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Abstract
A Latin square is an n × n square that contains n different symbols, often numbers that are

arranged so that each symbol appears exactly once in each row and column. In this project, we
look at the probability of a random arrangement of symbols being a Latin square. I start with n
number of n symbols; for example a 3×3 squarewill contain the numbers 1, 1, 1, 2, 2, 2, 3, 3, 3 in
a random assortment. Using counting methods and statistical estimation through Python, we
discover the proportion of Latin squares to total squares.

Acknowledgments
I want to thank my supervising professor, Dr. Drew Tomlin, for her time spent guiding my

research. I would not have been able to complete this project without her insights.
I want to thank Dr. Efton Park for serving on my committee and being a resource for both

Dr. Tomlin andme.
Finally, I want to thank Dr. LiranMa for givingme the foundational skills in Python to com-

plete this project and for serving onmy committee.

Reference Guide

Figures
1 2× 2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 3× 3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 4× 4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 3× 3Number Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 4× 4 Patterns of 2’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Tables
1 4× 4 Pattern of 3’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 4× 4 pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 5× 5 Pairing in 1’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 5× 5 Pairing in 3’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Summary Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Listings
1 2× 2 Latin Square Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 2× 2 Latin Square Original Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 3× 3 Latin Square Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 4× 4 Latin Square Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

iii



1 Definitions
1.1 Latin square
A Latin square is an n × n square that contains n different symbols that are arranged so that each symbol
appears exactly once in every row and every column. Latin squares that are reflections or rotations of each
other are considered different squares for my purposes.

1.2 Central limit theorem
The central limit theorem states that given sufficiently large random samples from a population, the aver-
age of the sample proportions will yield a normal distribution that estimates the population proportion.
Here np ≥ 10 defines sufficiently large, with n being the sample size and p being the proportion. The ran-
dom samplesmust be independent of each other. I am taking a sample proportion of Latin squares to total
squares from each random sample of squares, and the mean of these proportions should be the popula-
tion proportion of Latin squares to random squares. Each new square does not rely on the outcome of the
previous squares, so every square selection is independent.

2 Estimation through Python
In order to checkmy calculations, I used Python to simulate random squares of sizes 2× 2, 3× 3, and 4× 4.
By listing the valid numbers that would be used in a square of a certain size, randomizing, and reordering
into a square shape, I created random squares that I could test for the criteria that would make it a Latin
square. To check for uniqueness of numbers in each row and column, I used lists and sets. In Python, a
list can contain any elements, whereas a set can only contain unique elements. With this information, I
turned each row and column of the squares into a list and a set and then compared the lengths of each.
If the list and the set had the same length, then I knew that that row or column contained only unique
values. If every row and column passed this test, then I knew the square must be a Latin square. Counting
the squares that met the criteria and the total randomly generated squares, I estimated the proportion of
Latin squares to total squares for the three different sizes of squares. By simulating this process hundreds
of times, I visualized this estimation through histograms with a mean that is approximately equal to the
calculated proportion. Using the central limit theorem and solving np ≥ 10 for n, where p is my calculated
proportion, I found the number of times I would have to randomly generate squares to get an accurate
estimationof theproportionofLatin squares to randomsquares. Themeanof these samples ismyestimate
of the proportion of Latin squares.

2.1 2x2 squares
The 2×2 case of Latin squares is the simplest variety of Latin squares. Inmy code, I define the symbols and
randomly select the values of the square in Listing 1.

23 values = [1,1,2,2]

24 a = rd.choice(values)

25 values.remove(a)

26 b = rd.choice(values)

27 values.remove(b)

28

29 c = rd.choice(values)

30 values.remove(c)

31 d = rd.choice(values)

32

33 ltSq = np.array ([[a,b],[c,d]])

I checked the square to see if it fit the definition of a Latin square and kept track of the counts. There were
two different ways that I checked for Latin squares for the 2 × 2 case. The first was by simply checking to
see if the elements in each row and each columnwere not equal as seen below in Listing 2.

26 ltSq = np.array ([[a,b],[c,d]])

27

28 if a!=b and a!=c and d!=c and d!=b:
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29 count +=1

30 i+=1

31 print(count/i)

For the second way, I checked for uniqueness of elements within rows and columns through my list/set
methodmentioned before, as seen in Listing 1.

35 row1 = [a,b]

36 srow1 = set(row1)

37 row2 = [c,d]

38 srow2 = set(row2)

39 col1 = [a,c]

40 scol1 = set(col1)

41 col2 = [b,d]

42 scol2 = set(col2)

43

44 if len(row1) != len(srow1):

45 i+=1

46 #end row 1 check

47 elif len(row2) != len(srow2):

48 i+=1

49 elif len(col1) != len(scol1):

50 i+=1

51 #end col 1 check

52 elif len(col2) != len(scol2):

53 i+=1

54 else:

55 count +=1

56 i+=1

My minimum sample size for this case was n ≥ 34. So, I repeated to estimate the proportion of Latin
squares to total random squares and created the histogramwith amean proportion of 0.33323 and a stan-
dard deviation of 0.00461 as you can see in Figure 1.

Figure 1: 2× 2 Simulation Results
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2.2 3x3 squares
I began trying to estimate the proportion of 3 × 3 Latin squares using the same technique as in Listing 2.
I realized that this would require checking uniqueness for all n2 elements in the square, and that number
would quickly get out of hand. This is the point when I began using the list/set method as seen below in
Listing 3.

22 while i <100000 :#the number of squares i want to make

23

24 values = [1,1,1,2,2,2,3,3,3] #the elligible values for a 3x3 square

25

26 ltSq = np.array ([[a,b,c],[d,e,f],[g,h,k]]) #arrange the numbers in a square

27

28 #turn into a set then check the length of the list vs the set

29 #since a set cannot have dublicates it checks if the values are unique in each row

and column

30

31 row1 = [a,b,c]

32 srow1 = set(row1)

33

34 row2 = [d,e,f]

35 srow2 = set(row2)

36

37 row3 = [g,h,k]

38 srow3 = set(row3)

39

40 col1 = [a,d,g]

41 scol1 = set(col1)

42

43 col2 = [b,e,h]

44 scol2 = set(col2)

45

46 col3 = [c,f,k]

47 scol3 = set(col3)

48

49 if len(row1) != len(srow1):

50 i+=1

51 #end row 1 check

52 elif len(row2) != len(srow2):

53 i+=1

54 #end row 2 check

55 elif len(row3) != len(srow3):

56 i+=1

57 #end row 3 check

58 elif len(col1) != len(scol1):

59 i+=1

60 #end col 1 check

61 elif len(col2) != len(scol2):

62 i+=1

63 #end col 2 check

64 elif len(col3) != len(scol3):

65 i+=1

66 #end col 3 check

67

68 else:

69 count +=1

70 i+=1

Using the central limit theorem, I checked that I used a large enough sample size for an accurate estimate.
I used n = 100, 000 and solving np ≥ 10 with p = 0.00714 frommy calculations, I only needed n ≥ 1, 400.
Between my sample size and number of samples, I checked 15, 000, 000 random squares. I estimated the
3× 3 Latin squares proportion to be 0.00715with a standard deviation of 0.00025, pictured in Figure 2.
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Figure 2: 3× 3 Simulation Results

2.3 4x4 squares
Even with my updated technique for checking if a square is a Latin square, the larger square started caus-
ing issues for my program. The number of rows and columns that needed checking grew slightly, but the
accuracy of my estimation was failing short due to the proportion that I was expecting frommy theoreti-
cal calculations. Referencing the central limit theorem and solving np ≥ 10 with p = 9.06 × 10−6, I found
n ≥ 1, 094, 811 or the size ofmy samples Iwould have to randomly generate for 4×4 squares to get an accu-
rate estimation of the proportion of Latin squares to random squares. I selected n = 1.1million, to round
up and be sure that I had a large enough sample size. This number was so large that my program would
take almost 45minutes to run. Due to these limitations, 4 × 4was the largest size square that I attempted
to create and sample in Python. The steps for randomizing this many squares is shown in Listing 4.

23 while i <1100000: #using 1.1mil squares to find one p hat value

24

25 values = [1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4]

26

27 a = rd.choice(values)

28 values.remove(a)

29 b = rd.choice(values)

30 values.remove(b)

31 c = rd.choice(values)

32 values.remove(c)

33 d = rd.choice(values)

34 values.remove(d)

35

36 e = rd.choice(values)

37 values.remove(e)

38 f = rd.choice(values)

39 values.remove(f)

40 g = rd.choice(values)

41 values.remove(g)

42 h = rd.choice(values)

43 values.remove(h)

44
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45 j = rd.choice(values)

46 values.remove(j)

47 k = rd.choice(values)

48 values.remove(k)

49 l = rd.choice(values)

50 values.remove(l)

51 m = rd.choice(values)

52 values.remove(m)

53

54 n = rd.choice(values)

55 values.remove(n)

56 o = rd.choice(values)

57 values.remove(o)

58 p = rd.choice(values)

59 values.remove(p)

60 q = rd.choice(values)

61

62 ltSq = np.array ([[a,b,c,d],[e,f,g,h],[j,k,l,m],[n,o,p,q]])

63

64 #turn into a set then check the length of the list vs the set

65 row1 = [a,b,c,d]

66 srow1 = set(row1)

67

68 row2 = [e,f,g,h]

69 srow2 = set(row2)

70

71 row3 = [j,k,l,m]

72 srow3 = set(row3)

73

74 row4 = [n,o,p,q]

75 srow4 = set(row4)

76

77 col1 = [a,e,j,n]

78 scol1 = set(col1)

79

80 col2 = [b,f,k,o]

81 scol2 = set(col2)

82

83 col3 = [c,g,l,p]

84 scol3 = set(col3)

85

86 col4 = [d,h,m,q]

87 scol4 = set(col4)

88

89 if len(row1) != len(srow1):

90 i+=1

91 #end row 1 check

92 elif len(row2) != len(srow2):

93 i+=1

94 #end row 2 check

95 elif len(row3) != len(srow3):

96 i+=1

97 #end row 3 check

98 elif len(row4) != len(srow4):

99 i+=1

100 #end row 4 check

101 elif len(col1) != len(scol1):

102 i+=1

103 #end col 1 check

104 elif len(col2) != len(scol2):

105 i+=1

106 #end col 2 check

107 elif len(col3) != len(scol3):

108 i+=1

109 #end col 3 check

110 elif len(col4) != len(scol4):

111 i+=1

112 #end col 4 check

113

114 else:

115 count +=1
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116 i+=1

I discovered the estimated proportion of 4 × 4 Latin squares to be 9.06 × 10−6 with a standard deviation
of 2.9 × 10−6. The average printed on Figure 3 is rounded to 5 decimal places, therefore it rounded up to
1× 10−5.

Figure 3: 4× 4 Simulation Results

3 Pattern counting
Inorder to count theLatin squaresof various sizesbyhand, I counted thedifferentpatternsof eachnumber
thatwerepossible. Beginningwith the small squares and thenworkingmyway to larger and larger squares,
I counted the patterns of 1’s then the patterns of 2’s and so on. By placing a number row by row, I counted
thedifferentpossible options for thenumber in thenext row. I discovered that Iwas able tobeginwith a 1 in
the top left corner for every square, and thenmultiplymy final number by n to get to total number of Latin
squares of size n × n. This yielded the correct number of squares because it’s the equivalent of swapping
all the 1’s and 2’s or 1’s and 3’s until all values have been swapped with the 1’s pattern, which would be n
swapped patterns.

1 2 3

2 3 1

3 1 2

2 1 3

1 3 2

3 2 1

3 2 1

2 1 3

1 3 2

Figure 4: 3× 3Number Swapping

3.1 Pattern of 1’s
Counting the patterns of 1’s begins with

(
n
1

)
choices in the first row, then

(
n−1
1

)
for the second row, this

continues until
(
1
1

)
for the last row or

n∏

i=0

(
n−1
1

)
= n!. Only working with squares with a 1 in the top left
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corner, allowed me to deal with (n − 1)! patterns of 1’s instead of n! patterns of 1’s, which ended up being
significantly fewer squares for the larger sizes.

3.2 Pattern of 2’s
Counting the patterns of 2’s for a fixed pattern of 1’s consisted of drawing many examples for each size
n and identifying relationships and patterns within the squares. I was again able to use symmetry to my
advantage for the larger squares and begin with a 2 placed in the top row thenmultiplying by (n− 1) at the
end toaccount for the choicesof thatfirst placement. Finding thenumberofpatternsof 2’s for eachpattern
of 1’s within each size square, the counts became apparent. I checkedmy numbers with different patterns
of 1’s and with different placements of the first 2 to verify that I was justified in using symmetry to count. I
wrote out full equations for different sizes of patterns of 2’s, for example counting the 4 × 4 patterns of 2’s
for the pattern on 1’s on themain diagonal is: 3(3 1

3 + 2 2
3 (2

1
2 + 1 1

2 )) = 9. Doing this for different patterns of
1’s, created different equations, but each pattern of 1’s resulted in 9 patterns of 2’s. A visual example of my
technique is shown in Figure 5:
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Figure 5: 4× 4 Patterns of 2’s
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I finally noticed a pattern after finding the patterns of 2’s for the Latin squares up to 6 × 6. I began with
a 2 placed in the top row along with my selected pattern of 1’s. Then, I placed my second 2 and wrote
out my expression for the remaining 2s and did this for each placement of the second 2. Some of these
expressions were exactly my expressions for some of the patterns of 2’s on 4 × 4 Latin squares. Summing
these expressions, I discovered that by adding the previous 2 counts of patterns of 2’s and thenmultiplying
by (n−1) I would get the count of patterns of 2’s for each pattern of 1’s for the current sized square. Sowith
the base cases t2 = 1 and t3 = 2 then, tn = (n−1)(tn−2+ tn−1) for n ≥ 4where tn is the number of patterns
of 2’s for a pattern of 1’s for an n× n Latin square.

3.3 Pattern of 3’s
I only needed to count the patterns of 3’s for 4× 4 and 5× 5 Latin squares. These numbers started to differ
from the previous pattern counting because different patterns of 1’s and 2’s resulted in different numbers
of patterns of 3’s. In the 4× 4 case, the number of patterns of 3’s was also the number of Latin squares from
each pattern of 1’s and 2’s. I discovered that 2

3 of the patterns of 1’s and 2’s created 2 unique Latin squares,
one for each placement of the first 3 in the first row. As seen in Table 1, there is no other valid pattern of 3’s
with the same placement of 3 in the first row.

1 2 3

1 3 2

2 3 1

3 2 1

Table 1: 4× 4 Pattern of 3’s

However, 1
3 of the patterns of 1’s and 2’s resulted in 4 unique Latin squares. The four Latin squares from

a single pattern of 2’s happened when numbers paired up so that the placement of two of the 3s does not
affect the placement of the other two 3s. Table 2 shows the possible pairings of 3s where the purple 3s are
paired up so that the blue squares represent a Latin square and the red squares represent a different Latin
square. The purple 3s could bemoved to the gray squares, and the same red and blue options are available
for the other 3s. So 22 or 4 Latin squares weremade by the single pattern of 2’s.

1 3 2

2 1

1 2

2 1 3

Table 2: 4× 4 pairing

The 5 × 5 Latin squares also exhibited a similar pairing phenomenon in the patterns of 3’s. Since 5 is not
evenly divisible by 2, these patterns could only split up into a pair and a trio. By placingmyfirst 2 in the first
row, I was able to work with 44

4 = 11 patterns of 1’s and 2’s to to calculate the subsequent patterns of 3’s. I
drew all the patterns of 3’s for each of the 11 patterns of 1’s and 2’s and found that some had 12 patterns of
3’s and somehad 13patterns of 3’s. The patterns that created only 12patterns of 3’s included all the squares
where the pairing occurred in the 1’s and 2’s, as seen in Table 3. These patterns all created 2 Latin squares
when the 4s and 5s were filled in.
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1 2 3

2 1 3

3 1 2

3 1 2

2 3 1

Table 3: 5× 5 Pairing in 1’s

The squares that had 13 patterns of 3’s contained the squares where the pairing occurred in the 3’s, 4’s, 5’s
or not at all. This collection of squares resulted in 4 Latin squares 5

13 of the time, and 2 Latin squares the
remaining 8

13 of the time. Table 4 is an example of a pattern that can create 4 different Latin squares.

1 2 3

3 1 2

1 2 3

3 1 2

2 3 1

Table 4: 5× 5 Pairing in 3’s

4 Conclusions
There are 6 possible 2× 2 configurations with 2 of those being Latin squares with two different patterns of
1’s. For 3× 3 squares, the random configurations go up to 1, 680with only 12 of these being Latin squares,
consisting of 2 patterns of 2’s for each of the 6 patterns of 1’s. There are 576 different 4× 4 Latin squares out
of the 63, 063, 000 random squares that are made up by 24 patterns of 1’s, 9 patterns of 2’s for each pattern
of 1’s, and 1

3 of those resulting in 4 patterns of 3’s and the remaining 2
3 resulting in 2 patterns of 3’s. There

are 623, 360, 750, 000, 000 random 5× 5 squares with 161, 280 possible Latin squares with 120 patterns of 1’s,
44 patterns of 2’s for each, 5

11 of those patterns of 2’s result in 12 patterns of 3’s and 6
11 result in 13. When the

pattern of 2’s results in 12 patterns of 3’s, then each of those couldmake 2 Latin squares with the remaining
numbers filled in, but the ones that create 13 patterns of 3’s then 5

13 canmake 4 possible Latin squares and
the remaining ones can only make 2. While it was possible to find exactly how many patterns of 3’s there
are for each pattern of 1’s and 2’s, I could not write an independent equation for the patterns of 4’s on 5× 5
Latin squares because it depends on the specific pattern of 3’s. In Table 5, you canmultiply thePn columns
across a row toget the total numberof Latin squares, except forn = 5where youhave toomit theP3 column
because that value is already incorporated in the P4 value. P1 refers to the patterns of 1’s, etc. and LS refers
to Latin squares. The proportions that I refer to throughout are the LSnumber dividedby the total number.

n P1 P2 P3 P4 P5 LS Total
2 2 1 - - - 2 6

3 6 2 1 - - 12 1, 680

4 24 9 2
32 +

1
34 1 - 576 63million

5 120 44 5
1112 +

6
1113

336
11 1 161, 280 623 trillion

Table 5: Summary Table.

I noticed that beginningwith the 4×4 Latin squares, two rows and two columns could pair up at the (n−2)
level, and this is what created the 4 resulting Latin squares rather than 2. Bringing this into higher dimen-
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sions would allow for even more resulting Latin squares from each pattern of the (n − 2) number. A 6 × 6
Latin square has the ability to have 3 of these pairings, so some patterns of 4’s could create 8, or 23 Latin
squares from a single pattern. Generally, this would be 2�

n
2 � where �n

2 � is the largest integer less than or
equal to n

2 .

5 FutureWork
The next steps in this research would be finding the generic formula for counting the patterns of 3’s for an
n × n Latin square. I would continue looking at these patterns until a generic formula for counting Latin
squares of a certain size is found. I believe that looking at the patterns within Latin squares will tell a lot
about how they are formed, such as the pairing technique I mentioned. Given more computing power, I
would also estimate these proportions of larger Latin squares through statistical estimation on Python. I
might also create a program that can look at the patterns within the Latin squares so that trends might be
able to be drawn for certain patterns.

6 Python code

Listing 1: 2× 2 Latin Square Code
1 # -*- coding: utf -8 -*-

2 """

3 Created on Sun Oct 2 17:10:05 2022

4

5 @author: annam

6 """

7

8 import numpy as np

9 import random as rd

10 import matplotlib.pyplot as plt

11 import statistics as st

12

13

14 pHat = 0 #will be used to save each p hat value

15 pHatList = [] #will be used to save all the p hat values

16 summ = 0 #will be used to find the mean

17

18 for j in range (150): #plotting values

19

20 i = 0 #the total number of squares created

21 count = 0 #the count of latin squares

22 while i <10000:

23 values = [1,1,2,2]

24 a = rd.choice(values)

25 values.remove(a)

26 b = rd.choice(values)

27 values.remove(b)

28

29 c = rd.choice(values)

30 values.remove(c)

31 d = rd.choice(values)

32

33 ltSq = np.array ([[a,b],[c,d]])

34

35 row1 = [a,b]

36 srow1 = set(row1)

37 row2 = [c,d]

38 srow2 = set(row2)

39 col1 = [a,c]

40 scol1 = set(col1)

41 col2 = [b,d]

42 scol2 = set(col2)

43

44 if len(row1) != len(srow1):

45 i+=1
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46 #end row 1 check

47 elif len(row2) != len(srow2):

48 i+=1

49 elif len(col1) != len(scol1):

50 i+=1

51 #end col 1 check

52 elif len(col2) != len(scol2):

53 i+=1

54 else:

55 count +=1

56 i+=1

57 pHat = count/i

58 pHatList.append(pHat)

59 summ+=pHat

60

61 average = summ /150

62 print(average)

63 std = st.stdev(pHatList)

64 print(std)

65

66 graph = plt.hist(pHatList)

67 plt.title("Proportion of 2x2 Latin squares")

68 plt.xlabel("Proportion")

69 plt.ylabel("Frequency")

70 plt.axvline(average , color="red", linestyle = "solid", linewidth =1)

71 plt.text(average , 1.1, round(average , 5), color="red", rotation =90)

72 plt.show()

73

74

75

76 #the probabilities are consistent with my calculations of 1/3 being latin squares

Listing 2: 2× 2 Latin Square Original Method
1 # -*- coding: utf -8 -*-

2 """

3 Created on Thu Dec 8 15:26:59 2022

4

5 @author: annam

6 """

7

8 import random as rd

9 import numpy as np

10

11

12 i = 0

13 count = 0

14 while i <10000 :

15

16 values = [1,1,2,2]

17

18 a = rd.choice(values)

19 values.remove(a)

20 b = rd.choice(values)

21 values.remove(b)

22 c = rd.choice(values)

23 values.remove(c)

24 d = rd.choice(values)

25

26 ltSq = np.array ([[a,b],[c,d]])

27

28 if a!=b and a!=c and d!=c and d!=b:

29 count +=1

30 i+=1

31 print(count/i)

Listing 3: 3× 3 Latin Square Code
1 # -*- coding: utf -8 -*-

2 """
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3 Created on Thu Jan 19 15:02:29 2023

4

5 @author: annam

6 """

7

8

9 import random as rd

10 import numpy as np

11 import matplotlib.pyplot as plt

12 import statistics as st

13

14 pHat = 0 #will be used to save each p hat value

15 pHatList = [] #will be used to save all the p hat values

16 summ = 0 #will be used to find the mean

17

18 for j in range (150): #plotting values

19

20 i = 0 #the total number of squares created

21 count = 0 #the count of latin squares

22 while i <100000 :#the number of squares i want to make

23

24 values = [1,1,1,2,2,2,3,3,3] #the elligible values for a 3x3 square

25

26 #select a value and then remove it from the elligible list until all numbers have

been selected

27 a = rd.choice(values)

28 values.remove(a)

29 b = rd.choice(values)

30 values.remove(b)

31 c = rd.choice(values)

32 values.remove(c)

33 d = rd.choice(values)

34 values.remove(d)

35 e = rd.choice(values)

36 values.remove(e)

37 f = rd.choice(values)

38 values.remove(f)

39 g = rd.choice(values)

40 values.remove(g)

41 h = rd.choice(values)

42 values.remove(h)

43 k = rd.choice(values)

44

45 ltSq = np.array ([[a,b,c],[d,e,f],[g,h,k]]) #arrange the numbers in a square

46

47 #turn into a set then check the length of the list vs the set

48 #since a set cannot have dublicates it checks if the values are unique in each row

and column

49

50 row1 = [a,b,c]

51 srow1 = set(row1)

52

53 row2 = [d,e,f]

54 srow2 = set(row2)

55

56 row3 = [g,h,k]

57 srow3 = set(row3)

58

59 col1 = [a,d,g]

60 scol1 = set(col1)

61

62 col2 = [b,e,h]

63 scol2 = set(col2)

64

65 col3 = [c,f,k]

66 scol3 = set(col3)

67

68 if len(row1) != len(srow1):

69 i+=1

70 #end row 1 check

71 elif len(row2) != len(srow2):
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72 i+=1

73 #end row 2 check

74 elif len(row3) != len(srow3):

75 i+=1

76 #end row 3 check

77 elif len(col1) != len(scol1):

78 i+=1

79 #end col 1 check

80 elif len(col2) != len(scol2):

81 i+=1

82 #end col 2 check

83 elif len(col3) != len(scol3):

84 i+=1

85 #end col 3 check

86

87 else:

88 count +=1

89 i+=1

90 pHat = count/i

91 pHatList.append(pHat)

92 summ+=pHat

93

94 average = summ /150

95 print(average)

96 std = st.stdev(pHatList)

97 print(std)

98

99 graph = plt.hist(pHatList)

100 plt.title("Proportion of 3x3 Latin squares")

101 plt.xlabel("Proportion")

102 plt.ylabel("Frequency")

103 plt.axvline(average , color="red", linestyle = "solid", linewidth =1)

104 plt.text(average , 1.1, round(average , 5), color="red", rotation =90)

105 plt.show()

Listing 4: 4× 4 Latin Square Code
1 # -*- coding: utf -8 -*-

2 """

3 Created on Thu Jan 26 11:54:34 2023

4

5 @author: annam

6 """

7

8

9 import random as rd

10 import numpy as np

11 import matplotlib.pyplot as plt

12 import statistics as st

13

14

15 pHat = 0 #will be used to save each p hat value

16 pHatList = [] #will be used to save all the p hat values

17 summ = 0 #will be used to find the mean

18

19 for j in range (150): #plotting values

20 i = 0

21 count = 0

22

23 while i <1100000: #using 1.1mil squares to find one p hat value

24

25 values = [1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4]

26

27 a = rd.choice(values)

28 values.remove(a)

29 b = rd.choice(values)

30 values.remove(b)

31 c = rd.choice(values)

32 values.remove(c)

33 d = rd.choice(values)

34 values.remove(d)
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35

36 e = rd.choice(values)

37 values.remove(e)

38 f = rd.choice(values)

39 values.remove(f)

40 g = rd.choice(values)

41 values.remove(g)

42 h = rd.choice(values)

43 values.remove(h)

44

45 j = rd.choice(values)

46 values.remove(j)

47 k = rd.choice(values)

48 values.remove(k)

49 l = rd.choice(values)

50 values.remove(l)

51 m = rd.choice(values)

52 values.remove(m)

53

54 n = rd.choice(values)

55 values.remove(n)

56 o = rd.choice(values)

57 values.remove(o)

58 p = rd.choice(values)

59 values.remove(p)

60 q = rd.choice(values)

61

62 ltSq = np.array ([[a,b,c,d],[e,f,g,h],[j,k,l,m],[n,o,p,q]])

63

64 #turn into a set then check the length of the list vs the set

65 row1 = [a,b,c,d]

66 srow1 = set(row1)

67

68 row2 = [e,f,g,h]

69 srow2 = set(row2)

70

71 row3 = [j,k,l,m]

72 srow3 = set(row3)

73

74 row4 = [n,o,p,q]

75 srow4 = set(row4)

76

77 col1 = [a,e,j,n]

78 scol1 = set(col1)

79

80 col2 = [b,f,k,o]

81 scol2 = set(col2)

82

83 col3 = [c,g,l,p]

84 scol3 = set(col3)

85

86 col4 = [d,h,m,q]

87 scol4 = set(col4)

88

89 if len(row1) != len(srow1):

90 i+=1

91 #end row 1 check

92 elif len(row2) != len(srow2):

93 i+=1

94 #end row 2 check

95 elif len(row3) != len(srow3):

96 i+=1

97 #end row 3 check

98 elif len(row4) != len(srow4):

99 i+=1

100 #end row 4 check

101 elif len(col1) != len(scol1):

102 i+=1

103 #end col 1 check

104 elif len(col2) != len(scol2):

105 i+=1
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106 #end col 2 check

107 elif len(col3) != len(scol3):

108 i+=1

109 #end col 3 check

110 elif len(col4) != len(scol4):

111 i+=1

112 #end col 4 check

113

114 else:

115 count +=1

116 i+=1

117

118 pHat = count/i

119 pHatList.append(pHat)

120 summ+=pHat

121

122

123 average = summ /150

124 print(average) #this number should be close to the 9x10^-6 proportion

125 std = st.stdev(pHatList)

126 print(std)

127

128 graph = plt.hist(pHatList)

129 plt.title("Proportion of 4x4 Latin squares")

130 plt.xlabel("Proportion")

131 plt.ylabel("Frequency")

132 plt.axvline(average , color="red", linestyle = "solid", linewidth =1)

133 plt.text(average , 1.1, round(average , 5), color="red", rotation =90)

134 plt.show()
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