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Abstract
Research Summary: Human coding of unstructured

text can enable scholars to measure complex latent con-

structs for use in empirical analysis, but also requires sub-

stantial time and resources that limit the number and

sample sizes of studies using this approach. We demon-

strate how supervised machine learning (ML) can over-

come these constraints by allowing scholars to scale

human-coded data. Using board leadership as an illustra-

tive context, we apply this method to create a large-scale

dataset (N = 22,388) from smaller scale human codings

of CEO duality and board chair orientations from com-

pany proxy statements. We further demonstrate the

potential value of this approach by using the resulting

dataset to examine the relationships among board leader-

ship, firm performance, and CEO dismissal. The ML code

and dataset are available at 10.5281/zenodo.7304697.
Managerial Summary: Manually converting unstruc-

tured text into usable data requires considerable time

and resources. This article outlines a replicable process

for applying supervised machine learning (ML) to over-

come these constraints by scaling manually coded data.
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While ML is often used to identify patterns or predict

relationships within a given dataset, we show how

scholars and practitioners can build valuable custom

algorithms at an earlier stage in the process—when

first building a dataset. We illustrate this approach by

training ML algorithms to replicate human codings of

CEO duality and board chair control and collaboration

orientations from over 22,000 company filings. We then

show how this approach can support new knowledge

development by using these data to explore the rela-

tionships among board leadership, company perfor-

mance, and CEO dismissal.

KEYWORD S

board leadership, CEO duality, corporate governance, machine
learning, measurement

1 | INTRODUCTION

Content analysis has become popular in the organizational sciences as a method to measure
complex theoretical constructs and deepen our understanding of organizational phenomena
(Duriau, Reger, & Pfarrer, 2007). In the strategic management domain, scholars have increas-
ingly relied on unstructured text data from publicly available sources like earnings calls, share-
holder letters, and social media posts to capture constructs that would otherwise be difficult or
impossible to obtain, such as CEO cognitive traits (Gamache, McNamara, Mannor, &
Johnson, 2015), impression management (Boudt & Thewissen, 2019), and strategic breadth
(Eklund & Mannor, 2021). To assess these constructs, scholars have applied computer-aided
text analysis, often using predefined dictionaries of words or phrases that are conceptually
related to the construct of interest. Unfortunately, many constructs that might be gleaned from
publicly available text data are too complex or context dependent to be measured through pre-
determined words or phrases. In such cases, scholars have relied on human coders to follow
instructions and qualitatively evaluate text passages according to construct definitions
(e.g., Nadkarni, Chen, & Chen, 2016; Wowak, Mannor, Arrfelt, & McNamara, 2016).

Human coders can identify constructs from text that may be too nuanced to capture using
predefined dictionaries. Yet human coding also requires considerable resource investments
(e.g., time, money, and training) that limit the size of the datasets that can reasonably be built
using this technique, and in turn, the statistical power, accuracy, generalizability, and causal
inferences that can be made from statistical analyses based on those data (Button et al., 2013;
Colquhoun, 2014). Scholars also face a tradeoff between coding the text themselves, which can
be time prohibitive, and hiring coders, which increases training requirements and can also
increase coding errors, reduce reliability, and be cost prohibitive (Christensen, Nørskov,
Frederiksen, & Scholderer, 2017; Crowston, Allen, & Heckman, 2012). Thus, despite the abun-
dance of unstructured text data available to scholars, we face constraints in our ability to code
complex latent constructs from those data on a large scale.
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In this article, we explore the use of supervised machine learning (ML) as a method to over-
come these constraints and facilitate construct measurement in the organizational sciences.
When applied as a measurement technique, supervised ML methods can use pre-coded data as
an input and learn how to reproduce the coding scheme based on features of the text that need
not be defined a priori (e.g., word pairings, semantic similarity, syntax) (Gentzkow, Kelly, &
Taddy, 2019). Once the algorithm achieves an acceptable level of accuracy, it can be applied to
text data of essentially infinite size to produce accurate and reliable measures, overcoming the
primary constraints scholars face in studying constructs that require hand coding. Scholars in the
computer sciences have used ML methods to classify various kinds of texts, including group com-
munication among software developers (Crowston et al., 2012; Crowston, Liu, & Allen, 2010),
ideas proposed in online communities (Christensen et al., 2017), and speculative language in aca-
demic papers (Medlock & Briscoe, 2007). A few recent studies in strategic management have also
begun to use ML-based methods for other purposes, such as topic modeling, facial recognition,
and pattern recognition (e.g., Choi, Menon, & Tabakovic, 2021; Choudhury, Allen, &
Endres, 2021; Choudhury, Wang, Carlson, & Khanna, 2019; Miric, Jia, & Huang, 2022). Still, such
applications have been relatively limited in the organizational sciences. As recently expressed by
Choudhury et al. (2021: 31: 31), “ML methods represent an exciting but underutilized toolkit for
strategy and management researchers.” Nevertheless, “greater adoption of these methods could
be facilitated by illustrating relevant applications of ML to research in our fields.”

We answer this call and contribute to the limited work that has applied ML-based methods in
strategy research by outlining and demonstrating an approach to apply supervised ML to scale
prior human-coded data. Our approach consists of four overarching stages: (a) identification of
one or more relevant constructs and obtaining a training dataset of pre-coded text data;
(b) development and selection of ML-based models using the training dataset; (c) application of
the final selected model(s) to create a large-scale dataset; and (d) use of the resulting dataset to
generate new scholarly insights. We outline and demonstrate this approach using board leader-
ship as an illustrative context, specifically by using supervised ML to develop a large-scale dataset
of CEO duality and board chair orientations (Krause, 2017; Oliver, Krause, Busenbark, &
Kalm, 2018). We also make our ML scripts and dataset available online for future use.

Our study contributes to strategy and management research by enhancing scholars' aware-
ness, understanding, and ability to apply ML as a construct measurement technique within
our fields. Through the process and demonstration that we present, we aim to increase the
accessibility of ML methods for organizational scientists, specifically as a means of scaling
prior human-coded data. Making hand-coded data scalable using supervised ML can signifi-
cantly advance strategy and related fields by increasing our ability to conduct replicable
research and develop a cumulative body of knowledge (Ethiraj, Gambardella, & Helfat, 2016).
As we outline in more detail later, the method has the potential to be applied to countless the-
oretical and empirical settings, allowing scholars to address new research questions and
develop large-scale, novel datasets that otherwise would be unobtainable. This contribution is
further enhanced by the nature and public availability of our resulting ML script and dataset.
As we describe throughout our demonstration, we employ a wide range of ML techniques
when developing our specific models, including various feature generation techniques, esti-
mation methods, and n-gram lengths, as well as multiple metrics to assess different aspects of
model performance. As such, the resulting script is not just applicable to our context, but may
also be adapted to assess other constructs that can be gleaned from unstructured text data.
Overall, our proposed process, demonstration, and publicly available script provide a strong
foundation for future work seeking to develop large-scale datasets of difficult-to-measure
constructs.
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2 | USING SUPERVISED ML TO SCALE HUMAN-
CODED DATA

Table 1 provides an overview of our approach to scale human-coded data using supervised
ML. As outlined in the table, our approach consists of four overarching phases and involves a
number of key considerations to support appropriate application of supervised ML methods for
this purpose. In the first stage, a scholar identifies one or more relevant constructs and obtains
a training dataset consisting of pre-labeled text data associated with those constructs. In the sec-
ond stage, the training dataset is used to develop ML models that predict the constructs, after
which final models are selected based on an assessment of their performance. In the third stage,
the selected models are applied to additional text data to scale the prior human-coded dataset.
Finally, the scaled dataset may be merged with other data and used in statistical analyses to
conduct robust and replicable research. In the following sections, we detail each phase and
highlight key considerations via a demonstration in the board leadership context.

3 | PHASE I: CONSTRUCT IDENTIFICATION AND
TRAINING DATASET

3.1 | Identifying a relevant construct

The first step in our process is to identify a relevant construct for ML-based data scaling. When
doing so, it is important to consider how the construct has been measured in the past and
whether ML-based methods can enhance measurement. For instance, some constructs can be
accurately and reliably measured using a dictionary-based approach, given the ease of identify-
ing indicators that map onto those constructs a priori. Examples from past research include
using lists of temporally oriented words to assess individuals' temporal focus (Nadkarni &
Chen, 2014) and using word sets reflecting different types of strategies to assess strategic topics
(Eklund & Mannor, 2021). In such cases, ML methods can add unnecessary complexity and
reduce transparency relative to simpler methods. However, many constructs in our field are not
easily assessed using simple approaches. These include constructs that have previously required
human coding or where existing dictionaries (or other proxies) do not adequately capture the
construct. In these cases, as long as the construct can be reliably assessed by human raters from
unstructured text data, our approach has great potential to enhance measurement and future
research related to the construct.

As an illustrative case, we focus on the board leadership context, and specifically on the con-
trol and collaboration orientations of the board chair position (Krause, 2017). As part of the
Dodd-Frank Act of 2010, publicly traded U.S. firms are required to include a passage in their
proxy statements (i.e., DEF14a filings) justifying their board leadership structure (Securities and
Exchange Commission, 2010). Corporate governance scholars have recently relied on these pas-
sages to hand code the control and collaboration orientations of non-CEO board chairs
(Krause, 2017; Oliver et al., 2018). Given research on board leadership has generally been lim-
ited to examining CEO duality, with some equivocal findings associated with its effects (Krause,
Semadeni, & Cannella, 2014), the addition of more nuanced measures is an important exten-
sion. Yet, the labor intensity of hand coding these measures has limited both the number and
sample sizes of studies exploring these or other more nuanced aspects of board leadership.
Indeed, only two studies of which we are aware have explored board chair orientations to date,
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TABLE 1 Using supervised ML to scale human-coded data

Phase/step Example considerations

Phase I: Construct identification and training data

1 Identify a relevant construct for ML-based
data scaling

• Can ML-based models improve measurement relative
to simpler methods?

2 Obtain the training dataset for the ML task • Can the construct be accurately and reliably coded by
human raters from unstructured data?

• Is the training sample sufficiently large to designate a
holdout set and apply cross-validation?

Phase II: Model development and selection

3 Implement the ML task

a. Text preprocessing • How can the text data be simplified for training?
• What range of n-grams will be used?

a. Feature extraction • What type(s) of features will be generated? (e.g.,
frequency, semantic similarity, topic modeling)

a. Algorithm selection and regularization • Is the construct binary, categorical, or continuous?
• What algorithm(s) will be used?
• How will the models be regularized?
• What hyperparameters will be specified for

estimation?

a. Model training and cross-validation • What train-test split will be used?
• What method will be used for cross-validation?

4 Assess performance metrics and select
final ML model(s)

• Do models appear to be overfit to the training data?
• What combination of features, algorithms, and

hyperparameters most accurately predict the
construct, with an acceptable level of loss?

• What model-specific performance metrics can be used
to assess performance?

Phase III: Data scaling

5 Collect additional data • How will additional text data be gathered and parsed?
(e.g., manual, semi-automated, automated)

6 Apply the final selected ML model(s) to
the new data

• Which model(s) will be used to predict the focal
construct(s)?

7 Perform additional post hoc validation • How much agreement is there between the predicted
values and manual, post hoc checks?

Phase IV: Research application

8 Use the scaled dataset to examine research
questions

• Is there sufficient variance in the ML-based measure(s)
to mitigate classification error?

• Do the ML-based measure(s) replicate past findings?
• What additional research questions can be answered

with the scaled dataset?

9 Fully report on ML methods applied,
validation steps, and any relevant
limitations

• How were the training data compiled? How reliable
were the human codings?

• What specific steps were followed for preprocessing,
feature extraction, model training, and validation?

• What metrics were used to assess model performance?
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each limited to samples of a few hundred firms (Krause, 2017; Oliver et al., 2018). Board leader-
ship thus represents a useful case for our demonstration, as a setting where ML methods have
strong potential to facilitate measurement.

3.2 | Building the training sample

After identifying a relevant construct, the next step is to build or otherwise obtain a training
dataset, which consists of example input–output pairs that will be used to train and test the
algorithm. In our case, because board chair orientations are only relevant in cases where the
CEO and board chair roles are separated, it was necessary to obtain data that would allow us to
train models to first identify the basic structure of board leadership (i.e., whether the CEO and
board chair positions were separated or combined) and then to identify the orientations of the
separate board chairs.1 We did so by obtaining and combining the manually coded board lead-
ership datasets previously used by Krause and colleagues (Krause, 2017; Oliver et al., 2018) and
then supplementing those data with additional hand codings that we completed to indepen-
dently verify the previously coded values and increase the size of the training sample.2 Increas-
ing the training sample was important so that we could designate a holdout set that was
representative of the broader training sample and apply cross-validation during the training
process. As we will describe and demonstrate in more detail below, each of these techniques is
used to optimize the training process and ensure that the model does not become overfit to the
training data.

Another important aspect of building the training sample is to ensure that the human cod-
ings are accurate and reliable prior to introducing ML methods. This is because the quality of
the output provided by any given ML model is intrinsically linked to the input data
(Domingos, 2012). Poor quality inputs will limit the quality of any ML-based models that can
be developed using those data. In our case, because the final training sets were compiled from
various separate datasets, we are unable to directly calculate interrater reliabilities for these
data. However, in each of the initial studies, interrater reliabilities were between .75 and .90
and all discrepancies had been resolved prior to us receiving those data. Also, observations we
added to those initial data were checked by multiple coauthors of this article, and only included

TABLE 1 (Continued)

Phase/step Example considerations

• How were the final models selected?
• What steps were taken for post hoc validation?
• What are the limitations of the methods used?

Abbreviation: ML, machine learning.

1While CEO duality is available through some databases (e.g., MSCI), the annual designations the databases assign to a
given firm in a given year are not always aligned with the qualitative information in the proxy statement, particularly in
years when either the CEO or board chair changes (Gove & Junkunc, 2013). Our dataset specifies the value of the CEO
duality variable that is referred to in the proxy statement passage used to code the text-based variables. As such, we
ensure that all our variables are coded based on the same information.
2Table S1 in the Online Appendix provides detailed descriptions of the board chair orientations, which were used by
independent raters to code the variables both here and in Krause and colleagues' initial studies.
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in the training sample once consensus was achieved regarding their coding. Altogether, the
training data consist of 2,024 manually coded firm-year observations for CEO duality and 2,008
manually coded firm-year observations for control and collaboration orientations between 2010
and 2019. The full training datasets include the final coding of each variable as well as the
unstructured text from the board leadership section of company proxy statements that were
used to code the variable. All variables are dichotomous, taking the value of 1 for the presence
of the construct in the analyzed text and 0 otherwise.

4 | PHASE II: MODEL DEVELOPMENT

4.1 | Implementing the ML task

After building the training sample, ML methodologies can be applied to execute the learning
task. Typically, supervised ML tasks reflect either classification, where the machine learns to
classify text into predetermined categories based on the training data, or regression, where
the machine learns to predict values of a given construct by comparing features of the under-
lying text to values of the training data. Given our focal variables are dichotomous, our ML
exercise reflects a binary classification task. We employed a multi-step process in Python to
develop our classification algorithms, which broadly followed the steps used in other recent
work employing supervised ML (see Choudhury et al., 2021). First, we preprocessed the text
to reduce its dimensionality (Gentzkow et al., 2019). Second, we extracted features from the
text to use in the ML task. Third, we defined the classification algorithms to use in the train-
ing process and defined regularization parameters. Finally, we used the human-coded data to
train models to classify each of our focal variables based on the associated unstructured text
(Christensen et al., 2017; Medlock & Briscoe, 2007). We describe each of these steps in greater
detail below.

4.1.1 | Text preprocessing

Preprocessing consists of organizing and simplifying the training data by reducing its dimen-
sionality and removing extraneous information. In our setting, because references to “chair-
man of the board” varied and comprised different token lengths (e.g., chairperson, chair of
the board, board chair, the board chairman), we began by replacing all variants with “COTB.”
This simplified references to the board chair to a single token that could be used in subse-
quent steps. As part of the training, we also included code for (a) removing stop words
(e.g., “the,” “is,” “at,” “which,” etc.), punctuation, extra whitespaces, and accents;
(b) stemming, or reducing words to their stems; and (c) tokenization, or splitting the text
within each document by words. We also generated various n-grams, which reflect the range
of sequenced terms to use when representing features of the text in each document. N-gram
lengths tested include bigrams (1–2 words), trigrams (1–3 words), 5-g (1–5 words), 10-g (1–10
words), and 20-g (1–20 words).3

3Tests using unigrams (single words) were insufficient to produce the desired level of accuracy. This provides further
evidence that a simple dictionary-based approach is likely unsuitable for our variables of interest.
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4.1.2 | Feature extraction

Computer scientists have developed various methods for feature extraction, including
simpler methods such as those relying on word frequencies and/or weights (see Gentzkow
et al., 2019; Kaur, Kumar, & Kumaraguru, 2020), as well as more complex methods
such as those based on topic modeling (e.g., Blei, Ng, & Jordan, 2003) or semantic similar-
ity (e.g., Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). As with most supervised ML,
it was impossible to know a priori which specific method would yield the best results
for our focal constructs (Choudhury et al., 2021). Thus, we employed a variety of these
techniques, which we later compare before selecting final models. We used (a) count
vectorizer (CV); (b) term frequency - inverse document frequency (TF-IDF) vectorizer;
(c) Word2Vec (W2V) embedding; (d) Doc2Vec (D2V) embedding; and (e) latent
Dirichlet allocation (LDA).4 The hyperparameters used for each feature extraction method
are outlined in Table 2.

4.1.3 | Classification models and regularization

We used two different types of classifiers: (a) a logistic regression (log) classifier and (b) a ran-
dom forest (rf) classifier. When applied in ML, logistic regression is a simple but powerful clas-
sification method designed to identify the most relevant features for a given construct, reducing
the weight assigned to less meaningful features and classifying an observation by measuring the
probability that it falls into a given category. Cutoff points may then be used to classify a given

TABLE 2 Hyperparameters specified for each feature extraction technique

Model Specifications

CV Max features: 1 million
Max iterations: 1,000

TF-IDF Max features: 1 million
Max iterations: 1,000

W2V Vector size: [100, 200, 300]
Model type(s): CBOW and skip-gram
Minimum word frequency: 1

D2V Vector size: [100, 200, 300]
Model type(s): DM + DBOWs
Minimum word frequency: 1
Max iterations: 100

LDA LDA topics: [100, 200, 300]
Learning method: Batch

Note: Values in brackets reflect ranges used to tune vector sizes and number of topics.

Abbreviations: CBOW, continuous bag of words; CV, count vector; D2V, Doc2Vec; DBOW, distributed bag of words; DM,
distributed memory; LDA, latent Dirichlet allocation; TF-IDF, term frequency - inverse document frequency; W2V, Word2Vec.

4The general logic behind each feature generation technique is described in Table S2 in the Online Appendix.
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observation dichotomously.5 Moreover, in regression-based ML models such as logistic regres-
sion, regularization terms are added to the objective function and act as “penalties” to prevent
overfitting of the model to the training data (Pekhimenko, 2006). When implementing the logis-
tic classifier, we applied both L1 and L2 regularization, depending on the solver used (see
Table 3). L1 regularization works by adding the absolute value of the weight parameters to the
error function (i.e., attempting to estimate the median of the data), whereas L2 adds the squared
value of weights (i.e., attempting to estimate the mean) (Pekhimenko, 2006). These and all
other hyperparameter values used while training the logistic models are provided in Table 3.
During training, we used cross-validated grid search to automatically tune these values to iden-
tify the best combination of hyperparameters.

rf models are another common ML technique, which operate by taking multiple random
independent samples from the training data and then developing a decision tree for each sam-
ple based on how the data are classified within the training set (Breiman, 2001a). The result is a
collection (or “forest”) of decision trees, which the algorithm can use to classify new data by
having each tree independently code the data and producing predicted probabilities to classify
the data based on the category most chosen by the collection of trees. Like regularization in
regression-based ML models, this process mitigates overfitting of the model, while also improv-
ing predictive accuracy. Hyperparameters used for the rf models are provided in Table 3 and
were also tuned using cross-validated grid search.

4.1.4 | Model training and cross-validation

To train our models, we first randomly split the training data to designate a holdout set, which
the machine never encountered during the training process. By comparing the predictive accu-
racy of the model in the training set (train accuracy) to that of the holdout set (test accuracy), a
scholar can determine how accurate the model is on out-of-sample data and whether the model
is overfit to the training data. Similar to past work, we employed an 80/20 train-test split
(Harrison, Thurgood, Boivie, & Pfarrer, 2019). We then implemented the script to train separate
models for each distinct combination of features (CV, TF-IDF, W2V, D2V, and LDA), n-gram

TABLE 3 Hyperparameters specified for each classification methoda

Model Specifications

Logistic regression Solver(s): [Lib-Linear, L-BFGS]
Penalty: [L1 (for Lib-Linear), L2 (for L-BFGS)]
Class weight: [balanced, None]
C: [.001, .01, .10, 1.0]

Random forest Bootstrap: [True, False]
Max depth: [10, 50, None]
Estimators: [100; 500; 1,000]

aValues are provided only for hyperparameters we directly specified in the training script. Values in brackets reflect ranges or
options selected for hyperparameter tuning. All other hyperparameters used default values.

5For variables that are roughly balanced between categories, the convention is to use a cutoff value of .5 (Prati,
Batista, & Silva, 2015). Given substantial balance among the categories for duality, control, and collaboration
orientations, this is what we use for our focal variables.
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lengths (bigrams, trigrams, 5-g, 10-g, and 20-g), and classification methods (log and rf). Given
we also tested a range of vector sizes (for W2V and D2V) and LDA topic lengths, this yielded
110 different models to choose from for each variable, or 330 total models. To further optimize
the training process for each model, we also employed k-fold cross-validation, a resampling pro-
cedure used to evaluate model performance in limited samples (James, Hastie, Tibshirani, &
Witten, 2013; Kuhn & Johnson, 2013). The method is analogous to designating a holdout set
from the full training sample, but is employed while working with the training set (i.e., in our
case, 80% of the full training sample). It works by splitting the data into k groups of approxi-
mately equal size and then cycling through each group, holding it out as a test sample while
using the remaining k − 1 groups to train the models (James et al., 2013). This process provides
the machine with information regarding model accuracy while it is training the model. Most
computer scientists use a k of 5 or 10 (Kuhn & Johnson, 2013). We use k = 5 to ensure that the
cross-validation test set is large enough to be representative of the broader training set. Follow-
ing best practice, we also use a shuffle-split strategy to randomly shuffle the data prior to split-
ting it into the five groups used for cross-validation.

4.2 | Assessing model performance and selecting final models

After training the models, the next step is to assess model performance and determine which
models to apply to scale the human-coded data. Computer scientists have developed various
metrics to assess performance for classification models, including accuracy statistics, error and
loss statistics, and indicators of true and false positive rates (Seliya, Khoshgoftaar, & Van
Hulse, n.d.; Huang & Ling, 2005). Given each performance metric provides different informa-
tion, it is generally best to use multiple metrics to get an overall sense of model performance.
Here, we consider model accuracies, train-test loss, and area under the curve (AUC) values.

Accuracies reflect the percent of observations in the training or test data that the model is
able to accurately classify. In our case, the machine uses accuracies for hyperparameter tuning
during training and validation and then outputs the accuracies for both the training and test
sets once the model has been optimized. The difference between these two values is the train-
test loss, which reflects the amount of accuracy that is lost when extrapolating the model from
the training set to the test set. In general, some degree of loss is to be expected between the
training and test accuracies; however, high train-test loss values indicate that a model may be
overfit to the training data. Additionally, while higher accuracies typically reflect superior
models, models that perfectly or nearly perfectly predict the training data are likely to be
overfit.

As a final indicator of performance, we also plotted the receiver operating characteristic
(ROC) curve and calculated AUC values for each model (Huang & Ling, 2005). ROC curves
illustrate the diagnostic ability of a classification model by plotting the model's true positive rate
against its false positive rate across all possible thresholds (i.e., cutoff levels). The AUC is then
calculated as an indication of the model's ability to distinguish between the categories of the
variable, with higher values reflecting superior models. An AUC score between .7 and .8 is gen-
erally considered good diagnostic ability, a score between .8 and .9 is excellent, and a score
above .9 is outstanding (Gallop, Crits-Christoph, Muenz, & Tu, 2003).

Performance metrics are provided for all models in the Online Appendix (see Tables S3
through S6). To decide on a final set of models for our focal variables, we first examined train
accuracies and train-test loss values to identify models that were likely overfit and excluded
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these models from consideration. We considered a model overfit if it had a train accuracy of .99
or above and/or a train-test loss value above .15. Nearly all models based on the rf classifier in
the more advanced models (i.e., those using W2V, D2V, and LDA) appear to be overfit, so we
only considered models using the logistic classifier for those sets of models. Many of the sim-
pler, count-based models (CV and TF-IDF) also appear to be overfit, although these seem to be
more sensitive to the variable under consideration (i.e., logistic models are generally overfit for
duality, rf models are overfit for control, and models for collaboration are mixed). After exclud-
ing these models, we compared accuracies and AUC scores across the remaining models. For
the remaining models, we found that models based on CV and TF-IDF generally outperformed
models based on the more complex features. Train accuracies were consistently above .9 for the
count-based models compared to between .6 and .9 for W2V, D2V, and LDA, and test accuracies
were consistently above .8 compared to between .6 and .8 for W2V, D2V, and LDA. Similarly,
AUC scores for the count-based models were consistently above .9, whereas those of models
using the more complex features often fell below .8 or .7. This led us to select our final models
from the count-based models. Among these, where accuracy and diagnostic ability were
roughly equivalent, we prioritized simpler models (e.g., smaller n-grams, logistic over rf, and
CV over TF-IDF) for parsimony and because simpler models tend to be more interpretable than
more sophisticated models (Rudin, 2019). As scholars apply our approach in the future, we sug-
gest that they follow a similar pattern by selecting the simplest set of models that optimize
model performance. Doing so will not only increase the transparency of the models used in sub-
sequent testing, but should also increase their accessibility for future application by other
scholars.

Table 4 provides model specifications (i.e., classifier type, estimation hyperparameters,
n-gram length, and feature type) and performance metrics (i.e., accuracies, loss values, and AUCs)
for the best overall models for each variable, which we use to build our final dataset.6 Because the
text data and ML script used to code these variables accompany this article, future research may
implement any of the 330 different models to generate measures of either our focal variables or

TABLE 4 Final model specifications and performance by board leadership variable

Board leadership variable

Model specifications Duality Control Collaboration

Feature(s) CV CV CV

n-grams (g) 5-g 2-g 10-g

Classifier rf log log

Estimation hyperparameters Bootstrap: False
Max depth: 50
Estimators: 500

Solver: L-BFGS (L2)
Class weight: Balanced
C: .10

Solver: L-BFGS (L2)
Class weight: None
C: .01

Train accuracy .986 .994 .990

Test accuracy .856 .861 .858

Train/test loss .130 .133 .132

AUC .915 .904 .931

6As supplemental performance indicators, ROC curves and confusion matrices for the final models are provided in
Table S7 of the Online Appendix.
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other variables of interest from prior hand-coded data. Importantly, as scholars apply our script,
they should be aware that models will perform differently for different constructs. In our case,
duality and the control and collaboration orientations are relatively simple constructs, though not
so simple that we could identify a specific word list for them a priori. This likely explains why the
count-based models outperform those using more sophisticated features and why the rf classifier
generally overfits the models to the training data. However, more complex constructs
(e.g., psychological traits) may require the use of more sophisticated methods, so scholars should
test and compare multiple options before deciding on final models.

5 | PHASE III: DATA SCALING

5.1 | Additional data collection

After training ML algorithms to accurately predict the desired variables, scholars may then
apply those models to new data to scale the human-coded dataset. For natural language
processing exercises such as ours, this will involve collecting and parsing a much larger set of
text data than was used to develop the hand-coded dataset. We gathered additional text data
from company proxy statements that we collected from SEC EDGAR using central index keys
(CIKs) for a vast number of publicly traded companies. We compiled our initial list of CIKs by
identifying all firms listed among the S&P 1500 at any time between 2010 and 2018. We added
to this initial list any other firm included in the MSCI database over that time frame for which
a CIK was available. Altogether, our final list included 5,503 unique CIKs of firms listed among
the S&P 1500 and/or within the MSCI database between 2010 and 2018.

To facilitate gathering company filings, we utilized a Python “fetcher” script to look up each
company by its CIK and download all available DEF14a filings for the company beginning in
2010. We were able to download filings for 4,450 firms, or approximately 88% of the initial list.
Next, we developed an “extractor” script to identify the paragraphs in the filings that contained
the board leadership text. The extractor script works by detecting key phrases (e.g., “board lead-
ership structure”) that would be at the beginning of the relevant section. The script also relied
on html tags that indicated headers when present. Because some documents are less structured
than others, we iterated this process, inspecting documents for which no leadership section was
extracted and determining what keywords or html tags were present that could indicate the
start of the appropriate section. Using this script, we extracted the most relevant section of
DEF14a filings for 3,303 unique CIKs, or about 74% of covered firms.7

5.2 | Application of ML models to create measures

With additional text data gathered and relevant sections extracted, scholars can use their final
selected ML models to predict their construct(s) of interest. We did this by applying the final
models represented in Table 4 to the additional data we gathered. The final generated dataset
consists of 22,388 firm-year observations and includes the predicted probabilities and binary

7When conducting subsequent checks on a random sample from the final dataset, we note that approximately 7% of
extracted texts did not provide sufficient information for a human coder to clearly identify board chair orientation. Our
algorithms coded these values as zero, which is as close to human coding as we could expect.
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coding of all study variables, text from the board leadership section of DEF14a filings used to
create those variables, and unique identifiers for companies and text passages to facilitate future
use and matching to other datasets. A full summary of the database is provided in the Online
Appendix (see Table S9). Within the dataset, variables related to CEO duality are coded for all
22,388 firm-year observations. Because control and collaboration orientations are only possible
for firms with a separate CEO and board chair, these variables are only coded for the 13,900
firm-years where the binary coding of CEO duality takes a value of 0.

5.3 | Additional validation using the dataset

After creating the final dataset, scholars should perform additional validation checks to ensure
that the models are functioning as expected when applying them to new data. We did this by
hand coding a random sample of 200 observations that had not been included during the initial
training and testing process and then comparing those codings to predicted values from our
final models. We found 87% agreement for CEO duality, 82% agreement for control, and 87%
agreement for collaboration.8 These values are comparable to the test accuracies found during
the training exercise, indicating that the models are performing consistently when applied to
the additional data. Moreover, given interrater agreement for these variables ranged between
.75 and .90 in the original studies by Krause and colleagues (Krause, 2017; Oliver et al., 2018),
the post hoc values demonstrate that our algorithms are at least as reliable, and in some cases
more reliable, than human coding. This may be generally true when scaling human-coded data,
as long as rigorous ML methods are applied, since computers do not suffer from error due to
fatigue as do human coders (Crowston et al., 2012; Medlock & Briscoe, 2007). This provides
another indication of the utility of our method for scaling prior human-coded data.

Still, the lack of perfect consistency indicates that at least some observations will be mis-
classified in the final dataset. Classification error is likely to exist at least to some extent in both
hand-coded and computer-generated datasets. Recent research suggests that this can cause bias
when machine-generated variables are used in subsequent econometric analysis, either as an inde-
pendent or dependent variable (Ge, Huang, & Png, 2016; Hausman, Abrevaya, & Scott-
Morton, 1998). At the same time, this bias decreases with the variability of the machine-generated
variable (Ge et al., 2016). Fortunately, our variables each exhibit a high degree of variability, as
evidenced by coefficient of variation values (duality = 1.11; control = 1.14; collaboration = 1.26).
This suggests that classification error should not be biasing our predictive tests below. However,
scholars should be aware of this potential limitation when applying the method to variables that
exhibit less variance, and should consider applying modified estimators or using other techniques
that can mitigate bias from classification error in these instances (e.g., Hausman et al., 1998).9

8Full confusion matrices and Cohen's Kappa values for each variable are provided in Table S8 of the Online Appendix.
9A related issue that has received some attention in past research is that generated regressors can sometimes exhibit low
consistency and efficiency, and may limit the validity of inferences that can be made using those regressors
(Pagan, 1984). However, this issue is less relevant to ML-based measures and more specific to predicted values or
residuals from traditional statistical analyses (e.g., OLS regression). This is because of certain unique features of ML-
based methods compared to traditional statistics: ML-based methods focus on predictive accuracy rather than causal
inference, can accommodate larger and more complicated sets of features, rely on far fewer assumptions than
traditional approaches, and are better equipped to handle nonlinear relationships (Breiman, 2001b; Bzdok, Altman, &
Krzywinski, 2018). As a result, ML-based methods are more comparable to the human codings they are meant to mimic
than generated regressors using traditional statistical analyses.
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6 | PHASE IV: RESEARCH APPLICATION

Once the data have been scaled using the selected ML models, scholars can merge the resulting
variables with other data to conduct replicable research and contribute to knowledge in their
discipline (Ethiraj et al., 2016). As an illustration and to provide a predictive test of our method,
we merged our dataset with other existing datasets to examine the extent to which our ML-
based variables moderate the well-established negative relationship between firm performance
and CEO dismissal (Finkelstein, Hambrick, & Cannella, 2009). Corporate governance research
has consistently shown that poor firm performance is the primary predictor of CEO dismissal,
with all other factors either moderating or at least operating within the context of that core rela-
tionship (Wiersema & Zhang, 2011; Wowak, Hambrick, & Henderson, 2011). Considerable
research in corporate governance has focused on identifying the factors that either enhance a
board's ability to dismiss poorly performing CEOs or, conversely, help CEOs avoid dismissal for
poor performance (e.g., Flickinger, Wrage, Tuschke, & Bresser, 2016; Shen & Cannella, 2002).
Among the most frequently studied factors are CEO duality and other factors reflecting control-
ling or collaborative governance approaches. Thus, CEO dismissal represents a useful context to
illustrate our method's predictive validity.

As a basis for the predictive test, we combined our ML-based dataset with CEO dismissal
data from Gentry, Harrison, Quigley, and Boivie (2021) as well as firm, executive, and other
data from Compustat, Execucomp, Institutional Brokers Estimates System, and Institutional
Shareholder Services. After excluding observations with missing data and accounting for time
lags, the sample for the predictive tests includes 6,963 firm-year observations (and 1,249 unique
firms) from 2010 to 2018. Of these, the CEO and board chair positions were separated in 3,733
observations (and 874 unique firms). Using these data, we then employed random-effects logis-
tic regression models to examine the relationships among firm performance (using prior year
return on assets, or ROA), our ML-based measures, and CEO dismissal, while also controlling
for other factors that have been previously shown to be relevant in this context.10 Table 5 pre-
sents the results of the random effects logistic regression models.11 Below, we describe our find-
ings within the context of existing corporate governance research.

6.1 | CEO duality

Agency theorists have regularly argued that CEO duality should protect CEOs from dismissal
for poor performance. Yet, one of the more persistent findings in governance research is that

10We follow prior work and use random effects models both because we are conceptually interested in between-firm
variance in our focal independent variables and because fixed effects models would exclude any firm that did not
experience CEO dismissal during the sample period (approximately 80% of our sample), leading to biased estimates
(Flickinger et al., 2016; Gentry et al., 2021; Wiersema & Zhang, 2011). A limitation of this approach is that it does not
allow us to account for stable, unobserved properties of firms. To address this, in supplemental tests we also estimated
(a) multilevel mixed effects logistic regression models, which account for general firm-level effects (Snijders &
Bosker, 2011) as well as (b) generalized estimating equations (GEEs), which take into account within-firm correlation in
error terms (Liang & Zeger, 1986; Snijders & Bosker, 2011). For the GEE models, we specified a binomial distribution
family with a logit link function because of the binary outcome variable and exchangeable correlation structure. The
results from both sets of models were consistent with those reported below.
11Variable descriptions, descriptive statistics, and correlations for all variables included in our analysis are provided in
Tables S10 and S11 of the Online Appendix.
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CEO duality has a negative main effect on dismissal, but no interaction effect with firm perfor-
mance (Cannella & Lubatkin, 1993; Ocasio, 1994). This finding has confounded scholars for
years, but is remarkably robust. One possible reason for this finding may be that the protective
effect of CEO duality is so strong that it interferes with any possible dismissal antecedents,
including performance. Whatever the reason, if our measure of CEO duality using ML is valid,
we expect to find a negative relationship between duality and CEO dismissal, and we should
expect no interactive effect between duality and performance on dismissal.

As expected, we find a consistent negative relationship between firm performance and CEO
dismissal. We also find that our ML measure of CEO duality is negatively related to dismissal
(Model 2, β = −.335, p = .038) and that there is not a meaningful interaction between CEO
duality and firm performance on CEO dismissal. But because our models are nonlinear, interac-
tion terms are not sufficient as a test of the moderating effect of CEO duality (Hoetker, 2007).
Thus, to further examine this relationship, we calculate and compare the marginal effects of
ROA on CEO dismissal for firms with and without dual CEO-board chairs.12 Our results show
similar negative effects for ROA on CEO dismissal when the CEO and board chair positions are
combined (−0.078, p = .001) and when they are separated (−0.067, p = .003), providing addi-
tional evidence that duality does not moderate the relationship. These findings are consistent
with expectations, demonstrating predictive validity of the ML-based measure of duality.

6.2 | Control and collaboration orientations

Whereas past work has often failed to find an interaction between duality and performance on
dismissal, prior work does suggest that a more control-minded board is more likely to dismiss a
CEO for poor firm performance, and a more collaborative board is less likely to dismiss a CEO
for poor firm performance (Guo & Masulis, 2015; Shen & Cannella, 2002). Although the control
and collaboration orientations of the board chair position, in particular, have not yet been
linked to CEO dismissal, if our measures of board chair control and collaboration orientations
are accurate, we would expect similar relationships using these measures. That is, a control-
oriented board chair should be more likely to dismiss a CEO for poor performance, and a
collaboration-oriented board chair should be less likely to dismiss a CEO for poor performance
(Sundaramurthy & Lewis, 2003).

In our data, while we do not find immediate evidence of an interactive effect for ROA and a
collaboration board chair orientation (Model 6, β = 1.396, p = .185), we do find that a control
board chair orientation strengthens the negative relationship between firm performance and
CEO dismissal (Model 6, β = −2.750, p = .061). As before, we performed marginal effects analy-
sis for both interactions. We find that the marginal effect of ROA on dismissal for firms
adopting a control orientation (−0.102, p = .011) is about 2.5 times that of firms not adopting
this orientation (−0.042, p = .135). Conversely, the effect is the opposite for a collaboration
board chair orientation. We find no strong evidence for a marginal effect of ROA on dismissal
for firms with a collaboration board chair orientation (−0.046, p = .194) but we do for firms that
do not have a collaboration orientation (−0.081, p = .003). Overall, these results are consistent
with the well-established theoretical argument that a control approach to governance should
strengthen the negative performance-dismissal relationship, whereas a collaboration approach
should weaken this relationship. These findings provide further evidence of the predictive

12Detailed results of this analysis are provided in Table S12 of the Online Appendix.
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validity of our method and measures of board chair orientation, demonstrating that supervised
ML techniques can be used to produce variables needed to test key relationships in much
broader samples than those typically used in studies that require human coding.

7 | FUTURE RESEARCH

In this study, we present and demonstrate a process for using supervised ML to build large
datasets of complex constructs in the organizational sciences, by using prior human-coded
text as training data. In our demonstration, we employ a wide range of ML methods, includ-
ing various feature extraction techniques, n-gram lengths, and estimation methods, to arrive
at an optimal set of algorithms to assess three board leadership variables (i.e., CEO duality,
control orientation, and collaboration orientation), from company proxy statements. We show
the validity of our method both in terms of its ability to accurately assess these variables,
as well as its ability to predict well-established theoretical relationships in the governance lit-
erature. The Python script we used to train these algorithms and score the unstructured text
data, along with the resulting board leadership dataset of 22,388 firm-year observations of
public U.S. companies from 2010 to 2018, are available at 10.5281/zenodo.7304697. As such,
we contribute to strategic management research by providing both a method and dataset
that may be used by scholars in the future to pursue research questions that otherwise may be
unachievable.

7.1 | Future research using the method

Moving forward, our method may be applied to any theoretical or empirical setting where
scholars seek to build large-scale datasets of complex or context-dependent constructs from
publicly available text data. One broad area where we see vast potential is in research on behav-
ioral and cognitive aspects of strategic leadership and corporate governance. Despite a recent
surge of research in these areas (Bromiley & Rau, 2016; Westphal & Zajac, 2013), scholars have
generally had to rely on predefined dictionaries (e.g., Boudt & Thewissen, 2019; Gamache
et al., 2015; Graf-Vlachy, Bundy, & Hambrick, 2020) or human coding (Nadkarni et al., 2016;
Wowak et al., 2016) to measure their constructs of interest. In the former case, applying our
method may allow for finer-grained or more accurate measures of complex, context-specific
constructs. For instance, while the dominant approach for measuring sentiment in a firm set-
ting has been to use dictionaries of positive and negative emotion words, many words are
unlikely to translate across settings (Choudhury et al., 2019; Loughran & McDonald, 2011).
Applying supervised ML methods may facilitate the creation of better validated, context-specific
algorithms across a wide range of data sources, from 10-K filings and shareholder letters, to
interviews, to social media or blog posts. In the latter case, applying our method to prior
human-coded data may improve the replicability of past research by allowing scholars to assess
certain variables in much larger datasets than have been used in the past. For example, in order
to study the relationship between CEO charisma and firm strategy, Wowak et al. (2016) created
dossiers of media and analyst coverage for 113 CEOs of S&P 1500 firms and manually coded
these dossiers for CEO charisma. Applying our method, scholars could use these data as a train-
ing sample to develop algorithms to efficiently code CEO charisma and build a much larger
dataset on CEO charisma across a greater number of firms.
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Overall, applying our method may allow scholars to improve the accuracy of prior
methods, expand the scale of prior human-coded data, and also develop new measures or
datasets that have yet to be conceived. This method will also allow scholars to avoid the major
shortcomings of human-coded data, including scalability as well as accuracy and reliability
issues. As future research seeks to apply our method in these ways, a few additional points of
guidance are warranted. First, scholars should be aware that ML-based tools tend to be highly
source- and sample-specific. Thus, any application of those tools should be consistent with
the nature of the original training data. For instance, given our board leadership tool was
developed to assess duality and board chair orientations from public, U.S. company proxy
statements, it would be inappropriate to apply it to evaluate text sources other than proxy
statements, or filings submitted to regulators in other jurisdictions, without first modifying it
for those purposes. Any time a scholar seeks to apply an ML-based tool to data that differ sig-
nificantly from the original input (e.g., due to differences in geographic or cultural context,
systematic changes in reporting conventions over time, a difference in how the text was pro-
duced, etc.), additional training data would need to be collected and the tool retrained to be
able to account for those differences.

Second, it is important to note that while we found that simpler, count-based models func-
tioned better for our board leadership variables (similar to Crowston et al., 2010), some con-
structs may require more complex modeling. In developing our code, we have built in flexibility
to accommodate more complex word embeddings and different model types. The code can also
be adapted to perform different ML tasks beyond the binary classification we develop in this
article. This is because the Python modules we use include different classifiers for various out-
come distributions. Still, additional development may be necessary depending on the constructs
or data sources of interest. In particular, while we believe the same scale-up approach is possi-
ble with other types of underlying data, including audio, video, and informal text (e.g., social
media posts), scholars may need to implement additional steps not currently included in our
code to ensure suitability for those data types. Likewise, while our underlying data exhibited a
high degree of reliability between raters, indicating a certain amount of objectivity when
assessing our constructs of interest, additional steps may be needed if data used in future appli-
cations have a higher rate of disagreement between raters, which would indicate greater subjec-
tivity or the potential presence of multiple evaluation schema.

7.2 | Future research using the dataset

Our open-source board leadership database also provides a number of opportunities for future
governance research. Given only two prior studies have explored board chair orientation, many
questions remain unanswered regarding its antecedents and consequences. For example, while
Krause (2017) found that board chair control and collaboration orientations each affect firm
performance, research has yet to explore more proximal outcomes. Elsewhere in the literature,
studies have shown that governance-related factors can have important implications for firm
strategies such as acquisitions, innovation, and corporate risk-taking (e.g., Goranova, Priem,
Ndofor, & Trahms, 2017; Hoskisson, Hitt, Johnson, & Grossman, 2002; Lim & McCann, 2013).
With firms increasingly separating the CEO and board chair positions (Spencer Stewart, 2021),
the impact of the board chair's orientation on strategies like these will only become more
important to study. Moreover, given the potentially sweeping implications of the control and
collaboration orientations for firm strategy, governance, and performance, future research may
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benefit from using our dataset to identify additional factors that drive a board chair to take on
one or both of these orientations, such as CEO or board characteristics, firm characteristics, or
external pressure or industry isomorphism.

We also expect that our coding of CEO duality will be of value to corporate governance
scholars. While information on CEO duality is available in databases like MSCI, these datasets
are proprietary and may be prohibitively expensive for many scholars to obtain. Because we
have coded our data independently from publicly available SEC filings, we are able to provide
CEO duality data for general use. Moreover, changes in the practice of CEO duality over time
may create new opportunities for future work. While a vast literature exists on this topic
(Dalton, Hitt, Certo, & Dalton, 2007; Krause et al., 2014), if duality is undergoing fundamental
institutional change, some of these past relationships may differ today or in the future. Future
research may benefit by using our dataset to explore the evolving meaning of CEO duality.
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