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Abstract: A novel 3D computational model was developed for the turbulent particulate two-phase
flow simulation in the rectangular channel. The model is based on the Eulerian approach applied to 3D
Reynolds-averaged Navier–Stokes modeling and statistical Probability Distribution Function method.
The uniqueness of the method lies in the direct calculation of normal and transverse components
of the Reynolds stresses for both gas and particles. Two cases were examined: a conventional
channel flow and grid-generated turbulence flow. The obtained numerical results have been verified
and validated by the experimental data, received from the turbulent particle dispersion test. The
computed values of the particles’ turbulent dispersion and the maximum value of the particulate
concentration distribution show good agreement with the experimental results. The examples are
ranged from coal and other bulk material pneumatic transport, vertical fluidized beds, coal gasifiers,
and chemical reactors.

Keywords: turbulent channel flows; solid particles; closure equations; PDF of particulate phase
velocity; shear flow

MSC: 37N10

1. Introduction

Turbulent channel particulate flows are relevant to various branches of industry. Exam-
ples range from coal and other bulk material pneumatic transport, vertical fluidized beds,
coal gasifiers, and chemical reactors. The complexity of the physical phenomena modeling
is explained by particle–turbulence and particle–particle interactions, wall interactions and
deposition, gravitational and viscous drag forces, particle rotation and lift forces, and turbu-
lent dispersion. It becomes much more complex with the additional inclusion of coupling
mechanisms and inter-particle collisions. The 2D simulation cannot comprehensively catch
the whole process; therefore, only the 3D simulation model can explain the process in detail.
In the two-fluid model, both the gas and the particles are considered as two coexisting
phases that span the entire flow domain, each flowing with its mass fraction. In the case
of polydispersed solid mixtures, each solid fraction is characterized by its mass fraction.
Momentum interactions between the two phases are characterized by the drag and lift
forces, which appear as a source term in the numerical computations.

There are several successful particulate flow simulation techniques in the practice of
Computational Fluid Dynamics (CFD). Phenomenological models for particulate flows
in pipes have been developed in the past [1,2]. The turbulence plays an important role
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in such flows, where the particles are often controlling the carrier fluid turbulence struc-
ture [3–6]. One of the most common ways of modeling the turbulent particulate flow is
the Reynolds-averaged Navier–Stokes (RANS) approach. With this approach, the phase-
averaged conservation of mass and momentum equations are solved by coupling with a
statistical model proposed by Zaichik [7–11]. However, the method is using the k-ε model
and does not describe flows in complex geometries with precise accuracy, for example, in
rectangular or square channels. These flows are considerably anisotropic for the compo-
nents of the turbulence energy, which are vividly expressed near the channel walls and
corners and notable for the secondary flows. In addition, the presence of particles aggra-
vates anisotropy. Such flows are studied with the Reynolds Stresses Turbulence Model
(RSTM) approach, which is based on describing the transport equations for all components
of the Reynolds stress tensor and the turbulence dissipation rate. The RSTM approach
allows for completely analyzing the influence of particles on the longitudinal, radial, and
azimuthal components of the turbulence kinetic energy, including possible modifications
of the cross-correlation velocity moments. Several studies based on the RSTM approach
produced accurate results and demonstrated the ability of the method to simulate complex
flows [12,13], as well as turbulent transonic [14], supersonic [15], and viscoelastic flows [16].
Taulbee et al. [12] used the RSTM approach to calculate the particle-laden shear flow by
applying the direct numerical simulation (DNS) and the small Reynolds number was used
in their simulation, Re = 952. The recent investigation of particle-laden flows by numerical
means with the DNS method is presented in [17]. The authors established correlations
in interfacial terms in the dissipation equation and Reynolds stresses equations of carrier
fluid with the DNS resolved method with a Reynolds number below 250. This is barely
applicable to the real turbulent flows, characterized by considerably higher Reynolds num-
bers. The Probability Distribution Function (PDF) approach is widely applied for numerical
modeling of the particulate flows. The PDF method [18,19] offers reasonable formalism in
governing mass and momentum equations. It uses more complete differential transport
equations for the particulate suspension. The mesh is defined for each particle–velocity vari-
ation and all process mechanisms of particle–turbulence and particle–particle interactions.
The transport equations are written in terms of various velocity correlations, which may
consider either the fluid turbulence augmentation or attenuation caused by the presence
of the particles [10,11,20–22]. Zaichik [7] introduced a new PDF approach and they used
Boussinesq approximation for the particulate motion equations and algebraic expressions
for particle-phase turbulent viscosity and diffusion coefficients. This approach was also
used by Kartushinsky et al. [23], who applied the RSTM closures to the carrier phase and,
simultaneously, the closures from the Boussinesq hypothesis for the particulate phase.
Mukin and Zaichik [7] proposed a nonlinear algebraic Reynolds stress model based on the
PDF approach to solve a gas flow loaded by small heavy particles. The equations were
written for each Reynolds stress component and reduced to their general form in terms
of the turbulence energy and turbulence dissipation rate. This way considered additional
impact from the particulate phase. However, this model does not solve the differential
transport equations and requires use of an additional model for the solution. There are dif-
ferent approaches and numerical models that describe the mutual effect of gas turbulence
and particles. The k-εmodels are considered turbulence attenuation only by the additional
terms of the turbulence kinetic energy and its dissipation rate equations [3,24–27]. The
simulation of the inter-particle collisions in the case of the turbulent dense particulate flows
are considered in [28]. However, the model becomes over-complicated and takes a huge
amount of computational time, especially for a long channel case. Thus, there is room
for improvement. As opposed to the k-ε models, Schwarzkopf, Crowe and Dutta [29]
and Crowe [30] considered both the turbulence augmentation caused by the velocity slip
between gas and particles and the turbulence attenuation due to the change of the tur-
bulence macroscale, which occurred in the particulate flow as compared to the unladen
flow. The flow of mass loading and the Stokes number play a crucial role in modeling.
The given approach was successfully tested for various pipe and channel particulate flows.



Mathematics 2023, 11, 2647 3 of 15

Later, a statistical PDF model was elaborated on, covering the solution for each particle
Reynolds stress component [9] and making a solution much easier. The mutual effect of
particles and flow turbulence has been a subject of numerous theoretical studies for several
decades. These studies have reported the influence of gas turbulence on particles, called
one-way coupling. The influence of the particles on the turbulence of a carrier gas flow
is called two-way coupling. Four-way coupling will occur in the case of high flow mass
loading. The impact of particles on gas turbulence consists of turbulence attenuation or
augmentation, which in turn depend on the relationship between the gas and particle
parameters. Stojanovic et al. [31] and Geiss et al. [32] experimentally investigated the
effect of grid-generated turbulence modification using solid particles of two sizes: 120 and
480 microns. Their model showed that smaller-size particles have attenuated turbulence,
whereas larger-size particles have additionally generated turbulence. Hussainov et al. [33]
have shown that for up to 0.07 (kg dust/kg air) mass loading, the 700 micron glass particles
were attenuated turbulence in the initial period of turbulence decay. The experimental
test had two Reynolds numbers (ReM = 3040 and 6300) determined for two grid sizes (4.8
and 10 mm). Additional turbulence generation by the same-size particles was noticed in
the case of twice-increased mass loading [34]. Von Karman [35] studied the homogeneous
turbulence configuration. Here, the interactions between the turbulence and mean flow
are sustained by a mean shear constant. In one of the earliest experiments, Champagne
et al. [36] showed that even when the turbulent intensities and stresses are both effec-
tively homogeneous, the turbulent length–scale grows downstream. Subsequently, Harris
et al. [37] found that for a given sufficient time of the flow development, the turbulence in-
tensities are also monotonically increasing downstream. Later, Ahmed and Elghobashi [38]
showed that the fluctuations of the longitudinal velocity component grow monotonically
downstream, whereas the fluctuations of two other velocity components remain constant.
New two-phase particulate flow computational model development is the main objective of
this paper. Additionally, the simulation should track the particles’ influence on the carrier
flow and compute the carrier flow turbulence. Finally, the model should apply to the high
Reynolds numbers and track the particles’ influence on the carrier fluid flow. For this
reason, the paper is presented as follows. The Numerical Method and Assumptions section
is explaining the new model equations with applicability constraints. Then, the Results and
Discussions section introduces an application of a new elaborated 3D model for three types
of turbulent horizontal channel particulate flows:(1) grid-generated turbulence, (2) classical
channel turbulence, and (3) shear flow. The new model allows direct calculation of the
normal and shear components of the Reynolds stresses for both the gas flow and particles.
The present numerical simulation extends the model to apply to Reynolds numbers up to
70,000. The numerical calculation results have been validated with a set of experimental
data presented in this paper.

2. Numerical Method and Assumptions
2.1. Scale of the Investigation

This article presents a theoretical three-dimensional flow model with a dilute mixture
of particles moving in a carrier gas. The particulate phase was treated as a continuous
medium, where the inter-particle collisions were ignored. This work examined two main
cases: (1) grid-generated turbulence flow and (2) usual turbulent channel flow. For compar-
ison purposes, the plots have a shear flow along the y-direction. The numerical results were
borrowed from [20]. The simulation model used a Cartesian coordinate system, where x
is the streamwise coordinate, y is the transverse coordinate, and z is the bottom–normal
(azimuthal) coordinate; u, v, and w are the associated velocity components, respectively.
Figure 1 shows the directions of the channel flow of the 2 m long and 0.4 × 0.2 m2 cross-
sectional area.
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2.2. Computational Method

The control volume method was applied to solve three-dimensional partial differen-
tial equations for the particle-loaded flow. The governing equations were solved using
the implicit lower and upper (ILU) matrix decomposition method with the flux-blending
differed-correction and upwind-differencing schemes [39,40]. The calculations were per-
formed in the dimensional form for all flow conditions. The simulation mesh contained
1,120,000 control volumes.

2.3. Governing Equations for the Carrier Fluid

Continuity equation:
∂ρ

∂t
+

∂ρui
∂xi

= 0 (1)

Momentum equation:

∂ui
∂t

+ uk
∂ui
∂xk

=
∂

∂xi

(
ν

∂ui
∂xj

)
−

∂u′iu
′
j

∂xj
− ∂p

ρ∂xi
− α

(ui − usi)

τp
(2)

Reynolds stresses transport equations:

∂u′iu
′
j

∂t + uk
∂u′iu

′
j

∂xk
= ν

∂u′iu
′
j

∂k
+ Cs

(
u′iu
′
l

∂u′ju
′
k

∂xl
+ u′ju

′
l

∂u′iu
′
k

∂xl
+ u′ku′l

∂u′iu
′
j

∂xl

)
+Pij + Rij − 2

3 εδij

(3)

Dissipation transport equation:

∂ε

∂t
+ uk

∂ε

∂xk
=

∂

∂xi

(
ν + Cs

k
ε

u′iu
′
j

∂ε

∂xj

)
+ Cε1

Pε

k
− Cε2

ε2

k
(4)

The above-written RSTM equations were given from the LRR (Laouner, Rodi, Reece)tur
bulence model [41].

2.4. Governing Equations for the Particulate Phase

The particle mass conservation equation [20]:

∂α

∂t
+

∂αusk
∂xk

= −
∂α′u′sk

∂xk
(5)
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The momentum equation of the dispersed phase:

∂usi
∂t

+ usk
∂usk
∂xk

= −
∂u′siu

′
sk

∂xk
+

ui − usi
τp

+ Fi −
Dpki

τp

∂α

∂xk
(6)

In the above equations, u, v, and w are the axial-, transverse-, and span-wise time-
averaged velocity components of the gas, respectively; us, vs, and ws are the axial-,
transverse-, and span-wise time-averaged velocity components of the particulate phase,
respectively; ρ is the material density of gas; ρp is the material density of the particles; α is
the particle concentration; gx and gy are the components of the gravitational acceleration
in the x and y directions; and C′D is the friction coefficient based on the relative velocity
between the phases. The turbulent dispersion coefficient, Ds, has been calculated using
a PDF model calculating closures for the transport coefficients of the particulate phase.
The momentum equation of the dispersed phase in the Cartesian coordinates is given in
Appendix A Equations (A1)–(A4) and Reynolds stresses’ components of the dispersed
phase are also given in Appendix A Equations (A5)–(A10).

The PDF approach was used to write the second-order moment equations of the
fluctuating velocity (turbulent stresses) of the particulate phase. The equations describe the
convective and diffusive transfer, the generation of particle velocity fluctuations due to the
velocity gradients, the generation of fluctuations resulting from the entrainment of particles
into the fluctuating motion of the carrier gas flow, and the dissipation of turbulent stresses
in the particulate phase caused by interfacial forces. The equation for the x-component of
the Reynolds stress is as follows:

The equations for the particle-phase Reynolds stresses:

∂u′siu
′
sj

∂t + usk
∂u′siu

′
sj

∂xk
− 1

3α
∂

∂xk
α

(
Dpin

∂u′sju
′
sk

∂xn
+ Dpjn

∂u′siu
′
sk

∂xn
+ Dpkn

∂u′siu
′
sj

∂xn

)
= −

(
u′siu

′
sk + µik

)
∂usj
∂xk
−
(

u′sju
′
sk + µjk

)
∂usi
∂xk

+ λijλji − 2
τp

u′siu
′
sj

(7)

where the tensor of the turbulent diffusion of particles is defined as:

Dpij = τp

(
u′siu

′
sj + µij

)
= τp

(
u′siu

′
sj + u′iu

′
kgkj

)
+ O

(
τ2

p

)
,

λij = u′iu
′
k

( fukj

τp
+ lukn

∂uj

∂xn
+ τpmukl

∂un

∂xl

∂uj

∂xn

)
,µij = u′iu

′
k

(
gukj + τphukn

∂uj

∂xn

)
The values λij and µij are integrals having second correlation moments of the carrier

fluid along the trajectory of the particles.
The coefficients gl

u, gn
u, and gk

u characterize the entrainment of particles into the fluctu-
ating motion of the flow along the x, y, and z directions, respectively. The Fick’s approach
has been used for the closure of the particle mass concentration fluctuation correlations
and particle velocity components in three directions.

2.5. Boundary Conditions

The wall boundary conditions for the gas flow are based on the control volume
method, developed by Perić and Scheuerer [39] and Fertziger and Perić [40]. The boundary
conditions for the particulate phase at the channel walls were set according to Zaichik [10].
At the exit of the channel, the boundary conditions for the gas and particulate phase are
as follows:

∂us

∂x
=

∂vs

∂x
=

∂ws

∂x
=

∂α

∂x
=

∂u′s
2

∂x
=

∂v′s
2

∂x
=

∂w′s
2

∂x
=

∂u′sv′s
∂x

=
∂u′sw′s

∂x
=

∂v′sw′s
∂x

= 0 (8)
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Inlet boundary conditions are set as the following:

us = u,vs = ws = v′s
2 = w′s

2 = vsws = 0, u′s
2 = u′2 (9)

{
α = κ −∆y ≤ y ≤ ∆y;−∆z ≤ z ≤ ∆z

α = 10−6κ −y < −∆y, y > ∆y;−z < −∆z, z > ∆z
(10)

where the parameter κ is defined as particle mass loading. It can be roughly estimated
by knowing the number of particles per volume unit. From the experimental data [42],
17 particles per 1 cm3 were experimentally estimated. With application to the relationship
ρpβ = ρα, where β is the particle volume fraction, one can easily compute particle mass
loading as 0.04.

The normal Reynolds stress components are defined as follows:

u′2 = u2 × 0.0016 (11)

v′2 = w′2 = u′2 (12)

For the turbulence grid flow, the normal Reynolds stresses’ components are defined
as follows:

u′2 = u2 × 0.0046, v′2 = w′2 = u′2 (13)

2.6. Validation

The numerical simulation results were validated with the experimental data coming
from [20]. The testing facility was similar to the one reported by Philips et al. [43] and
allowed for observing the shear–particulate flow with flat plates with a variable pitch.
The test section was 2 m long with a 0.4 × 0.2 m2 cross-sectional area channel. The high-
speed camera recorded particle trajectories to measure the particle dispersion. The camera
translated and focused on several areas along the length of the test section. Then, with
electronically processing the video frames, the average dispersion of the particles was
determined. The simulation results matched with experimental data by a 0.5% error, which
shows a good agreement. The 16 mm mesh size was used to generate the mesh generated
turbulence flow. As can be seen in Figure 2, the experimental data and numerical results
are in good agreement [21].

Figure 3 shows the axial component of the average velocity of the carrier fluid (gas),
numerically calculated in the 3D square channel with the side size of 0.2 mm and mean
velocity of 9.5 m/s. Here, velocity profiles are dimensionless related to average velocity at
the channel axis (Um). It is presented along the whole width of the height of the channel
from one wall to another wall using the RSTM approach. It is seen that modeling adequately
illustrates the profile of velocity at the steady state flow (y/h = 50, dashed crosses curve)
with satisfactory behavior versus classical turbulent channel flow velocity distribution
(solid line “theory”, Figure 3). However, in the given research, we focus on results obtained
not far from the inlet cross-section of the particle-laden flow (see broken line merked
by x/h = 6). Here, “theory” means the typical velocity profile is taken from a classical
book [44].
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3. Results and Discussions

Three types of flow structures were examined: the conventional flow or typical channel
flow, grid-generated turbulence flow, and shear flow directed towards the gravitation
direction [20,21]. The plots present the following:

- Distributions of dynamic parameters of the particulate phase for averaged various
velocity components;

- Reynolds stresses’ components;
- Particle mass concentration, omitting distributions of parameters of the carrier gas-

phase flow for its simplicity.
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Figure 4 shows two cases of 3D turbulent transverse distributions of particles’ axial
velocity in the conventional flow, the grid-generated turbulence flow. Additionally, the
shear flow with the linear distribution of the gas-phase axial velocity component was added
to the plot. The velocity profiles show a similar character to the grid products and channel
flow. The shear flow has a maximum value shifted down to the bottom of the channel. This
may happen due to particles’ involvement in the flow motion in the shear case.
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The next profiles are observed for the distribution of the averaged transverse velocity
components of the particulate phase along the transverse direction (Figure 5) for three
considered flow structures. As noticed, the transverse velocity component of the particulate
phase slowly decreases towards the bottom channel wall. It occurred due to the balance
between viscous drag force and gravitation force. The small wiggles of velocity profiles
near the top channel wall are due to the opposite direction towards gravitation of particle
dispersion near the top wall. A high level of turbulence of the carrier gas–flow was observed
at this location.
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Figure 6 depicts the azimuthal velocity component distributions along the transverse
direction. The plot shows the typical flat profile with a small velocity magnitude compared
to its axial velocity component. It has occurred for the conventional and grid-generated
turbulence types of flow. However, for the shear case, one may see the slight growth of this
velocity component towards the bottom channel wall, which is probably a high value of
the axial velocity at the bottom wall in a given case.
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The normal axial Reynolds stress tensor component of the particulate phase is shown
in Figure 7. It has maximum value spikes at the top and bottom walls of the channel. The
shear flow of the normal Reynolds stress spike is higher at the bottom wall than at the
top wall. The reason for this is a higher particulate axial velocity at the bottom versus the
velocity component at the top channel wall.
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Figure 7. Distribution of normal Reynolds stresses of particles u′s
2 across channel.

Figures 8 and 9 show the normal transverse and azimuthal Reynolds stress tensor

components v′s
2 and w′′s

2 that are similar to conventional and shear flow cases. Normally,
the typical distribution of turbulent energy has a flat profile across the turbulent core with
its maximum value near the walls. In contrast, the grid-generated turbulence flow has
a kind of flat shape with almost the same magnitudes for all three normal components,

u′s
2, v′s

2, and w′′s
2, in the turbulent core, which is also observed in Figures 7–9, indicating

turbulence isotropy in the grid-generating turbulence flow.
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2 across channel.

The particulate phase Reynolds shear stress u′sv′s is small. However, for conventional
and grid-generated turbulence cases, it is finite at the same region in the turbulent core and
has a higher value for the shear flow case. This behavior is defined by the non-uniform
shape in Figure 10, with a linear increase of the particle’s axial velocity across the flow.
It means that joined 3D RANS and PDF models accurately illustrate the fluid dynamic
parameters in all three different flow structures and deliver reasonable results.
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4.Conclusions 

The 3D Reynolds stress turbulence model was developed based on the 3D RANS 
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rectangular channel. The numerical results of the model on the dispersion of the particles 

have been verified with experimental data. Two cases were discussed: 

Figure 10. Distribution of shear Reynolds stresses of particles u′sv′s across channel.

Figure 11 shows profiles of particles mass concentration across channel flow from
the top to the bottom walls in the various cross-sections downward channel flow. The
numerical results presented in the following paragraphs were computed for two cases:
(1) at the source location (x = 0) and (2) at a longitudinal distance equal to x/h = 12.63
from the particle source. The notation “ini” in Figure 11 shows the initial distribution of
the particles’ mass concentration. The turbulent dispersion of the 55 µm glass spherical
particles was calculated with a flow mass loading of 10−6 kg glass/kg air. For this reason,
the flows were considered diluted. One can see (Figure 11) that due to gravitation and
turbulence dispersion phenomena the particles go down and are spread out downstream
channel flow.
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4. Conclusions

The 3D Reynolds stress turbulence model was developed based on the 3D RANS
and statistical PDF approaches for the two-phase turbulent flow of solid particles in the
rectangular channel. The numerical results of the model on the dispersion of the particles
have been verified with experimental data. Two cases were discussed:

• Grid-generated turbulent flow;
• Channel turbulent flow.

The shear flow case results were borrowed from the earlier work and used for com-
parison purposes. Several results on the mean flow velocities, the turbulence variables,
the Reynolds shear stress, and the particle concentration in the transverse- and span-wise
directions are reported in this paper. The utilization of the same closure equations in the
CFD model for both the carrier flow and the particulate phase is the main benefit and
novelty of the method. There are several advantages to the model:the ability to direct
simulation of the particle concentration and the ability to direct simulation of the particle
influence on the carrier flow, including the turbulence of the carrier flow.
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Appendix A

∂

∂x
αus +

∂

∂y
αvs +

∂

∂z
αws = −

[
∂

∂x
α′u′s +

∂

∂y
α′v′s +

∂

∂z
α′w′s

]
(A1)

The x-component of the momentum equation:

∂

∂x
α
[
u2

s − u′s
2
]
+

∂

∂y
α
[
usvs − u′sv′s

]
+

∂

∂z
α
[
usws − u′sw′s

]
= αC′D

(u− us)

τp
(A2)

The y-component of the momentum equation:
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∂

∂x
α
[
usvs − u′sv′s

]
+

∂

∂y
α
[
v2

s − v′s
2
]
+

∂

∂z
α
[
vsws − v′sw′s

]
= αC′D

(v− vs)

τp
+ αsgn

(
gy
)(

1− ρ

ρp

)
(A3)

The z-component of the momentum equation:

∂

∂x
α
[
usws − u′sw′s

]
+

∂

∂y
α
[
vsws − v′sw′s

]
+

∂

∂z
α
[
w2

s − w′s
2
]
= αC′D

(w− ws)

τp
(A4)

The equation for the x-component of the Reynolds stress for the dispersed phase:

∂
∂x α

[
usu′s

2 − τp

(
u′s

2 + gl
uu′2

)
∂u′s

2

∂x

]
+ ∂

∂y α

[
vsu′s

2 −
τp

(
v′s

2+gn
uv′2

)
3

∂u′s
2

∂y

]
+ ∂

∂z α
[
wsu′s

2 − τp
3

(
w′s

2 + gk
uw′
)

∂u′s
2

∂z

]
= ∂

∂x

{
ατp

[(
u′sv′s + gn

uu′v′
)

∂u′s
2

∂y +
(

u′sw′s + gk
uu′w′

)
∂u′s

2

∂z

]}
+ ∂

∂y

{
ατp

3

[
2
(

u′s
2 + gl

uu′2
)

∂u′sv′s
∂x + 2

(
u′sv′s + gn

uu′v′
)

∂u′sv′s
∂y + 2

(
u′sw′s + gk

uu′w′
)

∂u′sv′s
∂z

+
(

u′sv′s + gl
uu′v′

)
∂u′s

2

∂x +
(

v′sw′s + gk
uv′w′

)
∂u′s

2

∂z

]}
+ ∂

∂z

{
ατp

3

[
2
(

u′s
2 + gl

uu′2
)

∂u′sw′s
∂x

+2
(

u′sv′s + gn
uu′v′

)
∂u′sw′s

∂y + 2
(

u′sw′s + gk
uu′w′

)
∂u′sw′s

∂z +
(

u′sw′s + gl
uu′w′

)
∂u′s

2

∂x

+
(

v′sw′s + gn
uv′w′

)
∂u′s

2

∂y

]}
(A5)

The equation for the y-component of the Reynolds stress:

∂
∂x α

[
usv′s

2 − τp
3

(
u′s

2 + gl
uu′2

)
∂v′s

2

∂x

]
+ ∂

∂y α

[
vsv′s

2 − τp

(
v′s

2 + gn
uv′2

)
∂v′s

2

∂y

]
+ ∂

∂z α
[
wsv′s

2 − τp
3

(
w′s

2 + gk
uw′
)

∂v′s
2

∂z

]
= ∂

∂x

{
ατp

3

[
2
(

u′sv′s + gn
uu′v′

)
∂u′sv′s

∂x + 2
(

v′s
2 + gn

uv′2
)

∂u′sv′s
∂y

+2
(

v′sw′s + gk
uv′w′

)
∂u′sv′s

∂z +
(

u′sv′s + gn
uu′v′

)
∂v′s

2

∂y +
(

u′sw′s + gk
uu′w′

)
∂v′s

2

∂z

]}
+ ∂

∂y

{
ατp

[(
u′sv′s + gl

uu′v′
)

∂v′s
2

∂x +
(

v′sw′s + gk
uu′w′

)
∂v′s

2

∂z

]}
+ ∂

∂z

{
ατp

3

[
2
(

u′sv′s + gl
uu′v′

)
∂v′sw′s

∂x + 2
(

v′s
2 + gn

uv′2
)

∂v′sw′s
∂y

+ 2
(

v′sw′s + gk
uv′w′

)
∂v′sw′s

∂z +
(

u′sw′s + gl
uu′w′

)
∂v′s

2

∂x +
(

v′sw′s + gn
uv′w′

)
∂v′s

2

∂y

]}
(A6)

The equation of the z-component of the Reynolds stress:

∂
∂x α

[
usw′s

2 − τp
3

(
u′s

2 + gl
uu′2

)
∂w′s

2

∂x

]
+ ∂

∂y α

[
vsw′s

2 − τp
3

(
v′s

2 + gn
uv′2

)
∂w′s

2

∂y

]
+ ∂

∂z α
[
wsw′s

2− τp

(
w′s

2 + gk
uw′
)

∂w′s
2

∂z

]
= ∂

∂x

{
ατp

3

[
2
(

u′sw′s + gn
uu′w′

)
∂u′sw′s

∂x

+2
(

v′sw′s + gn
uv′w′

)
∂u′sw′s

∂y + 2
(

w′s
2 + gk

uw′2
)

∂u′sw′s
∂z +

(
u′sv′s + gn

uu′v′
)

∂w′s
2

∂y +
(

u′sw′s + gk
uu′w′

)
∂w′s

2

∂z

]}
+ ∂

∂y

{
ατp

3

[
2 ∂v′sw′s

∂x

(
u′sw′s + gl

uu′w′
)
+ 2
(

v′sw′s + gn
uv′w′

)
∂v′sw′s

∂y + 2
(

w′s
2 + gk

uw′2
)

∂v′sw′s
∂z

+
(

u′sv′s + gl
uu′v′

)
∂w′s

2

∂x +
(

v′sw′s + gk
uv′w′

)
∂w′s

2

∂z

]}
+ ∂

∂z

{
ατp

[(
u′sw′s + gl

uu′w′
)

∂w′s
2

∂x +
(

v′sw′s + gn
uv′w′

)
∂w′s

2

∂y

]}
(A7)

The equation of the x–y shear stress component of the Reynolds stress:
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∂
∂x α
[
usu′sv′s −

2τp
3

(
u′s

2 + gl
uu′2

)
∂u′sv′s

∂x

]
+ ∂

∂y α
[
vsu′sv′s −

2τp
3

(
v′s

2 + gn
uv′2

)
∂u′sv′s

∂y

]
+ ∂

∂z α
[
wsu′sv′s

−
τp

(
w′s

2+gk
uw′2

)
3

∂u′sv′s
∂z

]
= ∂

∂x

{
ατp

3

[
2
(

u′sv′s + gn
uu′v′

)
∂u′sv′s

∂y + 2
(

u′sw′s + gk
uu′w′

)
∂u′sv′s

∂z + ∂u′s
2

∂x

×
(

u′sv′s + gl
uu′v′

)
+
(

v′s
2 + gn

uv′2
)

∂u′s
2

∂y +
(

v′sw′s + gk
uv′w′

)
∂u′s

2

∂z

]}
+ ∂

∂y

{
ατp

3

[(
u′s

2 + gl
uu′2

)
∂v′s

2

∂x + ∂v′s
2

∂y

×
(

u′sv′s + gn
uu′v′

)
+
(

u′sw′s + gk
uu′w′

)
∂v′s

2

∂z +2
(

u′sv′s + gn
uu′v′

)
∂u′sv′s

∂x + 2
(

v′sw′s + gk
uv′w′

)
∂u′sv′s

∂z

]}
+ ∂

∂z

{
ατp

3

[(
u′s

2 + gl
uu′2

)
∂v′sw′s

∂x +
(

u′sv′s + gn
uu′v′

)
∂v′sw′s

∂y +
(

u′sw′s + gk
uu′w′

)
∂v′sw′s

∂z +
(

u′sv′s + gl
uu′v′

)
× ∂u′sw′s

∂x +
(

v′s
2 + gn

uv′2
)

∂u′sw′s
∂y +

(
v′sw′s + gk

uv′w′
)

∂u′sw′s
∂z +

(
u′sw′s + gl

uu′w′
)

∂u′sv′s
∂x +

(
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The equation of the x–z shear stress component of the Reynolds stress:
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The equation of the y–z shear stress component of the Reynolds stress:
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