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ABSTRACT 
 

We show that a discrete two-dimensional logistic predator-prey dynamical system with two 

parameters undergoes a Neimark-Sacker bifurcation under certain conditions. Our evidence 

includes numerical computations of eigenvalues, orbits, Lyapunov exponents, and bifurcation 

diagrams.  



Introduction

This paper presents the results of research focused on a discrete predator-prey model in two dimen-

sions. We focus our analysis on a neighborhood of the fixed point with nonzero positive coordinates

in the parameter plane. We observe the occurrence of Neimark-Sacker bifurcations alongside other

interesting behavior. Section 1 begins with a brief history of dynamics, followed by a discussion of the

logistic ordinary differential equation in Section 2. Section 3 delves into the discrete logistic map and

the dynamics of its orbits. Section 4 looks at the predator-prey system of differential equations and

the long-term behavior of different solutions. Finally, we conclude with our findings from researching

the discrete predator-prey model in Section 5.

1 Brief History of Dynamics

The study of dynamical systems was first undertaken by the French mathematician Henri Poincare

(1854-1912), who is credited for many important aspects of the field, including the observation of the

qualitative behavior of solutions to differential equations; emphasis on the long-term behavior of sets

of trajectories; and bifurcations or changes in qualitative behavior dependent on parameters [1, p. 279].

When trying to solve the three-body problem, Poincare also noticed that initial conditions close in

value would produce drastically different trajectories of celestial bodies in orbit [4]; this sensitivity to

initial conditions is now considered one of the primary characteristics of chaos.

Poincare produced his last geometric insight in 1912, which states that there are infinite periodic

solutions for three solar bodies in stable orbits. This conjecture was proved only a year later by the

Harvard mathematician George David Birkhoff (1884-1944). In addition, Birkhoff also developed the

ergodic theory in his research in ordinary differential equations and their solutions, alongside other

contributions to dynamics [2].

In 1960, an American mathematician, Stephen Smale (1930-), discovered the dynamics and chaos

associated with a square being transformed into a horseshoe, after receiving a counterexample to a

conjecture of his from Norman Levinson (1912-1975). This horseshoe transformation is a geometric

interpretation of equations studied by the British mathematicians Mary Cartwright (1900-1998) and

J. L. Littlewood (1885-1977) during World War II. He found that the deterministic transformation of

the square corresponded with random coin-flipping, making this behavior chaotic [11].

A few years later in 1963, Edward Lorenz (1917-2008) published a paper regarding the discoveries
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he made as a meteorologist; it is this publication where the Lorenz equations and Lorenz attractors

originate from. He found that for his set of differential equations modeling the atmosphere, the results

would be drastically different with slight variations in the initial conditions. This eventually brought

him international fame and the importance of chaos became widely recognized, given its application

to real-world phenomena [9].

For discrete models, Sharkovsky’s theorem, proved in 1964 by the Ukrainian mathematician Olek-

sandr Sharkovsky (1936-2022), states that the existence of certain cycles implies the existence of other

cycles for a one-dimensional continuous map from an interval to itself [10]. In particular, if a map had a

3-cycle, then every possible p-cycle also exists for this map, though these other cycles may not be stable.

In 1975, the American mathematician Mitchell Feigenbaum (1944-2019) discovered what is now

called the Feigenbaum constant, 4.6692..., where successive parameter intervals between period-doubling

bifurcations shrink by a factor of this constant for unimodal maps, though this result would not be

published until 1979. He also created methods for solving ordinary differential equations and interpo-

lation methods [8].

Also in 1975, the word ”fractal” entered the vocabulary of mathematics through the Polish mathe-

matician Benoit Mandelbrot (1924-2010). Fractals capture infinitely repeating patterns in a geometric

figure, whereby a magnification of a figure’s part exhibits similarity to the whole. The Mandelbrot set

is one of many mesmerizing fractals and shows the beauty inherent in even simple mathematics. In

addition, Mandelbrot also studied ”rough” shapes, such as mountains, coastlines, plants, and blood

vessels, in an attempt to describe them mathematically [3].

In 1976, Robert May (1936-2020), a biologist at Princeton University at the time, published a

paper analyzing the discrete logistic map, written as xn+1 = f(xn) = k(1 − xn)xn, and investigated

its stability, p-cycles, period doubling, and the onset of chaos [7]. This showed mathematicians and

scientists that equations simple in appearance can have quite complicated dynamics.

2 Logistic Ordinary Differential Equation

Before our research results are discussed, it may be helpful to understand the dynamics of a

one-dimensional differential equation. The logistic differential equation models the dynamics of a

population in the presence of limited resources. It is written as
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dy

dt
= k(1− y

N
)y,

where, in population terms, y is the population and dy
dt gives the population growth rate at time t.

k > 0 is the growth parameter and N is the carrying capacity. The term k(1 − y
N ) is the adjusted

growth rate, which decreases as y approaches N . The adjusted growth rate becomes negative if y > N .

The equation’s equilibrium points are those values of y where dy
dt = 0, or when the population stays

constant with time. In this case, the equilibrium points are y = 0 and y = N .

This equation can be non-dimensionalized by setting y = xN and t = t′
k , where x and t′ are new

dimensionless variables. We compute:

d(xN)

d( t
′
k )

= kxN(1− xN

N
),

N
1
k

dx

dt′
= kxN(1− x),

Nk
dx

dt′
= kxN(1− x),

dx

dt′
= x(1− x).

The carrying capacity and growth parameter have been scaled to 1, and our equilibrium points are

now x = 0 and x = 1.

2.1 Long-Term Behavior of Solutions for the Logistic Differential Equation

Typical solutions for the non-dimensionalized logistic equation are shown below.
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Figure 1: Typical solutions for the logistic equation with different initial conditions.

If 0 < x < 1, dx
dt′ is positive, so the population increases towards x = 1. If x > 1, dx

dt′ is negative,

so the population decreases towards x = 1. This makes x = 1 a stable equilibrium point, since the

population moves toward this value, while it moves away from x = 0, an unstable equilibrium point.

Negative initial conditions will diverge to negative infinity, but they are ignored throughout this paper

since a negative population is meaningless.

While we can find a formula for x(t) for the logistic equation through the separation of variables,

most differential equations representing one-dimensional dynamical systems will not have formulas for

their solutions. In that case, approximate solutions can be obtained by numerical methods. However,

we can often obtain information about the long-term behavior of solutions by qualitative methods,

which do not require formulas or numerical approximations.

3 Discrete Logistic Map

The discrete logistic map is an analog of the logistic differential equation, where the population is

measured at discrete intervals. It is written as
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xn+1 = f(xn) = k(1− xn)xn,

where xn is the population value at time n and n = 0, 1, 2, .... As before, k represents the growth

parameter, and kn = k(1− xn) adjusts the growth rate. If xn is close to 0, then kn will be close to k.

However, if xn is close to 1, then kn will be close to 0 instead. With the logistic ordinary differential

equation, we could non-dimensionalize it and scale all the parameters to 1. On the other hand, k in

the discrete logistic map cannot be scaled to 1 through non-dimensionalization.

For discrete maps, a sequence of population values x0, x1, x2, ...xn, ... is called an orbit, where x0

is the orbit’s seed or initial condition.

3.1 Dynamics of Orbits of the Logistic Map

The first step in a study of a discrete dynamical system is the analysis of its fixed points. A point

x = c is a fixed point if it satisfies f(c) = c, such that the population value stays constant for each

time step period. For the logistic map, its fixed points are c = 0 and c = 1− 1
k .

To study the stability of a fixed point x = c, we replace the non-linear map xn+1 = f(xn) by its

linear approximation near x = c: xn+1 = f ′(c)xn. If |f ′(c)| < 1, the fixed point is stable and attracts

nearby orbits. When |f ′(c)| > 1, x = c is unstable and repels nearby orbits. In the marginal case

|f ′(c)| = 1, stability is determined through the higher order terms ignored in linearization. f ′(c) for

the logistic map is shown below:

f ′(c) = k(1− 2c)

The stability of c = 0 is simply determined by k: the fixed point is stable when |k| < 1 and unsta-

ble when |k| > 1. When we solve |f ′(c)| < 1 and |f ′(c)| > 1 for c = 1 − 1
k , we find it is stable when

1 < k < 3 and unstable when k < 1 or k > 3.

Before studying orbits of the logistic map, we restrict k and x0 such that k ∈ [0, 4] and x0 ∈ (0, 1),

so that xn ∈ (0, 1) for all n. If k > 4, most orbits eventually leave (0, 1) and then diverge to −∞.

Qualitatively different behaviors of orbits can be observed for various intervals of k. For instance, when

0 < k ≤ 1, the population is always driven to extinction. This aligns with the stability conditions for

c = 0 as shown above. By contrast, the population will stabilize towards c = 1 − 1
k when 1 < k ≤ 3.

Various orbits are shown below together with their respective values of the parameter k and initial

conditions x0.
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(a) The population stabilizes towards the fixed point
c ≈ 0.643.

(b) When k = 3.1, the population stabilizes towards
a 2-cycle, since c = 1− 1

k
is now unstable.

(c) The population stabilizes towards a 4-cycle, since
the 2-cycle is unstable when k = 3.5.

(d) A stable 8-cycle appears. Period-doubling contin-
ues as k increases.

Figure 2: The long-term behavior of an orbit changes depending on the value of k.

When k > 3, c = 1 − 1
k becomes unstable. For 3 < k < 1 +

√
6, numerical experiments show a

2-cycle forming near c = 1− 1
k . Now, orbits oscillate between two different values near the fixed point.

Orbits undergo period-doubling as k increases: the 2-cycle becomes unstable as a stable 4-cycle is

born, which then turns unstable as a stable 8-cycle is born, and so forth.

In mathematical notation, a 2-cycle exists for a map xn+1 = f(xn) when there is a value x such

that f(f(x)) = x, or f2(x) = x, where x is not a fixed point. The equation for a p-cycle is fp(x) = x.
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As k increases from 3 to approximately 3.56995, the period-doubling occurs faster and faster.

Specifically, the k intervals where these p-cycles exist shrink by the Feigenbaum constant 4.669, a fea-

ture that is characteristic of all unimodal maps [12, p. 379-380]. We can make a bifurcation diagram

by plotting the long-term behavior of the orbits of the logistic map for different k values along an

interval. We use these diagrams to illustrate where bifurcations occur, which are defined as qualitative

changes in behavior of orbits to the map.

To create the graphs below, 800 equally spaced values of k on 0 ≤ k ≤ 4 and 3.3 ≤ k ≤ 4 are

calculated in a program in R. For each k value, a random seed x0 ∈ (0, 1) is chosen and its orbit

x0, x1, ..., x800 is calculated. Only x501, ..., x800 are plotted for the k value, which removes any tran-

sient behavior. The diagrams are shown below. It should be noted that for almost any choice of seed

such that 0 < x0 < 1, the long-term behavior of the orbit will be the same.

Figure 3: Bifurcation diagrams for the logistic map. The right graph is magnified on k ∈ [3.3, 4].

When 0 < k < 1, the population is driven to extinction. For k values between 1 and 3, the pop-

ulation eventually stabilizes toward the fixed point c = 1 − 1
k ; note that we see this same behavior

in Figure 2 when k = 2.8. On the diagram, this translates to one ”branch.” As mentioned before,

we see the stable 2-cycle appearing at k = 3, where the single branch splits into the two values the

population will oscillate between. Again, this matches up with the graph in Figure 2 when k = 3.1. At

k = 1 +
√
6, the 2-cycle becomes unstable and a stable 4-cycle is born, resulting in the two branches

splitting into four.
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As for bifurcations themselves, one occurs at k = 1, since c = 0 becomes unstable and c = 1 − 1
k

becomes stable. A pitchfork bifurcation occurs at k = 3, since a 2-cycle is born when c = 1 − 1
k

becomes unstable.

3.2 Chaotic Behavior of Orbits

Period-doublings occur faster and faster, until k ≈ 3.56995 where periodic orbits of period 2n are

all unstable. For certain values beyond k ≈ 3.56995, orbits behave chaotically. In this state, orbits no

longer stabilize towards fixed points. Furthermore, initial conditions close in value will have signifi-

cantly different orbits over time.

However, chaos is not random. That is, a seed completely determines the resulting orbit. The

logistic map is deterministic, so an initial condition for a given k will always have the same orbit [12,

p. 331]. We are also more interested in orbits that stay bounded. For orbits that diverge, ±∞ acts as

a fixed point, which makes these orbits not aperiodic [12, p. 331]. Putting all of the above together,

chaos is defined as the state where orbits are aperiodic, deterministic, and exhibit sensitivity to initial

conditions.

It is also important to note that, although it may appear so in Figure 3, there are no intervals of

chaos. In fact, for any interval of k values, one can find periodic orbits inside the interval [6].

What indicators are there for chaos? One common way a dynamical system approaches chaos is

through a sequence of 2n-cycles, as can be observed in the bifurcation diagrams in Figure 3. Another

indicator is when the Lyapunov exponent for the system is positive, whose calculation is discussed in

the next section.

3.3 Lyapunov Exponent

We can also calculate the Lyapunov exponent for the logistic map, which informs us how quickly

nearby trajectories converge or diverge. The distance between two points on two different trajectories

at time n is approximated by the relation |d(n)| ≈ |d(0)|eλt or by |d(n)| ≈ |d(n− 1)|eλ, where λ is the

Lyapunov exponent [12, p. 373]. We can rearrange the equations to solve for λ:

λ ≈ ln (|d(n)|/|d(0)|)
n

Positive values indicate exponential divergence of nearby trajectories, while negative values imply
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exponential convergence. The more positive or negative the Lyapunov exponent is, the faster trajec-

tories diverge or converge. Estimates for the exponent are shown below for k values on the interval

[0,1].

Figure 4: Graph of the Lyapunov exponent

The Lyapunov exponent estimates can be used to predict bifurcation values via changes in stability

of the fixed points or p-cycles. The local maximums or ”peaks” of the graph coincide with those k val-

ues where bifurcations occur. For instance, the flip bifurcation at k = 1 and the pitchfork bifurcation

at k = 3 in Figure 3 coincide with local maximums in Figure 4. For some values of k, the Lyapunov ex-

ponent reaches −∞, making the fixed point or p-cycle superstable, whereby the orbits stabilize rapidly.

The Lyapunov estimates throughout this paper are calculated in R. For the logistic map, λ =

limn→∞
∑n

i=0
ln |k−2kxi|

n [12, p. 373], though n = 100 when estimating in R. To see the raw code which

contains the method for estimating Lyapunov estimates for the discrete predator-prey system, see

Appendix A.
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4 Predator-Prey System of Differential Equations

Before our study of the two dimensional discrete predator-prey system, we briefly describe the

continuous case. The system is as follows:

dx

dt
= k1(1− x)x+ axy

dy

dt
= k2(1− y)y − bxy,

where x is the predator population and y is the prey population, and the parameters k1, k2, a, and b

are all greater than 0. In addition to the logistic terms, each equation also has an interaction term,

axy and bxy. In the absence of one population, the equation for the other population reduces to a

logistic ordinary differential equation. The variables k1 and k2 are the growth rate parameters for the

populations, while a and b determine how the predator and prey populations interact. When there

is a bigger y population, the predator population benefits and has a larger growth rate. Conversely,

when there is a larger x population, the prey population suffers a lower population growth rate. For

simplification, we set a and b equal to 1.

An equilibrium point (xp, yp) exists when dx
dt = 0 and dy

dt = 0. For this system, these points are

(0, 0), (1, 0), (0, 1), and (k1k2+k2

k1k2+1 , k1k2−k1

k1k2+1 ).

4.1 Stability of Equilibrium Points

In two dimensions, an equilibrium point’s stability is determined by the eigenvalues of the Jacobian

matrix computed at the equilibrium point; this matrix gives the linear approximation to the system

at an equilibrium point. To find the eigenvalues, we first find the Jacobian matrix

Jf =

⎡
⎢⎣

k1 − 2k1xp + yp xp

−yp k2 − 2k2yp − xp

⎤
⎥⎦ ,

where xp and yp are the coordinates of a fixed point for the system. We then take the determinant of

the matrix Jf − λI and solve for the eigenvalues λ1,2. Since (k1k2+k2

k1k2+1 , k1k2−k1

k1k2+1 ) is the only fixed point

whose coordinates depend on the growth rate parameters, we solve λ1,2 for this point in terms of k1

and k2, which produces the following:

10



λ1,2 =
q ±

√
q2 − 4r

2
,where

q = k1 − 2k1xd + yd + k2 − 2k2yd − xd,

r = (k1 − 2k1xd + yd)(k2 − 2k2yd − xd) + xdyd,

xd =
k1k2 + k2
k1k2 + 1

,

yd =
k1k2 − k1
k1k2 + 1

For a two-dimensional system of ordinary differential equations, an equilibrium point is stable if

both eigenvalues are negative, or unstable if at least one eigenvalue is positive. If λ1 < 0 < λ2, the

point is a saddle, where nearby trajectories may initially be attracted to the fixed point before diverg-

ing. When both eigenvalues equal 0, this is a marginal case and the equilibrium point’s stability must

be determined through other means. If the eigenvalues are complex such that λ1,2 = α+ βi, the point

is unstable when α < 0 and stable when α > 0. If α = 0, nearby trajectories can form a closed orbit

around the equilibrium point, though its existence and stability depend on higher order terms in the

approximation.

Graphs below show which parameter regions produce a stable or unstable fourth equilibrium point

with real or complex eigenvalues. For the graph on the left, colored regions indicate parameter values

associated with real eigenvalues for (k1k2+k2

k1k2+1 , k1k2−k1

k1k2+1 ), where red is stable, blue is unstable, and pur-

ple are saddle nodes. The gray regions on the right graph indicate parameter values associated with

complex eigenvalues, where dark gray is stable and light gray is unstable. Values on the line k2 = −k1

for k1 ∈ (−1, 1) cause α = 0, which may lead to closed orbits around the fourth equilibrium point.
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Figure 5: Real and complex graphs showing the stability regions for (k1k2+k2

k1k2+1 , k1k2−k1

k1k2+1 ).

4.2 Long-Term Behavior of Solution Curves

Phase portraits of the predator-prey system are given below for varying values of k1 and k2, along

with trajectories with their initial conditions. Equilibrium points are plotted in red.
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Figure 6: The long-term behavior of the solution curves depends on which growth parameter values
and initial conditions are chosen.

In the first phase portrait, most trajectories converge to the fourth equilibrium point. Since the

first portrait has complex eigenvalues for its fourth equilibrium point, it is called a spiral sink. In

biological terms, both populations are able to coexist without driving the other to extinction. For the

second phase portrait, the eigenvalues satisfy λ1 < 0 < λ2, so the fourth equilibrium point is a saddle

node. Nearby trajectories are attracted to it before diverging either towards −∞ or to a nearby stable

equilibrium point.

The fourth equilibrium point in the third graph has complex eigenvalues such that |λ1,2| > 1, so

nearby trajectories spiral away from the point. As such, this equilibrium point is called a spiral source.

Both populations may grow indefinitely or be driven to extinction depending on initial conditions.

Finally, the fourth graph confirms that solutions can form closed orbits around the fourth equilibrium

point.

It is important to mention that while some trajectories may stabilize towards an equilibrium point

in the long run, they will never actually reach it. Otherwise, all nearby trajectories would intersect at

the equilibrium point, violating the existence and uniqueness theorem [12, p. 150].

Note that for certain values of k1 and k2, the fourth equilibrium point can have negative coordinates.

Since negative populations are impossible, we ignore equilibrium points and initial conditions with

negative coordinates. For the next section, we will focus our study on parameter values that produce

a fourth equilibrium point with positive nonzero coordinates.
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5 Discrete Predator-Prey System

Our research focuses on a discrete predator-prey system, which is an analog of the continuous

predator-prey system. It is written as

xn+1 = f(xn, yn) = k1(1− xn)xn + axnyn

yn+1 = g(xn, yn) = k2(1− yn)yn − bxnyn,

where k1, k2, a, and b are greater than 0. These equations have the same terms and parameters as

in the continuous case, but are now modeled in discrete, rather than continuous, time. As a result,

this system can exhibit very different behavior from its continuous counterpart. As before, we set

a = b = 1.

5.1 Stability of Fixed Points

As before, our first step in studying the dynamics of orbits to this system is to calculate its fixed

points and study their stability. A fixed point (c, d) exists when f(c, d) = c and g(c, d) = d. For

this system, these points are (0, 0), (k1−1
k1

, 0), (0, k2−1
k2

), and (k1k2−1
k1k2+1 , 1 − 2k1

k1k2+1 ). Calculating the

eigenvalues to determine stability follows the same process as in Section 4.1. However, the conditions

for stability are different between discrete and continuous systems. The fixed point is stable when

max{|λ1|, |λ2|} < 1, and unstable when one or both eigenvalues have magnitudes greater than 1.

If λ1,2 = α ± βi, then the point is stable when |λ1,2| < 1 and unstable when |λ1,2| > 1. Since

the fourth fixed point (k1k2−1
k1k2+1 , 1− 2k1

k1k2+1 ) is the only one that can have positive real coordinates, our

research focuses on the behavior of the orbits near this point. We first solve for the eigenvalues of the

Jacobian matrix computed at the fourth fixed point to determine its stability:

λ1,2 =
q ±

√
k21k

4
2 + rk32 + sk22 + tk2 + u

2(k1k2 + 1)
,where

q = −k21k2 − k1k
2
2 + k1 − k2 + 4k1k2 + 2,

r = −2k31 − 4k21 + 2k1,

s = k41 + 4k31 − 4k1 + 1,

t = −2k31 + 4k21 + 2k1,

u = k21 − 8k1 + 4

Before graphing the parameter regions, we require that k1k2−1
k1k2+1 > 0 and 1 − 2k1

k1k2+1 > 0. If either
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the predator or prey population equals zero, the system of equations reduces to a logistic map, whose

behavior we already studied. With these restrictions, we produce the graph below.

Figure 7: Real and complex areas showing the stability regions for (k1k2−1
k1k2+1 , 1− 2k1

k1k2+1 ).

Red regions indicate parameter values associated with an unstable fixed point with real eigenvalues

(light red means saddle, though orbits ultimately diverge from it), while the white areas are stable

with real eigenvalues. The gray areas indicate complex eigenvalues; the light regions are stable, while

the dark region is unstable. The hatched area is where (k1k2−1
k1k2+1 , 1− 2k1

k1k2+1 ) has positive coordinates.

5.2 Dynamics of Orbits for the Discrete Predator-Prey System

For a pair of complex eigenvalues, λ1,2 = α ± βi, a Neimark-Sacker bifurcation occurs for k1

and k2 values where |λ1,2| = 1 [5]. After the bifurcation, the fixed point changes stability and a closed

invariant curve forms around it. These bifurcations can be either supercritical or subcritical. In the

supercritical case, the invariant curve is stable and the fixed point inside is unstable. The reverse is

true for a subcritical Neimark-Sacker bifurcation: the invariant curve is unstable while the interior

fixed point is stable. The solid black border separating the two complex regions in Figure 8 consist of

those parameter values associated with this bifurcation.

Bifurcation diagrams for xn and yn when k2 = 3.5 as k1 varies are shown below together with their

Lyapunov exponents over the same intervals. Numerical computations show a supercritical Neimark-
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Sacker bifurcation at k1 ≈ 2.3705, producing a funnel-like shape that continues to expand. This funnel

shape is the stable invariant curve that forms around the fixed point (k1k2−1
k1k2+1 , 1− 2k1

k1k2+1 ).

Figure 9: Bifurcation diagrams and Lyapunov exponent estimates.

For certain intervals of k1, the curve disintegrates and a p-cycle takes its place, though not all of

these cycles undergo period-doubling. A 5-cycle exists between k1 ≈ 2.59918 and k1 ≈ 2.67974, but

no other 5 · 2n-cycle is observed immediately afterward. It may look like the 5-cycle becomes a 3-cycle

for the xn bifurcation diagram, but that is only because two of the points in the cycle share similar

x coordinates. Their yn coordinates will be different; see Figure 10 when k1 = 2.628. There is also a

12-cycle, a 7-cycle, a 16-cycle, and a 9-cycle, some of which undergo period-doubling when k1 decreases.
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Graphs of xn and yn with different k1 values are given below to illustrate the long-term behavior

associated with these parameter values as shown in the bifurcation diagrams in Figure 9. These graphs

are created by calculating (x0, y0), ..., (x1001, y1001), then plotting only (x300, y300), ..., (x1001, y1001).

Figure 10: The long-term behavior of the orbits significantly changes depending on the k1 value chosen.
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As k1 approaches approximately 2.3705 where the Neimark-Sacker bifurcation occurs, the orbit

spirals much more slowly towards the fixed point. We first see the invariant curve when k1 = 2.38

in Figure 10. As k1 increases, we see some of the p-cycles from the bifurcation diagrams appear,

such as the 5-cycle when k1 = 2.628 and the 12-cycle when k1 = 2.886866. When there isn’t an p-

cycle, the shape and number of points on the curve can vary drastically with just slight variations in k1.

For Figures 9 and 10, the initial condition is close enough to the fixed point that it stabilizes towards

it, then the invariant curve after it is born. However, this fixed point is not globally stable for all k1.

At k1 ≈ 2.133306, a stable 3-cycle near (k1k2−1
k1k2+1 , 1− 2k1

k1k2+1 ) is born, which undergoes period doubling

as k1 increases. Eventually, three open curves form around the fixed point. Presumably, these curves

become unstable, as orbits only stabilize towards the invariant curve after k1 ≈ 2.414915. Graphs of

xn and yn illustrating this behavior are shown below.

Figure 11: (x0, y0) is close to one of the fixed points in the nearby 3 · 2n-cycle, causing it to stabilize
to the cycle rather than (k1k2−1

k1k2+1 , 1− 2k1

k1k2+1 ) before the Neimark-Sacker bifurcation occurs.

Orbits that stabilize towards the 3 · 2n-cycle/open curves also change the Lyapunov exponent es-

timates along the same interval of k1. Bifurcation diagrams and their Lyapunov exponents are shown

below for comparison.
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Figure 13: Bifurcation diagrams and Lyapunov exponent estimates for different initial conditions.

In addition to these graphs, videos may be viewed online showing the long-term behavior changing

when k2 = 3.5 as k1 varies. One is a ”k-lapse,” where every frame shows a graph for each k1 value

on the interval [2.3, 3.45]. The other shows the same phenomenon, but is plotted in three dimensions,

allowing the viewer to better visualize the bifurcation diagrams in Figure 10. The links to these videos,

as well as the code for creating 2- and 3-dimensional bifurcation diagrams for any interval of k1 or k2,

may be found in Appendix A.

Another phenomenon similar to the Neimark-Sacker bifurcation occurs. At certain values of k1 and

k2, the curve devolves into either a 2-cycle or a 4-cycle. As the varied growth parameter increases,

various invariant curves form around the p-cycle’s fixed points. It is unknown under what conditions
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these invariant curves form, as they appear when the eigenvalues for the Jacobian matrix at (k1k2−1
k1k2+1 , 1−

2k1

k1k2+1 ) are either real or complex. Graphs showing these bifurcations occurring are given below.

Figure 14: The eigenvalues for the Jacobian matrix at the fourth fixed point are real when k2 = 3.2,
but are complex when k2 = 3.5.

5.3 Comparisons Between One- and Two-Dimensional Dynamics

The dynamics of orbits can be quite different between the discrete logistic map and the discrete

predator-prey system. For one, the choice of seed when 0 < x0 < 1 for the logistic map did not affect

the long-term behavior of the orbit. However, seeds that are far enough from the fourth fixed point

in the predator-prey system may stabilize to a 3 · 2n-cycle before a Neimark-Sacker bifurcation occurs.

Another difference is the occurrence of more interesting behavior. The aforementioned Neimark-Sacker

bifurcation cannot occur in one-dimensional maps. Chaotic behavior may also more clearly form two-

dimensional patterns, called strange attractors, as shown in Figure 15. Strange attractors consist of

fractal sets where orbits are aperiodic and are sensitive to initial conditions [12, p. 333]. While the

orbit in Figure 15 is aperiodic, the points form a rather curious curve around the fixed point.
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Figure 15: Strange attractor around the fourth fixed point.

5.4 Future Directions

The results discussed in the previous sections raise interesting questions for further inquiry. Many

interesting curves form around the fixed point for certain k1 values, such as that in Figure 15. What

are the fractal dimensions of these curves? Another question to study regards the basins of attractions

of the fixed points and invariant curves, especially for those parameter values where orbits stabilize

either to the fixed point (k1k2−1
k1k2+1 , 1− 2k1

k1k2+1 ) or the 3 · 2n-cycle.
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A Videos and Code

To view the k-lapse video, click on the following: https://vimeo.com/806196652.

To view the 3-dimensional bifurcation diagram, click on the following: https://vimeo.com/

806201032.

To view the code to create 2- and 3-dimensional bifurcation diagrams on any interval of k1

or k2, see the following: https://github.com/AristotleTottle/Discrete-Predator-Prey/blob/

9099183a54320dae10ed83978a6ef25945ad35ee/Bifurcation-Diagrams.R.

To view the raw code used during this research, see the following: https://github.com/AristotleTottle/

Discrete-Predator-Prey/blob/9099183a54320dae10ed83978a6ef25945ad35ee/Raw-Code.R.
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