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ABSTRACT 

Building a computer from common off-the-shelf components is a perplexing task. There are 

supply chain issues, compatibility issues, and budgetary constraints. This research investigates 

the use of an evolutionary algorithm to find the best possible components for a computer system 

within a designated budget. The algorithm starts with a set of parent combinations of builds and 

then creates a set of offspring. From the offspring set, they are mutated periodically and only the 

most compatible builds are kept for the next generation. This technique generates the best 

possible combination of components within the budget constraint in a finite number of 

generations. The application uses data from current component manufacturers, and a web 

interface has been created for ease of use. 
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1 INTRODUCTION 

1.1 BACKGROUND 

Technology has had a rapid pace of advancements over the last century with computers 

rapidly becoming a pivotal part of modern-day society. As technology advances with the 

growing needs of consumers, the research field of computer system optimization begins to form 

and grow. The term computer system optimization refers to the improvements that can be made 

to a computer system for utmost performance and efficiency. These improvements can range 

from fixing issues and system bugs, reducing the consumption of resources, and increasing the 

overall speed and response time of the system.  

Computer optimization became a popular field amongst computer scientists or even hardware 

engineers because consumers need high performing computer systems. Optimizing a computer 

system has advantages such as minimizing energy usage, better productivity, and a small chance 

of system crashes. This becomes advantageous for businesses or users who need high performing 

computers for video editing, personal tasks, or gaming. While optimizing computer performance 

is an important task to achieve, it becomes difficult with the several ways to improve the 

performance of a computer system.  

Changing the hardware of a computer system is the easiest way to improve the performance 

and efficiency of the system. However, selecting hardware components can be a challenging 

task, especially for a non-specialist. Hence, improving a computer system becomes a tedious task 

with all the compatibility issues and budget restrictions. Therefore, most consumers typically go 

for selecting computer components from the components market to build a computer rather than 

purchasing components to optimize a manufacturer’s computer system or a current computer 

system.
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1.2 RESEARCH PROPOSAL 

 This research proposes an algorithm to aid users in selecting the most crucial components 

with significant impact on a computer system’s performance, which are the CPU1, GPU2, and 

RAM3. This type of problem is known as an optimization problem. With the current market for 

components available to consumers, there are billions of combinations of computer components 

that can be used to build a functioning computer system. The limitations of budgets and 

compatibility between components become an issue for non-specialists selecting components for 

the first time.  

 While there are guides available to be used as resources for selecting components, the 

efforts of remaining in budget while retaining the utmost performance specifications for the 

budget limit is a crucial task. This research will look at an optimization algorithm that will 

incorporate a user’s wants or needs within a computer system to generate a list of the three major 

components of a computer system.
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2 ANALYSIS 

2.1 OPTIMIZATION PROBLEM 

Optimization is a problem that occurs when given a set of data with a function that finds 

a maximum or minimum. This becomes a perplexing task with the variety of algorithms that 

have the capability to provide a solution. There are two distinct types of optimization problems. 

The first type involves a function where a derivative can be found. This type of problem can be 

solved by the following types of algorithms: Bracketing, Local Descent, First-Order, and 

Second-Order (Brownlee, 2019). The second type involves a function where a derivative cannot 

be calculated at any given point. This can be solved by the following types of algorithms: Direct, 

Stochastic, and Population (Brownlee, 2019). 

2.2 ALGORITHM 

 Generating components for a computer system with the utmost performance does not 

involve a function with a derivative. Each component has a performance benchmark, which the 

overall performance can be found by summing the performance benchmark of all components in 

the system. Note that the CPU, GPU, and RAM will each possess a collection of available and 

compatible items that can be used within a computer system. Hence, there is a set population that 

can be used to find the global maxima. In this circumstance with the given constraints, the 

population kind of algorithm would be best fit.  

2.1.1 Population 

 Computer components have different purposes and can be used for several types of 

devices. In this case, a desktop computer is the only type of device with customizable 

components. Hence, a desktop computer can be built by the end-user with all components 
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selected by the end-user. Within the initial population, the components that can be used within a 

desktop are the only components within the initial population.  

2.1.2 Fitness 

 The fitness of a computer system consists of the performance of each individual 

component that composes that system. The benchmark of a computer specifies the performance 

of the system, which is defined through a series of tests that stress the computer system. 

Typically, a higher benchmark indicates a better performing computer system. To determine the 

best possible fit computer with the initial population, the benchmark can be taken of each 

individual component and summed together to get an overall benchmark. The highest benchmark 

will be considered the best optimized computer system.  
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3 RESEARCH OBJECTIVES 

 The research in this study intends to find the optimal CPU, GPU, and RAM of a 

computer system. To do this, the study evaluates an evolutionary algorithm. This algorithm is 

developed to find the optimal combination of the CPU, GPU, and RAM. The algorithm will be 

measured in effectiveness in selecting the optimal combination with the initial population.  

 A custom computer may not have an infinite budget. Hence, there are various constraints 

that must be applied to the algorithm. There are constraints such as limiting the spending of the 

CPU, GPU, and RAM and the branding preference of the CPU and GPU. This research will 

further analyze how the algorithm can select components that fit the constraints along with 

having the optimal performance within those constraints.   
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4 IMPLEMENTATION 

4.1 EVOLUTIONARY ALGORITHM  

 According to Eiben and Smith (2015), the theory behind this algorithm is to have a 

population of individuals that are within an environment where they would have to compete for 

limited resources. The competition between the individuals in the population gives the algorithm 

a survival of the fittest aspect, which is typically given by a function. With this function, a 

randomized set of candidate solutions is generated. Once the fitness values are assigned to the 

individuals, the most fit individuals will be selected to move on to the next generation. These fit 

individuals will be considered the parents of that generation. The parents will generate offspring, 

typically one or more new solution candidates. The offspring may go through mutation, which 

does not always happen, and a new candidate is formed. This process is repeated until an end 

condition, or a candidate has sufficient qualities is found. This flow is found in figure 1. 

ALGORITHM 1 EVOLUTIONARY ALGORITHM 

1 INITIALIZE population; 

2 SELECT parents; 

3 REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO 

4  GENERATE offspring; 

5  MUTATE offspring; 

6  EVALUATE new candidates; 

7  SELECT new parents for next generation; 

8 END 

Figure 1 Pseudocode of Evolutionary Algorithm 

 With the pseudocode as a reference, the algorithm can be implemented. The following 

figure shows the full implementation of the algorithm in this study.  
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ALGORITHM 2 FULL EVOLUTIONARY ALGORITHM IMPLEMENTATION 

Input: N/A 

Output: solution to the optimization problem 

1 def EvolutionaryAlgorithm (): 

2  population = InitializePopulation() 

3  parents = SelectParents() 

4  for jj in range (1000): 

5   parents = GenerateOffspring(parents) 

6   parents = Mutate(parents) 

7  solution = parents[0] 

8  for parent in parents: 

9   if CalculateFitness(parent) > 

CalculateFitness(solution): 

10    solution = parent 

11  return solution 

Figure 2 Implementation of evolutionary algorithm 

 In figure two, the implementation of the algorithm is very similar to the pseudocode 

provided in figure one. The methods being used within the algorithm will be explored further on 

in the next few sections. This implementation could be done through the examples provided by 

Kübler (2020) and Ippolito (2020).  
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4.1.1 Population Initialization 

To begin solving this problem, the creation of an initial population must be done. In this 

case, the population should consist of the CPU, GPU, and RAM that are available for purchase. 

Once the data is retrieved for each component, a list of permutations will be created. The 

permutations are generated in a random manner. Each time the algorithm runs, the list will vary.  

ALGORITHM 3 POPULATION INITIALIZATION 

1 def InitializePopulation (): 

2  cpus = CPUSerializer (CPU.objects.all(), 

many=True).data 

3  gpus = GPUSerializer (GPU.objects.all(), 

many=True).data 

4  rams = RAMSerializer (RAM.objects.all(), 

many=True).data 

5  population = [] 

6  max_list = max(len(cpus), len(gpus), len(rams)) 

7  ii, jj, kk = 0 

8  if max_list == len(cpus): 

9   for ii in range(len(cpus)): 

10    if jj == len(gpus): 

11     jj = 0 

12    if kk == len(rams): 

13     kk = 0 

14    population.append([cpus[ii], gpus[jj], 

rams[kk]]) 

15    jj, kk += 1 

16  elif max_list == len(gpus): 

17   for ii in range(len(gpus)): 

18    if jj == len(cpus): 

19     jj = 0 

20    if kk == len(rams): 

21     kk = 0 
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22    population.append([cpus[jj], gpus[ii], 

rams[kk]]) 

23    jj, kk += 1 

24  else: 

25   for ii in range(len(rams)): 

26    if jj == len(cpus): 

27     jj = 0 

28    if kk == len(gpus): 

29     kk = 0 

30    population.append([cpus[jj], gpus[kk], 

rams[ii]]) 

31    jj, kk += 1 

Figure 3 Population Initialization Implementation 

 Figure three shows the implementation of initializing the population used in this study. 

The first step is to get the data on all the components, which is done in lines one to three. The 

serializer is a function that gets all the data from the database. Next, permutations need to be 

created. One problem that may occur from trying to generate the permutations is that there is a 

varying number of CPU, GPU, and RAM. Hence, there may not be enough of one component in 

the component’s list to be matched with another component. Line five finds the component list 

that has the most available parts. Next, lines seven to thirty check which list has the most 

components. A loop is created to go through the longest list while going through the shorter list 

and repeating and adding the combination of components to the population. The shorter list will 

loop back to the first element once it reaches the last element. 

 The population is completely random and consists of a wide variety of components from 

each component category. There are different brands, processing speeds, and component 

generations that are in the initial population pool. Having this variety allows the algorithm to 

explore many different possibilities that could have many different genes (Soni, 2018). 
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4.1.2 Parent Selection 

 This step presumes that the initial population has been created and has a wide variety of 

components. The members, elements in the permutation list, in the initial population need to be 

selected as the parents of the first generation. Since this algorithm is survival of the fittest, the 

parents should be the most fit individuals from the initial population. This set of parents will then 

be the nth generation of parents. To determine which individuals are selected, the members are 

sent through a fitness evaluation4. The number of parents being selected is a parameter that is 

customizable and may vary with each implementation.  

ALGORITHM 4 PARENT SELECTION 

Input: initial population 

Output: top 10 most fit members 

1 def SelectParents(population): 

2  parents = [] 

3  for member in population: 

4   if len(parents) < 10: 

5    parents.append(group) 

6   else: 

7    for ii in range (10): 

8     if CalculateFitness(parents[ii]) < 

CalculateFitness(group): 

9      parents[ii] = group 

10      break 

11  return parents 

Figure 4 Parent Selection Implementation 

 Figure four is the implementation used in the research to select the parents. In this 

implementation, population is passed as an input, which is a matrix that was created in the 

population initialization step. The first loop looks at each member in the initial population and 
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selects the best fit members. In the loop within the else statement, it checks each parent and 

ensures that the best fit individual is within the parent list. In this research, there were ten parents 

that were selected. The number of parents parameter was selected as ten to help improve the 

algorithm’s speed and accuracy. Although the increased number of parents causes the space 

complexity to increase, the perk of having an accurate algorithm is worth the space.  

4.1.3 Generate Offspring 

 Once the parents have been selected, the generation needs to proceed after the offspring 

is created. This is typically done through combinations and having the offspring have genes of 

the parents. The offspring will also experience mutations5, crossovers, or both.  

ALGORITHM 5 GENERATE OFFSPRING 

Input: Selected Parents 

Output: Offspring 

1 def GenerateOffspring(parents): 

2  cpus, gpus, rams = [] 

3  for parent in parents: 

4   cpus.append(parent[0]) 

5   gpus.append(parent[1]) 

6   rams.append(parent[2]) 

7  children = list(itertools.product(cpus, gpus, rams)) 

8  return children 

Figure 5 Generate Offspring Implementation 

Figure five shows the implementation of the generating offspring used in this study. The 

input in this implementation is the parents, which is a matrix that contains that most fit 

individuals from the initial population. The loop retrieves all the possible components from the 

parents. Once all components have been retrieved, itertools6 is used to create a combination of all 

the components for the offspring.  
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4.1.4 Mutation 

 Mutation is the step that alters the components in a way to get closer to what the solution 

would be. It assists in widening the search space from the selection of parents in the beginning. 

There are a variety of different mutation methods that can be implemented. These methods 

include fitness proportionate selection, rank base selection, and tournament selection (Ippolito, 

2020). 

According to Ippolito (2020), the fitness proportionate selection method is done by 

creating a wheel that is used to categorize each member’s fitness based on its fitness relative to 

other individuals. This method is not ideal when an individual’s fitness is significantly higher 

than the other individuals. Hence, the rank base selection method can help fix the problem. This 

method is similar to the fitness proportionate selection method except each individual is given a 

rank to help distribute the wheel more evenly. These methods of mutation would be difficult to 

implement with the current problem. There would be millions of possibilities that could be the 

solution, and the previous methods would not be ideal with a big data set. Hence, this research 

implements the tournament selection as the mutation method.  

According to Ippolito (2020), tournament selection is the method where N individuals are 

selected from the population. From the N individuals, a chosen element with better performance 

is selected to replace one of the current genes in the solution pool. Once the offspring has been 

created, this method of mutation is applied to the offspring. The offspring will be considered the 

new set of population.  
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ALGORITHM 6 MUTATE 

Input: Offspring population, population 

Output: Offspring population with mutation 

1 def Mutate (offspring, population): 

2  parent_1_ran = random.randint(0, len(offspring) - 1) 

3  cpu_ran = random.randint(0, len(CPUs) – 1) 

4  parent_2_ran = random.randint(0, len(offspring) – 1) 

5  while parent_2_ran == parent_1_ran: 

6   parent_2_ran == random.randint(0, len(offspring) – 1) 

7  while float(offspring[parent_1_ran][0][‘benchmark’]) >            

float(population[cpu_ran][0][‘benchmark’]): 

8   cpu_ran = random.randint(0, len(population) – 1) 

9  gpu_ran = random.randint(0, len(population) – 1) 

10  parent_3_ran = random.randint(0, len(offspring) – 1) 

11  while parent_3_ran == parent_2_ran or parent_3_ran == parent_1_ran: 

12   parent_3_ran = random.randint(0, len(offspring) – 1) 

13  while float(offspring[parent_2_ran][1][‘benchmark’]) > 

float(population[gpu_ran][1][‘benchmark’]): 

14   gpu_ran = random.randint(0, len(GPUs) – 1) 

15  ram_ran = random.randint(0, len(RAMs) – 1) 

16  while float(offspring[parent_3_ran][2][‘benchmark’]) > 

float(population[ram_ran][2][‘benchmark’]): 

17   ram_ran = random.randint(0, len(RAMs) – 1) 

18  list(offspring)[parent_1_ran][0] = population[cpu_ran][0] 

19  list(offspring)[parent_2_ran][1] = population[gpu_ran][1] 

20  list(offspring)[parent_3_ran][2] = population[ram_ran][2] 

21  return offspring 

Figure 6 Mutation Implementation 

 Figure six shows the mutation implementation used in this study. The parameter 

offspring is an array obtained from the generate offspring function previously mentioned7. 

Population is the parameter that contains all the possible CPU, GPU, and RAM. It is a matrix 

that contains the names of each component. The python module random8 is used to generate a 
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number between a given inclusive range. The variables parent_1_ran, parent_2_ran, and 

parent_3_ran are integers that will be used to select a random offspring. To ensure this mutation 

is efficient, the while loops on lines five and eleven are used to make sure the random numbers 

generated for each variable do not match. This allows the algorithm to select three different 

offspring from the offspring pool. The variables cpu_ran, gpu_ran, and ram_ran is used to get a 

random component from their corresponding list. The while loop on lines seven, thirteen, and 

sixteen are used to ensure that the new component being added will be a component of higher 

fitness. At the end of the function, the offspring are replaced by the corresponding component. 

 This type of implementation of mutation allows the algorithm to not get stuck on a local 

extremum. The random library ensures that the mutation occurs at a random rate and the same 

offspring is not selected each time the algorithm runs. It truly ensures that the algorithm 

maintains its nature of survival of the fittest. 

4.1.5 Fitness Evaluation 

 Fitness evaluation is typically done through a fitness function. A fitness function takes 

the characteristics of each member and gives a numerical representation of that member, which 

shows how viable of a solution it is (Soni, 2018). The fitness function aids in the selection 

process. When selecting the best fit members in the population or in the offspring population, it 

is difficult to decide with just the component names or just an array. Therefore, the fitness 

function is used to help select the best fit components because it returns a number which is 

simpler to rank amongst the other individuals. 
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ALGORITHM 7 FITNESS EVALUATION 

Input: member 

Output: fitness of the member 

1 def CalculateFitness (member): 

2  cpu_fitness = float(member[0][‘benchmark’]) 

3  gpu_fitness = float(member[1][‘benchmark’]) 

4  ram_fitness = float(member[2][‘benchmark’]) 

5  return cpu_fitness + gpu_fitness + ram_fitness 

Figure 7 Fitness Evaluation Implementation 

 Figure seven shows the fitness evaluation function that was used in this study. The 

parameter member is an array of components consisting of the CPU, GPU, and RAM. Each 

component has data such as the name, benchmark, and price. The function converts the 

benchmark of each component into a float and sums up all the benchmarks to give the member a 

fitness value.  

 Benchmark is a score given to a computer based on the computer’s performance. This is 

usually done through a series of tests that a computer system must undergo. Since this score is 

fair amongst every computer system, the fitness value being based on the benchmark of each 

component is the best method in evaluating how well that specific member can perform in 

comparison to other members of the population.  

4.1.6 Solution 

 Typically, when an algorithm ends, it returns a solution to the user. In this case, the 

evolutionary algorithm can end under two circumstances. The first circumstance is that there 

exists a solution in the search pool that fits the criteria of the kind of solution the developer is 

looking for. This can occur when the threshold of performance has been reached. The other 
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circumstance that this algorithm can end is that the run time has reached its limit. For a solution 

to be considered a probable solution, it must be given in a reasonable time.  

 For this research, performance of a computer for a given set of constraints becomes 

difficult to determine. Hence, the solution reaching a performance threshold becomes a difficult 

circumstance for the algorithm to end. For this reason, the algorithm must end after N number of 

iterations. The algorithm must undergo numerous executions to determine the number of 

iterations that will give a solution. After these trials and execution of the algorithm, the algorithm 

seems to return a probable solution after one-thousand iterations.  

4.2 USER INTERFACE 

 The algorithm, as implemented above, only has a command line. A user-friendly 

interface is needed to interact with the algorithm. The algorithm is used to process big data, 

which is why Python was the preferred programming language for this study. Python has built-in 

graphical user interface libraries that can be used to create the interface. The available libraries in 

Python are not modern, and the interface can only be used after the python code is executed 

through the command line. Hence, the interface solution used in this study is a web application. 

This web application will be built using different frameworks and libraries in multiple 

programming languages. A web application allows users to click on a domain name and see the 

program run without having the source code on their personal computers. The interface will also 

have a more modern interface that is responsive to any screen. When creating a web application, 

it must have a frontend and backend. 

4.2.1 Front-end Interface 

Front-end is a term used to describe the part of the web application that is for the users to 

see and interact with. It is typically designed by a graphic designer, and it is visually appealing, 
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functional, and easy to use. This part of the website is typically developed using technology such 

as HTML, CSS, JavaScript, or TypeScript. The interface is usually responsive and accessible to 

provide an easy and seamless experience for all users across multiple devices and browsers.  

There are many front-end libraries created for developers to have ease in developing websites. 

Vue, React, and Tailwind are some of the most popular libraries used. In this study, React is the 

library that will be used to implement the front-end interface of the web application. Since the 

algorithm is developed using Python, React is the best library to connect the front-end interface 

with the solution that the algorithm will provide.  

React is a JavaScript library that is maintained by Facebook, and it allows developers to 

create user interface components that are reusable and can update efficiently in response to 

changes made to the application (React, n.d.). It has a component-based architecture, where 

components are organized into a structure that resembles a tree. Each component has its own 

states and methods. React is one of the best at rendering all its components in a timely manner 

(React, n.d.). It has a wide variety of libraries or frameworks that can be used to better the user 

experience. React has a modern look, is interactive, and responsive to any user interface. Hence, 

React was chosen as the front-end library.  

To build a web application with React, there must be components that are created by the 

developer to start the web application. These components can be functioning components that are 

on specific pages or the pages themselves. For the interface created in this study, it will have 

typical pages of other web applications such as the home page, about page, and frequently asked 

questions page. These pages will be static meaning the contents will not change per user. Other 

pages that will be needed for this project will include a build customization page, registration 

page, log in page, and an account dashboard page.  
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Once the pages are completed, the website needs functionality. These functionalities 

include account creation, build creation, email verification, password change, forgot password, 

change username, and modifying current builds. For these functionalities to work, a back-end 

interface needs to be created along with a database. This will allow the front-end to finally have 

functional components.  

4.2.2 Back-end Interface 

Back-end is the interface that is not interacted directly by the users. Rather, it is a way for 

users to access their data or manage their data. Back-end is known to be the server-side part of 

the development of a web application. It is used to give the application functionality. The back-

end includes a variety of APIs8. The APIs are created to handle the logic for managing data, user 

authentication, and other operations to fit the user’s needs.  

There are various back-end frameworks that can be used to create a fully functional web 

application such as Express.js, Django, and Ruby on Rails. Since the algorithm was written in 

Python, Django would be the only probable back-end library that can be used with a React front-

end.  

Django is a framework written in Python that is typically used as a back-end for React 

web interfaces. It has a model-view-controller architecture with various tool sets and libraries for 

a dynamic database-driven website (Django, n.d.). Django, by default, uses a version of SQL as 

its database engine. This allows for relational database management. Django also has other 

features such as built-in admin interface, templates for web access, and user authentication and 

authorization. This framework has many security features such as protection against cross-site 

scripting attacks, cross-site request forgery protection, and secure password handling (Django, 

n.d.). 
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For Django to function, models need to be created. Models are the entities that lie in the 

database. Typically, they include data fields such as ID. Once the database is created, views need 

to be created. Views are the python functions that handle all API requests, which includes logic 

and database management. These views will return a status of whether the specific action was 

successful or not. Once all views are finished, user management is implemented. This includes 

user authentication, user authorization, user creation, and user deletion. Django is compatible 

with many different user management libraries that can be used to aid in the process of 

implementing this feature of the website.  

4.3 DATABASE SCHEMA 

With each web application, there needs to be a database that is created to manage data. 

Databases can have a variety of engines, with some engines having better performance than 

others. The database engine used in this study is SQLite which is the default engine used by the 

Django framework.  

SQLite is an engine that mimics SQL; however, their difference is that SQLite can run 

serverless. This engine is ideal for small-scale projects, and projects with the need of a local 

database. It is created from a C library, which makes the engine fast, reliable, and full of features 

of a database server. This database engine is one of the most used engines worldwide where it is 

built into many popular applications. According to the SQLlite homepage, there are over one 

trillion active SQLite databases.  
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Figure 8 Database Schema 

Figure eight shows the database schema created to manage users and their builds along 

with the components that are used in each build. The schema shows the basic components of the 

database that was created in this research. There are other parts of the database not shown 

because it was created by the Django framework to help with authentication and authorization. In 

this schema, there are three major entities. The component, build, and user entities each have one 
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relation. User has a relation with build, and Build has a relation with component. Users can have 

multiple builds, and Builds can only include one of each type of component.  

The user_build relation to connect a build with a user. This relation contains the user ID 

and build ID, where both are foreign keys that reference their respective table entries. This 

relation is created to allow users to have multiple builds, and builds can have multiple users. This 

relation aids in the idea that users may have the same build constraints, which there is no need to 

create duplicate builds in the database. This indicates a many-to-many relation. With each build, 

there is a many-to-many relation between the build to the components. This relation is necessary 

because there are builds that may reuse the components that belong to another build. To allow 

this relation there are three tables created to connect the build with the component that belongs to 

that build. There are three relations that show this connection. The build_ram, build_cpu, and 

build_gpu connect the component to its build. Each relation has a build ID and the component 

ID.  

Each component has its own table in the database. However, they are all formatted the 

same way. Each component will have information about its name, price, benchmark, and date 

that it was found. The name and price are used to display to users when the build is selected. The 

benchmark and price are used with the algorithm to help find the best fit components for that 

specific build criteria. The date field is used to determine if the database needs to be updated 

with new components that may have entered the market.  

This database is used to help with the functionality of the web application. It keeps track 

of all the user accounts created along with each user’s build. The database also keeps information 

about each component that is available in the market for users to purchase. The relationships 
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between each entity in the database are necessary due to the nature of many users having many 

different builds and each build can have similar components to one another. 
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5 RESULTS 

5.1 OPTIMIZATION PROCESS 

 Optimization for an algorithm like this becomes quite difficult to do. There are many 

parameters such as the number of generations and the number of parents that can be modified to 

help improve the algorithm’s performance. To fully ensure that the algorithm would give a 

correct solution each time it ran, the numbers had to be changed and tested, and the solution had 

to be verified. The following figure shows the performance of the solution versus the number of 

parents it took to generate the solution. 
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Figure 9 Graph of Performance vs. Number of Parents 

 To generate this graph, matplotlib9 was used to plot the subgraphs and create the overall 

graph. The figure assumes an overall budget of ten thousand, which allows the algorithm to 

include all possible components from within the database. This gives the algorithm a chance at 

running at the worst run-time. From within the algorithm, a list of the number of generations was 

provided as shown in the legend. Within each generation, the number of parents varied. Each 

generation ran until a solution was provided with the number of parents it was given. Once the 

solution is provided, the next number of parents is used to run the algorithm again with the same 

number of generations.   
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In figure nine, the different color lines show the number of generations that were present 

to generate that specific solution. From the graph it seems that any number of generations greater 

than ten would give an optimal solution. However, this was not the case. The algorithm is 

completely random. This means that the components being used are generated randomly in a 

random order. Hence, the solution provided does not always guarantee that the optimal one was 

provided. Once the algorithm runs in real-time, the solution would vary by a component or two. 

This would show that the solution was stuck within a local maxima. After many trials and runs, 

the optimal number of generations that would provide a consistent solution was about one-

thousand generations, which is not shown on the graph. The number of parents was kept at ten to 

help the algorithm not get stuck within a local maxima.  

With the algorithm running with one-thousand generations, the execution time of the 

algorithm took a hit. However, it is still quick, accounting for the time it takes the database query 

to complete. Shown in the figure below. The average execution time was about nine seconds. 

The fastest time was about 8.9 seconds, and the slowest time was about 9.3 seconds. Considering 

the large database and large number of components being used, this run-time is exceptional. The 

time shown below is the time from when the user makes a request to run the algorithm to when 

the algorithm finishes and gives a response.  

 

Figure 10 Algorithm Run Time 
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5.2 PERFORMANCE 

An algorithm’s efficiency and solution play an important role in determining its 

performance. Evolutionary algorithm’s performance is mainly based upon the quality of the 

solution and how quickly it can come up with a solution. Typically, the run-time for any 

constraint given in the project would have the same run-time. This is due to the algorithm’s end 

condition of reaching the maximum threshold of run-time.  

Space complexity is important when determining performance. Space complexity for the 

evolutionary algorithm is mainly based on the parameters that are provided, which can include 

the population size. In this implementation, the population size dominates the space complexity. 

The format of the population is a matrix. Hence, the overall space complexity of this 

implementation of the algorithm is going to be O(CGR), with C being the number of CPUs, G 

being the number of GPUs, and R being the number of RAM. There would be no way of 

improving this value because every component can be a part of the solution. Therefore, space 

complexity cannot be compromised. 

Run-time is an important factor that has to be accounted for since users need fast 

responses. When analyzing this algorithm, it becomes quite difficult to determine what the run-

time would be. The first step in the algorithm is to initialize the population. In this function the 

first three lines retrieve the data on the components from the database. Since the query is simple, 

the run-time of each data query runs at O(n) time with n being the number of elements in the 

specified table. The next function that does not take constant time is the built-in python max 

function. This function takes O(p) time with p being the number of parameters passed to the 

function. Since the comparisons are constant, the next line that would take significant time would 
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be the loop. The loop would take O(n) time with n being the number of elements in the largest 

dataset. The overall runtime of initializing the population is O(np).  

The next step in the algorithm is to select the parent from the initial population. The run-

time of the outside loop would be O(n) with n being the number of elements in the population 

matrix. The inside loop has a runtime of O(p) where p would be the number of parents. 

Assuming that the worst case does occur, the outer loop will run at O(n) and the inner loop will 

be executed inside of the if statement with a run-time of O(p). Overall, the function would have a 

runtime of O(np). 

Generating offspring is executed after the parents have been selected. This is the start of 

the first generation. The loop’s run-time would be O(p) where p is the number of parents. The 

next step in the function is to create a list of possible combinations from the parents. This would 

have an overall run-time of O(CGR) because there are three components being used as part of 

the combinations. C is the number of CPUs from the parent, G is the number of GPUs from the 

parent, and R is the number of RAM from the parent. Essentially, C = G = R = p in this scenario. 

Overall, the run-time of this function would conclude to O(p3). 

Mutation is the next major step to be executed. The initialization of variables all take 

constant time. With the next line being a while loop, it becomes difficult to determine what the 

run-time is. In this case, all the while loops ensure that all the numbers do not match and that 

there will be a new component selected with a better performance. Assuming that this would be 

the worst-case scenario, the run-time of the function would take O(n) where n is the population 

size. With all other lines in the function taking constant time, the run-time of this algorithm 

would be O(n). 
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The fitness evaluation function is the best performing function in this iteration. Its run-

time is dependent on how many components are supported by the algorithm. In this case, the run-

time would be O(n) where n is the number of components needed in the solution. In this case, n 

would be three because the CPU, GPU, and RAM are the only components being analyzed.  

The analysis of these functions is not enough to determine the overall run-time of the 

algorithm. The algorithm is dominated by the number of generations that need to be ran. For 

each generation, the previous functions analyzed will be executed. Hence, the overall run-time of 

the implemented evolutionary algorithm in this study is O(np3g) where n is the number of 

components, p is the number of individuals in the population, and g is the number of generations. 
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6 FUTURE WORK 

Evolutionary algorithms are a growing research field in computer science. The algorithm 

performs significantly well with problems such as optimization, scheduling, planning, design, 

and management (Slowik & Kwasnicka, 2020). Evolutionary algorithms have uses across many 

different fields that are currently in use. Electrical engineering, artificial intelligence, automation, 

and management services are some of the major fields that use evolutionary algorithm to solve 

their problems (Slowik & Kwasnicka, 2020). With the growing use of the evolutionary 

algorithm, there are research topics that can be done on this specific algorithm. 

Improving the performance. With all algorithms, performance can always be improved. This 

can be finding the perfect number of parents or the ideal number of generations. The 

space complexity and intense run-time can be further improved.  

Adding more components. This study only analyzes the CPU, GPU, and RAM. However, there 

are many other components that make up a computer system. This includes storage, 

power supply, and motherboard. Some of these components do not impact the 

performance of the computer; rather, it is more based on user preference and 

customization. The storage can impact the performance of a computer along with the 

power supply. It is common for users to purchase computer components and not have 

enough power rating in their power supply for the system. It is also common to 

experience a slow computer system with high-end components. This can usually occur 

from low performing storage.  
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7 CONCLUSION 

With the evolutionary algorithm, it is possible to create an algorithmic way to solve the 

optimization problem that comes with purchasing computer components. The algorithm was able 

to take in constraints provided by the user to fully customize their system. The presented 

implementation of the algorithm provides a probable solution that accounts for compatibility and 

having utmost performance. With the runtime being high, in the real-world situation, the 

algorithm returns at a reasonable time. The algorithm yields a high accuracy rate of having a 

probable solution. However, the algorithm and implementation can be further improved with 

future work that can be done.  

  



31 

 

 

8 REFERENCES 

Brownlee, J. (2019, July 15). A Tour of Optimization Algorithms. Machine Learning Mastery. 

https://machinelearningmastery.com/tour-of-optimization-algorithms/ 

Django. (n.d.) Django web framework. Retrieved from https://www.djangoproject.com 

Eiben, A. E., & Smith, J. E. (2015). What is an evolutionary algorithm? In Introduction to 

Evolutionary Computing (pp. 25-48). Springer Berlin Heidelberg. 

https://doi.org/10.1007/978-3-662-44874-8_3 

Ippolito, P. P. (2020, March 10). Introduction to Evolutionary Algorithms. Towards Data 

Science. https://towardsdatascience.com/introduction-to-evolutionary-algorithms-

1278f335ead6 

Kübler, R. (2020, January 15). An extensible Evolutionary Algorithm Example in Python. 

Towards Data Science. https://towardsdatascience.com/an-extensible-evolutionary-

algorithm-example-in-python-7372c56a557b 

Python Software Foundation. (n.d.). itertools – Functions creating iterators for efficient looping. 

Python 3.11.3 documentation. Retrieved from 

https://docs.python.org/3/library/itertools.html 

Python Software Foundation. (n.d.) random – Generate pseudo-random numbers. Python 3.11.3 

documentation. Retrieved from https://docs.python.org/3/library/random.html 

React, (n.d.). React documentation. Retrieved from https://react.dev 

Slowik, A., & Kwasnicka, H. (2020). Evolutionary algorithms and their applications to 

engineering problems. Neural Computing and Applications, 32, 12363-12379. 

https://doi.org/10.1007/s00521-020-04832-8 



32 

 

 

Soni, D. (2018, February 18). Introduction to Evolutionary Algorithms. Towards Data Science. 

https://towardsdatascience.com/introduction-to-evolutionary-algorithms-a8594b484ac 

SQLite. (n.d.). SQLite: Embedded database software. Retrieved from  

  



33 

 

 

9 FOOTNOTES 

1CPU: Stands for central processing unit; the brains of the computer. 

2GPU: Stands for graphics processing unit; the unit that oversees heavy computations and 

graphics. 

3RAM: Stands for random access memory; holds application data that may be used by the CPU. 

4Refer to section 4.1.5 

5This is a built-in python module that does math computations. 

6Refer to figure 5. 

7This is a built-in python module that can be used with the installation of Python. 

8API: Stands for application programming interface. It is used to connect two pieces of software 

together. 

9This is a third-party python module that is typically used by developers to aid in plotting graphs.  


