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CHAPTER ONE 

   INTRODUCTION 

1.1 Research roadmap 

This study is aimed at improving our understanding of the processes and triggering factors 

that induce sinkholes and the early detection of their occurrences in several counties of the west-

central region of Texas. The area has experienced significant sinkhole formation primarily due to 

the presence of soluble rocks coupled with excessive exploitation of natural resources. This 

phenomenon has adversely impacted critical infrastructures, and the groundwater resource has also 

been significantly affected. This study used various analytical techniques to detect existing 

sinkholes, identified new ones, and understand their formation. The outcomes of this study are 

crucial in implementing suitable mitigation measures to minimize the impact on key infrastructure 

damage and aquifer contamination.  

This study is structured into five major chapters, with the first chapter serving as an 

introduction to the topic of sinkholes. Within this chapter, a comprehensive background on 

sinkholes is presented including the different types of sinkholes, and a review of the various 

datasets and methodologies that have been employed in previous studies to map, quantify, and 

characterize these sinkhole geological hazards. Additionally, the chapter outlines the objectives of 

the study and discusses its overall significance. 

Chapter 2 of this study presents a detailed overview of the study area, including its 

geographic location, boundaries, climate, and hydrogeological characteristics of the study area is 

provided, along with a thorough description of the regional and local geological units. 
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Chapter 3 provides detailed information on the data sets and methodologies utilized for 

identifying and characterizing sinkholes. It explains how precursor deformation was analyzed to 

detect active sinkhole deformation in West Texas. The chapter also outlines a methodical approach 

to determining the underlying causes and factors that contribute to sinkhole formation by 

integrating various data sets and assessing their spatial relationships. Furthermore, the chapter 

describes the software and techniques utilized, along with the data collection campaigns conducted 

to validate and calibrate the findings. 

Chapter 4 focuses on the results obtained from analyzing different datasets through various 

techniques, individually and in combination. Each method's outcomes and interpretations are 

presented separately, and the cumulative impact and significance of these interpretations are 

examined. The chapter highlights the importance of utilizing various datasets and approaches to 

comprehend sinkholes and the factors that facilitate their development comprehensively. The final 

chapter (Chapter 5) summarizes the findings of the study. 

1.2 Background 

Sinkhole is a ground deformation process that is characterized by the downward sinking of 

earth materials in circular (mostly), linear, or irregular failure patterns (United States Geological 

Survey (USGS), 2018). Natural processes, such as compaction subsurface erosion and climate 

events, and human-induced processes are credited for altering the subsurface conditions that 

contribute to the instability of earth ground conditions causing subsidence (Emil et al., 2021; 2018; 

Ng et al., 2015; Waltham, 2008). I 

Sinkholes are known for their closed topographic depression morphology, and their 

size/diameter and depth range from a few meters to more than 100 m (Zumpano et al., 2019; 
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Waltham, 2008). These features are common in soluble rocks, including carbonate rocks such as 

limestone and dolomite; metamorphic rocks that are easily dissolvable by water such as marble; 

and evaporite sedimentary rocks that are dominated by salt, anhydrite, and gypsum. Processes that 

form sinkholes begin when freshwater, or that has become acidic when carbon dioxide is dissolved 

in it, interacts with the easily dissolvable geologic units. The dissolution rate of the soluble rocks 

in general primarily depends on the composition of the units, the type of water the units are exposed 

to (freshwater or acidic water), hydrodynamics (static or moving water, rate of flow, etc.), and the 

degree of saturation of the solvent with respect to gypsum, salt, or calcite (Martinez et al., 1998; 

Salvati & Sasowsky, 2002; Waltham, 2008; White, 1984) For instance, the intensity and rates of 

dissolution are much more rapid in the evaporite rocks exposed to rapidly-flowing waters 

undersaturated in dominant salts (e.g., sodium chloride (NaCl)), as a result of the composition of 

the units and their low mechanical strengths, in comparison to carbonate units that come in contact 

with freshwater. Though the rate is not as rapid as evaporite rock dissolution, carbonate dissolution 

is amplified when the units are exposed to acidic water (carbonic acid (H2CO3)). In such cases, the 

carbonic acid reacts with the carbonate units to form calcium bicarbonate that easily dissolves in 

water (Benito et al., 1995; English et al., 2020; Gutiérrez et al., 2008; Hyndman & Hyndman, 

2016; Shi et al., 2019; Waltham, 2008). 

Sinkholes are classified into many types depending on their morphology and the processes 

that lead to their formation (Figure 1) (Keller et al., 2016; United States Geological Survey 

(USGS), 2018)). Solution (dissolution) sinkholes form on solid rocks by a process where (acidic) 

water seeps into the ground through fractures, faults, and cracks, causing the wall to dissolve 

causing ground instability and subsidence (Figures 1a). Direct contact between exposed 

carbonate/evaporite surfaces and water, especially in depressions, also gradually leads to the 
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formation of solution sinkholes. Other classes of sinkholes include cover-subsidence and cover 

collapse, often referred to simply as collapse sinkholes. The former develops in terrains overlain 

by loose and permeable sediments, such as sand, and underlain by soluble rocks (Figure 1b). The 

mechanism of formation of the cover-subsidence sinkholes is partly similar to the dissolution 

sinkhole but differs in that the process occurs underneath a permeable layer. It involves the 

downward settling of the overlying sediments into cavities due to a lack of basal support forming 

a sinkhole. Collapse sinkholes, the focus of the present study, represent brittle deformation 

processes formed in terrains overlain by solid rocks or a significant amount of clay in which surface 

or near-surface material collapses into an underground cavern (Figure 1c). These are the most 

catastrophic of all sinkhole types (Gutiérrez et al., 2008; Hatheway, 2005; Keller et al., 2016; Nam 

et al., 2020). 

 

Figure 1: Types of sinkholes – solution (a), cover subsidence (b), and collapse (c) (modified after Waltham 

(2008)). 

As discussed above, sinkholes can form through natural processes such as changes in the 

characteristics of the surface water (e.g., from fresh to acidic) that comes into contact with the 

rocks, as is the case for solution sinkholes (Figure 1a), erosional processes, water table fluctuations 

during drought and extreme flooding, etc. Most of these features that are formed through natural 

processes are largely prehistoric and do not have a significant impact on inducing hazards with 

devastating ramifications (Hatheway, 2005). On the other hand, human activities are largely 

(a) (b) (c) 
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credited for facilitating the formation of the majority of hazardous sinkholes, particularly collapse 

sinkholes (Hatheway, 2005; Shi et al., 2019; Youssef et al., 2015). The leading human activities 

that induce processes that eventually lead to the formation of sinkholes include excessive 

abstraction of groundwater and oil and gas resources, wastewater injection into the subsurface, 

poor construction/engineering designs that cause water leakage in underground pipelines, 

dewatering and underground excavations for mining operations, and land use/land cover changes. 

Groundwater, in particular, has two contrasting roles in sinkhole forming processes. Firstly, 

groundwater induces dissolution processes when it comes into contact with carbonate and 

evaporite subsurface units. However, groundwater also provides hydrostatic pressure that prevents 

the overlying mass from collapsing (Aydan et al., 2015; Newton, 1987). A decline in groundwater 

tables as a result of excessive groundwater pumping rates detracts the mechanical support provided 

to the overburden sediments, which overlie groundwater-saturated cavities generated by the 

dissolution process, by the groundwater fluid pressure. This in turn results in a vertical downward 

strain which induces subsidence (sagging) processes (Figure 2) (Ali & Choi, 2019; Frumkin et al., 

2015; Khanlari et al., 2012; Xiao et al., 2018). Though subsidence processes, in general, are usually 

slow, gradual, and imperceptible processes that may not pose significant hazards instantly 

(Gebremichael et al., 2018), they could also transition to faster deformation rates leading to an 

abrupt ground failure forming the sinkhole features (Heidari et al., 2011; Yang et al., 2022). 
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Figure 2: Subsidence (sagging) and sinkhole formation in gypsum terrain (modified from Gutiérrez et al., 

2014) 

The effect of the groundwater decline is not restricted to the well where groundwater is 

withdrawn at a higher discharge rate. This is because of the fact that the lowering of the water table 

leads to the development of the cone of depression around the well (Figure 3). The impact of the 

excessive groundwater withdrawal on the surrounding areas within the extent of the cone of 

depression, with respect to facilitating the sinkhole formation process, depends on several factors 

including the magnitude of the head drop (increased hydraulic gradient) towards the center of the 

cone of depression that could facilitate internal erosional processes, the nature of the subsurface 

geologic units, and variations in aquifer parameters such as porosity and permeability (Figure 3) 

(Alrowaimi et al., 2015; Giuseppe & Pietro, 2021; Xiaoet al., 2020).  
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Figure 3: Cone-shaped piezometric head declines over time from the initial time (t0) level to the final time 

(tf) (Giuseppe & Pietro, 2021) 

The occurrence of sinkholes is a major challenge to human lives, infrastructure, and the 

environment in areas in almost all the states of the United States underlain by soluble rocks. States 

such as Florida, Oklahoma, Texas, Alabama, Missouri, Kentucky, Tennessee, and Pennsylvania 

are particularly much more prone to the hazard and have experienced some of the most severe 

damages as a result of the sinkhole hazards (Kuniansky et al., 2016). Most of the carbonate karst 

features in the United States are spatially concentrated in the humid parts of the eastern and Pacific 

coastal parts where the prevalence of evaporite rocks at or near the surface is rare (Figure 4). On 

the other hand, most karst features in the semiarid and arid areas of the United States are formed 

as a result of the dissolution of evaporite rocks rather than carbonates due to low precipitation 

(Figure 4). The total coverage of areas underlain by evaporite rocks amounts to approximately 35 

– 40 percent of the total area of the continental United States (Johnson, 2005; Weary & Doctor, 

2016).  
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Figure 4: Spatial distribution of carbonate and evaporite rocks across the United States. Also shown (in 

red) are reported sinkhole incidents (USGS, 2020) 

Significant parts of the State of Texas, which are underlain by evaporites and carbonate 

rocks, are prone to sinkhole hazards some of which have experienced several catastrophic incidents 

in the past. Most of these incidents were reported in the northern, west-central, and western parts 

of the state dominantly underlain by the evaporite rocks (Figure 4) (Paine et al., 2012; USGS, 

2020). Some of the most widely known/reported sinkholes in Texas are spatially concentrated in 

the west Texas area within the Permian sedimentary basin known for its massive oil and gas 

developing activities amounting to nearly 40% of the United States’ overall oil production 

(Johnson, 2005; Monteiro et al., 2022). For example, two massive collapse sinkholes formed near 

Winkler County in West Texas in 1980 and 2002, whose cause was attributed to the dissolution of 

the interbedded salt and anhydrite layers at depth in the Delaware Basin (sub-division of the 

Permian Basin). Several studies suggest that the formation of these sinkholes was largely driven 

by anthropogenic activities. Most of these studies credit high groundwater extraction rates, and 
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activities and operations related to oil and gas exploration (brine well) and mining as the leading 

causes of the formation of sinkholes (English et al., 2020; Johnson, 1989, 2005; Kim et al., 2019; 

Paine et al., 2012; Shi et al., 2019). The west-central Texas region (also referred to as the North-

Central Plains region), located to the east of the Permian Basin (Figure 5), is another area in Texas 

that is prone to and experienced sinkhole hazards mainly due to the dissolution of evaporites 

(primarily gypsum and salt) (Figure 5) (Martinez et al., 1998).  

 
Figure 5: Map of the Permian Basin in Texas and New Mexico. The west-central region is shown in a red 

circle (modified from https://www.regionsenergyllc.com/). 

Unlike the West Texas area, where sinkhole hazards and the processes and controlling 

factors that induce the hazards were extensively explored in several studies (e.g., Kim et al., 2019), 

little is known about the spatial distribution of sinkholes/depressions and the underlying processes 

and factors that give rise to the occurrence of the hazards in the west- and north-central regions of 

Texas. Determining the spatial distribution and understanding the processes that aggravate the 

formation of sinkholes will help in developing an early warning system that can be used as input 
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by the community and policymakers to implement strategies to mitigate the impacts of the hazard. 

In addition, it will assist policymakers to formulate strategies for sustainable resource management 

to counterbalance extreme resource utilization practices that were credited for inducing sinkhole 

hazards in several studies. 

1.3  Mapping Sinkholes: Approaches and Limitations 

Though sinkholes tend to develop abruptly without any advance warning signs in most 

instances, precursory processes and their effects such as subsidence and tension cracks can indicate 

the possibility of the occurrence of the features. Thus, by monitoring the multitemporal progression 

of the precursory indicators, it is possible to forecast the incidence of sinkhole hazards with some 

degree of certainty (Carbonel et al., 2014; Deb et al., 2006).   

Several studies applied various multidisciplinary approaches to detect, monitor, and 

characterize sinkhole features. The approaches can broadly be divided into three: (1) analyzing 

existing sinkholes and controlling factors that induce their occurrence and extending the approach 

to identify similar sinkhole-like features across the investigated area (Basso et al., 2013; Chen et 

al., 2018), (2) feature extraction approaches using morphometric parameters (area, perimeter, 

shape, orientation, and volume), and (3) detecting ongoing (active) sinkhole formation processes 

by identifying precursory deformation processes (Jones & Blom, 2014; Talib et al., 2022; Theron 

et al., 2017). Part of the notion behind the first two approaches is that areas containing 

geometrically and morphometrically similar features to those that had experienced sinkhole 

incidents in the past are vulnerable to sinkhole hazards in the future. Statistical modeling and 

probabilistic sinkhole assessment techniques fall under this category. In these techniques, 

databases/inventory of existing sinkholes, their spatial distributions, and the factors that control 

their occurrence statistically are integrated to develop statistical, heuristic, and probabilistic 
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models that could identify areas vulnerable to sinkhole hazards. Analyses techniques falling under 

the feature detection category include visual interpretation and machine learning algorithms 

applied on aerial photographs and optical satellite images, and the delineation of depressions using 

analysis techniques applied on high-resolution Digital Elevation Models (DEM) such as Light 

Detection and Ranging (LiDAR) datasets in search of sinkhole features. (Benito-Calvo et al., 2018; 

Hu et al., 2018; Mohammady et al., 2021; Suh & Choi, 2017; Theron & Engelbrecht, 2018). On 

the other hand, ongoing sinkhole-forming processes are mostly determined by multi-temporal 

monitoring and quantifying the precursory deformation indicator, namely subsidence, using 

various methods. These methods employ two main sinkhole observation and monitoring platforms: 

ground-based (in-situ) and remote sensing. Some of the widely used in-situ methods for 

monitoring ground subsidence that indicates active sinkhole-forming processes include 

geophysical, particularly gravimetry, and geodetic monitoring methods. While active sinkhole 

detection and monitoring tasks using the two methods have produced reasonably acceptable 

results, their applicability is restricted to monitoring sinkhole-forming processes at a local scale as 

the methods are costly, labor-intensive, and time-consuming (Closson et al., 2005; Gutiérrez et al., 

2011). The synoptic view and repeat observation capability of remote sensing systems offsets this 

limitation through the provision of multi-temporal datasets capable of monitoring sinkhole 

precursors over a wide spatial scale (Theron & Engelbrecht, 2018). Though sinkhole detection and 

precursor monitoring activities using multi-temporal remote sensing datasets have several 

advantages compared with the in-situ methods as outlined earlier, several sources of errors 

constrain the accuracy of the results derived using the datasets. These include errors resulting from 

atmospheric conditions especially on remote sensing datasets acquired from satellite platforms, 

and geometric and geocoding errors (Al-Kouri et al.,2013; Vajedian & Motagh, 2019). Hence, 
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sinkhole precursor monitoring tasks should be complemented with in-situ datasets and results, for 

calibration and validation purposes, to improve the quality and accuracy of the remote sensing-

based results (Shi et al.,2019; Emil et al.,2021; Theron et al., 2017). In addition to the geophysical 

methods that can quantify active surface deformation processes as the gravimetry method does, 

imaging geophysical methods that could provide a view of the subsurface based on the responses 

of various layers and features to geophysical signals are widely used to complement sinkhole 

detection and monitoring operations (Argentieri et al., 2015; Talib et al., 2022).  

1.3.1 Mapping Potential Sinkholes                          

1.3.1.1  LiDAR for Sinkhole Detection 

LiDAR uses the two-way travel time of laser pulses sent from sensors onboard aerial 

(Airborne Laser Scanning (ALS)) or terrestrial (Terrestrial Laser Scanning (TLS)) platforms to 

ground targets to determine the location and elevation information of the ground surface (Liu, 

2008). Although LiDAR data obtained from the terrestrial platforms (TLS) provide high-resolution 

and detailed ground data that could be used for mapping sinkholes with better accuracy, their 

limited spatial coverage prohibits their use for mapping features over a wider spatial extent 

(Gutiérrez et al., 2019).  The Airborne LiDAR acquisition system (ALS), henceforth simply 

referred to as LiDAR, collects information from a sensor, equipped with an inertial measurement 

unit (IMU) and GNSS positing system, which are installed on a moving or static aerial platform to 

generate a 3D model of the surface (Figure 6) (Corradetti et al., 2022; Hofierka et al., 2017).    
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Figure 6: Illustration of airborne LiDAR components and data acquisition (McGaughey et al., 2006) 

LiDAR technology has been widely used for various applications, particularly for 

geomorphological mapping purposes to identify features on the surface of the Earth based on their 

morphological attributes. Besides the high-resolution terrain information provided by LiDAR data 

compared with the conventional elevation information obtained from satellite platforms, the ability 

of LiDAR systems to see through surface cover (such as forests and buildings) and mapping the 

bare surface make them ideal to identify morphological features that indicate various past or 

ongoing processes (Doctor & Young, 2017). In recent years, the LiDAR data acquisition 

technology and the resolution of LiDAR data have significantly improved (as much as to less than 

one meter), making it possible to detect and map the considerably smaller-sized surface features 

and allowing scientists to study sinkhole depression distribution and characteristics accurately and 

realistically (de Carvalho Júnior et al., 2013a; Filin et al., 2006; Seale et al., 2008; Shannon et al., 

2019; Zumpano et al., 2019). For instance, Seale et al. (2008) used LiDAR data to identify existing 

sinkholes in Pinellas County, Florida, by observing the morphologic and geometric characteristics 

of the features and verifying the accuracy using ground-truthing methods. Other studies 

demonstrated the ability of point cloud LiDAR data to map the distribution of sinkholes in the 
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Dead Sea region (e.g., Filin at el., 2006). Similarly, Montane et al. (2001) and Honings et al. (2022) 

successfully mapped subtle topographic features associated with sinkholes in the southern (Central 

Florida) and southeastern (Dougherty Plain) United States’ karst terrains using LiDAR technology 

and validating the accuracy through the analysis of ground penetrating radar (GPR) geophysical 

data (Montane, 2001).  

1.3.2 Detecting Active Sinkholes Though Monitoring of Subsidence Precursors 

As discussed above, subsidence processes have been identified as key precursory indicators 

of pre-failure active sinkhole-forming processes and as a result, long-term measurements of 

surface deformation/displacement rates and identifying areas undergoing subsidence are being 

used for early identification and monitoring of sinkholes (Intrieri et al., 2015). 

1.3.2.1   Global Navigation Satellite System (GNSS) 

Permanent or campaign Global Navigation Satellite System (GNSS) measurements are 

widely used to monitor precursory active deformation processes in suspected sinkhole sites 

(Kersten et al., 2017). Though the GNSS measurements can quantify subsidence rates with 

centimeter to millimeter scale precision, their capability to monitor sinkhole processes on a wider 

scale is limited. This is because GNSS measurements provide point measurements and can only 

quantify deformation rates at the point where the measurements were recorded (Rodriguez-

Lloveras et al., 2020). 

1.3.2.2   Interferometric Synthetic Aperture Radar (InSAR) 

Interferometric Synthetic Aperture Radar (InSAR) techniques applied on Synthetic 

Aperture Radar (SAR) datasets, acquired by satellite-based sensors, overcome the limitations 

posed by point-based deformation measurements (subsection 1.3.2.1) by providing deformation 

rates over a wider spatial scale (Rucker et al., 2013). SAR data comprises two signals that are 
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equally important for detecting active sinkhole processes: amplitude and phase.  InSAR techniques 

rely on the phase component of the SAR data to measure the fine-scale movement of surfaces over 

large areas with high temporal frequency. This makes the technology ideal for monitoring 

sinkholes and other subsidence processes in contrast to time-consuming and labor- and resource-

intensive field (in-situ) techniques (Crosetto et al., 2016; Ferretti et al., 2007; Theron & 

Engelbrecht, 2018).  

InSAR uses multi-temporal SAR imagery of a target surface to extract coherent phase 

differences (R1 and R2 in Figure 7) between two antennas, on the same satellite or acquired during 

a revisit overpass, to calculate the change in distance between the satellite and the target between 

observations to measure surface displacements (Hanssen, 2001; Rosen, 2000). An interferogram, 

generated by cross-multiplying the amplitude information of the two SAR images while 

differencing the phase information, is expressed in equation (1) (https://site.tre-

altamira.com/insar/).  

            ∅𝒊𝒏 = 
𝟒𝝅  ∆ 𝑹

𝝀
, ∆𝑹 = 𝑹𝟏 − 𝑹𝟐  . … … … … … … … … … … … … Equation 1. 

Where R1 is the first pass data acquisition, R2 is the second pass data acquisition, and ΔR is the 

difference between the two acquisitions, while 𝜆 is the antenna wavelength, and ∅𝑖𝑛 is the 

interferogram phase.  
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Figure 7: InSAR surface deformation measurement (https://site.tre-altamira.com/)  

InSAR techniques have been extensively used for investigating surface deformation 

processes resulting from various inducing factors and processes. For instance, the technique was 

used to investigate the deformation pattern of two geothermal areas in West Java, Indonesia. The 

study used ALOS PALSAR and Sentinel-1A data from 2007 to 2009 and 2015–2016, and an uplift 

pattern was observed around the injection zone of geothermal areas (Maghsoudi et al., 2018). 

Similarly, the technique has been successfully applied for the detection and monitoring of 

sinkholes in West Texas’s Permian Basin (Shi et al., 2019). The study applied InSAR techniques 

on 16 ALOS PALSAR images (acquired from 2007 to 2011) to monitor the subtle gradual 

deformation of existing sinkholes. It also detected potential sinkholes in an area about 1 km 

northeast of the existing Wink Sink 2 that exhibited a maximum subsidence rate of up to -40 cm/yr 

(Shi et al., 2019).  In a similar application of InSAR for sinkhole mapping purposes, a study 

conducted in the Dead Sea, Israel, utilizing the InSAR technique using RADAR data sets obtained 

from COSMO-SkyMed satellite images revealed that precursory subsidence occurred a few 

months before the failure of all three existing sinkhole sites in the area (Nof et al., 2013).  In 

another study, Talib et al. (2022) used TerraSAR-X RADAR images to detect precursor sinkhole 

deformation in West-Central Florida using InSAR techniques. Their results indicated that 
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subsidence patterns with values ranging from -3 to -6 mm/yr, observed in areas including buildings 

ranging in size from 300 m² to 2000 m², signify ongoing sinkhole forming processes.  

1.3.3 Validating Sinkhole Detection through Geophysical Method 

Using subsidence only for identifying depressions that are presumed to be active sinkholes 

may lead to an erroneous assessment as these measurements alone are not accurate enough to 

characterize sinkholes without knowing the properties of the subsurface (Intrieri et al., 2015). 

Ground-based geophysical measurements have been used in a variety of applications to assess 

subsurface properties, which is critical for investigating an area susceptible to a sinkhole, as they 

provide a comprehensive view of the subsurface based on the contrast in the responses of the 

units/layers of the subsurface to the geophysical signals. One of the most widely used near-surface 

geophysical methods for karst studies is 2D Electrical Resistivity Tomography (ERT) (Stan-

Kłeczek et al., 2022). In the ERT surveys (Figure 8), a direct current is injected into the ground 

through current electrodes, and the potential difference is then measured which will be used to 

calculate and generate the lateral and vertical resistivity distribution map of the subsurface. 

Apparent resistivity and pseudo-depth values acquired from the field surveys are processed using 

inversion software to calculate true resistivity and depth values that reflect actual subsurface 

conditions (Loke et al., 2013). The variations of resistivity as a factor of the permeability and 

degree of saturation of the subsurface material are used to detect the presence of sinkhole features 

as well as determine their geometries (Hussain et al., 2020; Montgomery et al., 2020; Mukhwathi 

& Fourie, 2020).  
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Figure 8: Wenner Array electrode configuration where A and B represent current electrodes while M and 

N signify potential electrodes. The injected current is shown as ‘I’ while ‘V’ and ‘a’ represent 

voltage and electrode spacing, respectively (Tesfaldet & Puttiwongrak, 2019; Wiwattanachang 

& Giao, 2011). 

1.4  Statement of the problem 

Significant parts of the study area, underlain by evaporite and carbonate rocks, are prone 

to sinkhole hazards that have caused destructive incidents in the past. For example, a sinkhole 

recently formed at the intersection of Grape and Franklin streets in north Abilene (Figure 9) which 

damaged the road and incurred thousands of dollars for repair (Henderson, 2021). As stated above, 

the study area is undergoing a significant economic transformation driven by significant 

anthropogenic activities and resource (groundwater, oil, and gas) extraction. These create a 

conducive setting for the development of gypsum and salt caverns and other karst features over 

time (Johnson, 2018). Figure 10 demonstrates the spatial zones where recent sinkhole incidents 

(shown in pink color) in the study area and surroundings have been reported (USGS, 2020). For 

instance, at least four large areas in Abilene city and surroundings, where there are high population 

distribution and infrastructure, fall within the area where recent sinkholes have developed (Figure 

10). In addition to the areas shown in Figure 10, several recent or past events have been reported 

in various parts of the study area (Young, 2016). Hence, it is imperative that these features are 

identified and their mechanism of formation determined to protect the public and infrastructure 
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from catastrophe induced by the incidence of the hazards. It will also help in preventing the 

contamination of the groundwater resources that occurs when the groundwater is exposed to 

contaminants when the overburden is removed as a result of the ground failure (Zhou & Beck, 

2008).  

 

Figure 9: A recent (2021) sinkhole that occurred in northern part of Abilene caused significant property 

damage (Henderson, 2021) 

1.5   Research Questions, Objectives, and Significance 

In this study, an integrated approach employing remote sensing and in-situ datasets and 

results derived using analyses techniques applied on the datasets were used for the following key 

objectives: 

• To detect potential sinkhole features and map their spatial distributions by assessing 

the geometric and geomorphic properties of the surface features and their long-term 

displacement patterns. 

• Identify (define) possible natural and anthropogenic-led processes and factors that 

induce the formation of the sinkholes and related surface deformation processes.  

To attain the objectives of the research, the following research questions were addressed: 
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• Could morphology and geometric attributes of land surface features be indicative 

of processes that formed sinkholes and other karst features?  

• Can the monitoring of precursory surface deformation indicators be used to 

determine active sinkholes? 

• What are the controlling factors that may influence the formation of sinkholes? 

what is the role and significance of anthropogenic processes in aggravating the 

formation of sinkholes? 

Though the problems arising from the incidence of sinkholes in the study area have long been 

recognized, there are no studies to date that have provided conclusive and comprehensive views 

on the complexity and severity of the problem, the spatial distribution of the features, inducing 

factors, and potential mitigating measures. This study addressed these gaps and demonstrates the 

feasibility of using multisource datasets and techniques to develop a sinkhole early-warning 

system that can avert the destruction caused by sinkholes and suggested mitigating measures to 

curtail their occurrence. 
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CHAPTER TWO 

STUDY AREA, CLIMATE AND GEOLOGY 

2.1. The Study Area  

The study area (total area: 15,810 km2) encompasses parts of Taylor, Fisher, Haskell, 

Knox, Stonewall, Callahan, Shackelford, and Jones Counties of the west-central region of Texas 

(Figure 10). It is bounded to the West by the Permian Basin and lies within the Rolling Plains 

physiographic province of Texas – a subdivision of the North Central Plains (Figure 5). Taylor 

and Jones counties are relatively densely populated, with a total population amounting to 141,739 

and 19,721, respectively. The majority of the dense population distribution of Taylor County is 

centered in and around the major city in the study area – the city of Abilene (US Census Bureau 

(http://www.census.gov/)). 

2.2. Physiography, Soil, and Climate 

The elevation in the study area varies from 397 to 775 m above sea level. The terrain in the 

northeast and central regions is primarily flat. In contrast, the northwest, southwest, and southeast 

regions have a slope that gradually rises with the terrain being short and steep in the valley. The 

topography in the southeast and northwest regions constitutes more complex landforms of ridges, 

valleys, and more streams than the northeast part of the terrain (Figure 10) (Drees, 1986; Price, 

1978). 

The primary soil type of the study area is commonly known as the red-colored “Redbed”, 

which is mostly Permian in age and alluvial and eolian in origin, formed following the weathering 

and deposition of Permian shales and sediments (Drees, 1986). This soil is deep/stratified with red 

loam to clay loam soils overlying the sand/sandy loam and shale layers (Drees, 1986).  
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The study area lies within the humid tropical climate zone/type characterized by its hot and 

humid summers and moderate temperatures in winter and spring (Saman et al., 1996). The mean 

annual average temperature ranges from 600 to 630 F. The highest and lowest temperatures were 

recorded during the months of August and January, respectively. (Gustavson et al., 1981). The 

average yearly rainfall in the area is 624 mm with the high rainfall amounts recorded during the 

spring and fall seasons while short rain episodes occur during the summer months (US Department 

of Agriculture, 2006; Wood & Blackburn, 1984).  

The economy of the area relies heavily on agriculture and oil and gas production, while 

gypsum and cottonseed oil mills also play crucial roles in generating income and job opportunities. 

The presence of abundant groundwater has created favorable conditions for large-scale farming, 

with farmlands accounting for approximately two-thirds of the area. The primary agricultural 

products cultivated through irrigation include cotton, wheat, grain, sorghum, corn, and peanuts. 

Indigenous plain grasses, such as hairy grass, buffalo grass, big bluestem, Canada wild rye, and 

Texas bluegrass, cover most of the rangeland. In addition, cotton and wheat are the predominant 

agricultural products grown in the area. 
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Figure 10:  The study area (polygon features marked in pink color are sinkhole hotspot zones (USGS, 

2020)). 
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2.3. Hydrology and Hydrogeology  

The watershed containing the study area lies within the Brazos basin, the second largest 

river basin in Teas, and comprises a sparse network of streams that join major rivers, flowing 

through the landscape's northeast, north, and northwest valleys, separated by a higher land ridge 

(Figure 10). The volume of river water largely depends on seasonal precipitation runoff from the 

surrounding watersheds, which flow into the main water reservoirs of Fort Phantom Hill Lake, 

Arson North Lake, South Lake, and Lake Stanford (Price, 1978).  

 

Figure 11: Major Texas aquifers (modified from Bruun et al., 2016). Also shown (in black-outlined 

polygon is the location of the study area). 

The Seymour aquifer (SA) is the major aquifer in the Texas rolling plains region followed 

by the Edwards-Trinity, Trinity, and (to a lesser extent) the Blain aquifers (Figure 11). The aquifer 

supplies nearly 85% of the water that is used for irrigated farming in the region (Modala et al., 

2017). In addition to groundwater from the SA, minor aquifers are being used for municipal and 
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industrial purposes accounting for approximately 36% of the total water demand of the region 

(Bruun et al., 2016). 

The investigated area encompasses a significant portion of the SA (Figures 11 & 12). The 

SA is an unconfined aquifer formed during the Quaternary period by the deposition of 

unconsolidated and poorly sorted gravel, conglomerate, sand, silt, and clay originating from the 

High Plains region of Texas and transported via eastward-moving streams. Sediments nearer to 

the surface exhibit finer grain sizes, whereas those found at greater depths are coarser (Ewing et 

al., 2004; Harden et al.,1978). Previous studies indicated that the thickness of the SA varies with 

most areas having a thickness fewer than 100 feet, but few areas do contain as much as 360 feet 

thick units (Ashworth & Hopkings, 1995; George et al., 2011). The average safe yield pumping 

rate for the SA is approximately 300 gallons per minute (Sij et al., 2008). According to Chaudhuri 

& Ale (2014), the SA has higher salinity in some areas, particularly at shallow wells and depths. 

This was attributed to the unconfined nature of the aquifer that makes it susceptible to various 

sources of surface contaminants – particularly pollutants emanating from the intensive agricultural 

activities and practices such as agrochemicals that eventually infiltrate the subsurface and alter the 

chemistry of the groundwater (Chaudhuri & Ale, 2014). 

The study area also contains some parts of the Edward Trinity aquifer, which is one of the 

major aquifers in Texas but a minor aquifer in the region and the study area (Figure 12). This 

aquifer extends from the southwest hill of the study area to the southwest of Abilene city covering 

approximately 281 km2 (Figure 12).  The Edward Trinity Aquifer is a confined aquifer composed 

of saturated sediments of early Cretaceous age Trinity Group formations and the limestone and 

dolomite of the Edward Group and sands of the Trinity Group (Bruun et al., 2016; Ashworth & 

Hopkings, 1995). The aquifer’s saturated thickness is generally greater than 100 feet in the study 
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area and the average yield of the Edward Trinity aquifer is about 50 gal/min (Ashworth & 

Hopkings, 1995; Bruun et al., 2016). 

 
Figure 12: Major aquifers in the study area (the inset map shows the major aquifers of Texas)   

The Trinity aquifer, another major aquifer in Texas in general, is only available in limited 

areas of the study area with a total areal coverage of approximately 232 km2 (Figure 12).  

Lithologically, the aquifer consists of limestones, clays, sands, conglomerates, and gravels 
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(Ashworth & Hopkings, 1995; Bruun et al., 2016). This aquifer's productivity is mainly governed 

by sand thickness and distribution. The northern Trinity Group has a stratified system of aquifers 

and aquitards due to the depositional conditions during the Cretaceous Period. Fluvial and 

coastline water-bearing sandstones were produced as a result of these sandstones' deposition in 

two different environments (Bruun et al., 2016).  

2.4. Geology 

2.4.1. Local Geology  

Almost all rocks in the Rolling Plains region are sedimentary rocks comprising limestone, 

clays, shales, sandstones, and conglomerates. The shales and sandstones in various locations are 

soft and easily eroded by natural processes such as wind and water. Locally, the limestone is 

characterized by greater hardness and ability to withstand physical and chemical weathering than 

its surrounding environment. Although no rock formations identified as Triassic or Jurassic in age 

are present in the area, the Pleistocene gravel beds within the Seymour formation are likely made 

up of materials that originated from formations dating back to the Triassic period. The surface 

layers of sand and gravel in Haskell and Knox contain a significant quantity of eroded fossils from 

the Cretaceous period (Nelson et al., 2001; 2013; Winslow & Doyel, 1954). 

The geology of the study area is shown in Figure 13. The surface geology consists of 

Permian-through Quaternary-aged deposits. The Clear Fork and Blair Formations, Permian in age, 

are the dominant units in the study area. The major lithologic units in the former include mudstone, 

siltstone, sandstone, dolomite, limestone, and gypsum/evaporite units with a thickness of up to 500 

meters (Nelson et al., 2001; 2013; Winslow & Doyel, 1954). Clear Fork unit is the dominant unit 

in most parts of the study area. The Blair Formations is primarily located in the northwest region 

of the study area and is composed of interbedded beds of shale, sandstone, gypsum, and dolomite 
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(The United States Geological Survey (USGS) – Pocket Texas Geology, 2023). Other notable 

Permian units prevalent in the study area include the Whitehorse Group, the Lueders Formation 

composed of alternating beds of shale and limestone, the Antlers Sand, and the San Angelo 

Formation (the northwestern part of the study) which is composed of mudstone, sandstone, 

siltstone, and gypsum units (Figure 13) (Bureau of Economic Geology (BEG), 2014; USGS – 

Pocket Texas Geology). 

The unconsolidated Quaternary-age sediments are overlying the Permian age deposits and 

are spatially distributed across almost all parts of the study area (Figure 13). These include the 

undivided Quaternary deposits (southwestern parts of the study area) associated with alluvium and 

Pleistocene deposits, and the Seymour Formation (northeastern parts of the study area) that 

primarily consist of sand and silt and occasionally, gravel units (USGS – Pocket Texas Geology).  

Another Quaternary units that are prevalent in the study area, though covering small sections/parts 

(along the central parts of the study area) are the alluvium units. These are mainly floodplain 

deposits consisting of a mix of silt, clay, sand, fine quartz, and gravel.   These deposits were formed 

on uneven erosional surfaces of the Permian-era red beds, resulting in considerable variation in 

thickness across the region. The thickness of the alluvial deposits exceeds 100 feet, indicating 

favorable conditions for groundwater reservoirs (Figure 13). (USGS – Pocket Texas Geology; 

Winslow et al. 1954). 

Several small patches of Cretaceous units are also available in the study area (Figure 13). 

These include the Edwards Limestone unit, located in the southwestern parts of the study area, 

which overlies the Comanche Peak Limestone and Walnut formations (Figure 13) (BEG, 2014; 

USGS – Pocket Texas Geology).  
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Figure 13:Local geology (USGS – Pocket Texas Geology, 2023) 
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CHAPTER THREE  

DATA AND METHODS 

3.1 Overview  

Given that most parts of the study area are prone to sinkhole hazards as outlined in section 

1.4, minimizing the risk through early detection, monitoring, and characterizing potential sinkholes 

using cost-effective methods and techniques is of paramount importance. Various 

multidisciplinary approaches were used in this study to detect, monitor, and characterize the 

formation of sinkholes across the study area. 

Moderate and high-resolution aerial and satellite imagery were among the most essential 

primary data sources in this research. These images include C-band SAR images obtained from 

the European Space Agency's Sentinel-1 mission and a 1-m LiDAR DEM of the study area. In 

addition, other relevant datasets such as multi-temporal groundwater water level data were 

incorporated into the data analysis. The data processing steps (Figure 14) can broadly be explained 

through three interconnected procedures. Firstly, depressions that could potentially indicate the 

presence of active processes resulting from sinkhole activity were identified using methodologies 

applied to elevation datasets. This was followed by the application of coupled satellite (Synthetic 

Aperture Radar (SAR)) and ground-based geodetic surface deformation detection techniques to 

identify depressions experiencing active ground subsidence processes that signify ongoing 

sinkhole formation processes. The presence of active sinkhole formation processes detected based 

on the displacement rates, that indicate precursory impending sinkhole formation indicators, 

derived using the geodetic methods was further validated by mapping the subsurface using near-

surface geophysical methods. Finally, processes and factors that induce the formation of sinkholes 

were determined by integrating various datasets and results including assessing the spatial 
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relationships of the detected sinkholes and relevant datasets (such as local geology), groundwater 

wells and their temporal changes in drawdown, etc. Below is a detailed discussion of the datasets 

and methods used to perform these procedures/tasks. 

 

Figure 14: An overview of the deformation estimation, calibration, and validation procedures using the 

SNAP, StaMPS, and GNSS datasets and methods. Also shown are the relevant datasets that are 

integrated with the deformation result to further validate the data as well as datasets representing 

processes and factors that facilitate the formation of sinkholes. 

3.2  Mapping Depressions 

Sinkholes exhibit specific morphological/physical characteristics compared with the 

surrounding terrain and these specific characteristics can be used to detect and map their 

distributions on the earth’s surface (de Carvalho Júnior et al., 2013; Shannon et al., 2019). Some 

of the widely known characteristic traits of sinkholes include their relatively low elevation 

(depression) and closed shape/morphology (Zhang et al., 2019). Because of this placement of 
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sinkholes at a relatively lower elevation compared with the surrounding terrain, most sinkhole 

detection methods exploit the contrast in elevation between the depressions and surrounding 

landscape to map depressions that could potentially indicate sinkhole activity.  

In this study, a high-resolution (1-m spatial resolution) LiDAR Digital Elevation Model 

(DEM) data was used to extract depressions that could potentially represent sinkhole formations 

over the study area. The LiDAR elevation dataset was acquired from the Texas Natural Resources 

Information System (TNRIS) data dissemination platform (https://tnris.org/). The data was 

provided as compressed LiDAR point cloud data file format (LAZ) that was uncompressed to LAS 

point cloud data format using tools in ArcGIS software.  The LiDAR point cloud data contains 

hundreds of thousands of first and last return point cloud data with 34 cm spacing between two 

points. To make it more manageable and for data processing convenience, the LiDAR data were 

classified into 10,979 different LAS tiles. The size of each tile is around 1200 m by 1200 m and 

covers roughly 144 hectares. A raster analysis and conversion tool in ArcGIS, called Point Cloud 

To Raster, was used to convert the point cloud data (LAS file format) to a continuous elevation 

surface (DEM). The tool used the last returned ground points over the area to generate a 1-m spatial 

resolution of DEM of the bare earth surface, as a Geotiff layer, using the average Binning 

technique. This excludes point clouds representing tall features such as buildings and vegetation 

from the final analysis and the resulting DEM. The binning technique applies interpolation 

procedures to fill the data gap between the successive elevation points/point cloud data. Once 

DEMs for each subsection of the study area were generated, they were stitched together (to a single 

DEM product) using ArcGIS’s Mosaic to New Raster tool to produce a DEM representing the 

entire extent of the study area. 

https://tnris.org/
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Surface depressions, known as sinks in GIS, are spatially connected cells with undefined 

flow directions. That is, the flow directions in sinks cannot be assigned to the values of any of the 

eight surrounding pixel’s values as the neighboring cells may be higher or flow into each other 

(Figure 15) (Zhang et al., 2019). The study used this concept to map all possible sites representing 

surface depressions. 

 

Figure 15: Eight flow directions for all neighboring cells of a focal cell (Zhang et al., 2019). 

For mapping the depressions that could potentially indicate sinkhole activity over the study 

area, the following key procedures were implemented: 

• The ArcGIS Fill sink tool within the Hydrology toolset was first used to identify and fill all 

depressions having lower elevations than the immediate surrounding area (Rajabi et al., 2018) 

(Figure 16). To identify the location of a depression, the pixels with a comparatively lower 

elevation than its surrounding pixels were filled to level the area. 

• Secondly, the original DEM was subtracted from the filled DEM using the Minus tool in 

ArcGIS. It subtracted the value of the filled input raster from the value of the original DEM 

input raster on a cell-by-cell basis (Figure 17). This process omitted all the non-depression 

surfaces because cells with the same Digital Number (DN) value obtained a zero value, 

whereas a positive value, which might be a sinkhole depression, was generated when cell 
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values in the two rasters have contrasting DN values. Values greater than zero are classified 

as possible sinkhole depression zones using the ArcGIS Reclassify tool and then converted to 

polygons. 

 

Figure 16: Mechanisms of the fill sink procedure (Environmental Systems Research Institute (ESRI))  

 

• The morphometric characteristics including the size (in terms of area) and shape of the 

mapped depressions were then analyzed to exclude false alarm features and improve the 

accuracy of the sinkhole detection procedure. This study aimed to identify moderate- to large-

scale sinkholes and hence an area threshold ranging from 600 m2 to 2600 m2 was set to retain 

the depressions whose areas fall within the specified range and discard polygon features 

outside with areas beyond this specified range. Since sinkholes exhibit circular or near-

circular geometric patterns (Subedi et al., 2019), further analysis was undertaken to filter out 

depressions exhibiting morphometric properties that are not associated with sinkholes. The 

circularity Index (CI), which takes the area and perimeter of the polygon into consideration, 

Figure 17: Illustration of the process of subtracting DEMs to delineate depressions (ESRI)  
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was used to remove unlikely sinkhole depressions (de Carvalho Júnior et al., 2013; Shannon 

et al., 2019; Zumpano et al., 2019). The CI value was calculated following equation 2 

(Shannon et al., 2019):  

𝐶𝐼 =
√4𝜋𝐴

𝑃
…………………………………………Equation 2   

where CI is the circularity index, A represents the area, and P represent the perimeter of a 

polygon.  

A circular polygon that is more similar to the geometry of a sinkhole will have a CI 

value close to 1. Elongated features, in contrast, have a lower value. In a prior study, Shannon 

et al. (2019) determined that a minimum CI value of 0.85 and a minimum size of 50 ft2 were 

applied as thresholds to identify probable sinkholes. In this study, a CI threshold value of 0.86 

was used which successfully identified possible circular or elliptical depressions that 

demonstrated similar physical and morphological characteristics as sinkholes.  

Natural and man-made features, such as ponds, lakes, etc., that could potentially be 

identified/selected as depressions following the above-stated workflow were eliminated from 

the final product depicting the spatial distribution of potential sinkholes across the study area 

using spatial hydrology datasets and cross-validating them using high-resolution satellite 

imagery in Google Earth and land cover data.   

3.3  Detecting and validating precursory deformation processes: Quantifying 

displacements  

For detecting active deformation processes that could serve as precursors of ongoing 

sinkhole activity, 56 Level-1 Interferometric Mode (IW) Sentinel-1 Single Look Complex (SLC) 

SAR images covering the time interval 2016 – 2021 were downloaded from the Alaska Satellite 



36 

 

Facility Distributed Active Archive Center (ASF DAAC) data archive platform 

(https://search.asf.alaska.edu/). Seninel-1 mission, currently a constellation of two satellites 

(Sentinel-1A & Sentinel-1B) equipped with C-band SAR sensors, is operated by the European 

Space Agency as part of the Copernicus initiative and has a 6–12 data acquisition frequency. The 

SLC product comprises three sub-swaths each of which is divided into nine bursts (Mandal et al., 

2019). Images acquired using the vertical transmit and vertical receive (VV) RADAR polarization 

mode were used in this study. The total spatial coverage of IW SLC is approximately 150 km and 

250 km in the along-track direction and across-track, respectively; while the azimuth and range 

direction ground resolutions are 20 m and 5 m, respectively (Yagüe-Martínez et al., 2016).  The 

complete list of the SAR imagery used in this study is shown in Table 1. 

Table 1: The acquisition dates of the descending track Level-1 IW SLC Sentinel-1 images which were 

used for quantifying displacement in search of depressions undergoing active displacement in the study 

area. The image highlighted in the dark gray background is the reference scene. 

No. Acquisition Date No. Acquisition Date  

1 10/31/2016 30 12/03/2019 (Reference image) 

2 12/18/2016 31 02/01/2020 

3 02/16/2017 32 07/21/2019 

4 03/24/2017 33 04/13/2020 

5 04/05/2017 34 06/12/2020 

6 06/16/2017 35 07/30/2020 

7 07/10/2017 36 08/11/2020 

8 09/08/2017 37 08/23/2020 

9 09/20/2017 38 10/10/2010 

10 12/13/2017 39 11/03/2020 

11 01/30/2018 40 11/15/2020 

12 05/06/2018 41 12/09/2020 

13 05/30/2018 42 12/21/2020 

14 06/11/2018 43 01/14/2020 

https://search.asf.alaska.edu/
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15 07/17/2018 44 01/26/2021 

16 11/02/2018 45 02/07/2021 

17 11/14/2018 46 03/03/2021 

18 11/26/2018 47 04/08/2021 

19 12/20/2018 48 06/19/2021 

20 01/25/2019 49 07/25/2021 

21 03/14/2019 50 08/06/2021 

22 03/26/2019 51 09/11/2021 

23 04/19//2019 53 09//23/2021 

24 05/13/2019 54 10/05/2021 

25 06/06/2019 55 11/22//2021 

26 06/18/2029 56 12/28/2021 

27 07/21/2019  

28 08/17/2019 

29 11/09/2019 

The displacement rates were calculated using one of the subclasses of the Differential 

Interferometric Synthetic Aperture Radar (DInSAR) technique (discussed in section 1.3.2.2). The 

DInSAR technique analyzes the variation in the phase information of two SAR imagery acquired 

at different times by the same sensor or sensors with similar wavelengths and other properties to 

determine the change in vertical displacement between acquisition times (Crosetto et al., 2016; 

2020). The displacement is estimated by assessing the distinct pattern, called fringes, formed as a 

result of the interference of the wave information of two phase signals - producing a product called 

interferogram (Balzter, 2001) (Figure 18). Each fringe represents a phase variation of 2π radians.  

In addition to the deformation signal, interferograms contain different errors emanating from 

various sources (equation 3). The goal of the DInSAR technique is to calculate displacement 

(Ø𝒅𝒊𝒔𝒑) by omitting /resolving the other phase components on the deformation signal (Crosetto et 

al., 2016; Hanssen, 2001; equation 3). 
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Ø𝒄𝒐𝒎𝒑 = Ø𝒅𝒊𝒔𝒑+ Ø𝒂𝒕𝒎 + Ø𝒐𝒓𝒃𝒊𝒕+ Ø𝒕𝒐𝒑𝒐 +  Ø𝒏𝒐𝒊𝒔𝒆 … … … … 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 

where Ø𝒄𝒐𝒎𝒑 represents the complex interferogram comprising the deformation signal and 

contributions from other (error) sources,  Ø𝒂𝒕𝒎 is the atmospheric phase component, 

Ø𝒐𝒓𝒃𝒊𝒕 represents the contribution due to changes in the satellite’s orbit/orbital errors,  Ø𝒕𝒐𝒑𝒐 is the 

topographic phase component (also containing the flat-earth phase component), and Ø𝒏𝒐𝒊𝒔𝒆 is the 

phase noise.  

Though the DInSAR technique can quantify surface displacements up to cm-scale detail, 

the accuracy is constrained by several factors including temporal and geometric decorrelation that 

result in poor interferometric coherence, residual atmospheric errors, etc. (Fárová et al., 2019; Pepe 

& Calò, 2017). Several techniques have been proposed, many of which rely on using sequences of 

DInSAR interferograms, to mitigate the influences of these errors on the deformation signal to 

counterbalance the effects of the various sources of residual and decorrelation errors on the 

displacement estimate (Fárová et al., 2019).  
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Figure 18:  DInSAR method for quantifying displacement (Helz, 2021) 

3.3.1 Persistent Scattering Interferometric Synthetic Aperture (PSInSAR) 

The PSInSAR method was used in this study to detect active deformation processes and 

quantify their rates. This method overcomes errors that could limit the accuracy of the conventional 

InSAR (DInSAR) method, outlined in section 3.3, by analyzing pixels that exhibit phase and 

scattering stability over a given time, called persistent scatterers (PS), and excluding targets that 

show poor correlations in the analysis (Hooper et al., 2004; Latip et al., 2019). In the PSInSAR 

technique, stacks of interferograms generated by cross-multiplying the reference image (primary 

image) with the complex conjugate of multiple secondary SAR images of the same area are 

combined to detect and quantify subtle surface deformation velocity of targets that are deemed to 

be PS targets (Ferretti et al., 2001; Hooper et al., 2004; 2012). The method also compensates for 

errors and uncertainty, mostly attributed to temporal decorrelation, commonly noted in 

deformation results obtained by analyzing the cumulative phase of many independent small 
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scatters, called distributed scatterers (Figure 19), within a resolution cell/pixel (Goel & Adam, 

2013; Zhang et al., 2019).  

 

Figure 19: The phase simulation of (a) a distributed scatterer pixel, and (b) a permanent scatterer pixel 

(Hooper et al., 2007). 

In this study, the Stanford Method for Persistent Scatterers (StaMPS) PSInSAR algorithm 

(Hooper et al. 2004, 2007) was used to identify precursory deformation processes that would 

indicate ongoing sinkhole formation processes. The 56 Level-1 SLC datasets were initially pre-

processed using the Sentinel Application Platform (SNAP) software and integrated into the 

StaMPS platform to generate the deformation map of the study area. The open-source snap2stamps 

package consisting of a set of Python-based workflows was used as a bridge to make the SNAP 

products compatible with the StaMPS processing environment (Alatza et al., 2020; Haley et al., 

2022). A schematic diagram demonstrating the workflow highlighting some of the key data 

processing procedures using the SNAP and StaMPS algorithms is shown in Figure 14. Some of 

the key pre-processing procedures implemented in the SNAP environment include (Figure 14): 

•  Primary Image Selection: In order to achieve better coherence and high co-registration 

accuracy, it is essential to select a primary image that is nominally placed with respect to the 

rest of the images (secondary) in terms of spatial and temporal baseline values (Prats Iraola et 

al., 2015; Ramirez et al., 2020). The InSAR Stack Overview tool in SNAP, which 
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automatically selects primary images taking the spatial and temporal information into 

account, was used in this study. The Sentinel-1 image acquired on December 03, 2019, 

selected as the primary/reference image using the tool (Table 1). 

• TopSAR Splitting: In this step, subswaths of the primary image were initially selected/split 

based on the extent of the study area. This was followed by the splitting of the secondary 

images. This operation provided the splitting of stitched burst subswath into separate products 

(Ramirez et al., 2020). In addition, it is important to note that the orbital information provided 

in the metadata of each SAR image is often inaccurate and needs to be corrected to obtain 

precise viewing geometry, Therefore, uncorrected orbital information was corrected using 

accurate orbital information (Yagüe-Martínez et al., 2016). The orbital information 

correction/update procedure for all the images was applied in this step (Foumelis et al., 2018; 

Ramirez et al., 2020). 

• Coregistration: This step involves the geometric aligning of all the images, using the 

primary/reference image as a base/reference to the rest of the secondary images, followed by 

the Enhanced Spectral Diversity refinement procedure to achieve fine azimuth coregistration 

accuracy. Precise orbit information and 3-arcsecond Shuttle Radar Topography Mission 

(SRTM) DEM were also integrated to further enhance the accuracy of the coregistration step 

(Tzouvaras et al., 2019).  

• Interferogram Generation: The coregistered images are then processed to generate an 

interferogram and interferometric coherence products. The differential interferograms were 

formed by the difference between the phase values of the two coregistered SAR images and 

the reference image by using the single-reference interferogram generation method (Cian, 

2019). Additionally, the influence of the topography on the deformation signal/interferogram 
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was removed in this step by simulating the topographic phase using SRTM DEM and 

subtracting it from the produced interferogram.  This was followed by the Debursting 

procedure in which the subswaths and bursts of the individual interferograms and coherence 

products were merged to produce spatially continuous products (Foumelis et al., 2018).  

• StaMPS Export: This step converts the products produced using SNAP algorithms to 

StaMPS-compatible formats. The exported format contained DEM, diff geo, and rslc files 

which have essential information for geometric correction and PS candidate selection. This 

includes elevation data and longitude and latitude information retrieved from the 

interferograms (Azeriansyah et al., 2019; Foumelis et al., 2018). Once the pre-processing 

steps were completed and the results were readied for StaMPS integration, the subsequent 

step involved candidate PS selection within the StaMPS environment. In StaMPS, PS 

selection is facilitated by taking the PS’s amplitude and phase properties into consideration. 

The amplitude dispersion parameter (DA), which is the ratio of the standard deviation of the 

temporal amplitude and mean values (Equation 4), was initially used to identify potential PS 

pixels with strong reflectivity. 

DA =
σ𝐴

σ𝐴
,……………………………………… Equation 4 

Where DA represents amplitude dispersion parameter while σA and σB signify the standard 

deviation and mean amplitude values, respectively (Ferretti et al., 2001; Hooper et al., 2007). 

Except for few major settlements and urban centers, the study area largely comprises 

agricultural or barren landscapes (Figure 10). As a result, a higher amplitude dispersion value 

(0.42) was used so that the PS candidate selection would include scatterers and produce a high 

density of PS candidates outside the urban centers. Following the selection of the PS candidate 
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pixels, the subsequent processing steps for producing the complete deformation field of the study 

area proceeded using a series of Matlab scripts described as follows (Figure 14):  

• Phase Noise, Temporal Coherence Estimation, and PS Selection: In this step, the spatially 

correlated and uncorrelated phase noise values for each candidate pixel in the interferogram 

were estimated and refined in a series of iterations.  The temporal coherence value for each 

one of the PS candidates, selected based on the amplitude dispersion coefficient, was then 

estimated using residual phase values derived from the series of interferograms created using 

the SNAP algorithm. A coherence threshold value of 0.3 was set to isolate and retain pixels 

that demonstrate phase stability and exclude candidates that exhibit high amplitude dispersion 

but low temporal coherence (Palanisamy Vadivel et al., 2019). 

• PS wedding: This procedure eliminates some of the previously selected PS candidates. These 

include duplicated PS candidates, which were due to error geocoding, and PS candidates due 

to signal contribution from neighboring pixels were dropped from candidates of PS. Then noisy 

phases with a standard deviation value greater than one were removed (Kesaraju, 2012).  

• Phase correction and unwrapping: To recover the original phase change due to actual 

deformation, the spatially uncorrelated look angle (DEM) errors that were calculated earlier 

were removed from the wrapped phase at this stage. This was followed by the phase 

unwrapping procedure aimed at resolving the ambiguity problem of the wrapped phase of the 

PS pixels (-π,+π] using the Statistical Cost Network Flow Algorithm for Phase Unwrapping 

(SNAPHU) algorithm. The phase unwrapping restored the correct multiple of 2π to each PS 

point to obtain quantitative interpretation. Finally, spatial filtering was applied to estimate and 

remove any spatially correlated errors from the deformation estimate (Ab Latip & Aobpaet, 
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2018; Reigber and Moreira, 1997; Costantini, 1998; Palanisamy Vadivel et al., 2019; Werner 

et al., 2002).  

• Displacement rate estimation: The unwrapped phase observations were then used to estimate 

the mean line of sight (LOS) displacement rates given in millimeters per year (mm/yr) units. 

Positive displacement rates indicate the motion of the PS pixels towards the satellite (uplift) 

while negative values signify the motion of the PS away from the satellite (subsidence). 

• Atmospheric correction: The contribution of the tropospheric (atmospheric) phase on the 

final deformation estimate was modeled and removed using the Toolbox for Reducing 

Atmospheric InSAR Noise (TRAIN) (Bekaert et al., 2015). The data was finally exported to a 

GIS-compatible file type for subsequent analysis and interpretation. 

3.3.2 PSInSAR Displacement Rate Validation: Global Navigation Satellite 

System (GNSS) Data 

As outlined in sub-section 3.3.1, the PSInSAR technique is a useful method for 

measuring land surface displacement over time. Though the majority of the various potential 

sources of errors that could affect the accuracy and reliability of the deformation estimate 

obtained using the PSInSAR method were modeled and removed as outlined above, the 

presence of residual errors could degrade the quality and accuracy of the deformation estimate. 

As a result, displacement estimates are commonly calibrated using displacement rates of 

ground-based permanent GNSS stations calculated using a satellite-based geodetic technique 

(Gili et al., 2000).  This method uses a satellite-based permanent GNSS constellation system 

to continuously provide positioning, navigation, and timing (PNT) services on a global or 

regional basis. The long-term (2006 – 2023) mean annual displacement rate estimated at the 

TXAB permanent GNSS station (Figure 10) was used in this study to calibrate the deformation 
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rate calculated using the PSInSAR method. The dataset was acquired from the online data 

dissemination platform of the Nevada Geodetic Laboratory (http://geodesy.unr.edu/).  

3.4 Sinkhole Detection Model Validation: Electrical Resistivity Tomography  

The robustness of the sinkhole detection approach which was largely based on remote 

sensing datasets and analysis techniques applied to the datasets was validated through ground-

based techniques capable of mapping and characterizing the subsurface in search of features and 

morphological attributes that are associated with sinkholes. The 2D ERT survey, that combines 

vertical electrical sounding (VES) for determining the physical property of the surface with depth 

and the horizontal profiling (HP) for assessing the lateral and vertical changes of the subsurface in 

contrast to the surrounding rock and soil units (Hussain et al., 2020b; Nart COŞKUN, 2012), was 

chosen in this study for this purpose. The 2D ERT survey (Figure 20) was conducted using the 

SYSCAL R1 plus instrument in an area (Figure 21) that exhibited high land subsidence rates and 

whose concentric morphology resembled sinkhole features. The basic principle behind detecting 

sinkhole features using this technique is that when a known amount of direct electrical current is 

injected in and flows in the subsurface and changes of potential difference between two electrodes 

are recorded, it can be used to calculate the electrical resistivity of materials within the subsurface 

that depends on the material’s response to the passage of current. This property, in turn, is used to 

detect and map potential sinkholes (Hussain et al., 2020; Loke et al., 2013). The presence of 

water/saturated soil or bedrock/cavity will create conditions for high conductivity of the electrical 

current with little resistance and hence will exhibit a relatively low resistivity value. On the other 

hand, air-filled caves or air-filled pore spaces will have high resistivity values. Hence, it can be 

concluded that both saturated on unsaturated sinkhole features with low resistivity subsurface or 

high resistivity can be detected by the ERT method (Kidanu et al., 2020; Muhammad et al., 2012; 

http://geodesy.unr.edu/
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Zhou et al., 2002). The procedures followed in this study for mapping the subsurface using the 

ERT method are summarized below: 

• First, a field survey site located near the intersection between Grape and Franklin Road in 

North Abilene town (Figure 21) was selected. This area was identified because it fulfilled the 

two conditions set in this study for identifying potential sinkhole sites (section 3.2) – that the 

area contained features that resemble (geometric and morphologic aspects) features associated 

with sinkholes, derived using the depression delineation technique outlined in section 3.2, and 

the area is experiencing active high subsidence rate (<= -3.5 mm/yr) that was estimated using 

the fused PSInSAR and GNSS techniques (section 3.3).  

• Defining the electrode spacing for the ERT survey is very important because it determines the 

penetration depth and ability to observe vertical and lateral changes within the subsurface. In 

general, a bigger/wider electrode spacing is preferred for a deeper investigation but at the 

expense of reduced lateral resolution. On the other hand, the lateral resolution is improved with 

a smaller electrode spacing (Montgomery et al., 2020). Because the present study is aimed at 

understanding the characteristics of the dissolution processes near the surface, a moderate 

electrode spacing configuration that can capture the lateral and vertical changes in the electrical 

property of the subsurface with a moderate resolution was selected. As a result, the Wenner 

array configuration with a total of 24 electrodes arranged with a spacing of 5 meters (Figure 8; 

Figure 20) was used to map the subsurface layers with moderate resolution. The Electre Pro 

software was used to create/program sequences of measurements that were uploaded to the 

SYSCAL Pro R1 for automated field data acquisition. A maximum depth of investigation of 

18.2 m was attained based on the settings applied to the Electre Pro software. 
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Figure 20: Geophysical (ERT) survey using the Wenner array. 

• After data acquisition, the data was transferred (downloaded) to the Prosys II software for 

filtering erroneous or redundant measurements. The data was exported to a format compatible 

with the data inversion software – the Res2DINV (Loke and Barker, 1996). The inversion step 

produced a 2D resistivity model of the subsurface depicting the lateral and vertical changes of 

electrical resistivity. 
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Figure 21: ERT survey (A–B) area near a refilled sinkhole site. The depression was extracted using LiDAR 

data (marked as black polygon), and the nearby PS point (marked as red point) revealed a 

displacement rate of -3.5 mm/yr.  

3.4  Understanding the controlling factor  

Excessive and uncontrolled withdrawal of groundwater resources creates severe 

environmental implications such as aquifer depletion and groundwater and soil contamination. 

Moreover, it may induce land subsidence processes that, in combination with other factors and 

processes, may result in severe natural disasters with adverse repercussions for humans, the 

economy, and the environment (Babaee et al., 2020; Parvin et al., 2019). As indicated in section 

1.2, subsidence in the form of brittle and ductile sagging occurs when excessive pumping rates and 

the subsequent lowering of the groundwater remove the buoyant support provided by the 
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groundwater to the overburden. This will increase the effective stress and eventually could form 

sinkholes (Kim et al., 2019). Many researchers have reported the link between declining of 

groundwater levels, land subsidence, and sinkhole formation (Baer et al., 2018; Khanlari et al., 

2012).  

Hence, this study used current and historical groundwater level datasets to understand the 

mechanism of the sinkhole formation processes taking groundwater pumping-induced land 

subsidence into consideration. This factor was considered because of the prevalence of large-scale 

agricultural activities that undertake excessive pumping of groundwater (Figure 12) which led to 

significant groundwater declines (Bruun et al., 2016). The deformation patterns of the PS points 

that exhibited subsidence and fall within the areas identified as potential sinkholes based on their 

geometrical and morphological characteristics in conjunction with the local geology were 

compared against historical and current groundwater levels of wells that are proximal (within 500 

m) to the PS points. The current and historical groundwater level datasets (1956 – 2021) were 

downloaded from the Texas Water Department Board (TWDB) database. The groundwater levels 

were plotted against time (timeseries) showing the multitemporal groundwater level fluctuations 

over time. The timeseries graph of the ground displacement was superimposed on the groundwater 

level change graph in search of a relationship that could be used to establish the causative processes 

and factors that form sinkholes in the area. This relationship was also used to forecast the 

possibility of sinkhole processes over parts of the study area where there were enough datasets 

demonstrating excessive groundwater withdrawals resulting in significant declines in the 

groundwater tables over areas with geometric and morphometric properties similar to sinkholes, 

but there were few or no PS pixels nearby the areas depicting displacement due to lack of 

interferometric coherence and other factors. The reverse conditions, where there are PS pixels 
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within closed depressions undergoing gradual subsidence but there were no publicly-available 

groundwater or relevant datasets, were also considered (in conjunction with other datasets) to 

indirectly infer the processes that gave rise to the formation of the sinkholes. 

To offset the inconsistency in terms of data gaps, variable time coverage, etc. of the 

publicly-available multitemporal groundwater level data, this study used the groundwater well 

density map/product (Figure 22) to map the current groundwater wells density/distribution in a 

given area, which could potentially give an indication of the level of groundwater use in an area. 

This approach is widely used in sinkhole susceptibility mapping. For instance, Ozdemir (2015) 

used groundwater well density map to identify areas that are prone to sinkholes in the Karapinar 

district in Turkey. 

 

Figure 22: Illustrations of density map formation from point datasets (ESRI) 

The density map technique converts points (in this case, wells) to estimate and generate a 

surface density map that summarizes the distribution and clustering of the points (wells) by 

assigning more weights to nearby points (wells) than those farther away and then summing up all 

the weighted points (wells) within the predefined kernel size (Hu et al., 2018). The ArcGIS Kernel 

Density tool within the Spatial Analyst Tools was used to generate the groundwater well density 

map which was then classified into low, medium, and high density based on the number of wells 

per km2.  
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CHAPTER FOUR  

RESULTS AND DISCUSSION 

4.1  Overview 

In this chapter, a detailed description of the outcomes generated by analyzing the individual 

or combination of datasets using the techniques described in chapter three is provided. A 

comprehensive overview of the interpretation of the results and the interrelationship among the 

various analysis results is also presented.  

4.2 Depression delineation 

The methodology depicted in the flowchart described in Figure 14 was applied on the 

LiDAR datasets to identify the depression zones in the study area. In the method, prospective 

sinkholes were generated by the difference between the original and filled DEM, and pixels whose 

values were greater than 0 were identified as depressions that could represent potential sinkhole 

morphology. The technique yielded a total of 538,394 depression features whose areas range from 

9 m2 to 5000 m2 (Figure 23). A manual classification technique was used to classify and display 

(as a graph) based on their sizes (area) for further analysis and interpretations (Figure 23).  The 

result indicated that the majority (88%) (Figure 24) of the identified depressions are less than 300 

m2 in area, followed by the depressions with 300 – 600 m2 areal extent (Figure 23). On the other 

hand, depression polygons with areal extents greater than 2600 m2 (1%) were also obtained using 

the analysis. These were deemed to represent potential errors emanating from inherent errors in 

the data, false detections, or geometries representing other features (Figure 24).  Several studies 

stated that most sinkhole features within the Rolling Plain typically have diameters ranging from 

less than 30 m (more than 700 m2 area) to as high as 100 m (more than 7800 m2) (Caran & 
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Baumgardner, 1990; Martinez et al., 1998). Hence, only polygons with areas within the range of 

600 m2 to 2600 m2 (Figure 25) were selected for further analysis. 

 

Figure 23: Six groups of total area surface depression (given in m2). Polygons/depressions with areas less 

than 600 m2 and greater than 2600 m2 were removed and the remaining were retained for further 

investigation.  

 

Figure 24: Percentage of depression based on their size/area (polygons with areas of <300 m2 (88%), >2600 

m2 (1%) and (300-600 m2) (5%) were removed while those with 600-900 m2 (2%) and 900-2600 

m2 (4%) areas were retained for further investigation). 
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Figure 25: Spatial distribution of depressions with areas between 600 to 2600 m2. The depressions on the 

map exhibited circular and elongated shapes, but due to the map’s small scale, the size and details 

of these depression features were not clearly visible. 

The CI analysis (Figure 26), whose inherent values range from 0 to 1, was then applied to 

the remaining polygons to identify depressions that demonstrate sinkhole-like morphology (near-

circular to circular) and filter out non-circular/irregular-shaped depressions that represent other 

processes or features, or residual false detections. Most of the features in the study area have CI 

values ranging from 0 to 0.8. Close inspection of the features revealed that most of these features 

with these values represent either hydrological features (streams, rivers) based on the hydrological 
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data obtained from the Texas Water Development Board (TWDB) (http://www.twdb.texas.gov/) 

or man-made features (construction works, etc.) (Figure 26). As a result, a CI threshold value of 

0.86 was used to filter only features with circular or near-circular morphological attributes that 

potentially represent sinkhole or sinkhole-like depressions. This eliminated most of the features 

that were initially retained based on their geometry from the final result (Figure 27).  

 

Figure 26: Four groups of cumulative circularity index values derived after applying of geomorphometric 

analysis. A threshold value of 0.85 was used to retain circular or near circular features. 

The final result obtained based on the set CI cutoff value was further examined for potential 

inaccurate detections and rectified by overlaying the result with land use and land cover, 

hydrological network data, and other ancillary data resources (such as Google Earth). Though 

LiDAR sensors can acquire elevation data of the surface (bare ground) beneath canopy covers and 

hence can be used for successfully detecting sinkholes in such settings (Kobal et al., 2015), the 
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absence of limited last returns particularly in dense canopy covers can limit the reliability of the 

data and the depression mapping. ESRI’s land cover data (10-m spatial resolution 

(https://livingatlas.arcgis.com/landcover/) which is derived from multi-temporal Sentinel-2 

datasets (Venter et al., 2022) complements this drawback of the LiDAR-based depression/sinkhole 

detection procedure by verifying the accuracy of the LiDAR-derived spatial distribution of 

sinkholes located underneath dense canopy covers as well as detect sinkhole features based on the 

land cover patterns. Wu et al. (2016) used land use/land cover data to supplement the results of 

sinkhole mapping in Filmore County (Minnesota) using LiDAR data. They observed that most of 

the sinkholes in the county were spatially concentrated on flat hilltop areas proximal to river 

valleys which are dominated by agricultural crops and grassland/herbaceous land cover types (Wu 

et al., 2016).  

Each of the context data, sources, and parameters that were assessed and used for refining 

the result, as described above, are summarized in Table 2. This process further significantly 

reduced the number of depressions by 21% that were retained based on their CI cutoff value 

(Figure 27).  

Table 2: Context elements and their parameters. 

Context Data Sources  

 

Parameter were used  

Circular/Near 

circular manmade 

Infrastructure 

Google Earth Image  Falsely detected sinkholes 

were removed, such as 

stadiums, construction 

excavations, etc. 

Land Use/Land 

Cover 

ESRI Land Cover 10m To complement/validate 

sinkhole detections in areas 

with dense canopy covers.  

Hydrology  From Texas Water Department  Objects that are falsely 

identified as sinkholes were 

removed such as ponds.  
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Figure 27: The spatial distribution of potential sinkholes in the study area derived using LiDAR datasets 

and calibrated/validated using other relevant datasets and techniques (Table 2). Also shown on 

the map are the sinkhole hotspots mapped by the USGS (pink), major cities, highways, and the 

TXAB GNSS station. 

 

The final result of the analysis procedure for mapping potential sinkholes outlined above, 

using depressions as a proxy, is shown in Figure 27. The result revealed a network of depressions, 

ranging in size from 600 m2 to 2600 m2 and with a CI value of 0.86, spatially distributed almost 

across the entire extent of the study area. The result also showed that many small depressions are 

spatially clustered in northeast, west, central, southcentral (near Abilene), and southeastern areas 
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(Figure 27). Some of these depression clusters detected in this study lie within the sinkhole hotspot 

identified by the USGS (shown in pink color in Figure 27). A closer examination of some of the 

depressions using a Google Earth satellite image showed that some of the depressions mapped in 

this study as potential sinkholes were indeed sinkholes. For example, several depressions including 

those shown as Dep-1 and Dep-2 (Figure 27) were identified as potential sinkholes based on the 

methods and results discussed above. The Google Earth image of the area supported the assessment 

derived in this study indicating that the spatial distribution of several sinkholes in the analyzed 

areas overlaps with the depressions mapped in the study (Figure 27). 

One of the primary objectives of the present study was to identify depressions that could 

potentially transition to sinkholes and incur damage to humans and property. Hence, it is 

imperative that actively deforming depressions are identified using other approaches as the 

potential sinkhole mapping exercise using the LiDAR data is incapable of detecting active ground 

displacement. The PSInSAR method was used for such purpose to detect depressions undergoing 

active displacement that could eventually form sinkholes. 

4.3 Surface deformation  

Displacement rates (in mm/yr) across the study area were calculated by the PSInSAR 

technique using the Sentinel-1 SAR data acquired from 2016 to 2021. This would be crucial in 

identifying active displacement rates that could over time induce sinkholes, and identifying 

contributing factors that exacerbate the development of the features. The resulting deformation 

result was validated by comparing the vertical displacement component of the permanent GNSS 

station (TXAB), located north of Abilene (Figures 10 and 28), which was acquired from the 

Nevada Geodetic Laboratory and the nearest PSInSAR pixel  
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Figure 28: TXAB station daily positional data graph from 2006 – present. 

The surface deformation rates derived using the approach outlined above are shown in 

Figures 29, 30, and 31. The result showed that the ground deformation rate across the study area 

ranges from 7.15 to -6.15 mm/yr where negative values indicate subsidence in which the target 

moves away from the satellite while positive values indicate uplift indicating the target is moving 

towards the satellite. A mean deformation (2006 – 2022) deformation rate of -0.27+/-0.59 mm/yr 

was calculated at the TXAB station (Figure 28) which was compared with the displacement rate 

of the nearest PS point (Figure 31) located nearly 20 m away from the GNSS station to determine 

the accuracy of the displacement estimation using the PSInSAR method.  The displacement rate 

calculated at the PS pixel indicated a displacement rate of -0.56 mm/year which falls with the error 

margin of the GNSS displacement results. This suggests that the results of the PSinSAR 

displacement analysis were sufficiently reliable for the purposes of this study. 

The mean of the overall displacement rate in the study area was calculated to be 0.003 

mm/yr (standard deviation: 1.3) signifying that there was little to no displacement in the majority 

parts of the study area during the investigated interval (Figure 29). However, patches of land 

(shown as light black color in Figure 31) particularly in central, northern, western, southern, and 



59 

 

southeastern parts of the study area display significant subsidence rates (mean: -3.04 mm/yr) 

(Figure 30). This suggests that substantial geological processes are occurring in these areas that 

are causing the ground to relatively move more rapidly than in the surrounding stable area.  

 

Figure 29: A histogram demonstrating the frequency and rate of deformation (mm/yr) in the study area. 

The mean value of the deformation rate is 0.003 mm/yr (near stable deformation) with a standard 

deviation 1.3. 

 

 

Figure 30: Deformation rates (mm/yr) of selected subsidence zones (potential sinkholes) (shown in light 

black outline in Figure 31). 

Fourteen subsidence zones were selected across the extent of the study area (shown by 

black-outlined polygons in Figure 31) as potential sinkhole sites due to the higher subsidence rate. 

These anomalous areas were identified by observing a spatial clustering of PS points with mean 
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subsidence values ranging from -2 to -5.19 mm/yr (Figure 31). The selected subsidence zones were 

compared with the sinkhole hotspot previously identified by the USGS (Figure 31, shown in light 

blue dashed outline) for potential spatial correspondence/overlap among the selected subsidence 

zones.  

The overall deformation characteristics in these selected zones were demonstrated by the 

temporal deformation patterns observed at PS points contained within the identified subsidence 

zones. Two persistent scatterers points, namely a’ and b’ located within the subsidence zones of 

TS-1 and TS-3 (Figure 31), respectively, which are undergoing active deformation, were examined 

to assess the pattern and temporal change in the deformation characteristics of the depressions 

(Figure 31). For the subsidence zone of TS-1, the subsidence rate detected at the PS location a’ 

was -4 mm/yr. The deformation pattern at the PS point (a’) shows a steep declining trend (Figure 

32) indicating the active ground deformation processes that may or may not be associated with the 

formation of sinkholes. In the case of the PS point ‘b’ located in the subsidence zone of TS-3, the 

temporal deformation rates vary from -2.03 to a relatively higher subsidence rate of -5.19 mm/yr 

and exhibit a subsiding deformation pattern (Figure 32). Several studies forecasted the occurrence 

of sinkholes by identifying such precursory and consistently incremental subsidence deformation 

patterns (Baer et al., 2018; Talib et al., 2022). 

The highest displacement rates among the subsidence zones were observed at the PS points 

located within the sites TS-1 (and the patches of land to the north (Knox County) and west 

(Stonewall County) of it (Figure 31)), TS-2 (and the area located at the boundary of Fisher and 

Stonewall counties (Figure 31)), TS-3 (and the area to the west of TS-3 (Figure 31)), TS-4, and 

TS-5 spatially located at the southcentral, west, north and northeastern parts of the study area 

(Figure 31). The detected subsidence rates in these areas range from -2.1 to -5.18 mm/yr, with an 
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average rate of -3.11(Figure 31). The highest subsidence rates (-5.19 mm/yr) were recorded in PS 

pixels located within TS-1 and TS-3. The former and zones associated with it do not spatially 

overlap with the sinkhole hot spot zones mapped by the USGS while the latter subsidence zone, 

located near Abilene City, completely falls within the hotspot. Similar spatial correspondences 

were noted for the subsidence zones southwest of Abilene, and near Trent City (east of TS-3) both 

of which are located in Taylor County, and (partially) at TS-2 (Figure 31). These areas are 

presumed to be at risk of sinkhole hazards. 

Other sites in the study area that exhibited moderate subsidence rates and whose 

distribution partially or completely overlaps with the dense networks of depressions, and some 

with the USGS sinkhole hotspots, were also considered as sites where there is a high probability 

of sinkhole activity. For example, sites TS-A and TS-B area in the southwest and southeastern 

parts of the study area, where the mean subsidence rate at the two sites is -2 and -2.2 mm/yr, 

respectively, are potential sinkhole sites. Despite not being located in the sinkhole USGS hotspot 

zone, this study uncovered a significant downward motion near Bairo City at the TS-A zone 

(Figure 31) which is believed to be due to sinkhole activity. On the other hand, portions of the 

southern and southwestern areas along the gorge were found to undergoing moderate to higher 

subsidence rates in this study partly fall within the sinkhole hotspot zone mapped by the USGS. 

These zones are underlain by units belonging to the Clear Fork Group and the Blain Formation 

(Figures 13 and 31). Similarly, several PS points exhibiting moderate rates of subsidence rates (up 

-3.3 mm/yr) that are assumed in this study to be areas of high sinkhole hazard are spatially clustered 

along the rivers in the northeast and west regions of Old Glory City located within the subsidence 

zone TS-5 and around border area between Haskell and Knox counties (Figure 31). Likewise, the 

two subsidence zones located to the northeast and northwest of Abilene (TS-4 and TS-6) also 
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demonstrate moderate (to high) rates of subsidence. This irregular pattern of deformation 

corresponds with the reported characteristics of sinkholes and the spatial extent of the processes 

that induce their incidence – that sinkhole formation in most cases is an isolated/localized incident 

driven by local processes (Intrieri et al., 2018). 

.  
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Figure 31: Deformation velocity map (mm/yr) calculated using the PSInSAR method applied on Sentinel-

1 SAR data (2016 – 2021). Selected zones where sinkholes potentially could form (delineated 

based on their rates of subsidence and the presence of depressions derived using LiDAR data) 

are shown in black-outlined polygon. Sinkhole hotspots in the stud area which were delineated 

by the USGS in earlier studies are also shown (dashed blue color). 
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Figure 32: LOS displacement PSInSAR a’ and b’ over time at subsidence TS-1 and TS-3 subsidence zones, 

respectively (see Figure 31 for the location of the PS points). 

4.4  Electrical Resistivity Tomography  

Though the deformation estimates obtained using the PSInSAR analysis in conjunction 

with the GNSS data were able to detect actively moving (subsiding) depressions that can be used 

as a proxy for mapping sinkholes, the reliability of the result should be validated using other 

methods. This is because of the fact that final PSInSAR results could still contain residual errors 

that will introduce errors and uncertainties in the deformation estimate. Hence the ERT method 

was employed in this study to map/observe the subsurface to obtain crucial information that could 

potentially indicate the presence of void or water-saturated cavities that through time and given 
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favorable conditions could translate into sinkholes. An east-west oriented ERT survey was 

conducted in an area located north of Abilene City in Taylor County (Figure 21) – an area where 

a high subsidence rate (-3.5 mm/yr) from the PSInSAR was observed and is proximal to a site 

where a sinkhole incident was reported in recent years. The 2D resistivity profile obtained from 

the survey (Figure 33) illustrates variations in electrical resistivity both laterally and vertically, 

and the findings are discussed in the following sections. 

 

Figure 33: 2D ERT result demonstrating the lateral and vertical change of electrical resistivity and the 

RMSE error. The anomaly shown in red-outlined circle is a potential sinkhole interpreted in this 

study. 

Figure 33 shows the inverted 2D electrical resistivity profile of the investigated area (Figure 

33(III)).  A high resistivity layer labeled as A was found at a depth of up to 5.5 meters on the east 

side. This layer was interpreted as bedrock (as it has resistivity values ranging from 150 to 327 

ohm-m (Montgomery et al., 2020)). A low resistivity layer (B) was detected at an approximate 

depth range of 1.25 m to 19 m. This layer was found to stretch to both the West and East of the 
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high conductivity region (marked as C) and was interpreted as a saturated clay layer (marked as B 

(Figure 33(III)) (Pazzi et al. 2018). The higher conductivity was obtained at the lower part of the 

profile (marked as C) which may contain a solution filled with clay. As shown in Figure 33 

(marked D), there is a large anomaly (approximately 16 m long laterally) that exhibited relatively 

low resistivity (high conductivity) with values ranging from 30 to 37 ohm-m (depth ~5 m). In 

contrast with the resistivity of the surrounding area, site D’s resistivity is relatively indicating a 

potential sinkhole being present at this site. The resistivity difference between this particular site 

and its surrounding area is substantial (up to 30 ohm-m). This area is considered a possible void 

(cavity) created by the dissolution of the Clear Fork Group of soluble rocks and could potentially 

result in the formation of a sinkhole by causing the overlaying clay layer to sag/subside downward 

(towards the cavity) and eventually collapsing into the cavity/void.  

4.5  Formation Mechanism and Controlling Factors 

As discussed in section 1.2, the presence of soluble rocks has a higher contribution to the 

formation of sinkholes. Due to the prevalence of evaporate rocks in the study area (Figure 13), 

several sinkholes have formed and as a result, have adversely impacted property and resources. In 

the following section, the processes and factors that induce ground deformation and over time lead 

to the formation of sinkholes will be discussed.  

As outlined above, the area lying in Knox County and proximal to the county boundary 

(with Haskell County) (located northwest of TS-1 and shown by a black-outlined polygon), 

contains a number of depressions undergoing moderate to high subsidence rates (Figure 31). Most 

of the depressions are adjacent to the nearby river (Figure 31). Similarly, a number of PS points 

within the TS-4 (located northeast of Abilene) and the TS-2 subsidence zone (located at the 

boundary between Haskell and Stonewall Counties) which are proximal to the nearby waterbodies 

also exhibited moderate to high subsidence rates (up to -5.13 mm/yr) (Figure 31). The majority of 
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these PS pixels are located in an area that is overlain by the Clear Fork Group which contains 

soluble materials such as Limestone, Dolomite, and Gypsum (Figure 13). It’s hypothesized in this 

study that percolation of water through fractures and joints and their interaction with the Clear 

Fork Group units are dissolving the soluble units, causing cavity and subsidence, and potentially 

facilitating the formation of sinkholes (Figure 31). Similar association between moderate to high 

subsidence rates and proximity to waterbodies were also noted for the TS-5 area (Figure 31). The 

Blain Formation, also characterized by the presence of soluble units such as gypsum which are 

interbedded with dolomite, is the dominant unit in this part of the study area (TS-5). Memon et al. 

(1999) noted the influence of seeps from springs and surface waterbodies in facilitating the 

formation of cavities and sinkholes within the Blaine Formation in the north-central parts of the 

rolling plains physiographic region of Texas.   
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Figure 34: Groundwater density map. Red color represents high number of wells clustered 

together, and magenta color represents sparsely distributed wells.  

As discussed in Chapter 1, groundwater is one of the main resources used for several 

purposes in the study area – particularly for agriculture. The groundwater density map shown in 

Figure 34 was derived by analyzing the spatial distribution and clustering of groundwater wells 

across the study area. The high well density corresponds with areas known for their agricultural 

activities where groundwater is intensively used for irrigated farming. There is also a high spatial 
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correlation between the high well density areas and some of the subsidence zones that exhibited 

moderate to high subsidence rates such as TS-1 and TS-3 (Figure 34).  For instance, the TS-3 zone 

is known for its extensive agricultural activity, and the local communities rely on groundwater 

pumping from the SA as a primary water source. The long-term (1998 – 2022) groundwater level 

records of a well located within the TS-3, an indirect indicator of pumping rates, show that the 

groundwater level has declined significantly over time (Figure 35). Though the temporal span of 

observation is not similar as the groundwater records, the deformation pattern of the PS pixel 

closest to the well (subsidence rate at b’ PS point) demonstrates a similar trend (Figure 35).  

 
Figure 35: Groundwater pumping and PSInSAR pattern (at PS point b’) at TS-3 subsidence zone 

(see Figure 31 for the location of the PS points).  

Figure 35 provides clear evidence of excessive exploitation of groundwater in the study 

area. As demonstrated by the well data (Figure 35), the groundwater table in the TS-3 area has 

been lowering since 1998. The interaction of groundwater with the soluble units belonging to the 

Clear Fork group in this area has potentially resulted in the formation of cavities and the gradual 

lowering of the water table removes the buoyant support provided by the groundwater to the 

overlying units leading to the progressive sagging of the overburden (subsidence) and potentially 
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could form sinkholes. Hence, the PSInSAR shown in Figure 35 could be used as a precursor for 

an impending sinkhole formation in the TS-3 zone. The USGS assessment of the area, as sinkhole 

prone, also supports the assessment put forward in this study (Figure 35). 

The risk of sinkhole incidence is slightly different in the case of the TS-1. As noted in 

section 2.3, substantial areas in the northeast of the study region are encompassed by the SA, which 

is comprised of unconsolidated materials such as coarse sand and fine silt of dune sand sheet and 

sand sheet deposits geological formation (Figure 12). This also includes the TS-1 subsidence zone 

which is also dominated by the SA. In the TS-1 and surrounding zones, groundwater pumped from 

the SA is being used for irrigation and other activities. The higher pumping rates have caused 

groundwater decline and subsequently resulted in subsidence induced by the loss of pore pressure 

and compaction. Figure 36 demonstrates a similar trend that is exhibited by the groundwater levels 

and surface deformation rates. But, contrary to the TS-3, a sinkhole is not expected to be formed 

in this area as the settings conducive for the formation of sinkholes are lacking. This particularly 

entails the absence of soluble carbonate or evaporite units. 

 

Figure 36: Groundwater pumping and PSInSAR pattern (at PS point a’) at TS-1 subsidence zone ((see 

Figure 31 for the location of the PS points). 
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CHAPTER FIVE 

CONCLUSION 

This study applied an integrated approach including multisource remote sensing datasets 

and ground-based observations to detect potential sinkhole features and map their spatial 

distributions by assessing the geometric and geomorphic properties of the surface features and 

their long-term displacement patterns. Moreover, the study identified natural and anthropogenic-

led processes and factors that induce the formation of sinkholes.  

The potential sinkhole sites were initially identified by mapping depressions using high-

resolution LiDAR data. A geometric and morphologic assessment, coupled with the validation of 

the results using ancillary data, was undertaken to delineate depressions that could potentially be 

sites of sinkhole activity. The PSInSAR method was then employed to detect depressions 

undergoing subsidence to identify active sinkhole processes that could over time form sinkholes. 

The result indicated that substantial areas of the project site which are overlain by the evaporite 

and carbonite units belonging to the Clear Fork Group and Blain Formation are undergoing 

subsidence that could result in catastrophic hazards associated with sinkholes. It was also found 

that excessive groundwater pumping and the subsequent decline in the groundwater levels are the 

leading causes that induced the formation of the sinkholes. 

One of the key limitations of this research was the lack of sufficient stable or persistent 

scatterers to quantify the displacement in various parts of the study area. This was mainly because 

of the fact that the study area is predominantly agricultural fields that caused frequent changes in 

land use and land management practices leading to a decline in interferometric coherence. 

Furthermore, the medium resolution provided by the Sentinel-1 data made it challenging to 
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identify and track small-scale sinkhole features. The limited number of ERT surveys, due to the 

lack of access to many of the potential sinkhole sites, could also partly constrain the accuracy of 

the findings.  
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ABSTRACT 

EARLY SINKHOLE DETECTION AND CHARACTERIZATION IN WEST-CENTRAL TEXAS 

USING INSAR TIME SERIES AND ELECTRICAL RESISTIVITY TOMOGRAPHY 
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Sinkhole hazards pose a major threat to key infrastructure and human lives in Taylor, 

Fisher, Haskell, Knox, Stonewall, Callahan, and Jones Counties of the west-central region of 

Texas. These counties are underlain by soluble evaporite and carbonate rocks. In this study, a data 

fusion approach was adopted in which multi-source datasets and techniques were combined to 

detect and map the spatial distribution of sinkholes, quantify their displacement rates, and identify 

the processes and factors controlling their occurrence. (a) Using Light Detection and Ranging 

(LiDAR) datasets, areas with depressions ranging from 600 m2 to 2600 m2 and a CI value 

exceeding 0.86 were identified as potential sinkhole zones based on their morphological and 

physical characteristics. (b) deformation rates over the mapped depressions derived using 

Persistent Scatterer Interferometry technique applied on 56 level-1 Sentinel-1 images (2016 – 

2021) and calibrated using long-term (2006 – 2021) GNSS.  The result indicate that average and 

peak subsidence rates of -1.5 mm/yr and  -6.5 mm/yr, respectively; (c) clusters of high subsidence 

rates were noted over are as underlain by evaporites belonging to the Clear Fork Group, and Blain 

Formation of carbonated rocks; (d) In order to investigate the formation of sinkholes in the highly 

vulnerable area of north Abilene, an Electrical Resistivity survey was conducted to identify their 

characteristics and underlying processes. In addition, groundwater level and discharge time series 

and other relevant datasets were integrated to assess the processes and factors that induce the 

formation of these features. Results of this study could be used to develop an early warning system 



to implement mitigation strategies to curtail the impacts of the sinkhole hazards in Texas and other 

parts of the globe.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


