged events,
meanwhile remaining the sensor data unchanged, so that
the system believes the event did happen but the sensor
data have no reaction, which is the situation of event
spoofing attacks. When adding forged events, we set a
safety margin (10 seconds) to avoid overlapping with
real events.

(2) Event verification. We search for sensors in the
verification sensor set given by the sensor selection
module in our approach, then we compute features on
these sensors to build learning samples, and finally, we
use our pre-trained SVM classifier to give predictions,
which simulates the online running process of EScope.

We reserve all positive events from the testing set, i.e.,
the real events. Then we discard the negative events
that indicate the event did not occur and use our injected
forged events as negative. This can indicate the ability
to detect potential event spoofing attacks from IoT event
records.

We also implement our simulated attacks on Peeves[13]

and evaluate their detection accuracy. As for the metrics,

we compute F1-score D 2�
precision � recall
precisionC recall

from the

prediction result from the model, as shown in the left
part of Table 3. We also list the number of sensors for
event verification in Table 3.

From the result in Table 3, we can see that for 17
of the 22 events in total, EScope obtains an F1-score
larger than 0.9, and the F1-score of all events are larger
than 0.75, which indicates that our method is effective
enough to detect potential event spoofing attacks. We
also compare our approach with EScope, and it is shown
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Table 3 Performance and number of selected sensors of different approaches.

Event name

Evaluation results in
Section 6.1

Evaluation results in
Section 6.2

Evaluation results in
Section 6.3 Number of sensors

F1-score F1-score AUC F1-score
Peeves EScope Peeves EScope Peeves EScope MS Peeves+MS Peeves EScope MS Peeves+MS

Window opened 0.9973 1.0000 0.9665 1.0000 1.0000 1.0000 0.7112 0.7749 32 3 8 8
Light off 0.9938 1.0000 1.0000 0.9442 1.0000 1.0000 0.9058 0.8325 27 2 10 10

Door closed 0.9996 0.9977 1.0000 0.9979 1.0000 1.0000 0.6740 0.9980 25 2 9 9
Fridge opened 0.9893 0.9893 0.9883 0.9217 1.0000 0.9982 0.9415 0.6452 29 7 11 11

PC on 0.9634 0.9881 0.9842 0.9897 0.9624 0.9999 0.4989 0.4988 3 5 10 10
Fridge closed 1.0000 0.9872 0.9883 0.9893 1.0000 0.9925 0.5897 0.7485 29 6 12 12
Door opened 0.9992 0.9858 0.9982 0.9974 1.0000 1.0000 0.9222 0.9505 20 2 11 11

Fan off 0.9805 0.9842 0.9500 0.9616 0.9908 0.9968 0.8734 0.9795 9 2 10 10
Window closed 0.9866 0.9839 0.9649 0.9088 0.9999 0.9995 0.5714 0.6084 25 6 9 9

Fan on 0.9395 0.9804 0.9238 0.9746 0.8878 0.9989 0.5762 0.7040 2 5 9 9
Coffee machine used 1.0000 0.9787 1.0000 1.0000 1.0000 1.0000 0.7146 0.8909 34 5 10 10

Light on 0.9969 0.9779 1.0000 0.9641 1.0000 1.0000 0.9883 1.0000 23 5 10 10
Screen off 0.9535 0.9626 0.8657 0.9735 0.8696 0.9875 0.8651 0.8662 3 5 10 10
Screen on 0.9719 0.9618 0.9004 0.9537 0.9514 0.9577 0.5318 0.8167 9 4 11 11
Camera on 0.9533 0.9542 0.7925 0.8248 0.9046 0.9805 0.5324 0.8661 11 7 11 11
Camera off 0.9180 0.9268 0.7648 0.8223 0.8997 0.9340 0.6232 0.6196 10 14 12 12
Shade up 0.7918 0.9013 0.4761 0.9472 0.5479 0.9789 0.4481 0.4682 13 6 9 9

Shade down 0.7660 0.8928 0.5032 0.9140 0.5820 0.9703 0.4985 0.4985 10 9 12 12
PC off 0.9233 0.8621 0.7269 0.9665 0.8539 1.0000 0.7538 0.5219 4 5 12 12

Radiator on 0.7552 0.8303 0.4894 0.8473 0.4687 0.8180 0.5207 0.4992 16 8 10 10
Doorbell used 0.8460 0.7927 0.4472 0.8095 0.7316 0.8923 0.5825 0.5335 19 5 11 11
Radiator off 0.7172 0.7774 0.2123 0.5636 0.4287 0.8664 0.4636 0.5408 10 7 9 9

Average 0.9292 0.9416 0.8156 0.9214 0.8672 0.9714 0.6721 0.7210 16.5 5.45 10.3 10.3
Note: MS denotes manual selection.

that EScope has an average F1-score improvement to
Peeves. In addition, we illustrate the number of sensors
used for event verification in Table 3. As shown in
Table 3, EScope uses less sensors (5.45 compared to
16.50 on average) than Peeves. It means that EScope uses
a smaller verification sensor set to achieve a relatively
good validation accuracy. In 14 cases, EScope has a
better detection accuracy (marked in bold).

Answer to Q1: EScope obtains an average F1-score
of 0.9416 to detect forged events and exceeds Peeves by
0.0124, which demonstrates the effectiveness of EScope
in forged event detection.

6.2 Event fingerprint performance

To answer question Q2, we use several metrics (such
as F1-score and AUC) to measure the event fitting
performance of EScope. The evaluation is based on
the original dataset from Peeves[13]. Testing set split
from preprocessing is directly used for evaluation, which
includes positive standing for real events and negative
standing for not happened events. The result indicates
the accuracy of event fingerprints for event occurrence

detection and shows the inherent ability to fit the physical
environment rules of event fingerprint models.

We calculate F1-score D 2 �
precision � recall
precisionC recall

of

the classifier for both positive and negative samples and
take their average. We plot the corresponding Receiver
Operator Characteristic (ROC) curve, which takes False
Positive Rate (FPR) and True Positive Rate (TPR) as
the axis. For the ROC, the curve closer to the upper
left corner is considered to be a better result, which
has a high TPR when FPR is small, and meanwhile,
this curve has a larger AUC. F1-score is more rational
under the condition of the numbers of positive and
negative samples are imbalanced, and AUC focuses on
the intrinsic performance of the classifier because it takes
the decision threshold into account.

We show the F1-score, AUC and number of sensors
comparison of two event fingerprint models in the
right part of Table 3, which is calculated from the
classification results output from the SVM classifier. We
can see that 17 events have F1-scores larger than 0:9 in
EScope. It demonstrates that EScope generates effective
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event fingerprint models through sensor data.
Compared to the existing solution, Peeves lags behind

EScope in both F1-score and AUC. Specifically, our
method has significant improvements on “Radiator
on”, “Radiator off”, “Doorbell used”, “Shade up”, and
“Shade down” events. This is facilitated by our proposed
NN-based approach that outputs highly-informative
verification sensor sets by discovering implicit and
complex relationships between events and sensors. The
results demonstrate that EScope generates more accurate
event fingerprints with a much smaller verification sensor
set.

We plot the ROC curve of three events (Fig. 6), from
which we can see that the curve of EScope is closer to
the upper left corner, which indicates that our approach
has a better performance.

Answer to Q2: EScope obtains an average F1-score
of 0.9214 and AUC of 0.9714 in the event fingerprint
generation experiment, which exceeds Peeves by 0.1058
and 0.1042. It indicates that EScope can create more
accurate event fingerprints.

6.3 Case studies of sensor selection

To answer question Q3, we deploy two cases to
illustrate the performance of our sensor selection method.
We compute inter-feature correlation coefficients of
each other, we take the maximum of the features
corresponding to the sensors. We show the heat maps
in Fig. 7, which illustrates the absolute values of the
correlation coefficients between sensors. Both x-axis
and y-axis represent sensors. Red means the correlation
coefficient absolute value between these two sensors
is closed to 1, and blue means the value is closed to
0. We illustrate the sensor selection result (i.e., the
verification sensor set) and classification metric (AUC)
in Tables 4 and 5. We cluster sensors according to their
correlation coefficients by clustering, where 1�jcorri;j j
is considered as the distance between sensors i and j ,
and hierarchical clustering is conducted according to the

(a) Door opened

(b) Radiator off

Fig. 7 Correlation heat-maps between sensors.

distance. The sensors in the same cluster provide similar
information to event fingerprints, which is homogeneous.

Case study 1: Event “Door opened”. Figure 7a
shows that for the “Door opened” event, the inter-sensor
correlation is relatively low, while there still are some
deep color dots, which means highly-correlated sensor
pairs. The clustering result is shown in Table 4. In
this case, our approach avoids selecting multiple sensors
in one cluster (Clasters A and B), and discards other
clusters selected by Peeves.

Specifically, EScope only selects two sensors for
the event “Door opened”, which are pi7 BME680
(temperature, humidity, and air pressure sensor beside
the door) and pi8 SenseHat (acceleration sensor on
the door). Since the door opening action affects the

(a) Door closed (b) Radiator off (c) Shade down

Fig. 6 ROC curves of three events.
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acceleration and air pressure, these two sensors are
both highly informative for this event. Table 4 also
shows that merely using these two sensors can achieve
an AUC of 1, which demonstrates that EScope selects
more representative sensors compared to Peeves.

Case study 2: Event “Radiator off”. For the
“Radiator off” event in Fig. 7b, the inter-sensor
correlation is high. Accordingly, Table 5 shows that our
approach selects completely different sensor sets, and
significantly improves the AUC. Our approach achieves
better performances in choosing more informative
sensors.

In this case study, most sensors selected by EScope are
heat-related (for example, MLX represents for thermal
camera, MPU6050 senses accelerator and temperature).
However, most sensors selected by Peeves are irrelevant.
Thus, EScope can select more informative sensors.

Additionally, in order to prove the necessity to use
neural networks instead of intuitively choosing sensors
according to their correlation, we perform two manual
sensor selection, experiments, which are ¬ cluster all
sensors according to correlation, then randomly pick one
from each cluster, and  use Peeves sensor selection
method, cluster sensors and then randomly pick one
from each cluster. ¬ focuses on getting rid of choosing
homogeneous sensors and  does a similar job based
on the Peeves sensor selection result. The classification

result is shown in Table 3. The result shows that both
two approaches can reduce the sensor amount and obtain
a high F1-score on several events such as “Light on”, but
on most events, EScope performs much better.

Answer to Q3: Compared to the existing threshold-
based sensor selection method Peeves, EScope selects
representative sensors intelligently, which reduces the
verification sensor amount while improving accuracy.
Also, our method performs better than manual sensor
selection.

6.4 Parameter influence analysis

To answer question Q4, we adjust the number of sensors
to observe the AUC changes. We evaluate our approach
and Peeves for comparison. For our approach, we adjust
the L1 penalty coefficient � to control the number
of sensors. We show the number of sensors change
according to � at Fig. 8. Due to the unsteadiness of
neural networks, for each point on the graph, we train
the networks several times and take the average.

Generally, the number of sensors decreases as the L1
penalty � increases. There are several outliers at high
� value of event “Camera off” (in red rectangle), which
is not an accident confirmed in our further experiment,
because high � reduces the importance of error between
predict value and ground truth, causing loss unable to
fall, and making the NN fail to work. In our evaluation,

Table 4 Door opened verification sensor sets.
Method AUC Cluster Verification sensor set

EScope 1.0000
Cluster A pi7 BME680
Cluster B pi8 SenseHat

Peeves 1.0000

Cluster A

pi10 BME680 IN, pi10 BME680 OUT
pi1 microphone, pi2 microphone, pi3 microphone
pi5 microphone, pi7 microphone, pi9 microphone
pi3 BME680, pi7 BME680

Cluster B
pi1 BMP280, pi2 BMP280, pi5 BMP280
pi6 BMP280, pi8 SenseHat

Cluster C pi1 TSL2560, pi7 TSL2560
Cluster D pi1 RSS
Cluster E pi7 RSS

Note: The number behind “pi” represents the Raspberry pi ID during data collecting.
BME280/BMP280/BME680 — Sensor module for temperature/humidity/pressurem, respectively; SenseHat — Sensor module for
temperature, humidity, pressure, and acceleration; TSL2560 — Sensor module for illuminance; RSS — Received Signal Strength;

Table 5 Radiator off verification sensor sets.
Method AUC Verification sensor set

EScope 0.8664
pi11 MLX90640, pi12 MLX90640, pi3 MPU6050
CamPower, pi4 MPU6050, Pi5 TSL2560, pi9 MPU6050

Peeves 0.4287
pi5 RSS, PCPower, pi10 BME680 IN
pi1 BMP280, pi2 RSS, pi6 BMP280
FanPower, ScreenPower, pi7 RSS, WindowShadePower

Note: MLX90640 — Thermal camera; MPU6050 — Sensor module for accelerator and temperature.



Jian Mao et al.: EScope: Effective Event Validation for IoT Systems Based on State Correlation 231

(a) Camera on (b) Camera off

Fig. 8 Influence of ��� on the number of sensors.

we avoid these outliers by limiting �.
To evaluate the parameter influence in Peeves, we

change the RMI threshold, as described in Section 5, to
adjust the number of sensors.

Figure 9a illustrates the relationship between AUC and
the number of sensors at each event using 3D surfaces.
As shown in Fig. 9a, for most events, the green surface is
above the yellow surface, which means that our proposal
can obtain better performance using the same amount of
sensors. To illustrate elaborately, we show several event

cross-sections in Fig. 9a, specialized in Figs. 9b–9d. It
can be found that for the event “Camera on”, there is
little difference in the effectiveness of the two methods,
while for the event “Radiator off” and “Shade down”,
our approach outperforms Peeves.

Answer to Q4: The L1-regularization penalty �

and the number of selected sensors are negatively
correlated. Additionally, EScope outperforms Peeves in
AUC when the sensor amount of the two methods are
identical.

(a) 3D graph of AUC vs. the number of sensors of all events

(b) Camera on (c) Radiator off (d) Shade down

Fig. 9 Relationship between AUC and number of sensors.
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7 Conclusion

In this paper, we propose EScope, an effective event
validation approach to check the authenticity of system
events based on device state correlation. EScope filters
informative and efficient sensors using an NN-based
sensor selection component and extracts a verification
sensor set for event validation. We prototyped our
approach and conducted evaluations on a public data
set provided by Peeves. The experiment results show
that our approach has better validation performance on
F1-score and AUC compared with existing solutions,
and significantly reduces the number of necessary
verification sensors. We also demonstrate that our NN-
based sensor selection method is more effective to deal
with highly-correlated features.
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