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Abstract
The gravitational force controls the evolution of the Universe on several scales.
It is responsible for the formation of galaxies from the primordial matter
distribution and the formation of planets from solar nebulae. Because the grav-
itational force is singular and has infinite range, making predictions based on
fully three-dimensional models may be challenging. One-dimensional (1D)
Newtonian gravity models were proposed as toy models for understanding
the dynamics of gravitational systems. They can be integrated exactly and
were used for computer simulations starting in the 1960s, providing the first
demonstration of violent relaxation and the rapid development of long-lived
quasi-stationary states (QSS). The present review provides the bases of the
physics of 1D gravitational systems. It is divided into two main parts, the first
concerning the approach to equilibrium and the second applications to cosmo-
logy. Each part is self-contained and can be read independently of the other. In
the first part, we provide an introduction to the equilibrium thermodynamics
of the one-dimensional gravitational sheet (OGS) system in the Vlasov limit.
Both fixed and periodic boundary conditions are considered. The relaxation to
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equilibrium of the OGS is studied through numerical simulations which estab-
lish the role played by QSS and violent relaxation. We also survey existing
work on the Lyapunov exponents of the OGS and on the chaotic dynamics of
1D systems with few particles, focusing on the 1D three-body problem. The
second part summarizes work on dynamical structure formation in cosmology
using 1D systems. By transforming to comoving coordinates, which follow the
global expansion of the Universe, the 1D approach provides a useful laborat-
ory for studying structure formation in various cosmological scenarios, from
Einstein-de Sitter and ΛCDM to more recent, alternative cosmological models.
A key result is the appearance of scale-free behavior with fractal dimension,
which can be reliably studied in 1D for large systems over many epochs.
Finally, an appendix gives some details on the numerical simulation methods
used in these studies.

Keywords: one-dimensional, gravity, cosmology, dynamical systems,
fractals, Vlasov, computer simulations

(Some figures may appear in colour only in the online journal)
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1. Introduction

Self-gravitating systems of particles appear in many problems of astrophysics and cosmology.
Systems as varied as stars, star clusters and galaxies are essentially N-particle systems with
masses mi interacting by the two-body attractive Newtonian potential energy

V(⃗ri, r⃗j) =−G
mimj

|⃗ri− r⃗j |
.

In the language of classical mechanics, the N-body problem is expressed as the solution of
a system of coupled ordinary differential equations

r⃗i
′ ′(t) =−G

∑
j̸=i

mj
r⃗i(t)− r⃗j(t)
|⃗ri(t)− r⃗j(t)|3

(1)

with G Newton’s gravitational constant, and initial condition {⃗ri(0), v⃗i(0)} where the velocity
is v⃗i(t) = r⃗i ′(t). Here, the prime denotes differentiationwith respect to the time t. The existence
and uniqueness of the solutions {⃗ri(t)} to these equations is ensured for −t2 < t< t1 where
t1,2 are associated with times when r(t)→ 0, with r(t) =mini,j |⃗ri(t)− r⃗j(t)|. See chapter 2.1
in [1] for a detailed discussion. Except where otherwise noted, in the following we assume
that all masses are equal.

The solutions of the Newtonian N-body problem for N> 2 have a complex behavior. In
the absence of a total angular momentum, total collapse can occur, where all particles come
together at the same time. This result is known as the Sundman theorem: total collapse cannot
occur unless the total angular momentum is zero. See chapter 2.4 in [1] for a discussion.
Chaotic behavior is also present, for example in the Solar System [2] and the galaxy [3].

Ejection to infinity in finite time can also occur for N⩾ 5. See [4] for a detailed explanation
and a historical perspective. Collapse and ejection to infinity are due to the properties of the
gravitational potential in three dimensionsV(rij) =−Gm2 |⃗ri− r⃗j|−1. This is singular as rij → 0
and it vanishes as rij →∞, with rij = |⃗ri− r⃗j|. The singular behavior at rij → 0 can be remedied
by adding a hard core to the interaction, which prevents the particles from approaching each
other too closely, or a soft core, which modifies the potential 1/rij at small distances.

A simpler approach is to study gravitational systems in 1D or 2D. The gravitational potential
is determined by the solution of the Poisson equation in Euclidean space with the requisite
dimensions. Thus, for these cases, the gravitational interaction potential has the form

1D : U(r) = 4πGmr (2)

2D : U(r) = 2πGm logr. (3)

The dynamics of highly symmetric, higher dimensional, gravitational systems, such as a sys-
tem of concentric spheres, could in principle be considered as one-dimensional since each
‘shell’ is characterized by its radial coordinate (see for example [5]). However, the potential
is not a solution of the 1D Poisson equation and those systems will not be considered in this
review. One-dimensional treatments are natural for systems with planar symmetry, which are
uniform in two directions orthogonal to an axis. For example, the density profile of a spiral
galaxy (seen edge-wise) can be studied as a 1D model because to a good approximation the
galaxy can be seen as being made up of parallel ‘sheets’ of stars, see figure 1.

The one-dimensional gravitational sheet (OGS) model consists of N infinite parallel two-
dimensional sheets, each with mass surface density m. The positions of the sheets are
{x1,x2, . . . ,xN}. In the original version of the model the positions xi are allowed to take any
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Figure 1. 1D gravitational gas consisting of twomass sheets perpendicular to a common
axis.

real values, which corresponds to an unbounded gravitational system. The Hamiltonian of the
system is

H=
1
2m

N∑
i=1

p2i + 2πGm2
∑
i<j

|xi− xj|. (4)

This model was originally proposed by Oort [6] and Camm [7] to describe galactic dens-
ity distributions along a line perpendicular to the galactic plane. In a parallel development, a
modification replacing the attractive potentials with Coulomb potentials has been considered
as the one-dimensional plasma model by Lenard [8] and Eldrige and Feix [9]. Historically the
main use of the model has been to study the complex dynamics of relaxation to equilibrium
of gravitational systems. 1D gravitational systems are easily simulated in dynamical simula-
tions, and the approach to equilibrium can be studied precisely. These studies reveal a complex
pattern of approach to equilibrium, as discussed in section 2.3.

The OGS model can be simulated dynamically exactly, since the equations of motion have
a simple form between particle crossings. The main concern of the simulation is reduced to
that of finding the next crossing, which can be done in closed form. Consequently, individual
particle trajectories can be followed up to the computer precision and the simulations can deal
with a large number of particles. Moreover, in the case of neutral systems (see sections 2.5
and 3), simulations can deal with a large slice L of the system compared to the unit of length
provided by the Jeans length [3, 10]. 1D simulations are able to follow systems with both
a large number of particles per Jeans length and a large number of Jeans lengths. Thus, in
Fourier space, functions can be computed over a large number of decades. This feature has
led researchers to use it as a first attempt to understand complex behavior in self-gravitating
systems. As a consequence N-Body simulations have been the principal tool for investigating
the evolution of the 1D system. The simulation algorithms are summarized in the section B.1.
In addition toN-Body simulations, evolution has also been studied in theVlasov, or continuum,
limit. Besides direct integration of the Vlasov equation in phase space, recently the approach
to equilibrium was also investigated via a normal mode decomposition [11–13].

The statistical mechanics of self-gravitating systems requires special treatment, because the
gravitational interaction falls off with the inter-particle distance too slowly to be integrable.
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Recall that in three dimensions we have U(r)∼ r−1. Potentials of this type U(r)∼ r−α with
α < d with d the space dimension, are known as long-range potentials.

The thermodynamics of systems with long-range interactions have distinctive properties
which are very different from those of the systems with short-range interactions:

• Non-extensive thermodynamics [14]
• Negative specific heat [15, 16]
• Slow relaxation to thermodynamical equilibrium, and the existence of quasi-stationary states

(QSS) in which the system can be found for a long time.

The 3D gravitational potential has two features which lead to peculiar properties of gravit-
ational systems. It is singular as r→ 0 and it vanishes at infinity. The singularity leads to the
Antonov singularity—the collapse of a gravitational system enclosed in a finite volume—and
the vanishing at infinity leads to the gravothermal catastrophe, the expulsion of particles from
a gravitational system. None of these issues appears in the 1D system where the potential is
finite at zero separation and the potential is unbounded from above. For further discussion of
these phenomena in d= 2,3 dimensions see the review [17].

One-dimensional gravitating systems have principally been used to explore the approach to
equilibrium and, more recently, to understand structure formation in cosmology. This review is
divided into two parts: The first deals with equilibrium thermodynamics and statistical mech-
anics and the approach to equilibrium, while the second part focuses on applications to cosmo-
logy. We will see that there is a large body of literature for each topic which we will address
in the appropriate sections.

In section 2.2 we introduce the Vlasov limit and discuss in some detail the solutions of
the static Vlasov equation for a gas of particles moving along a line and interacting with 1D
gravitational potentials. We cover both cases of a continuous system, and the 1D lattice gas of
particles interacting by 1D gravitational potentials. The exact statistical mechanics of the 1D
gravitational gas with N particles with free boundaries, was derived by Rybicki for both the
canonical and microcanonical ensembles [18]. In the infinite volume limit of the continuous
system we recover the results of Rybicki by an alternative approach.

In section 2.3 we discuss the approach to thermal equilibrium of 1D gravitational systems.
Thermalization is a complex process, and numerical studies show that it proceeds in two stages,
with the formation of so-called QSS that are very long lived. Understanding the long lifetime
of QSS has been an elusive goal. A natural formalism for the description of these states is the
Lynden-Bell statistics, which was introduced in astrophysics for modeling the phenomenon of
violent relaxation. Using a dynamical systems approach, thermalization is related to a complete
mixing in the phase space. We summarize the status of knowledge about the spectrum of the
Lyapunov exponents of the OGS.

In order to understand the ergodic properties of the 1D system that result in long lived quasi
stationary states, investigators turned to systems with a small number of particles. Section 2.4
discusses the dynamics of 1D gravitational systems with a few particles N, paying special
attention to the cases N= 3,4. Numerical studies show that the dynamics is mostly periodic
and quasi-periodic, and the regions of periodicity are surrounded by regions of localized chaos.
Numerical simulations suggest that as the number of particles increases, the size of the stable
regions surrounding periodic orbits in the phase space becomes vanishingly small.

Recently, motivated by applications to cosmology, the statistical mechanics of the 1D sys-
tem with periodic boundary conditions was also investigated in some detail [19]. Surprisingly
a phase transition does occur in this case, in contrast to the unbounded system [18] where no
phase transition occurs. This work is presented in section 2.5 which discusses the properties

6



Class. Quantum Grav. 40 (2023) 073001 Topical Review

of 1D systems with periodic boundary conditions, motivated by applications to cosmological
structure formation.

In the second part of the paper we consider applications of 1Dmodels to the expanding Uni-
verse. Both observation and theory tell us that, on large scales, the Universe is homogeneous
and isotropic and is undergoing a uniform expansion with a time dependent expansion factor
a(t). Cosmological simulations are an essential tool for understanding the evolution of struc-
ture formation following the epoch of recombination. They are carried out in the comoving
reference frame expanding with the Universe and characterized by constant density. Because
3D simulations are compromised by requiring a short range softening length and some type
of long range cutoff, they are less than ideal for studying the self-similar or fractal aspects of
cluster formation that appear to underlay structure formation in the Universe. Conversely, 1D
models that are susceptible to precise evolution algorithms are perfectly adaptable to fractal
analysis (see appendix B).

Rescaling the spatial coordinate according to the expansion and also the unit of time leads
to generalized comoving coordinates. The existence of a stationary state provides an altern-
ative derivation of the Friedmann equation [20, 21]. Section 3.2 shows how different models
can be formulated depending on its parameters. It was shown by Aurell and Fanelli that the
1D system could be regarded as a perturbation embedded in a 3D expanding model [22]. In
section 3.3 we will show how this approach can be generalized to an arbitrary number, d, of
dimensions and that a ‘conservative’ or frictionless system appears in the limit of large d. The
first 1D applications considered cluster development in the Einstein-de Sitter cosmology that
represents a matter dominated Universe. This application is considered in section 3.3 and is
accompanied by a new set of high precision simulations including the real space and phase
space particle distributions, two particle correlation function and density spectrum. The large
scaling ranges that develop over time are useful for estimating fractal dimensions, and this
is included in section 3.3. Since dissipative visible matter is a small part of the Universe, in
section 3.4 we consider a two component model that includes both a dissipative and conser-
vative component representing respectively Baryonic and the more prevalent dark-matter.

A difficulty of N-body simulations is that they do not provide a good representation of the
sparse matter distribution in voids. To address this situation, 1D investigations were extended
to include a continuum, collissionless, or Vlasov representation of the system in the comoving
frame. As discussed in section 3.5, for the Einstein-de Sitter case it was shown that the fractal
description is improved at low density. In particular the generalized fractal dimension exhibits
the correct monotonicity requirement.

Three challenges for the standard ΛCDM cosmology are the absence of theoretical justific-
ations for the assumptions of inflation, dark matter and dark energy. The Dirac-Milne cosmo-
logy provides an untested alternative where antimatter is prevalent and repelled by ordinary
matter [23]. In section 3.6 we explore the evolution of a particular 1D version of the DM cos-
mology and compare it with the standard ΛCDM version. We will see that structure formation
‘freezes out’ after the current epoch in each scenario.

2. Thermodynamical equilibrium

2.1. Generalities

The natural description of the OGS in the limit of a very large number of sheets N→∞ is
taken at fixed mass M=Nm. This approach leads to the Vlasov equation for the dynamics of
the phase space density of the system.

7
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Of particular importance are the solutions of the static Vlasov equation, which comprise, but
are not limited to, the state of the OGS in thermodynamical equilibrium. The thermodynamical
equilibrium solution is recovered when the momentum distribution is the Maxwell-Boltzmann
distribution. The density of the gas in thermal equilibrium satisfies the system of equations,
see [24]:

ρ(x) = Ce−βϕ(x), (5)

where C is a normalization constant and the potential ϕ(x) is expressed in terms of the two-
body interaction potential U(x− y) as an integral over the volume V occupied the system

ϕ(x) =
ˆ
V
ρ(y)U(x− y)dy. (6)

In this section, we present a detailed solution for the gas density and the thermodynamical
properties of the OGS in a finite volume. Taking the volume to infinity recovers the well-known
Rybicki solution [18]. In addition to the continuous OGS system, we discuss also the statist-
ical mechanics of the one-dimensional lattice gas of particles interacting by linear attractive
potentials.

The study of the approach to thermal equilibrium is one of themainmotivations for the study
of 1D gravitational systems, as toy models for understanding the similar relaxation process
in three dimensions. The main advantage of the 1D systems is that their simulation can be
performed exactly, due to the simplicity of the equations of motion for the individual particles.
In particular, it is possible to compute exactly the particle coordinates between collisions.

Numerical studies of the relaxation in 1D gravitational systems showed a number of surpris-
ing properties. First, the relaxation process is slower than expected, although the precise scaling
with the number of sheets N is still debated. Second, the relaxation proceeds through the form-
ation of long-lived intermediate QSS, followed by eventual relaxation to the Boltzmann equi-
librium states. Essentially they have been used to investigate the relaxation towards thermal
equilibrium and its time scale. They revealed the existence of quasi-stationary states (QSS) in
which the OGS appears to remain for a long time, and the violent relaxation mechanism pro-
posed by Lynden Bell to account for the regularity of the light emitted by elliptical galaxies
[25]. In Section 2.3 we summarize the different results obtained from numerical simulations,
followed by a summary of violent relaxation theory, as well as an illustration and theoretical
ideas regarding the QSS.

The nature of the QSS has been studied both numerically and theoretically. Their properties
depend on the initial state of the gas. For a particular set of initial conditions satisfying the virial
condition, the QSS coincide with the solution of the Lynden-Bell statistics, proposed in 1967
to explain the phenomenon of violent relaxation. For generic initial conditions, the QSS have a
core-halo shape, which reflects the ejection of particles from the core, due to rapidly oscillating
gravitational field acting on any given particle.

Another approach to the relaxation of the 1D systems uses dynamical systems theory. In
this approach, the long-time evolution of the system is described by its Lyapunov exponents,
which give the rate at which density fluctuations at different spatial scales grow or dissipate.
We summarize the state of the art of the Lyapunov exponents for the N-particle OGS, and their
scaling with N.

The study of the dynamics and ergodic properties of OGS with a small number of particles
have provided insight into understanding the relaxation process. Here, we focus on the three
body problem N= 3 which is the best studied case, and give a detailed discussion illustrating
the evidence for chaotic behavior.
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2.2. 1D gravitational systems in thermal equilibrium

Although a numerical treatment of the ODE’s (1) is possible, the complexity grows rapidly
with N. A simpler analytical treatment becomes possible in the limit of a large number of
particles N→∞,m→ 0. In this limit the system can be approximated as a continuous fluid,
with density f(⃗r, v⃗, t) in the phase space, where r⃗, v⃗ are the position and velocities of the particles
in a small volume.

2.2.1. The Vlasov limit for the gravitational gas. Systems with short-range interactions sim-
plify in the large N limit in the so-called thermodynamical limit. In this limit both the number
of particles and the volume are taken very large, at fixed particle number density ρ= N/V. In
this limit the surface effects vanish and the thermodynamical properties are dominated by the
bulk contribution. A rigorous treatment of these systems is given by Ruelle in [26]. A wide
class of systems of this type includes systems with hard cores and Kac type interactions, and
were shown by Lebowitz and Penrose to have a well-defined thermodynamical limit [27].

For systems with long-range interactions and especially for gravitational systems, a more
appropriate limit is the so-called Vlasov limit. Assuming that the system is enclosed into a
fixed volume V, this limit is defined by

N→∞, mN=M= fixed (7)

T
m

:= TV = fixed (8)

where TV defines the so-called Vlasov temperature. In this limit the distribution function f
satisfies the Vlasov equation

∂f
∂t

+ v⃗ · ∂f
∂x⃗

− ∂ϕ(⃗x, t)
∂x⃗

∂f
∂v⃗

= 0, (9)

where ϕ(⃗x, t) is the mean-field potential given by the solution of the Poisson-Vlasov equations

∆ϕ(⃗x, t) = 4πGρ(⃗x, t), ρ(⃗x, t) =
ˆ
d⃗vf(⃗x, v⃗, t). (10)

The coupled system of equations (9) and (10) must be solved simultaneously.
We consider next themean-field limit of a system consisting of a large number of interacting

particles N in a finite volume V. This will be used to justify the Vlasov limit introduced in (7).
This limit can be shown to correspond to the time-independent limit of the Vlasov equation,
and is known in the literature as the static Vlasov limit [24].

Consider a system of N particles enclosed in a domain Ω of volume V, and interacting with
the Hamiltonian

H=
N∑
i=1

p⃗i 2

2m
+

1
2N

N∑
i̸=j=1

U(rij) (11)

where U(rij) are two-body potentials. The strength of the two-body interaction becomes weak
in the limit of a large number of particles N→∞. Assume that the system is maintained at
fixed temperature T, which corresponds to the canonical ensemble.

It can be shown [3, 24, 28] that for a wide range of potentials U(r), the free energy per
particle f= F/N approaches a finite value as N→∞ and furthermore this limit is given by the
solution of the variational problem

lim
N→∞

1
N
F= inf

ρ

1
2

ˆ
Ω

U(r12)ρ(r1)ρ(r2)dr1dr2 + kBT
ˆ
Ω

ρ(r) logρ(r)dr (12)

9
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where ρ(r) is constrained as
´
Ω
ρ(r)dr= 1. The two terms correspond to the interaction energy

and the entropy per particle system, respectively, f= u−Ts. The solution of the variational
problem ρ(r) is the one-particle distribution function and gives the probability that a particle
is found in the volume element d⃗r centered on r⃗.

For a collection of solvable problems with various choices of interaction potentials in 1D,
2D and 3D, see [24]. This reference gives also precise conditions on the potentials U(r) for
which the limit (12) exists.

The Hamiltonian of a system ofN particles of massm interacting by gravitational potentials
is written as

Hgrav =
N∑
i=1

1
2
mv⃗i

2 −Gm2
N∑

i,j=1,i<j

1
|⃗ri− r⃗j|

. (13)

The canonical partition function is ZN =
∑

α e
−βHgrav where the summation extends over all

states of the system. We make several observations:

• In the interaction term, replace one factor of m with M/N according to the scaling (7).
• The resulting Hamiltonian is linear in m, the particle mass. When substituted into the parti-

tion function, the factor ofm can be absorbed into a redefinition of the temperature βV = mβ,
with βV = 1/TV with TV defined in (7).

• Under theVlasov scaling, the interactionHamiltonian scales likeO(1/N), and has the typical
form of the mean field interaction (11).

Under the rescaling mN=M and temperature redefinition βV = mβ, we have βHgrav =
βVHgrav with

Hgrav =
N∑
i=1

1
2
v⃗i

2 − GM
2N

N∑
i,j=1,i̸=j

1
|⃗ri− r⃗j|

(14)

which admits a mean-field limit as N→∞. The single particle density function ρ(x) is found
by minimizing the free energy F= U−TSwritten as in (12). This shows that a self-gravitating
system of N particles admits a mean-field limit as N→∞. This is the static Vlasov limit.

In lower dimensions the mathematical treatment of the Vlasov equation is greatly simpli-
fied and analytical results can be obtained in several cases. In the following paragraphs, we
discuss the solution of the static Vlasov equation for the simplest case of the 1D gas of particles
interacting by 1D gravitational forces.

Consider a one-dimensional gas of N particles enclosed in a finite volume [−L/2,L/2], and
interacting by two-body attractive potentials

V(x,y) = 2πGm2|x− y|. (15)

The equilibrium thermodynamics of this system has been studied first by Salzberg [29], who
considered a gas of N particles in a box of volume L, and interacting with potentials (15) with
hard cores d (the particles are not allowed to come closer than d). The mass m is kept fixed.
This leads to non-extensive thermodynamics: the total gas energy scales asU∼ N3 as N→∞.
Working in the isothermal-isobaric ensemble, the equation of state has been also derived, and
has the form L= Nd+ 2kBT/p. This is essentially the free gas equation of state corrected by
the hard core p= 2kBT/(L−Nd). These properties are not realistic, and this is seen to be due
to the large range properties of the 1D gravitational interaction, which require a more careful
treatment of the thermodynamical limit.

10
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The solution of the 1D gravitational gas in the Vlasov limit in an unbounded volume has
been obtained by Rybicki [18], both in the microcanonical and the canonical ensembles. This
paper considered a gas ofN particles interacting by potentials (15) (without hard cores), which
can move on the infinite line. The solution of the one-particle distribution function was found
for arbitrary finite N, and the N→∞ limit was considered at fixed total mass M=Nm and
total energy E. This corresponds to scaling the particle masses as m=M/N. We present an
alternative derivation of the result in [18] using the Vlasov limit, working in a more general
setting of a finite volume.

As explained in the previous section, one factor of the mass m is absorbed into a modified
temperature mβ→ βV. Furthermore, scaling m such that the total mass is fixed M= mN, the
interaction Hamiltonian is put into the mean-field form

Hgrav =
∑
i

1
2
v2i + 2πG

M
N

∑
i<j

|xi− xj|. (16)

The particle positions are bounded to the interior of the box xi ∈
[
− 1

2L,
1
2L
]
.

The properties of this system in thermodynamical equilibrium in the canonical ensemble in
the limit N→∞ are given by the solution of the variational problem for the configurational
free energy per particle fQ

fQ = inf
ρ

(
1
2
g2
ˆ L/2

−L/2
|x− y|ρ(x)ρ(y)dxdy+ kBT

ˆ L/2

−L/2
ρ(x) logρ(x)dx

)
(17)

with g2 = 2πGM, and the single particle density function ρ(x) satisfies the normalization con-

dition
´ L/2
−L/2 ρ(x)dx= 1.

The solution of the variational problem (17) for the single particle density function is given
by the following result.

Proposition 1. The single particle density distribution function of the gas of particles inter-
acting by 1D gravitational interactions in thermodynamical equilibrium at temperature T is

ρ(x) =
ρ(0)

cosh2
(
1
2δx
) (18)

where δ is the solution of the equation

δ tanh

(
1
4
Lδ

)
= βg2 (19)

and the central density is

ρ(0) =
δ

4tanh
(
1
4δL
) = δ2

4βg2
. (20)

The gas density profile has the form ∼ 1
cosh2( 1

2 δx)
. This was derived first by Camm [7], and is

known as the Camm law for the galactic profile density. It has been shown to be well satisfied
by the density profile of the galaxies along the direction orthogonal to the galactic plane.

In the infinite volume limit L→∞, the parameter δ approaches a finite valuewhich depends
only on temperature

lim
L→∞

δ = βg2. (21)

This parameter determines the size of the gas cloud as ∆x∼ 4
δ = 4

βg2 and the central density

is ρ(0) = 1
4βg

2. As the temperature increases, the size of the gas cloud also increases, and

11
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becomes infinitely diffuse in the infinite temperature limit. Conversely, as the temperature
decreases the gas becomes more and more concentrated until it collapses to a single mass
point in the zero temperature limit.

We note that the infinite volume result for the central density ρ(0) = 1
4βg

2 agrees with
equation (2.37) in Rybicki [18] for the central value of the single particle distribution function.
In our notations this is ρ(0) = 1

4Nβ(2πGm
2) = 1

4M(mβ)2πG= 1
4 (2πGM)βV =

1
4g

2βV.
See the appendix A for the proof of proposition 1.
The thermodynamical properties of the gas in the Vlasov limit are given by the following

result.

Proposition 2. The free energy per particle f= F/N= fQ+ fkin of the gas with interaction

V(x,y) = g2

N |x− y| enclosed in a volume L in thermodynamical equilibrium has a configura-
tional contribution

fQ = kBT

{
− logL+ log

(
1
2δL

sinh( 12δL)

)
+

1
2
δL

1

tanh( 12δL)
− 1

}
, (22)

and a contribution from the kinetic degrees of freedom

fkin = kBT

(
logN− 1+

1
2
log

h2

2πkBT

)
. (23)

In (22) δ is the solution of the equation (19).
The energy u= U/N and entropy s= S/N per particle are given by u= f−T∂Tf and

s=−∂Tf. Explicitly

u= kBT

(
1−

1
2δL

sinh( 12δL)

)
+

1
2
kBT. (24)

The first term is the contribution from the interaction energy uint, and the second term is the
kinetic energy ukin. The plot of the interaction energy per particle uint vs 1

2δL is shown in
figure 2.

See appendix A for the proof of proposition 2.
The equation of state of the gas is

p= kBT
N
L
− 1

2
g2NΨ

(
1
2
δL

)
(25)

with

Ψ(x) =
1

2sinh2(x/2)

(
sinhx
x

− 1

)
. (26)

The first term is the ideal gas equation of state, and the second term is a negative correction
to the pressure, due to the linear attractive potential. The plot of the functionΨ(x) is shown in
figure 2 (right panel). This has the small-x expansion

Ψ(x) =
1
3
− 1

90
x2 +

1
2520

x4 +O(x6). (27)

There is a non-zero correction to the ideal gas equation of state even in the infinite temperature
limit! This correction term decreases as the temperature is lowered.

We note from (19) that this equation has solutions for δ for any values of L,T. The equation
has two solutions ±δ with either sign. As seen from (22), the gas properties depend only on
δ2, so the sign ambiguity is immaterial.

12
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Figure 2. Left: Plot of the function fu(x) = 1− x
sinh x appearing in the energy per particle

result (24), with x= 1
2δL. Right: plot of the function Ψ(x) giving the correction to the

ideal gas equation of state (25).

The configurational free energy per particle has the form fQ = kBT(− logL+Φ( 12βL))
depends on volume L through the combination δLwhich is a function of βL, as seen from (19).
This means that the free energy is linear in N, the particle number, but not in L, the gas volume.
This is a consequence of the long-range nature of the interaction.

From figure 2 (left) we see that limx→∞ fu(x) = 1 which means that the interaction energy
per particle uint approaches kBT for L→∞. This is the infinite volume limit, considered by
Rybiki [18]. In this limit the total energy per particle is

lim
L→∞

u=
3
2
kBT (28)

which agrees with the result in equation (2.40) of Rybicki [18]. This result also follows from
the virial theorem for the gas with linear interactions, which says that the kinetic energy and
interaction energy are related as 2Ukin = Uint. Using ukin = 1

2kBT reproduces the result (28) in
the infinite volume limit.

We outline the derivation of the equation of state (25). The pressure of the gas is given by

p=−
(
∂F
∂L

)
T,N

=−N
(
∂fQ
∂L

)
T,N

. (29)

Recall the result for the configurational free energy per particle from equation (22), which
can be written as

fQ = kBT

(
− logL+Φ

(
1
2
δL

))
(30)

where Φ(x) is defined as

Φ(x) := log
( x
sinhx

)
+

x
tanhx

− 1. (31)

Taking a derivative of fQ with respect to L gives(∂fQ
∂L

)
T,N

= kBT

(
−1
L
+

d
dL

(
1
2
δL

)
Φ ′
(
1
2
δL

))
(32)

= kBT

(
−1
L
+

1
2
βg2

1

h
(
1
2δL
)Φ ′

(
1
2
δL

))
where

h(x) :=
x

2cosh2(x/2)

(
1+

sinhx
x

)
. (33)
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The second line in (32) was obtained as follows: recall that δ depends on L through the
equation (19). Taking a derivative of this equation with respect to L we get(

x tanh

(
1
2
x

)) ′

x= 1
2 δL

d
dL

(
1
2
δL

)
=

1
2
βg2 (34)

which gives d
dL

(
1
2δL
)
= 1

h( 1
2 δL)

1
2βg

2. Substituting into the first line of (32) gives the second

line. Evaluating the derivativeΦ ′(x) in (32) reproduces the final result (25) for the gas pressure.
This completes the proof of the equation of state.

Let us consider the behavior of the 1D gravitational gas in the large temperature limit. We
take the β→ 0 limit of the exact solution for the thermodynamical parameters of the gas. An
examination of (19) shows that in this limit we have δ→ 0 as

1
2
δ2L2 = 2βg2L+O(β2). (35)

Substituting into (24) gives

u= kBT

(
1
6

(
1
2
δL

)2

− 7
360

(
1
2
δL

)4

+ . . .

)
≃ 1

6
g2L+O(1/T). (36)

A similar result is obtained for the free energy (22) which can be written as

fQ = kBT

(
− logL+Φ

(
1
2
δL

))
(37)

with Φ(x) defined in (31). Using the small-x expansion Φ(x) = 1
6x

2 +O(x4) we recover the
expected result

fQ[ρ]→ f∞[ρ] :=
1
6
g2L− kBT logL, T→∞. (38)

The equation of state (25) is approximated, in the large temperature limit, as

p≃ NkBT
1
L
− 1

6
g2N, T→∞ (39)

where we used the small-x approximation Ψ(x) = 1
3x+O(x3). Note the finite correction

− 1
6g

2N to the ideal gas equation of state which survives even in the infinite volume limit.
The correction term in (39) coincides with the interaction energy of a uniform gas with

density ρ(x) = 1
L . In the large temperature limit we expect the gas density to approach a uni-

form density. The interaction energy per particle becomes

lim
T→∞

u=
1
2
g2

1
L2

ˆ L/2

−L/2
|x− y|dxdy= 1

6
g2L. (40)

The presence of this correction term is a feature of the long-ranged nature of the one-
dimensional gravitational interaction, which introduces a volume dependence of the interaction
energy. This is linear in L, with a coefficient which is precisely the correction term in (39).

It can be shown that the gas pressure given by (25) is always positive p> 0. This is not
obvious since it is the difference of two positive terms. This can be seen by noting first the
inequality

Ψ

(
1
2
δL

)
⩽Ψ

(
1
2
βg2L

)
. (41)
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Figure 3. Plot of the function Ξ(x) defined in (46) appearing in the isothermal com-
pressibility of the 1D gravitational gas, with x= 1

2δL.

This follows from the inequality 1
2δL⩾ 1

2βg
2L which is obtained from the equation (19) for

δ, and noting that Ψ(x) is a decreasing function.
Substituting the inequality (41) into the equation of state (25) this gives

p⩾ kBT
N
L

(
1− 1

2
βg2LΨ

(
1
2
βg2L

))
⩾ 0 (42)

which follows from the inequality xΨ(x)⩽ 1.
The stability of the gas against collapse requires that the isothermal compressibility is

non-negative

κT :=−
(
∂p
∂L

)
L,N

> 0. (43)

Taking the derivative of the pressure (25) we get

κT =−
(
∂p
∂L

)
L,N

= kBT
N
L2

+
1
2
g2NΨ ′

(
1
2
δL

)
d
dL

(
1
2
δL

)
. (44)

The last factor is evaluated using (34), which gives

κT = kBT
N
L2

+
1
4
βg4N

1
h(x)

Ψ ′(x) (45)

= kBT
N
L2

+
1
4
βg4NΞ(x), x=

1
2
δL

and h(x) is defined in (33). The function Ξ(x) is defined as

Ξ(x) =
1
h(x)

Ψ ′(x). (46)

The plot of this function is shown in figure 3. It is negative, has the small x Taylor expansion

Ξ(x) =− 1
45

− 2
945

x2 +O(x4) (47)

and it approaches 0 as x→∞. It reaches a minimum value of Ξ(x0) =−0.032 at x0 = 3.5.
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Using the lower bound on Ξ(x), the compressibility is bounded from below as

κT ⩾ kBT
N
L2

(
1− 0.032

1
4
β2g4L2

)
. (48)

The multiplier is positive for 1
2βg

2L⩽ 5.59. It is also positive for 1
2βg

2L⩾ x0 = 3.5, since in
this region we have Ξ( 12δL)> Ξ( 12βg

2L) from the increasing nature of Ξ(x) in this region, and
the inequality 1

2δL⩾ 1
2βg

2L following from (19). We have further

1+
1
4
β2g4L2Ξ

(
1
2
δL

)
⩾ 1+

1
4
β2g4LΞ

(
1
2
βg2L

)
> 0 (49)

which follows from x2Ξ(x)⩾−1 which is obtained by numerical study of the function Ξ(x).
The two regions 1

2βg
2L⩽ 5.59 and 1

2βg
2L⩾ 3.5 cover the entire real positive axis, such

that we conclude that the isothermal compressibility κT is always non-negative.
This implies that there is no Antonov instability for the 1D gravitational gas. A similar

conclusion was noted in [30]. It is known that in three dimensions an isothermal gas with
total energy E and mass M enclosed in a spherical container of radius L is unstable against
gravitational collapse provided that L> 0.335GM2

(−E) . This is the Antonov instability [14, 31]. This
phenomenon does not occur in the 1D gravitational gas.

2.2.2. 1D gravitational lattice gas. To our knowledge, there is no treatment in the literature
of the 1D gravitational gas with hard cores in the Vlasov limit. Since the interaction potential
is not singular as |x− y| → 0, it may seem that the introduction of a hard core will not change
qualitatively the thermodynamical properties. This is intuitively clear at large temperature,
where the distances between particles are large, and they do not come within distances of the
order of the hard core. However, at small temperature we expect deviations from the no-hard
core behavior because the hard cores limit the density of particles to a finite value.

A simple model which simulates the presence of hard cores in the interaction is a lattice
gas. The gas particles occupy the sites of a uniformly spaced lattice, and at each site at most
one particle can be present. The configurational partition function is a sum over all possible
placements of the gas particles on the lattice sites.

Assume that the lattice has n sites, and the gas contains N particles. This system can be
mapped to a system of n−N non-interacting bosons which can be placed on a set of N+ 1
energy levels. The thermodynamical properties of the system have a striking resemblance to
the Bose–Einstein statistics, which is reflected also in the thermodynamical properties of the
system [32, 33].

The equivalence to a bosonic system can be seen by denoting the positions of theN particles
on the lattice by i1 < i2 < .. . < iN where ij ∈ {1,2, . . . ,n} are integers. Denote yj = ij+1 − ij−
1 the number of empty lattice sites between the consecutive particles {j, j+ 1}. (The right-most
particle requires special treatment, we define yN = n− iN.) The energy of the system can be
written as

EN = g2
∑
j<k

|ik− ij|= E(0)
N +

N∑
k=1

ωkyk (50)

where the ground state energy corresponds to the particles occupying a block of consecutive
N lattice sites

E(0)
N =

1
6
g2N(N2 − 1) (51)
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and the energy of the excited state is a sum of integer multiples of

ωk = g2k(N− k). (52)

The variables yk satisfy the sum rule
∑N

k=1 yk = n−N which has a simple geometrical inter-
pretation as the total number of empty lattice sites. We see that the {yk}Nk=1 can be interpreted
as the occupation numbers of the n−N energy levels ω, each configuration being counted only
once.

Assuming the scaling g2 = cn−2, the thermodynamical properties of this system approach
a well-defined limit as n,N→∞ at fixed particle number density d= N/n. This limit cor-
responds to taking mn= constant as n→∞, which is identical to the Vlasov limit mN=M
defined above in (7).

The free energy and equation of state have been derived in [32] under this scaling, in the
isobaric-isothermal ensemble. The thermodynamical properties of the lattice gas with linear
attractive potentials are given by the following result [32]5

Proposition 3. The free energy density f= F/n of the lattice gas with interaction εij =
g2

n2 |i− j|
and particle number density d= N/n is

f(d,T) =
1
6
g2d3 −π(1− d)+ dTJ(d,T) (53)

where π(d,T) is the solution of the equation

1
d
− 1=

ˆ 1

0

dy

eβ[g2d2y(1−y)+π] − 1
(54)

and J(d,T) denotes the integral

J(d,T) =
ˆ 1

0
log
(
1− e−β[g2d2y(1−y)+π]

)
dy. (55)

The equation of state is

p(d,T) =−f(d,T)+ d∂df(d,T) (56)

=
1
3
g2d3 +π+ 2g2d3K(d,T)

with

J(d,T) =
ˆ 1

0

y(1− y)

eβ[g2d2y(1−y)+π] − 1
dy. (57)

The lattice gaswith linear attractive potentials and a constant external fieldwas studied recently
in [33]. This corresponds to the two-body interaction εij = 1

n2 |i− j|+ x
n2 (i+ j) where x is the

external field strength. A novel feature for this system is the appearance of a gas–liquid phase
transition, for arbitrarily small field strength x.

The thermodynamical properties of the lattice gas with two-body linear attractive interac-
tion potential εij = g2|i− j| can be solved also exactly for finite n,N, using a recursion relation
for the canonical partition function in the lattice size n. Denoting Zn(N) the canonical partition
function of a lattice gas with n sites and N particles interacting with potentials g2|i− j|, we can
show [32] that it satisfies the recursion relation

5 Reference [32] considered a more general form for the 2-body interaction including also an universal attractive term
εij =− 1

µn
ξ+ 1

µn2
|i− j|. The pure gravitational case corresponds to ξ= 0. We denoted 1

µ
= g2.
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Zn+1(N) = Zn(N)+ e−βg2(n+1)(N−1)Zn(N− 1). (58)

This follows by expressing the total interaction energy of the N particles as

En(N) =
∑
i<j

g2|i− j|= 2g2
∑
i<j

max(i, j)− g2
∑
i<j

(i+ j). (59)

Using this equation one can express the energy of the lattice with n+ 1 sites and N particles
in terms of the energy of the sub-lattice with n sites as: (i) En+1(N) = En(N) if no particle is
present at site n+ 1, or (ii) En+1(N) = En(N)+ g2(N− 1)(n+ 1) if a particle is present at site
n+ 1. This gives the recursion relation (58) for the canonical partition function Zn(N). The
recursion (58) can be easily solved numerically starting with the initial condition at n=N:
ZN(N) = e−βEN(N).

The numerical results for the thermodynamical properties (equation of state) following
from the recursion approach were found to agree well with the exact solution for lattices with
n ∼ 100–200 sites [32].

2.3. Thermalization and quasi-equilibrium states

Experience with systems with short range interactions suggests that gravitational systems
should approach thermal equilibrium in the infinite time limit. The situation is different for
integrable systems, or close to integrable, such as the Fermi, Ulam, Pasta system [34], which
show a pattern of energy transfer between different degrees of freedom, which slows down
the approach to equilibrium. Theoretical arguments and numerical experiments with the OGS
show a more complex pattern of the phenomena in the relaxation to equilibrium. Numerical
simulations have been extensively used to explore the approach to equilibrium of an OGS and
we review them here.

It was recognized early on that the relaxation to equilibrium in the OGS is slower than
in the typical 3D gravitational systems. For the latter case, Chandrasekhar [35] showed that
the relaxation time scales like ∼ N

logN with the number of particles N. However some of the
approximations used to obtain this scaling in 3D do not apply to the 1D system. Early studies
by Hohl, Feix and collaborators [36–38] proposed that the OGS relaxes to thermodynamical
equilibrium on a time scale of the order of N2tc, where N is the number of sheets and tc is
the typical time it takes one sheet to cross the system. The precise definition of tc is author
dependent and tc ∼

√
4πG/ρ, where the density ρ is a mean density taken over a typical length.

By studying the correlation function, Hohl and Broaddus [37] observed relaxation to thermal
equilibrium in numerical experiments also on a time scale of tR ∼ N2tc.

This scaling was challenged as high performance numerical simulations became more
accessible. Wright, Miller and Stein (WMS82) [39] studied the approach to equilibrium for a
OGS with N= 100 particles, started in three initial states: (1) uniform rectangular distribution
in phase space with a high virial ratio VR = 2⟨T⟩/⟨U⟩ ≫ 1; (2) uniform rectangular distribu-
tion with virial ratio VR = 1.0 (corresponding to the thermal equilibrium value) and (3) the
isothermal distribution (as a control). For case (1), after running the simulation for∼20000tc,
they concluded that the system did not approach thermal equilibrium, but instead transitioned
rapidly into a metastable state with a different configuration characterized by a halo surround-
ing a cold dense core and remained there. They employed the Kolmogorov/Smirnov goodness
of fit test to show with high probability that neither the position nor velocity distributions were
sampling the equilibrium distributions. In case (2), after a run of 1000tc, the system retained
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a uniform distribution in phase space) while for case (3), considered as a control, the system
remained in isothermal equilibrium.

These results were challenged in turn by Severne et al [40] who found evidence of a rapid
approach to equilibrium, also as measured by the Kolmogorov–Smirnov statistic for the pos-
ition and momentum distributions, for a different subset of initial conditions. In response, a
study that emphasized the dependence of the thermalization time on the initial distribution in
phase space was presented by the WMS84 group in [41]. Later studies of the correlation func-
tions of the OGS showed that equilibrium was not established on this time scale for different
initial states [42].

In order to settle this apparent disagreement, Gouda, Konishi and Tsuchiya (GKT there-
after) revisited the issue of the relaxation process in the OGS in a series of three papers [43–45].
Similar to previous studies, they simulated the evolution of the system started in the water-bag
distribution, which is a uniform distribution in the phase space.

In [43] GKT show that there exist two characteristic time scales: (i) the microscopic relax-
ation time Tm ≃ Ntc, which describes the time required for energy to be distributed among all
particles, although the resulting distribution is not the thermal equilibrium distribution, and
(ii) the macroscopic relaxation time TM , which is much longer and gives the time required for
approach to thermal equilibrium. During this time the system is in a so-called quasi-stationary
state QSS (see the next section for a more detailed discussion). These time scales were further
investigated in [44], which revealed a more complex pattern, showing that the system switches
between quasi-equilibrium states. This itinerant behavior was studied in [45].

To summarize their work, we can distinguish three main regimes in the relaxation process of
the OGS. The first regime 0< t< Tm is the so-called collisionless phase, the initial particle dis-
tribution is slowly relaxed, on the time scale of the microscopic relaxation time. In the second
regime Tm < t< TM, the system stays in a long-lived quasi-stationary state. Finally, the so-
called macroscopic relaxation time denotes the time scale for relaxation to thermodynamical
equilibrium where the distribution approaches the microcanonical distribution. Nevertheless,
up to five steps have been detected [45] showing that the situation is still not very clear.

A related system consists of two distinct species of particles with different masses. This
bimodal mass distribution was first suggested by Hohl and Tilghman Broaddus [37]. It was
employed to study the Lynden-Bell hypothesis and the development of the quasi-stationary
state [38]. It was also used to study the approach to equilibrium [40]. The ratio of kinetic energy
of each each mass species was employed as a progress variable to quantify the deviation from
the fully relaxed equilibrium state. Equipartition can be taken as an additional indicator of
thermalization. These simulations suggested a tendency towards equipartition but it was never
achieved in the time scale considered. Later, with improved algorithm design and hardware,
Yawn and Miller observed complete equipartition in a bimodal mass system over a very long
time scale [46]. They also derived equations for the equilibrium properties of each species and
showed that fluctuations are very long lived and correlations decay extremely slowly [47].

The persistence of structures in phase space (in fact holes) seems to prevent the system from
reaching equilibrium. The influence and dynamics of these holes have been studied in Rouet
and Feix [48] by means of the usual N-body code, while Mineau et al show that, in the Vlasov
limit and except on average, the system does not relax to any function of the energy alone [49]
(see section 2.3.4). An alternative method for studying the relaxation to equilibrium in the
OGS was proposed in [50]. In this paper a stochastic diffusion model was proposed, and was
used to study the exploration of the phase space by the system. The agreement of the model
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with the exact OGS system is studied by numerical simulation, and is found to be better at low
energy.

Later studies by Joyce andWorrakitpoonpon [51] using larger systems with N∼ 103 essen-
tially confirmed this picture, i.e. that nearly virialized initial states relax towards equilibrium
on a time scale TR ≃ Ntc. In contrast, using a different approach, Levin et al [52], found that
the relaxation to equilibrium proceeds on a time scale tR ∼ N1.8 using a limited set of initial
conditions.

An important issue in studies of relaxation to equilibrium is the choice of the measure of
distance to the equilibrium distribution. Natural choices are distributional measures such as the
Kolmogorov–Smirnov goodness of fit test for the velocity and/or spatial distribution, taking
into account the known equilibrium distributions (Boltzmann distribution for velocities, and
the inverse cosh law for density). This was the measure used in [39, 40]. A similar role is
played by the ratio of kinetic energy between each species in a system with a bimodal mass
distribution [40, 46, 47]. GKT employed the deviation of the time averaged single particle
energies from their equilibrium values [43–45]. In [51] the authors employed the use of order
parameters ϕαβ defined by normalized moments of the phase space distribution. Levin et al
[52] used a measure of the separation of the distribution in phase space between the QSS and
final equilibrium.

A more recent result is due to Barnes and Ragan [12, 13], who studied the relaxation of
a one-dimensional self-gravitating system in the collisionless approximation. Working in the
collisionless approximation has the advantage that the collisionless Boltzmann, or Vlasov,
equation can be studied analytically in a perturbation theory approach. As a measure of the
rate of relaxation they study the entropy growth rate. They identify a barrier to full relaxation
in the form of time-independent modes, which imply that a separable equilibrium of the phase-
phase distribution cannot be reached either through phase mixing or by violent relaxation.

Motivated by cosmological considerations concerning cold dark matter, several authors
have investigated the QSS formed from very cold initial conditions, specifically when all
particles in the simulation start at rest. Most recently Tashiro has concluded that the dens-
ity in the resulting QSS has a universal form that is a variant of that observed in two and three
dimensions [53]. See also the related earlier work of Binney and Schulz et al [54, 55] as well
as Colombi and Touma [56]. Binney, in particular, explored the effect of discretization, or
‘graininess’, in the phase space due to the finite population of particles [54]. Graininess was
also partially addressed by Romero and Ascasibar in related work by constructing ensemble
averages from independently sampled initial conditions as a function of population [57], and
also plays a role in the Schrodinger-Poisson formulation [58] where the effective Planck con-
stant limits the possible structure produced by a pure Vlasov evolution.

We alsomention briefly results obtained in the Hamiltonianmean-fieldmodel (HMF)which
is a system of particles moving on a circle interacting by cosine potentials. This model is used
as a toy model for studying the relaxation to thermal equilibrium which is more accessible to
numerical simulation with larger numbers of particles. The study in [59] found a scaling for
the relaxation time of the form tR ∼ N1.7.

2.3.1. Quasi-stationary State (QSS). Numerical simulations of the dynamics of the OGS
with initial conditions filling a finite volume in the phase space, demonstrated the appear-
ance of QSS after the microscopic relaxation scale. These states do not have the spatial
Boltzmann-Gibbs distribution expected for the thermal equilibrium states. The system spends
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Figure 4. Time evolution of N= 32769 particles of equal mass. The time is normal-
ized are labeled according to their energy at T = 70.71: particles with energy lower than
0.72 are in blue while the others are in red. Left and central columns: density and velo-
city distribution function of each population. Right column: representation in the phase
space.

a long time in these states, corresponding to the second stage of the relaxation noted in the pre-
vious section. Numerical studies by Tsuchyia, Gouda and collaborators [43–45] demonstrated
the important role of the long-lived QSS for an understanding of the approach to equilibrium
in the OGS.

We illustrate the pattern formation in the phase space in the relaxation process with a numer-
ical simulation for a system of N∼ 32000 particles of equal mass initially distributed uni-
formly in a square in phase space (position-velocity). The initial state has virial ratio VR = 2.0.
Figure 4 shows the time evolution of the phase system, showing separately the spatial density
(left), velocity distribution (middle), and the phase space distribution (right). The initial dis-
tribution is uniform within a square in phase space. There is no physical difference between
particles. They have just been labeled depending on their energy at T = 70, then have been
color coded according to their label at each time.

The main feature of the simulation, the formation of a core-halo structure, can be observed
here. It is clear that the particles that belong to the halo initially have the highest energy.
Because of the differential rotation (particles of high energy rotate more rapidly than particles
of low energy), the halo exhibits filamentation due to the higher rate of stretching. As time goes
on, the finite number of particles is too small to keep following this phenomenon precisely. In
the infinite particle (Vlasov) limit the filaments maintain their identity indefinitely. Because of
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the area preserving property of the phase space evolution, empty regions are trapped between
the filaments. With a finite number of particles the larger trapped regions are apparent and
have the appearance of holes or cavities in the distribution. Thus two rotating holes can be
observed in this region. The core alone seems to quickly reach a stationary state characterized
by the constant density in phase space retained from the initial condition. We emphasize that
neither the halo, which has not yet relaxed here, nor the constant density core, represent the
final, thermal, equilibrium derived by Rybicki.

2.3.2. Lynden-Bell statistics and violent relaxation. The formation of the QSS has been
related to the process of violent relaxation proposed by Lynden-Bell [25]. In the collisionless
limit, the 2-body interactions between particles can be neglected, and the dominant interaction
is with the mean field produced by the remaining N− 1 particles. Under certain conditions the
relaxation proceeds through a rapid change of the mean field, and this has the effect of ejecting
particles which form a halo surrounding a central core.

We give in this section a brief summary of the Lynden-Bell statistics for the collisionless
dynamics of the Vlasov equation. This will be used in the next section to analyze the QSS
which are the equilibrium states of this statistics, following [60]. The collisionless Boltzmann
equation, or Vlasov equation has the form

Dt f= ∂x f · v− ∂xΦ · ∂vf= 0 (60)

where Φ(x) is the gravitational potential. For 1D gravity this is

Φ(x) = g
ˆ

|x− x ′|
(ˆ

f(x ′,v ′)dv ′
)
dx ′ (61)

with g= 2πGm.
In the collisionless limit the phase space density f is constant along trajectories in the phase

space. This implies that non-overlapping phase space regions remain so at all later times. This
is equivalent to a microscopic exclusion principle for the phase space elements. Let us divide
the phase space into a large number of microcells of volume ω, and denote the phase space
density η. The mass associated with each microcell is ηω. The state of the system can be
specified the set of occupied microcells ωj and their densities ηj.

The Lynden-Bell statistics describes the state of the system in terms of the coarse grained
phase space distribution f̄, defined by combining the phase space densities ηj of the microcells.
The equilibrium coarse grained distribution is obtained by maximizing the entropy under the
constraints of constant total energy and mass.

The result for the equilibrium distribution was obtained by Lynden-Bell and has the form
(see appendix I in [25])

f̄LB(ϵ) =
∑
j

ηje−βj(ϵ−µj)∑
j e

−βj(ϵ−µj) + 1
(62)

withµj,βj Lagrangemultipliers and j is an index summing over all microcell in a coarse grained
space phase element.

In the non-degenerate limit, given by f̄j ≪ ηj, the coarse grained phase space distribution
turns into a sum of Maxwellian distributions with different velocity dispersions

f̄LB(ϵ) =
∑
j

ηje
−βj(ϵ−µj). (63)

This corresponds to a superposition of thermalized Gibbs-Boltzmann states.
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The relevance of the Lynden-Bell statistics for this problem was noted already in the early
work by Hohl and Campbell [38] and Cuperman et al [61, 62]. Along with Harten, they also
studied the Lynden-Bell hypothesis in the collisionless limit, integrating the boundaries of
water-bag distributions [63, 64]. In the same period, Janin [65] use this approach to address
the Jeans instability and Colombi and Touma [56] extended this method to investigate the
form of the density for a cold initial state. Using N-body simulations, the Lynden-Bell hypo-
thesis gained additional attention following studies by Yamashiro et al [66], Yamaguchi [67],
Joyce and Worrakitpoonpon [51, 60] and Teles et al [68], who performed extensive numerical
simulations and demonstrated the connection to the QSS.

Joyce and Worrakitpoonpon [51] studied the relaxation of the OGS started in several initial
configurations. For a range of simple water bag and cold initial conditions, numerical simula-
tions show that the system evolves into two phases with very different time scales. The state
evolves on a time scale characterized by the dynamical time tc (roughly defined as the crossing
time of a particle through the system), to a QSS. Finally, on a much longer time scale scale,
dependent on the number of particles, this approaches thermal equilibrium. They found the
characteristic time scale for relaxation behaves, to a good approximation, as

tM ∼ fQSSNtc (64)

where fQSS is a numerical factor which depends on the initial condition, and N is the number
of particles, but others don’t necessarily agree (see [52] and below).

The detailed shape of the QSS depends on the initial condition. Recall that in thermal equi-
librium the average kinetic K and potential energy of the OGS satisfy the 1D virial condition

2K= U. (65)

If the initial state satisfies the virial condition, the relaxation is non-violent, and the shape of
the QSS agrees well with the prediction of the Lynden-Bell statistics. On the other hand, initial
states which deviate from the virial condition have a violent relaxation, with large oscillations
of the kinetic and potential energy, and eject particles into a halo surrounding a central core-like
distribution.

These phenomena were noted in early numerical simulations by Goldstein et al [61] and
Lecar and Cohen [69], and were confirmed in more recent simulations by Levin et al [52] and
Joyce and Worrakitpoonpon [51].

In the particular limit of a cold initial state with vanishing velocities, the virial ratio VR =
2K
U vanishes. The system evolves to a quasi-stationary state with a distinct shape, which was
studied by Binney [54], by Shultz et al [55] and more recently by Tashiro [53].

The Lynden-Bell theory is based on the collisionless approximation. Going beyond this
approximation requires that one takes into account dissipation effects, due to viscous damping
or due to inelastic collisions. The impact of these effects was studied by Joyce et al [70], who
showed that similar QSS exist, in appropriately rescaled variables.

Another issue concerns the robustness of the QSS under the impact of external perturba-
tions, which become relevant for non-isolated systems. This problem was studied by Joyce
et al [71]. They find that under a wide class of perturbations the system approaches a different
QSS.

2.3.3. Lynden-Bell statistics predictions for QSS. We study here the shapes of the QSS in the
one-dimensional Lynden-Bell theory, following [51]. See also the detailed discussion of the
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Figure 5. Left: the potential function φ(x) which is the solution of the Poisson
equation (69) under Lynden-Bell statistics. Right: the density profile ρ(x) corresponding
to the same solution. The parameters β,µ are chosen as explained in text.

predictions of the Lynden-Bell statistics for one-dimensional states in [69]. Denote the density
ρ(x) and the gravitational potential φ(x). The energy is

ϵ(x,v) =
1
2
v2 +φ(x). (66)

The coarse grained phase space density is

n(x,v) =
1
f0
f̄(x,v) =

1
eβ(ϵ(x,v)−µ) + 1

. (67)

The Lagrange multipliers β,µ are determined from the total mass and energy constraints

M=

ˆ
f̄(x,v)dxdv, E=

ˆ (
1
2
v2 +φ(x)

)
f̄(x,v)dxdv. (68)

The spatial distribution of the QSS is obtained from the Poisson equation

∂2
xφ(x) = 2gρ(x) = 2g

ˆ ∞

−∞

f0dv

1+ eβ(ϵ−µ)
. (69)

We study in some detail the solutions of the Poisson equation for the Lynden-Bell statist-
ics (69). Define the function

F(φ;a,β) :=
ˆ ∞

−∞

dv

1+ aeβv2/2
=−

√
2π
β

Li 1
2

(
−1
a

)
(70)

where Lin(z) :=
∑∞

k=1
zk

kn is the polylogarithm.
Expressed in terms of this function the Poisson equation has the form

φ ′ ′(x) = 2gf0F(φ;e
β(φ−µ),β). (71)

This equation must be solved with the boundary conditions φ(0) = φ ′(0) = 0. For illustra-
tion purposes we set the normalization constants β,µ are set to their values from figure 21 of
[60] β = 0.0035,µ= 3315 and assume for simplicity g= 1, f0 = 1.

The solutions for φ(x) and ρ(x) = F(φ;eβ(φ(x)−µ),β) are shown in figure 5. Note the sim-
ilarity of the density profile ρ(x) with that shown in figures 6–8 of [60].
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Figure 6. The phase space density f0(x,v) of the initial Rectangular Waterbag State
(dashed rectangle). The ellipses are contour lines of the energy ε= 1

2v
2 +ψ(x). The

contours shown correspond to the core (filled ellipse) with ε⩽ εF and the halo εh.

2.3.4. Core-halo states. According to the Jeans theorem [3], the distribution of the
(quasi-)equilibrium states of the Vlasov equation can depend only on integrals of motion. The
simplest integral of motion is the local energy functional ε= 1

2v
2 +ψ(x). This led Teles et al

[68] to postulate a phase space density of the form

fch(x,v) = (η−χ)θ(εF− ε)+χθ(εh− ε). (72)

This consists of two uniform distributions: the core with uniform density η−χwhich contains
states with energy up to the Fermi energy εF, and the halo, with density χ, with energies up to
the halo energy εh. See figure 6 for a graphical representation.

Integrating over velocity v, this gives the spatial distribution function ρch(ψ) :=
´
dvfch(x,v)

in the form

ρch(ψ) =
√
2

 (η−χ)
√
εF−ψ+χ

√
εh−ψ,ψ < εF

χ
√
εh−ψ,εF ⩽ ψ ⩽ εh

0,ψ > εh

. (73)

The Fermi energy εF and the mass of the halo χ are determined from the normalization
conditions for mass and total energy (68).

For example, starting with a rectangular waterbag state with uniform density f0(x,v) =
ηθ(xm− |x|)θ(vm− |v|) gives a normalization η = 1

4xmvm
. The initial energy is E0 =

1
6v

2
m+

1
3gxm. The difference of the parameter VR =

v2m
gxm

from unity measures the deviation of the initial
state from the virial condition (65).

Substituting ρ(x) from (73) into the Poisson equation (69), this can be solved as in the
previous section, yielding the potential function ψ and the density profile ρ(x). The resulting
distribution depends on the parameter VR: for VR very different from 1 the spatial distribution
consists of a core similar to the LB QSS states, and a halo, extending to large distances. The
halo contribution decreases asVR approaches 1, which is the limit when the initial state satisfies
the virial condition. Under this condition the predictions of the LB theory are satisfied with a
good approximation.
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2.4. Chaotic dynamics

We recall briefly the definition of chaotic behavior. Chaotic dynamics are characterized by
three properties: (i) the particle trajectories are bounded and steady-state, but distinct from
periodic and quasi-periodic trajectories; (ii) if the system is dissipative they converge to a set
in phase space called strange attractor, which is not a simple manifold like a point, circle or
torus, but has a complex (fractal) geometrical structure with a fractional Hausdorff dimension,
whereas if the system is conservative they are ergodic and eventually fill the available phase
space; (iii) they exhibit sensitive dependence on initial conditions, such that chaotic traject-
ories locally diverge away from each other, and small changes in starting conditions build up
exponentially fast into large changes.

A more rigorous study of the relaxation to equilibrium can be performed using methods
from the theory of dynamical systems. In this approach, relaxation is related to mixing in the
phase space, with a time scale τKS = 1/hKS given by the Kolmogorov-Sinai entropy hKS. This
entropy is also related to the Lyapunov exponents of the system, which give the characteristic
time scales for the decay of perturbations. We discuss this approach in this section.

The dynamics of the OGS appears to be different for small numbers of sheets N, and for
large N. For sufficiently small N the system is not ergodic, and a segmentation of the phase
space is observed into trajectories of well defined type, with windows of chaotic behavior. On
the other hand for large N> 11, evidence has been presented of ergodic behavior, although
doubts still persist Yawn and Miller [72].

We start by summarizing the status of the knowledge of the Lyapunov spectrum and its
implications for the relaxation dynamics of the OGS. Then we discuss in some detail the two
cases with N below and above the critical value 10.

2.4.1. The Lyapunov spectrum of the OGS. The Lyapunov exponents of a dynamical sys-
tem give information about the time scale of the damping of fluctuations on different spatial
scales. They are obtained by studying the exponential rates of divergence between two nearby
trajectories. We give here a brief overview. For detailed accounts see for example Posch and
Hoover [73], Benettin et al [74], Shimada and Nagashima [75].

Denote D the dimension of the phase space of a dynamical system. There are D Lyapunov
exponents and the set {λi}Di=1 is called the spectrum of the Lyapunov exponents. For ergodic
systems the spectrum of the Lyapunov exponents is independent of the initial condition in the
phase space. For systems with equations of motion which are simplectic and time reversible
the Lyapunov spectrum is organized in pairs of zero sum. This implies that it is sufficient to
compute only the positive exponents. The sum of all Lyapunov exponents vanishes as a con-
sequence of Liouville’s theorem for the conservation of the phase space volume for symplectic
systems.

Numerical algorithms for their calculation were proposed by Benettin et al [74] and Shi-
mada, Nagashima [75], and are based on periodic re-orthonormalization of the perturbation
vectors using a Gram-Schmidt procedure.

The phase space of the OGS with N sheets has dimension D= 2N, such that there are D=
2N Lyapunov exponents {λi}2Ni=1. They appear in pairs of zero sum λj+λN−j = 0. We assume
that they are ordered as 0< λN−2 < λN−3 < .. . < λ1, such that λ1 is the largest Lyapunov
exponent.

Of particular interest are the largest Lyapunov exponent λ1 and the largest non-zero positive
exponent λN−2. The largest Lyapunov exponent is the rate for the fastest growth of a phase
space perturbation, and is dominated by the fastest dynamical events. The perturbation vector
associated with λ1 is strongly localized in phase space. The perturbations associated with the
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Figure 7. Dependence of the KS entropy hKS (solid line with filled circles), the largest
Lyapunov exponentλ1 (long dashed curvewith empty squares), and the smallest positive
Lyapunov exponent λN−2 (dashed-dotted curve with empty triangles). Reprinted with
permission from [79]. Copyright (2000) by the American Physical Society.

higher order Lyapunov indices are less and less localized, until the smallest positive exponent
is associated with collective modes involving all particles.

The Kolmogorov-Smirnov entropy is related to the spectrum of the Lyapunov exponents,
more precisely the KS entropy is equal to the sum of the positive Lyapunov exponents hKS =∑N−2

i=1 λi, see Pesin [76].
A first study of the Lyapunov exponents for the OGS system was performed for 3< N< 10

by Benettin et al [74]. They found an increasing trend for the KS entropy and conjectured a
linear increase with the number of sheets hKS ∼ N. In view of the results of [72] these values
of N are too small to allow the study of the approach to equilibrium.

This study was extended to OGS with larger numbers of sheets 10⩽ N⩽ 24 by Milanovic
et al [77], in the more general setting of a 2-body power-like interaction |x− y|α. For the
OGS case α= 1 they computed the entire spectrum for N= 10,16,24. For 32⩽ N⩽ 64 only
the largest two Lyapunov exponents λ1,λ2 have been computed. They confirm the decreasing
trend of the largest Lyapunov exponent with N, but find a change of the N dependence of the
KS entropy at aboutN= 10. ForN> 24 they find that hKS grows approximatively linearly with
N. The regime change at the critical value of N= 10 is in agreement with the results of Reidl
and Miller [78].

Tsuchiya and Gouda [79] extended these results to larger number of sheets N⩽ 256. Their
computation of the Lyapunov exponents is still the state of the art for the OGS in the unbounded
domain.

They find generally good convergence and stability of the Lyapunov exponents in the
large time limit. The largest Lyapunov exponent scales like λ1 ∼ N−1/5, confirming the trend
noted by [77] using a more restricted range of values of N. The scaling of the KS entropy is
hKS ∼ N4/5, which is almost linear. See figure 7 for the plot of hKS/N∼ N−1/5. The character-
istic time for the system to distribute itself over many states, as measured by the KS entropy,
decreases as τKS ∼ N−4/5. This corresponds to the macroscopic relaxation time—relaxation
to a quasi-equilibrium state, which does not yet correspond to the system reaching the equi-
librium microcanonical distribution. Complete relaxation to the microcanonical equilibrium
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state occurs over the longer time scale of microscopic relaxation time and signals approach
to ergodic behavior. Such relaxation was indeed observed numerically, and occurs over much
longer time.

Tsuchiya and Gouda [79] associate the microscopic relaxation time with the inverse of the
smallest positive non-zero Lyapunov exponent λN−2. In other words, the microscopic relaxa-
tion time is determined by the time scale of the weakest instability, which is determined by the
smallest positive Lyapunov exponent. The rate of decrease of this exponent to zero as N→∞
measures thus the rate of growth of the relaxation time of the system to an equilibrium state
as the number of sheets N increases.

Numerical simulation [79] suggests that the Lyapunov exponent λN−2 approaches zero as
λN−2 ∼ N−1, see the dashed-dotted curve with empty triangles in figure 7 (at least over the
range N⩽ 256 considered in [79]). This suggests that the relaxation to the microcanonical
equilibrium state has a characteristic time scale of the orderO(N). Further investigation of this
scaling to larger values of N would clarify whether this asymptotics holds for all N.

2.4.2. Small number of particles (N<10). The best studied case corresponds to N= 3,
which was considered both under the simple non-relativistic Newton dynamics, and by tak-
ing into account relativistic effects. Also, the cases of equal and non-equal masses have been
considered.

We consider in detail here the non-relativistic N= 3 case with equal masses. It was shown
by Lehtihet and Miller [80] that the system of three impenetrable sheets is equivalent to a
particle moving in two dimensions in a symmetric wedge of opening angle 2θ with θ < 45◦

under the effect of an uniform gravitational field. The equivalent wedge system is a particular
case of a gravitational billiard.

This equivalence is obtained by a change of variables for the differences of coordinates
xij := xi− xj

x12 =
1√
2
(
√
3β−α), x13 =

1√
2
(
√
3β+α). (74)

The momenta pi are also expressed in terms of conjugate momenta pα,β as

p1 =
1
2

√
3
2
pβ , p2 =

1√
2

(
pα −

√
3
2
pβ

)
, p3 =

1√
2

(
−pα −

√
3
2
pβ

)
. (75)

Expressed in coordinates (α,β), the OGS Hamiltonian (4) takes the form

HOGS =
1
2m

(
p2α +

3
2
p2β

)
+Vint(α,β) (76)

where the interaction term is proportional to

Vint(α,β)∼
∑
i<j

|xi− xj|=
√
2

{
|α|+ 1

2
|α+

√
3β|+ 1

2
|α−

√
3β|
}
. (77)

The contours of constant value of the interaction energy Vint(α,β) are shown in figure 8. This
is a constant force field pointing towards the origin in each angular sector of a hexagon in
coordinates (α,β). A particle started at some arbitrary point with an initial velocity will move
on parabolic trajectories within each sector, feeling a force pointing towards origin.

The equal mass case is special as the distinction between transparent and impenetrable
sheets disappears. For this case the wedge angle is θ = 30◦. We discuss this case in some
detail in the next section.
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Figure 8. Equipotential lines of the potential V(α,β) for the OGS with N= 3 equal
mass sheets. This has a minimum at α= β = 0. The associated force field is constant
in each of the six angular sectors of opening 2θ = 60◦, and points towards origin.

Consider the dynamics of a particle moving in a vertical constant field g, and constrained
to the interior of a symmetric wedge with opening angle 2θ = 60◦. The equations of motion
are

x(t) = x0 + vx0t, y(t) = y0 + vy0t−
1
2
gt2. (78)

The energy is

E=
1
2
(v2x + v2y)+ gy. (79)

Following [80] we choose g= 1
2 . We will study the trajectories with energy E= 1

2 for which
the energy constraint takes the form

e= v2x + v2y + y= 1. (80)

The fixed point trajectory has parameters

y=
3
5
, v2x =

3
10
, v2y =

1
10

(81)

where y is the coordinate of the collision point with the wedge, and (vx,vy) are the velocity
components at the collision points. The collisions are normal to the walls.

The most general e= 1 trajectory can be described by two parameters which are chosen as
(ε,δ), corresponding to initial parameters, just before collision with the left wall

y=
3
5
+ ε, vx =−

√
2
5
− εcos(30◦ + δ), vx =−

√
2
5
− εsin(30◦ + δ). (82)

The fixed point trajectory (81) is reproduced by taking the initial conditions ε= 0, δ = 0◦.
The allowed range of values for ε is [−3/5,2/5]. The lower bound comes from the condition

y> 0 and the upper bound from v2 > 0. Close to the lower boundary, the particle starts very
close to the wedge vertex.

29



Class. Quantum Grav. 40 (2023) 073001 Topical Review

Figure 9. Poincaré sections in the plane (v∥,v
2
⊥) for trajectories with ε=−0.1,

−0.3,−0.5 and −0.59 (from inside out) and δ = 0◦ (collision normal to the wall). The
lower curves are Γ±

1 separating the Ta,Tb-type trajectories.

The angle δ = 0◦ corresponds to normal initial collision. δ > 0means that the particle points
up from the normal when it collides with the left wall, and δ < 0 means that it points down.

The trajectories are conveniently examined by plotting the Poincaré surface of section (or
simply Poincaré sections). They show the values of the velocity components (v∥,v2⊥) at each
collision, with the right/left walls. Following the conventions of [80]we denote x := v∥,z := v2⊥
the coordinates of the Poincaré section plot.

The energy constraint e= 1 gives that the section is bounded within the curve

x2 + z⩽ 1 (83)

which gives z⩽ 1− x2. This curve is shown as the blue curve in figure 9. Along this curve the
particle hits the left wall very close to the vertex y= 0.

We distinguish between the cases of positive and negative ε, the perturbation of the initial
condition from the fixed point (81).

2.4.2.1. Negative ε< 0. For ε= 0 the trajectory is the fixed point shown as the red dot in
figure 9. As ε decreases to negative but small values, the Poincaré sections are closed curves
which are the sections of KAM tori.

As ε becomes more negative, the initial collision point with the left wall approaches the
vertex y→ 0. This is approached as ε→−0.6. In this region the system starts to display chaotic
behavior.

Let us examine in more detail trajectories which comes closest to the vertex. Figure 10
shows the Poincaré section corresponding to ε=−0.595, for which the trajectory comes very
close to the wedge vertex. We observe an area filling region at the corners of the triangular
shaped section. In this region the system displays confined chaotic behavior.
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Figure 10. Details of the Poincaré section in the plane (v∥,v
2
⊥) obtained from the traject-

ory with initial conditions (ε=−0.595, δ = 0◦). These show the upper corner and the
lower right corner. The left plot is similar to figure 6(b) in [80]. The plots are obtained
with N= 50k points. The area filling regions correspond to chaotic behavior.

We distinguish two types of trajectories:

(a) Ta trajectories: consecutive collisions with opposite walls of the wedge.
(b) Tb trajectories: consecutive collisions with the same wall.

The trajectories of type Ta,Tb which hit the left wall are separated in the Poincaré plane by
the curve Γ1 given by

v⊥ = 2
√
3
√
v2⊥ −

√
1− v2⊥. (84)

All Ta-type trajectories are above the Γ1 curve, and all Tb-type trajectories are below this
curve.

2.4.2.2. Positive ε> 0. Taking ε> 0 the velocity of the particle at the collision point becomes
smaller and approaches zero as ε→ 0.4.

As the collision velocity decreases, the Tb-type movement becomes more and more likely
(consecutive collisions on the same wall). As mentioned above, all such trajectories are below
the Γ1 curve.

Figure 11 shows the Poincaré sections for ε= 0.1,0.2,0.3 and figure 12 shows an extreme
case ε= 0.39 where the velocity at the initial collision with the left wall is very small ∼0.01.

In conclusion, there are two types of one-step trajectories, which define maps Ta,Tb. The
Ta maps correspond to repeated collision with the same side of the wedge, while the Tb maps
correspond to collisions with the opposite sides in succession. There is stable and chaotic
behavior associated with finite period sequences of Ta and Tb. These regions in phase space
are surrounded by a region of global chaos which contains trajectories passing arbitrarily close
to the wedge vertex, and are thus near triple collision trajectories in theN= 3 equal mass OGS.

Under the classification of [81], the trajectories for N= 3 are of three main types: annulus,
for which each particle crosses the other two in succession, pretzel, for which two particles
cross each other at least twice before either crosses the third particle, and chaotic trajectories,
for which there is no general pattern.

Similar behavior is observed also for the unequal mass case corresponding to θ < 45◦. For
θ = 45◦ themotion is completely integrable, and a dense set of orbits in phase space are densely
filled by periodic points.
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Figure 11. Poincaré sections in the plane (v∥,v
2
⊥) of trajectories with positive values of

ε= 0.1,0.2,0.3 (from inside out). δ = 0◦ (normal initial collision with the left wall).

Figure 12. Poincaré sections in the plane (v∥,v
2
⊥) obtained from the trajectory with

initial conditions (ε= 0.39, δ = 0◦). The red dot corresponds to the fixed point with
coordinates (81): (v∥ = 0,v2⊥ = 0.4). Right plot: enlarged view of the lower region (with
N= 10k points).

The role of the pretzel-type trajectories has also been studied in [82]. A numerical study
showed that two particles which are crossing can form a long-lived pair, referred to as a
‘molecule’, which is eventually destroyed by interaction with the remaining particle. The inter-
action with the third one is not predictable and the observed long lifetime of the ‘molecule’
may prevent the system from being ergodic. Notice that at each time the central particle can
be displaced between the remaining pair without affecting either the momentum or energy. By
randomly displacing it at regular times during a simulation and taking a long-time average, it
was demonstrated that one recovers Rybicki’s micro-canonical density and velocity distribu-
tion for the three particle system (see [82] for details).

The relativistic version of the OGS has been studied in [83] for N= 3. They find two broad
categories of periodic and quasi-periodic motions (annulus and pretzel-type patterns), as well
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as a set of chaotic motion that appears in the region of phase space between the former tra-
jectories. Thus the global structure of the phase space remains similar to that of the N= 3
non-relativistic system.

We mention in passing that the gravitational wedge has seen interest in experimental and
computational physics. It has been employed in optical lattices (see [84] and the numer-
ous citations) and a driven, dissipative version has been explored experimentally [85] and
computationally [86]. The ergodic theory for a range of angles and a family of related systems
has been explored by Wojtkowski [87]. In particular he proved that for a wedge half-angle
greater that π/4 (what he refers to as a a ‘fat billiard’) there is a single ergodic component. An
extension to a conical geometry has also yielded interesting results [88].

A similar picture holds for N> 3 but not too large: the N particle OGS can be mapped
to the system of a single particle moving in N− 1 dimensions, in a linear potential whose
equipotential surfaces are those of a N− 1 simplex. The N= 4 case was studied in detail in
[81]. The trajectories can be again periodic and quasi-periodic, and of chaotic type. Using a
Braid Group representation, the periodic and quasi-periodic trajectories can be classified into
three main types A,B,C, of which A,B are similar to those for N= 3, and C correspond to a
new pattern where 2 pairs of sheets cross each other in succession.

2.4.3. Large number of particles (N>10). In contrast to the situation for N< 10 where the
phase space of the OGS is segmented into confined and unconnected sectors, one chaotic and
at least one with regular dynamics (period or quasi-periodic), the situation for N> 10 appears
to be different.

Reidl and Miller [78] have presented evidence that for N> 10 there is no segmentation of
the phase space and the OGS may be ergodic. Numerical simulations by Milanovic et al [77]
confirmed this by demonstrating by numerical simulations that the momentum distribution and
the particle distribution converge to the equilibrium microcanonical results for the critical case
N= 10. For N> 10 they find that after a few million characteristic periods of oscillations, the
system relaxes in a state with a well-defined maximum Lyapunov exponent, and a well defined
KS entropy per particle hKS/N.

The convergence properties of the largest Lyapunov exponent λ1 for N< 32 (figure 6 in
[77]) show that even when reaching equilibrium, there exist regions in phase space that do
not contribute significantly to the growth of small perturbations. An arbitrary phase space
trajectory spends a considerable time in these regions. This is seen in simulations as drops in
λ1 during the averaging process, followed by slow recovery as the trajectory moves back into
the chaotic region. This picture was corroborated in [46, 47, 50, 72].

2.5. One-dimensional gravitational systems with periodic boundary conditions

Several extensions of the OGS have been proposed, motivated by applications to structure
formation in cosmology, which replace the free boundary condition with periodic boundary
conditions. Themainmodel of this type is the one-dimensional static cosmology (OSC)model,
introduced by Aurell et al [22, 89, 90] and studied further by Valageas in [91, 92].

We describe here in some detail the Miller-Rouet model [93] which is similar to the OSC
model but differs in the details of the implementation of the periodic boundary conditions. In
contrast, to the OSC model where periodicity is imposed by adding an external potential, the
Miller-Rouet model maintains translation invariance and implements the periodic condition
by modifying only the two-body interaction potential.
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2.5.1. Miller-Rouet model. A model for one-dimensional gravitating systems with periodic
boundary was proposed by Miller and Rouet in [93]. This corresponds to the following set-
up: the system is enclosed in the box [−L,L) and periodic boundary conditions are imposed,
identifying the points −L,L. In addition, the system is assumed to be placed into the uniform
background of a mass distribution. The model is appropriate for studying one-dimensional
density fluctuations in a uniform mass distribution. A version of the model replacing the grav-
itational interaction with Coulomb potentials has been used to investigate single-component
plasmas in [94].

In contrast to the OSC model where periodicity is imposed by adding an external potential,
theMiller-Rouetmodelmaintains translation invariance and implements the periodic condition
by modifying only the two-body interaction potential.

The interaction potential in the MR model has the form

V(x,y) = 2πGm2

(
|y− x| − 1

2L
(y− x)2 − 1

3
L

)
. (85)

This is the potential energy of a mass at position x due to the interaction with another particle
at y and all its mirror images separated by the periodicity length 2L.

We recall briefly the derivation of this potential and its relation to one-dimensional gravit-
ation. The potential V(x,y) is the difference of two terms: the sum of the contributions from
mirror images V0(x,y), and the contribution of the uniform background of mass Φ(x)

V(x,y) = V0(x,y)− 2πGm2 1
2L

ˆ ∞

−∞
dy|x− y|e−κ|x−y|. (86)

The interaction V0(x,y) gives the potential felt by a particle placed at y from a particle at x
plus the infinite number of its mirror images, separated by 2L in both directions

V0(x,y) =
∞∑

k=−∞

2πGm2|x− y+ 2kL|e−κ|x−y+2kL|. (87)

The damping factor e−κ|x−y+2kL| with κ→ 0 is introduced following [10] and renders the sum
over mirror images convergent.

The sum over mirror images can be evaluated in closed form with the result

∞∑
k=−∞

|x− y+ 2kL|e−κ|x−y+2kL|

= |x− y|e−κ|x−y| + 4L
e2κL

(e2κL− 1)2
cosh[κ(y− x)]− 2

1
e2κL− 1

(y− x)sinh[κ(y− x)] (88)

where the first term is the contribution from the n= 0 term in the sum, and the remaining terms
are the contributions from the mirror images of the particle at x.

Expanding (88) in the limit κ→ 0 and keeping only the terms which do not vanish in this
limit we get

V0(x,y) = 2πGm2

(
|y− x| − 1

2L
(y− x)2 +

1
κ2L

− 1
3
L

)
+O(κ). (89)

The first term is the original linear attractive interaction, and the second term is a quadratic
repulsive interaction, which vanishes in the limit of a very large periodicity radius L→∞. The
physical meaning of this repulsive term is as follows. As two particles are separated by more
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than L, the attractive effect of their mirror images in the nearby cells overcomes the attract-
ive interaction between them. This appears as a repulsive force when the distance satisfies
|x− y|> L.

Finally we subtract the contribution of a uniform background of mass. This amounts to a
interaction energy Φ(x) given by

Φ(x) =
2πGm2

2L

ˆ ∞

−∞
dy|y− x|e−κ|x−y| =

4πGm2

2κ2L
. (90)

This is a uniform potential, independent of position. The effect of subtracting the uniform
background contribution Φ(x) from (89) amounts to canceling out the (positive) constant term
4πGm2/(2κ2L). The remaining constant term − 1

32πGm
2L is negative and finite.

2.5.2. Chaotic dynamics in theOGSwith periodic boundary conditions. The chaotic dynam-
ics of the one-dimensional gravitational system with periodic boundary conditions has been
studied by Kumar and Miller in [95] (see also chapter 8 in [96] for further details).

The periodic version of the OGS considered contains N sheets moving in the primitive cell
extending in [−L,L], with the boundaries identified. This corresponds to the Miller, Rouet
model introduced above, see Miller and Rouet [93]. Each particle feels the effect of the other
particles in the primitive cell and of their mirror images reflected through the boundaries of the
primitive cell. There is an infinite number of images, and their total contribution is appropri-
ately regulated with an exponential damping of the one-dimensional gravitational interaction
due to Kiessling [10].

The Hamiltonian of the system is

HMR =
1
2m

N∑
i=1

p2i + 2πGm2
∑
i<j

(
|xi− xj| −

1
2L

(xi− xj)
2

)
. (91)

As explained, the effect of the mirror images is to introduce a repulsive interaction term quad-
ratic in the particles separation.

The chaotic dynamics of the system ofN= 3 particles was studied in [95] in order to determ-
ine whether the separation of chaotic and ergodic behavior observed for the free boundary case
[80, 83] holds also in the system with periodic boundary conditions. We summarize here some
of the results obtained.

The interaction energy can be simplified by introducing rhombic coordinates. Their defin-
ition requires some care, due to the periodic nature of the system. Define the primitive
cell [−L,L), with the boundary points identified. Particles crossing the boundaries reappear
instantly at the opposite boundary.

Assume for simplicity that the center of mass is initially fixed at zero x1 + x2 + x3 = 0. The
dynamics simplifies by introducing instead of (x1,x2,x3) the rhombic coordinates α,β defined
as

√
2α=

 x2 − x1 + 2L, −2L⩽ x2 − x1 <−L
x2 − x1, −L⩽ x2 − x1 < L
x2 − x1 − 2L, L⩽ x2 − x1 < 2L

(92)

and β which is defined in a similar way by replacing x2 − x1 with x3 − x2.
Expressed in the rhombic coordinates the interaction term in the Hamiltonian (91) takes the

form

VMR(α,β) = κ

{√
2(|α|+ |β|+ |α+β|)− 1

L

(
α2 +β2 +(α+β)2

)}
. (93)
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Figure 13. Simulation results for the gravitating system of N= 3 particles. (A)–(E) cor-
respond to total energy H= 0.226 and (F)–(H) to H= 0.624. (A) and (F) show the
Poincaré plots for the two values of energy H. The boxes denote the areas magnified in
the corresponding insets. The three-particle evolution and the corresponding trajectories
on the rhombic plane for: a P1 orbit (B)–(C); a P3 orbit (D)–(E); a P2 orbit (G)–(H);
another P2 orbit (I)–(J). α and β have been expressed in the units of

√
2L. Reprinted

with permission from [95]. Copyright (2016) by the American Physical Society.

The chaotic dynamics can be investigated by constructing Poincaré surfaces of section.
Recalling that the phase space of the N= 3 system is three-dimensional, fixing one coordinate
gives two dimensional Poincaré plots, which are easily interpreted visually. The additional
constraint imposed is α+β = 0, which corresponds to crossing of particles 2 and 3. The res-
ulting Poincaré plots are shown in figure 13, following [95], for two values of the total energy
H= 0.226 (panels A–E) and H= 0.624 (panels F–H).

In contrast to the three body gravitating system with free boundary conditions, the Poincaré
plots show dependence on the total energy. We start by analyzing the small total energy case
H= 0.226. The Poincaré section is shown in figure 13(A). We note three major stable regions
in the central and the upper left and right portions of the plot. The fractal region, located in
the lower part of the plot, consists of self-similar sets of nested stable islands and includes
infinite ‘period-N’ orbits that are surrounded by quasi-periodic orbits between which narrow
chaotic regions exist. Figure 13(B) shows the primitive cell evolution for the P1 orbit from
figure 13(A) whereas figure 13(C) shows the corresponding motion on the rhombic plane, with
figures 13(D) and (E) showing the same for the P3 orbit from the fractal part of the Poincaré
plot. The P3 configuration shown in figure 13(E) is called a pretzel orbit in the language of
[83].

This picture is similar to that observed in the system with free boundary conditions, dis-
cussed in [80, 83]. This can be understood by noting that for low energies, the inter-particle sep-
arations are very small, and therefore, the quadratic terms in the potential may be disregarded.
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As the total energy increases, the gravitating system starts deviating from the free-boundary
behavior. In the free-boundary version of the gravitating system, changing energy does not
bring about a change in the structure of the phase-space, it just scales the phase space. How-
ever, in the periodic version, as energy is increased, the phase space gets more chaotic. How-
ever, small stable islands start appearing, as seen in figure 13(F) for H= 0.624, which grow
and finally engulf the chaotic region. At higher energies, the particles are able to cross between
rhombic planes (or equivalently, adjacent cells in the periodic 3-body system). Plots of prim-
itive cell evolution and motion on the rhombic plane are shown for the central P2 orbit in
figure 13(F) in figures 13(G) and (H) respectively. Another set is shown for a different P2
orbit (lying at the bottom of the horseshoe) in figures 13(I) and (J) respectively. Also note that
periodic orbits form ‘closed loops’ (for the periodic boundary conditions, this means that after
a finite number of strands on the rhombic plane, the trajectory will simply repeat on top of
each other), quasi-periodic orbits result in ‘bands’ on the rhombic plane that trajectories will
never move out of, and chaotic orbits lead to unpredictable trajectories on the plane. Of course,
conservation of energy may set a boundary beyond which the particle will never go, in which
case, the chaotic trajectory will fill in the allowed region as time progresses). As one moves
away from a fixed point (a ‘period N’ trajectory, N ∈ I) on the Poincaré plot, quasi-periodicity
takes over and the strands on the rhombus starts spreading into bands.

2.5.3. Lyapunov spectrum for 1D systemswith periodic boundary conditions. Anewmethod
for computing the Lyapunov spectrum was developed and applied to the study of the 2-
component plasma with periodic boundary conditions in [94]. This was extended also to one-
dimensional gravitational systems with periodic boundary conditions in [97]. We discuss here
in some detail the case of the gravitational system.

The paper [97] presents a method for computing the entire spectrum of Lyapunov exponents
λi. The initial conditions are chosen such that the sheet velocities are Gaussian distributed,
while their positions are chosen randomly. The system is allowed to relax over a sufficiently
large time such that the Lyapunov exponents converge to well defined values. The number of
sheets was taken as 5⩽ N⩽ 20.

The results for the Lyapunov spectrum satisfy the expected properties: (a) the sum of all
exponents converges to zero, (b) the Lyapunov exponents appear in pairs of opposite sign λi =
−λ2N−i+1, and (c) four Lyapunov exponents are consistent with zero λN−1 ≃ λN ≃ λN+1 ≃
λN+2 ≃ 0. The spectrum depends on the energy per particle.

2.5.4. 1Dmodels of density fluctuations. 1D gravitational systems are used to model density
fluctuations driven by gravitational interactions. Considering an initial density perturbation
δρ(x) = ρ(x)− ρ̄ around an uniform density ρ̄, one is interested in the study the dynamics of
the density fluctuations.

An important result is the Jeans instability which states that density fluctuation modes with
wavelengths smaller than a critical Jeans length become unstable and grow exponentially. See
section 5 in [3] and section 9.3 in [98] for overviews. The Jeans length is6

LJ =

√
T

2gρ̄
, g= 2πG. (94)

6 Equation (9.62) in Kolb and Turner has a similar expression for the Jeans wave-number kJ ∼ 1/LJ with T replaced
by v2s = p/ρ the squared speed of sound. Using the equation of state for the ideal gas p= ρT this reproduces the result
quoted here.
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Here T is the temperature and ρ the gas density. This result is important in cosmology where it
gives the conditions under which density inhomogeneities can grow and form dense objects.

The assumption of equilibrium of the infinite homogeneous system is not completely jus-
tified, due to the absence of pressure gradients which would balance the infinite gravitational
problems. In order to proceed, one must accept the existence of the equilibrium, and postulate
that the gravitational potential is determined by the density fluctuations. This assumption is
the so-called Jeans swindle, see section 5.1 in [3] for a discussion. The assumption has to be
checked for each case, and ensure that it leads to consistent predictions.

One solution to the Jeans swindle was proposed by Kiessling by introducing an exponen-
tially damped regularization of the gravitational interaction [10]. The range of the exponential
damping can be taken to infinity at the end of the calculation, and physically meaningful results
are obtained for quantities for which this limit exists and is finite.

The simplest setting where this phenomenon can be studied is the OSCmodel of Fanelli and
Aurell [89]. This consists of N particles on a line, interacting by 1D gravitational potentials
2πGm2|x− y|. The particles are restricted to a finite region [0,L], and continuity boundary
conditions are imposed ρ(0) = ρ(L), but not the continuity of the first derivative.

The properties of this system have been studied by numerical simulation, and analytically in
the Vlasov limit by Valageas [91, 92]. Both static and dynamical equilibrium properties have
been obtained. The system is found to have qualitatively different properties below and above a
critical temperature. The equilibrium state above this temperature has a uniform density, while
below this temperature the gas has a non-trivial density.

The OSC model breaks translation invariance, due to the boundary conditions used. This
problem disappears in a related system, considered by Miller and Rouet [93], which is dis-
cussed in the next section.

2.5.5. Thermodynamics of theMiller-Rouet model. Amodel for one-dimensional gravitating
systems with periodic boundary was proposed by Miller and Rouet in [93]. This model and its
derivation were presented above in section 2.5.1. We repeat here only the main features, and
discuss its thermodynamical properties.

The system is enclosed in the box [0,L] and periodic boundary conditions are imposed,
identifying the points 0,L. In addition, the system is assumed to be placed into the uniform
background of a mass distribution. The model is appropriate for studying one-dimensional
density fluctuations in a uniform mass distribution.

The interaction potential in the MR model has the form7

V(x,y) = 2πGm2

(
|y− x| − 1

L
(y− x)2 − 1

6
L

)
. (95)

The thermodynamics of the MR model was studied in [19]. This system has a more com-
plex behavior than the one-dimensional gas enclosed in a box described in the previous section.
Above a critical temperature Tc1 the gas density is uniform, while below Tc1 the density devel-
ops a spatial density with one minimum. Decreasing the temperature further there is an infinite
sequence of critical temperatures Tc1 > Tc2 > .. . at which further states become accessible,
with more minima within the primitive cell.

We give an overview of these phenomena, starting with the gas density, which is given by
the following result.

7 Note the change of the primitive cell [0,L) compared that that used in the previous sections [−L,L). This is done
for consistency with [19].
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Proposition 4. The single particle distribution function of the gas of particles interacting by
the two-body potentials (95) in thermodynamical equilibrium at temperature T satisfies the
Lane-Emden equation

d2

dx2
logρ(x) = 2β(1− ρ(x)), x ∈ [0,1]. (96)

This is normalized asˆ 1

0
dxρ(x) = 1. (97)

We would like to solve the equation (96) with the constraint (97), for given temperature T. It
is convenient to introduce the new unknown function y(x) defined by

ρ(x) = ey(x). (98)

Expressed in terms of this function, the differential equation (96) reads

y ′ ′(x) = 2βg2(1− ey(x)) (99)

with the normalization constraintˆ 1

0
dxey(x) = 1. (100)

We impose periodic boundary conditions

y(0) = y(1), y ′(0) = y ′(1). (101)

At this point we note the similarity of the equation for the single particle distribution func-
tion in the Miller-Rouet model (99) with the corresponding equation in the OSC model [91],
see equation (12) in [91] (up to a redefinition y(x)→−βψ(x) and rescaling x/L→ x). There
is also a slight difference, as the boundary conditions (101) are more constraining than the
corresponding boundary condition in [91]. In particular, we require y(0) = y(1), which is not
imposed in the OSC model [91]. As a result, although the qualitative properties of the solution
is similar in both models, the details of the solution are different.

The qualitative behavior of the solutions of the equation (99) can be visualized in an intuitive
way by writing it as

y ′ ′(x) =−V ′(y(x)), V(y) = α2(ey− y− 1) (102)

where α2 := 2βg2. Expressed in this form, the problem can be visualized in terms of a dynam-
ical analogy: this is the same as Newton’s equation of motion for a particle of mass 1 moving
in the potential V(y). See figure 14 for a plot of V(y).

The total energy is conserved

E=
1
2
[y ′(x)]2 +α2(ey(x) − y(x)). (103)

Using this dynamical analogy it is easy to understand the qualitative behavior of the solu-
tions of the differential equation (102). The equation (102) has always the trivial solution
y(x) = 0, which corresponds to the particle sitting at rest at the bottom of the potential well
V(y). In addition to this trivial solution it can have oscillatory solutions, corresponding to the
particle moving in the potential V(y), starting at some non-zero value y(0) ̸= 0 with a positive
or negative initial speed y ′(0), and then performing one full oscillation or several oscillations
before returning to the starting point y(1) = y(0) with the same velocity y ′(1) = y ′(0) at time
1. The movement of the particle is spanned by yL ⩽ y(x)⩽ yR, where yL < 0,yR > 0 are the

39



Class. Quantum Grav. 40 (2023) 073001 Topical Review

Figure 14. The potential V(y) given in (102) of the equivalent dynamical problem for
the spatial distribution of the gas density in the MR gas.

turning points at which the particle speed vanishes. They are related by energy conservation
to the initial position and speed as V(yL) = 1

2 [y
′(0)]2 +V(y(0)) = V(yR).

The simplest solutions correspond to trajectories where the particle performs one full oscil-
lation before returning to y(0) at ‘time’ x= 1. There are also solutions for which the equivalent
particle performs two, three, etc oscillations. We will denote the solution corresponding with
k oscillations the kth mode. They are obtained for different values of the α parameter: for
2π < α < 4π there is solution k= 1, for 4π < α < 6π there are two solutions with k= 1,2,
and so on.

The higher order solutions are related to the k= 1 solution as

y1(x,α) = y2

(
1
2
x,2α

)
= . . .= yk

(
1
k
x,kα

)
. (104)

The analysis presented above gives the following qualitative behavior of the gas density as
the temperature is lowered. In the infinite temperature limit T→∞we have α→ 0 and the gas
density is constant ρ(x) = 1. As the temperature is lowered, the density ρ(x) remains constant
until we reach α= 2π when one non-trivial solution for y0 appears. This point corresponds to
temperature

Tc1 =
g2

2π2
=

2πGML
2π2

. (105)

Compared to the critical temperature in the OSC model [91], this is smaller by a factor of
1
4 . This is due to our boundary condition y(0) = y(1) which is not imposed in [91]. However,
the result for Tc1 has the same dependence on model parameters as in the OSC model, see

equation (11) in [92] which gives Tc1 =
2g2

π2 in our notations. Note that in this reference 2πG
is denoted g.

As the temperature is lowered below this point, non-trivial solutions with inhomogeneous
gas density appear. They are translated versions of the basic solution ρ1(x) = exp(y1(x)). ρ1(x)
has a maximum at x= 1/2.
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As the temperature is lowered further, we reach the point α= 4π, corresponding to tem-

perature Tc2 =
g2ML
8π2 . Below this temperature there are two solutions for y(x) corresponding

to k= 1,2. In addition to the k= 1 solution we have another solution with k= 2, which has
oscillatory density behavior, and has two maxima/minima within the box. In general there is
an infinite sequence of critical temperatures at which new solutions appear, given by α= 2nπ,
with n= 1,2, . . .

Tcn =
g2

2n2π2
=

2πGML
2n2π2

. (106)

The thermal properties of the gas are described in terms of the free energy F of the gas.
This can be found in closed form and is given by proposition 2 in [19]. We discuss here some
of the main properties of this function.

Around the critical point Tc1 (α just above 2π), the free energy per particle can be
approximated as

f− f0 ≃−12Tc1
√
x(1−

√
x)2 (107)

where f0 = T(log(N/L)− 1+ 1
2 log

h2

2πT ) is the free energy per particle in the homogeneous

density phase, below the critical temperature, and we denoted α
2π =

√
Tc1
T and x≡ T/Tc1.

From this expression it follows that the free energy difference f− f0 and its first derivative
with respect to temperature vanish at T= Tc1, while the second derivative has a jump from 0
at T> Tc1 to limT→Tc1−0 ∂

2
T( f− f0) =−6Tc1. Since the difference f− f0 vanishes for T> Tc1,

this implies that the free energy and its derivative are continuous at T= Tc1 while its second
derivative has a jump. We conclude that the phase transition at T= Tc1 is a second order phase
transition.

The specific heat is discontinuous at the critical point, and drops as the temperature
increases and crosses the critical point Tc1. Above the critical point Tc1 the specific heat is
constant and equal to cV = 1

2 , and below the critical point it takes the value

lim
T→Tc1−ϵ

cV = 3+
1
2
=

7
2
. (108)

The behavior of the specific heat close to the critical point was studied further in [19].

2.6. Concluding discussion

It seems appropriate to close the section on the approach to equilibrium by revisiting the three
questions asked in the Conclusions section of the Reidl and Miller [42]:

(a) Has thermalization ever been observed in a one-dimensional self-gravitating system?
Several studies presented evidence for relaxation to the equilibrium state in the OGS [44,
51, 52]. Joyce and Worrakitpoonpon [51] studied in detail relaxation to the equilibrium
distribution, as measured by the order parameters ϕ11,ϕ22, defined as expectations over

the phase space of the general form ϕαβ = ⟨|x|α|v|β⟩
⟨|x|α⟩⟨|v|β⟩ − 1.

(b) If thermalization occurs, what is the source of dynamic hyperbolicity (instability)?
Experience with systems with small numbers of particles suggest that thermalization is
related to three-body collisions. These collisions introduce chaos in the N= 3 system, as
discussed in section 2.4.2.

(c) If thermalization occurs, what is the time scale for relaxation?
Joyce and Worrakitpoonpon [51], working with OGS systems with N∼ 103 particles,
find evidence that the relaxation time to equilibrium is linear in the number of
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particles tR ∼ O(N), similar to that found earlier by Tsuchiya et al [44] and [40]. A similar
scaling follows from the two-step relaxation mechanism involving a QSS in the intermedi-
ate state, where the relaxation time is given by equation (64), although the factor fQSS could
introduce also mild dependence on N and the initial state. In the language of dynamical
systems this time scale is reflected in theN scaling of the smallest positive Lyapunov expo-
nent λN−2. Extrapolation in N of numerical simulations presented in [79] (see section 4.3)
gives a similar N scaling.

Levin et al [52] study the relaxation from a core-halo state to thermodynamical equi-
librium. They present numerical simulations with N= 500,750,1000 sheets which give
tM ∼ O(N1.8), similar to the scaling ∼O(N2) found by [37]. However, the metric used in
this paper ζ(t) = 1

N2

´
[N(x, t)−Nch(x)]2dx with N(x, t) the spatial density and Nch(x) the

core-halo density, is different from the metrics used by the other studies mentioned above.
It is not obvious that their N scaling should be the same. In view of this apparent discrep-
ancy, further study of this question is warranted.

In addition to the two-stage relaxation mechanism discussed at the beginning of
section 2.3, evidence of a more complex pattern, hinting at transitions among different
quasi-equilibrium states, was pointed out by Tsuchiya and Gouda [45], which refer to it as
itinerant behavior. This phenomenon is still poorly understood and more work is required
to understand the details of the relaxation to equilibrium.

We mention an interesting connection to atomic physics. The linear attractive interaction
typical of 1D gravitational systems appears in other problems unrelated to self-gravitating
systems. It was noted in [99] that in a gas of neutral cold atomic gas, the atoms interact with
linear attractive potentials when placed in the radiation field of a quasi-resonant laser beam.
This phenomenon has been studied experimentally in a cold Strontium gas. This allows the
laboratory study of this type of systems, and of their non-equilibrium dynamics.

3. Applications to cosmology: dynamics of structure formation

3.1. Generalities

Observations show that, on large scales, the Universe is composed of galaxies, galaxy clusters,
superclusters, and large voids [21]. This hierarchical structure has led scientists to speculate
that there is an underlying fractal structure to the distribution of mass in the Universe [100,
101]. Numerous, but not all, investigations support this hypothesis [102, 103]. While not the
subject of this review, we mention that an important study concluded that there is an absence
of fractal structure in the local Universe and homogeneity already at about 70 Mpc [104].
However more recent investigations take issue with this conclusion and provide evidence of
robust fractal structure [105] and the absence of homogeneity on much greater scales [106].
To demonstrate the emergence of fractal behavior requires the ability to construct dynamical
simulations that are precise on many length scales [107]. In the past this has proved challen-
ging for three dimensional evolution codes. While less realistic, event-driven one-dimensional
simulations can be carried out with high precision and have have provided valuable insights
into the development of cosmological self-similar, fractal structures [108–110].

Although not the focus of this work, it is worth noting that, following recombination,
dynamical considerations suggest that the first structures to form were approximately highly
flattened, one-dimensional sheets referred to as ‘Zeldovich pancakes’ [20]. Thus, there is a
possible connection with 1D cosmological models and the real Universe. However, since the
pancakes are short-lived on a cosmological time scale, one should not take this connection
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too seriously, especially since it is the development of structures on cosmological time (ie, 1D
‘galaxies’) that interests us here.

In the previous section we saw that, when the temperature is lowered below a critical value,
fluctuations about the mean density become unstable and the system undergoes a phase trans-
ition and reverts to an inhomogeneous state. This can be considered an equilibrium representa-
tion of cosmological structure formation. In actuality we know that the Universe is expanding.
From relativistic cosmology we know that the expansion factor, a(t), is a solution of the Fried-
man equation. According to the cosmological principle, the Universe is homogeneous and
isotropic on large scales. To understand how structure formation—ie, the creation of galaxies,
galaxy clusters, and voids—occurs as the Universe expands, cosmologists focus on a finite
segment of the Universe that is larger than any structures of interest, but small enough that
Newtonian dynamics is adequate. It is useful to consider the dynamics in a frame of reference
that keeps up with the expansion, ensuring that the mean density is constant. This is accom-
plished by working in the comoving frame. Since there is nothing special about the particular
segment under consideration, it is typically assumed that it obeys periodic boundary condi-
tions. It is thought that alternative choices of boundary conditions will have a stronger influ-
ence on the development of large scale fluctuations, which we want to avoid. However other
boundary conditions have also been studied and yielded similar results [89, 111, 112]. From
section 2.5 above, we recall that we have established a mathematical framework for account-
ing for periodic boundary conditions [93]. We will see below that one-dimensional models
have provided numerous insights into the properties of structure formation in an expanding
Universe.

The first one-dimensional models of cosmological evolution were carried out by Rouet and
Feix, and, following Fanelli [89], we shall refer to them as ‘RF’ models [111]. In its simplest
form, we have seen that a one-dimensional gravitational system can be thought of as a system
of parallel mass sheets of infinite extent. Each sheet experiences the (constant) gravitational
field of the remaining sheets (an electrical analogue would be parallel plate capacitors that
could be viewed as concentric spherical capacitors with an arbitrarily large radius). In the
RF model, only gravitational forces were considered. To take into account the cosmological
expansion factor, a(t), it was assumed that, as time progresses, the surface density of each sheet
decreases as 1/a2. We can introduce a coordinate, r, perpendicular to the surface of each sheet
and consider an assembly of say N sheets in a cell of length L(t). Due to the expansion, L(t) is
increasing as a(t).

To maintain a constant average density, the equations of motion were transformed into the
comoving frame expanding with a(t). For simplicity, specular reflection of particles at the
system boundaries was initially assumed. Later it became possible to asses the fields in the
presence of periodic boundary conditions exactly and these were employed in all subsequent
work [93]. Since only gravitational forces were considered, it was assumed that a(t)∼ t2/3

corresponding to a matter dominated cosmology [21]. In addition, the time was also re-scaled
with b(t)∼ tβ . While the power law governing a(t) is determined by the expansion, the choice
of the exponent β is free. It is shown below that β = 1/2 gives a rescaled equation of motion
with time-independent coefficients. For this system it was possible to carry out a very precise
N-body simulation by computing the next crossing time between each pair of mass sheets
and updating the positions and velocities accordingly. The crossing times were obtained by
analytically solving a cubic equation (see B.1). Because of the high numerical precision it was
possible to follow the system for very long times and study the resulting fractal density and
phase space particle distributions.

It was later demonstrated by Fanelli and Aurell [89] that the parallel sheet system could be
considered to be a planar perturbation embedded in an isotropic, spherical three dimensional
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Universe with only a small change in the equations of motion. For the case where the forces
are purely gravitational, the evolution could also be determined numerically by solving for the
crossing times (see appendix B). However in this case a fifth order equation is obtained so it is
commonly referred to as the quintic or Q model. Moreover, it was shown that the embedding
concept could be extended to arbitrary dimension d to describe a family of models [113].
Also, in that framework it was possible to introduce the standard cosmological description of
expansion including, for example, the cosmological constant and density parameters [114].

Because of the high precision with which the 1D simulations with point-wise particles can
be evolved, they are ideal for studying fractal geometry. Most of these studies have focused on
the configuration space [108, 110, 112, 115, 116] but the extension to the phase space has also
been considered [116–118]. The results suggest that multi-fractal behavior is present as well
[113, 119]. However, the representation of the matter distribution is limited at low density by
the granularity of the particles. To gain greater insight into multi-fractal behavior, a continuous
or Vlasov representation of the system has also been investigated [120].

The 1D systems have been used to investigate and compare gravitational clustering in sev-
eral other cosmologies besides the matter-dominated cases mentioned above. The Dirac-Milne
cosmology [23] (hereafter DM) assumes a Universe where there are equal amounts of matter
and antimatter, which separated before annihilation could eliminate the latter. To maintain the
separation, it is assumed that the antimatter repels both itself and regular matter. An advant-
age of this cosmology is that it does not require the assumptions of inflation, dark matter or a
cosmological constant. Recently, the 1D model was employed to investigate a version of the
DM cosmology where the antimatter component was uniformly distributed as a background.
A comparison with a 1D version of the ΛCDM model was also carried out [114].

In the following we will consider in some detail each of these investigations. For mathem-
atical economy we will introduce a formalism where the 1D system of sheets is treated as a
perturbation embedded in an isotropic system of d-dimensional shells. Where it is appropriate
we will introduce the standard cosmological constants that acquire their usual meaning for the
case d= 3.

3.2. Expanding Universe in comoving coordinates

We consider a spherically symmetric Universe in d dimensions, where all quantities depend
on a single spatial variable r, plus the time t. We shall use Newtonian gravity, but include the
presence of a finite cosmological constant. The equation of motion of a spherical shell in such
a Universe is as follows:

d2r
dt2

= Er(r, t)+
c2Λ
3

r, (109)

where Er =−∂rϕ is the gravitational field, c is the speed of light, and Λ is the cosmological
constant. The gravitational field is a solution of the Poisson equation

∇r ·E=−4πGρ, (110)

where ρ(r, t) is the matter density.
We now transform the equation of motion to the generalized comoving variables, denoted

by an over-caret and defined by the transformations

r= a(t) r̂, (111)

dt= b2(t) d̂t, (112)
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where a(t) is the dimensionless scale factor of the Universe. The velocity transforms as

dr
dt

=
a
b2

dr̂
d̂t

+ ȧr̂, (113)

where the dot stands for time differentiation with respect to t. Using these transformations, the
equation of motion becomes

d2r̂
d̂t2

+ 2b2
(
ȧ
a
− ḃ
b

)
dr̂
d̂t

+ b4
ä
a
r̂=

b4

a3
Êr+

c2Λ
3

b4 r̂ , (114)

where Ê(r̂, t̂) is the scaled gravitational field. As the density must scale as ρ̂(r̂, t̂) = a3(t)ρ(r, t)
in order to preserve the total mass, we scale the gravitational field as Ê(r̂, t̂) = a2(t)Er(r, t), so
that Poisson’s equation remains invariant in the scaled variables:

∇r̂ · Ê=−4πGρ̂. (115)

In equation (114), it is convenient to choose a scaling that satisfies b4 = a3, so that the coef-
ficient in front of the gravitational field is time-independent. However, other choices can be
found in the astrophysical literature [121]. This choice yields:

d2r̂
d̂t2

+
1
2
a3/2

ȧ
a
dr̂
d̂t

+ a2 ä r̂= Êr+
c2Λ
3

a3 r̂. (116)

Most cosmological models assume a uniform distribution of matter at large scales. Hence,
it is useful to establish whether the comoving equation of motion (116) admits stationary solu-
tions that are uniform in space. A stationary solution in the comoving variables corresponds
to an expanding solution in real space, with expansion factor a(t).

For a constant density ρ̂= ρ0, Poisson’s equation (115) can be solved exactly in a
d-dimensional space to give the gravitational field: Êr =−4πGρ0r̂/d. Substituting into
equation (116) and considering an equilibrium configuration (ie, setting all time derivatives
to zero), we obtain the condition:

−a2 ä− 4πGρ0
d

+
c2Λ
3

a3 = 0. (117)

We define the density parameters, i.e. the densities normalized to the critical value ρc =
3H2

0/(8πG), as:

ΩM =
8πGρ0
3H2

0

, ΩΛ =
Λc2

3H2
0

. (118)

Rearranging terms, equation (117) becomes:

ä
a
=−H2

0

(
3
2d

ΩM

a3
−ΩΛ

)
. (119)

For d= 3, this is nothing but the second Friedmann equation for a non-relativistic Uni-
verse without radiation pressure. The first Friedmann equation can be obtained by integrating
equation (119) once, which yields:(

ȧ
a

)2

= H2
0

(
3
d
ΩM

a3
+ΩΛ +

ΩK

a2

)
, (120)

where ΩT =ΩM+ΩΛ and ΩK = 1−ΩT is the spatial curvature energy density.
All in all, we have shown that the Friedmann equations can be recovered in a fully Newto-

nian context simply by requiring that a homogeneous steady-state solution exists in comoving
space.
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Substituting the Friedmann equations (119) and (120) into the comoving equation of
motion (116), one gets, after some cancellations:

d2r̂
d̂t2

+
H0

2

(
3ΩM

d
+ΩΛa

3 +ΩKa

)1/2 dr̂
d̂t

= H2
0
3ΩM

2d
r̂+ Êr. (121)

Subsequently, we consider locally planar perturbations embedded in this expanding Uni-
verse and denote the corresponding comoving coordinate x̂. In this locally planar system, Pois-
son’s equation can be written in a 1D form: ∂xÊx =−4πGρ̂(x̂, t̂). In order to use periodic
boundary conditions, we incorporate the first term on the rhs of equation (121) into the 1D
Poisson’s equation, yielding the following system of equations:

d2x̂
d̂t2

+
H0

2

(
3ΩM

d
+ΩΛa

3 +ΩKa

)1/2 dx̂
d̂t

= Ê, (122)

∂Ê
∂x̂

=−4πG
(
ρ̂(x̂, t̂)− ρ0

)
. (123)

Note that, while for d= 1 the Poisson equation (123) is consistent with the equilibrium solution
ρ̂= ρ0, for d> 1 we had to artificially remove a factor 1/d in front of the equilibrium density
on the rhs of equation (123). This is a small artefact that occurs because of considering 1D
perturbations embedded in a 3D Universe.

Three cases are particularly interesting:

• Einstein-de Sitter Universe: ΩM = 1, ΩΛ = 0, and ΩK = 0 (flat-space Universe), for which
equation (119) leads to a(t)∝ t2/3. In this case, all coefficients in equation (122) become
time-independent;

• Standard cosmological model (ΛCDM): ΩM ≈ 0.3, ΩΛ ≈ 0.7, and ΩK ≈ 0 (also flat-space
Universe);

• Milne Universe:ΩM = 0,ΩΛ = 0, andΩK = 1 (flat space-time), for which a(t)∝ t (coasting
Universe).

In the remainder of this section, we will illustrate how the above 1D gravity models can be
used to study structure formation in a cosmological context, with particular emphasis on the
Einstein-de Sitter Universe.

3.3. Einstein-de Sitter model

Historically, the Einstein-de Sitter model was adopted to perform the earliest cosmological
simulations. It corresponds to a matter dominated Universe and represents the critical case sep-
arating an infinitely expanding Universe and a periodically evolving one. Rescaling methods,
such as those used above to introduce the generalized comoving coordinates, are well-suited
to tackle this kind of evolution [122, 123]. Moreover, the Einstein-de Sitter solution is self-
similar, the scale factor going like t2/3. This has some importance as the time evolution of the
system never stops. In particular we will show that the clustering process which is observed
in the simulations (provided the excitation wavelength is small enough) continues as long as
the physical limit of the system does not play any role. Therefore it is a good candidate for
performing a fractal analysis. As indicated before, this model corresponds to ΩM =ΩT = 1,
ΩΛ = 0. With these values, equation (118) give

3
2
H2

0 = 4πGρ0 = ω2
J0 , Λ = 0, (124)
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where ω2
J0 is the Jeans frequency defined at present time. Then equation (122) reads:

d2x̂
d̂t2

+
1√
2d
ωJ0

dx̂
d̂t

= ω2
J0 x̂+ Êx . (125)

Depending on the value chosen for d, equation (125) defines a family of models [113].
The RF model is obtained by taking d= 1, while the Q model requires d= 3. Obviously it is
also possible to consider d= 2 for which the particles of the physical system are expanding
cylinders. Let us consider the source of instability that initiates cluster formation. Note that as
d is increasing, the friction coefficient term is decreasing. So in more than three dimensions,
d could be greater than 3, and taking d going to infinity will reduce the friction to 0. Then the
system dynamics is conservative in the comoving frame. This case has also been investigated
with numerical simulation [108]. In that case, the one-dimensional perturbation of the rescaled
system gives exactly the opposite of a one component plasma, that is attracting particles in a
repulsive fixed and neutralizing background. Taking into account the similarity of the two
systems, the dispersion equation reads

ω2 =−ω2
J + k2 v2T (126)

which indicates that the system is unstable for wavelengths l> 2πvT/ωJ. For such a system, the
Jeans length is given by the limit value lJ = 2πvT/ωJ. If the system is initially perturbed with
a wavelength greater than lJ , it dominates quickly as it is the most unstable. Then we observe
the formation of clusters the size of which is driven by lJ , so by the initial thermal velocity vT .
Even in the case where the friction does not vanish, the same behavior is observed.

The Q and RF models and the model without friction have been studied extensively using
numerical simulation [90, 111]. Two principal approaches have been employed to build the ini-
tial conditions. The earliest simulations employed a water bag distribution where the particles
are equally spaced and the velocities are chosen by uniformly sampling a symmetric interval
[124]. Later on, the Harrison-Zeldovich approach was employed where a power law was
assumed for the Fourier representation of the density [112, 125]. In particular, in [108], the
choice ρk ∼ k3 was selected because of the correspondence with ρk ∼ k in three dimensions
that is close to the observed values given by studies of the cosmic microwave background
(CMB) [108, 113, 119, 120].

In the following, as an example, we will focus on the RF model. Figure 15 shows the time
evolution of the density and the distribution in µ-space (position, velocity) for N∼ 2.5× 105

particles enclosed in a periodic box. The units are normalized such that the field created by
a single particle is ±1/2, and the average density is 1 (so the length of the system is equal
to the number of particles). Accordingly, the time is given in these units, and t̂= 0 should
be considered as the 1D analogue of the cosmological recombination time. The particles are
initially localized so that the density spectrum goes as k3 and the velocities are chosen to select
the growing mode [90, 108].

As the system evolves, a hierarchical structure formation is observed with a bottom up
scenario. The initially homogeneous system fractures into groups of particles, which fracture
again to form subgroups, and so on. This process continues as long as the boundaries do not
have any effect. It is almost achieved at t̂= 30 where only three large clusters remain at that
time. That is too few to claim that these structures are uniformly distributed on the system
size. To obtain better insight concerning the structure formation at t̂= 30, successive zooms
are plotted in figure 16. From top to bottom, each picture gives a zoom of the region defined
by a rectangle drawn in the phase space picture just above it. We observe a lack of mixing
in the overall box by attributing a color to an ensemble of nearby particles at t̂= 10. The
particles retain their color at each time in figure 17. It is shown that the clusters only gather
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Figure 15. RF model. Time evolution of the matter density in regular space (left panels)
and inµ-space (right panels), forN= 262144 particles, in comoving co-ordinates. Here,
and in the following figures, T represents the scaled time t̂ defined in the main text, see
equation (112).

nearby particles. Both the density spectrum and the correlation function then give amore global
picture of the self similar distribution of the particle positions. Figures 18 and 19 show the time
evolution of, respectively, the density spectrum and the correlation function. As time goes on,
a scaling range appears and increases in each. In log-log plots the density spectrum yields a
slope of −0.48 whereas the correlation function exhibits a slope of −0.56.

Note that the power spectrum shows two distinct scaling ranges separated by a peak at the
crossover, say kc(t). At long wavelengths, i.e. for k< kc, the slope in the log-log plot retains
the power-law associated with the initial condition. This represents low-density regions where
the particles’ trajectories have not undergone crossings with each other. On the other hand, the
scaling region for k> kc manifests the effects of cluster formation. This power-law behavior
results from the scale-invariant properties of the clustering phenomena which we have dis-
cussed earlier and provides a 1D version of a fractal Universe. It is natural to consider that the
crossover wave vector kc(t) represents the typical inverse scale for the largest clusters formed
at that time. As the non-interacting regions decrease in size, kc(t)moves to smaller and smaller
wave vectors so the initial conditions only influence the very largest scales. The determination
of the cross-over scale has been discussed in [108, 110, 126]. The first quantitative indications
that scale-free, or fractal, behavior was present in the distribution of galaxies came from studies
of the galaxy-galaxy pair correlation function. This required the ability to determine proper as
well as angular inter-galaxy separations from large scale surveys, such as the sloan digital sky
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Figure 16. For the simulation shown in figure 15, successive zooms of configuration
space (left panels) and µ-space (right panels). The square drawn in µ-space on the top
figure is zoomed on the figure just below, and so on.

survey (SDSS) [127]. Here as well, in our 1D simulations, power-law decay is a manifestation
of fractal geometry. However, as a result of Baryonic Acoustic Oscillation, additional struc-
ture shows up in the astrophysical observations [21]. In addition to the power law decay of the
correlation function and power spectrum, the existence of a single scaling exponent suggests
that the mass distribution is becoming fractal on larger scales as time progresses.

Box counting is the most popular approach for analyzing the properties of a fractal structure
and here we use it to determine the generalized fractal dimensionDq [107, 128] of the particles
in configuration space. In order to do so, the system (0⩽ x̂⩽ L) is covered with boxes of length
ℓ of decreasing size: ℓ= L/2, ℓ= L/4, and so on. Then the quantity I(q, ℓ) =

∑
i(Ni/N)

q(ℓ)
is computed for each value of ℓ, where N i is the number of particles contained in the ith box
and q is an integer which is intended to give more weight to high-density (when q> 0) or
low-density regions (q< 0). The generalized fractal dimension is defined as

Dq =
1

q− 1
lim
ℓ→0

ln[I(q, ℓ)]
ln(ℓ)

, (127)

for a given value of q ̸= 1. In the limit q→ 1, equation (127) allows us to define the information
dimension D1 :

D1 = lim
ℓ→0

∑
i((Ni/N) ln(Ni/N))

ln(ℓ)
. (128)
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Figure 17. For a small spatial slice of the simulation given in figure 15, clusters are
painted in different colors at t̂= 10 and then drawn at different earlier times.

One also defines D0, called the box counting dimension and D2 the correlation dimensions.
The following relation holds between the index n of the power spectrum P(k)∼ kn and the
correlation function ξ(x)∼ x−γ [108]:

D2 = 1− γ =−n. (129)

A log–log plot of ln[I(q, ℓ)]/(q− 1) as a function of ln(ℓ) gives a scaling range of slope Dq

as seen in figure 20. The box counting dimension D0 has been computed both in configuration
space and phase space (in that case, the µ-space is covered with rectangles). Because the data
of real observations show a more complex structure than a uniform fractal, the generalized
dimension has also been computed using size-oriented methods, such as the common box
counting method or the point-wise method. In these methods the parameter q allows one to
distinguish the high density (q≫ 1) and low density regions (q≪ 1). However these methods
show a non increasing Dq spectrum, which is not what should be expected [129, 130]. At
t̂= 30, figures 18–20 exhibit a strong scaling range. They give the values n=−0.48, γ= 0.56
and D2 = 0.44 which agree quite well with relations (129). These exponents have also been
computed for different models and initial conditions [108, 110]

Figure 20 shows that the scaling ranges are not so well defined as q decreases and have to
be carefully chosen [131]. Consequently Shiozawa et al explored alternative methods of com-
puting the generalized fractal dimension introduced by Grassberger et al [132] and extended
by van de Water and Schram [133], based on equal mass partitions [134]. They are more soph-
isticated than standard methods based on equal size boxes, in the sense that they do not give
directly the Dq spectrum. Nevertheless, as for the previous method, a scaling range of a curve
in a log-log plot has to be determined. This scaling region has to be chosen carefully. All these
methods have been carefully tested on arrays of particles distributed according to well known
fractals such as the Binomial Multiplicative Process or the generalized Cantor Set [107]. The
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Figure 18. Time evolution of the power density spectrum of the mass distribution for the
simulation given in figure 15. The red arrows define the regions over which the slopes
of the spectra are calculated at t̂= 0 and t̂= 30.

result is that, at least for these two fractals, they are able to provide insight regarding the Dq

spectrum especially for negative values of q.
The usual box counting method was originally used, both in configuration space and µ–

space to determine the box counting dimension D0 for the RF and the water-bag initial condi-
tions. Later the box counting as well as the point-wise dimension was used to give a picture
of the overall spectrum Dq for the RF and Q models for an initial power law power spectrum
[108]. As discussed above, the correlation dimension value D2 is also recovered by the slope
taken from the density power spectrum and the correlation function itself (at the same time).
Nevertheless, these methods give an increasing Dq as a function of q which is unacceptable
[129, 130]. To obtain better insight on the negative interval values of q, the two mass-oriented
methods previously described have been used. All the methods give the same results for pos-
itive values of q, that is almost Dq ∼ 0.4, independent of q and close to the description of a
monofractal (see figure 25). But they differ for negative values of q for which a decreasing Dq

is now observed and suggests the existence of multi-fractal geometry [113]. This difference
of behavior suggests that the low density regions are not well treated by methods based on
partitions of equal size and that a Vlasov approach may overcome this problem.

3.4. Two-component model

By observing the distribution of luminous matter in galaxies and clusters of galaxies we
are able to extract information concerning the fractal nature of the mass distribution in the
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Figure 19. Time evolution of the correlation function of the mass distribution for the
simulation given in figure 15. The red arrows define the region over which the slope is
calculated at t̂= 30.

Universe. However, according to current theory, the visible matter only accounts for roughly
20% of the total matter, and we have no way of directly observing the dark matter component,
although its presence can be inferred from gravitational lensing and galactic rotation curves.
An important question then arises: What is the fractal geometry of the total matter distribution
of the Universe or, equivalently, is the geometry of the dark matter component different from
that of luminous matter?

Theoretical cosmology has not provided us with an analytical prediction of the geometry
of structure formation and investigators have resorted to computational simulations to gain
insight into these questions. Until recently, structure formation has been modeled by a single
component system which does not distinguish between the components—they are essentially
dark matter simulations. An essential difference between luminous, or baryonic, matter and
darkmatter is the presence of dissipation in the former through radiation and other processes. In
order to explore possible differences between eachmatter component in a 1D context Shiozawa
et al constructed a two-component self-gravitating model where one of the components can
lose energy [119]. Of course, in the comoving frame, there is already an apparent dissipative
contribution created by the friction term that arises from the transformation from inertial to
comoving coordinates. However, what is needed is a dissipation mechanism that only applies
to one of the matter components.

In the 1D dynamics dissipation can be conveniently included by introducing energy loss in
one component whenever a pair of ‘matter sheets’ cross. In common with inelastic collisions
that occur between material objects in the laboratory (steel ball bearings, for example), one
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Figure 20. ln[I(q, ℓ)]/(q− 1) as a function of ln(ℓ) for the matter density of the simu-
lation shown in figure 15 at t̂= 30 and three values of q. The scaling ranges are plotted
with a thin discontinuous line. Their slope gives Dq according to equation (127).

can introduce an effective restitution coefficient at each sheet-crossing. A velocity-dependent
collision coefficient κ was introduced analogous to a restitution coefficient. Following each
crossing of the luminous component, the velocity of each sheet in the pair is reduced by a factor
κ. The velocity dependence is given by κ= exp(−c|v1 − v2|3/5) where v1 and v2 represent the
velocities of two colliding particles or sheets. The coefficient c was chosen arbitrarily in the
simulations so that the trajectories of luminous matter particles are substantially different from
dark matter particles without forcing them to collapse too quickly. The luminous particles lose
more energy when the velocity difference between the two crossing elements is large.

The initial conditions were chosen following the 1D version of the Harrison Zeldovich pre-
scription as in the simulations discussed earlier. Simulations were carried out with 105 particles
and a fifth of them were chosen to represent dissipative, or luminous, matter. To illustrate what
happens, in figure 21 the evolution of the positions of a system with 300 particles is tracked
just for clarity, so 60 particles are subject to the velocity dependent collision law. At the onset
the tracks are nearly vertical, indicating that the velocities are small and nearly constant. As
crossings occur, fluctuations in the local field develop and the tracks change direction. As anti-
cipated, the development of self similar clustering occurs with dark matter forming a ‘halo’
around a core of luminous matter particles. In figure 22 the distribution of matter in phase
space at three selected times in the evolution is displayed as well as a plot of the potential, kin-
etic and total energy showing energy loss starting after about ten time units. Strong clustering
is apparent here as well.
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Figure 21. This figure shows how matter coalesces together to form a single cluster at
the end of the simulation. The initial distribution of particles is nearly uniform. The
simulation was performed with N= 300 for illustrative purposes. The blue dots repres-
ent dark matter and red dots luminous matter. Reprinted with permission from [119].
Copyright (2016) by Elsevier Ltd

Employing a simulation with 105 particles, the positional data was subjected to a complete
mutifractal analysis. In order to avoid the known difficulties associated with equal size decom-
position (see above), the mass-oriented k–neighbor and fixed kmethods were employed, where
k is the number of neighbors separating a pair of points. For a discussion and comparison of
these methods with known fractals see Shiozawa et al [134]. In general, at a given time, three
scaling ranges were observed as a function of lnk. The highly clustered matter contributes
strongly at small values of k, whereas for very large separations, the system appears homogen-
eous. An intermediate range represents the transition from the clustered to the homogeneous
scale.

It was possible to extract generalized dimensions Dq at specific times from the analysis,
and specific values are provided in table 1. The table indicates that, in contrast with equal size
decompositions, here we find that Dq is a decreasing function of q as it should be. Let us just
focus for now on D0, and D2, the box counting and correlation dimensions.

The values of D0, and D2 for dark matter at later times agree with earlier studies of single
component systems using the more traditional equal size decomposition [108]. In contrast, as
time progresses we see from the table that the luminous matter has consistently lower general-
ized dimension than the dark matter, suggesting denser, more compact clusters. The similarity
of Dq for negative q values for each component suggests that the low density ‘voids’ have no
difference in structure.
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Figure 22. Figures (a)–(c) show the distribution of 300 matter particles in µ-space at
τ = 10, 15 and 20 respectively. The blue dots represent dark matter and red dots lumin-
ous matter. Figure (d) illustrates the energy of the system over time. Reprinted with
permission from [119]. Copyright (2016) by Elsevier Ltd

Table 1. This table shows the generalized dimensions of the distribution of each type of
matter computed using the fixed k approach with k= 5 at a selected set of scaled times.

Index q −4 −2. 0. 2. 4

Dark

T = 9 1.00 1.00 1.00 1.02 1.08
T = 14 1.01 1.01 0.97 0.74 0.54
T = 19 1.37 1.15 0.55 0.46 0.46

Luminous

T = 9 1.04 1.02 0.97 0.90 0.76
T = 14 1.04 1.02 0.94 0.59 0.36
T = 19 1.30 1.12 0.49 0.39 0.34

At the beginning of the simulation, fractal analysis correctly shows that the model Universe
is homogeneous on all scales. In common with 3D simulations, however, as time progresses,
in-homogeneity continuously grows and the scale at which the distribution becomes homo-
geneous expands over time. We see that each type of matter follows a similar evolution but
with significant quantitative differences. As we would naturally expect, due to dissipation,
luminous matter is concentrated at the core inside clusters. This gives rise to lower fractal
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dimensions in the positive range of q. Due to the energy loss during the collisions, luminous
matter starts to coalesce first. In contrast, the void regions show no significant difference in
structure between the two types of matter as the long range force is primarily responsible for
void formation. The structures continue to increase in size and the self-similar patterns, with
well-defined fractal dimensions, persist over time. The difference in fractal dimensions within
clusters is amanifestation of the bias of the luminousmatter distribution against the darkmatter
distribution.

3.5. Vlasov dynamics of structure formation

A large amount of work on the formation of complex gravitational structures in our Universe
has been accomplished using Newtonian 1D models [108, 110, 112, 113, 135]. However, N-
body simulations suffer from an intrinsic undersampling of the phase space because of the
finite number of particles used in the codes. As the number of bodies is extremely large, one
should instead solve the Vlasov equation—ie, theN→∞ limit of the N-bodymodel—coupled
to the Poisson equation for the gravitational field. This is a formidable computational task, both
in terms of run duration and memory storage, particularly for situations where intricate phase
space structures develop over time, which is generally the case for cosmological simulations.
Indeed, in order to solve the Vlasov equation, one needs to mesh the entire phase space, which
is 6D in the most general case.

Fortunately, today’s computer resources make it possible to envisage direct numerical simu-
lations of theVlasov-Poisson equations on a phase-space grid, if not for the full 3D case, at least
in one spatial dimension. Compared to N-body codes, Vlasov codes exhibit a much lower level
of numerical noise, particularly in regions of low matter density. Hence, they should constitute
a valuable tool to study structure formation and in particular to understand the role played by
large regions of underdensity in the Universe (so-called cosmic voids). A detailed comparison
of the pros and cons of N-body (particle-based) and Vlasov (grid-based) codes is provided in
appendix B. The present section is devoted to the presentation of cosmological results obtained
with a 1D Vlasov approach, focussing on the Einstein-de Sitter Universe [120].

From the equation of motion (125) with d= 1, one defines a phase space x̂, v̂, where v̂≡
dx̂/d̂t, and a probability distribution function F(x̂, v̂, t̂). The latter obeys the following Vlasov
equation, with periodic boundary conditions in the scaled spatial coordinate x̂:

∂F

∂ t̂
+ v̂

∂F
∂x̂

+ Ê
∂F
∂v̂

− ωJ0√
2

∂(v̂F)
∂v̂

= 0, (130)

which corresponds to the equations of motion (122) with ΩM =ΩT = 1 and ΩΛ = 0.8 The dis-
tribution function is pushed in time using a split-operator scheme [136]. Interpolations on the
grid are performed using an accurate finite-volume algorithm [137] that preserves the positiv-
ity of the distribution function. For the results presented below, we used 32 000 points in the
spatial coordinate and 1000 points in velocity space.

The initial condition is a cold Maxwellian, with a small variance in velocity space. The
initial matter density ρ(x̂) is so constructed as to display a power-law spectrum of the type:
|ρk|2 ∼ k3, where k is the wave number in x̂-space. This spectrum is compatible with that of an
expanding Universe following an early inflation stage [20].

8 For technical reasons, in our earlier work a different scaling than the one of equation (122) was used, leading to a
more complicated Vlasov equation. For details, see [120].
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Figure 23. Phase-space distribution function. The top panel shows the entire phase
space. The central and bottom panels show consecutive zooms. The contour levels are
distributed logarithmically in the interval: 10−8 ⩽ F⩽ 1. Reprinted with permission
from [120]. Copyright (2016) by the American Physical Society.

Figure 23 shows the phase-space distribution function at a later time. The distribution func-
tion displays a hierarchical structure at different scales, with small clusters orbiting each other
to form larger clusters, which in turn also revolve around each other. This hierarchy is at the
basis of the fractal structure also observed with N-body simulations.

Next, we show the wave number spectrum of the matter density |ρk|2 (figure 24). Rather
quickly, a decreasing power-law spectrum builds up, with a slope approaching −0.5, which
is close to the value observed for N-body simulations [116]. The range of the power-law
region (kmin,kmax) increases with time, with kmin getting smaller and smaller while kmax remains
roughly constant. The steep cutoff at k> kmax is due to numerical diffusion.

The clustering of the phase-space (figure 23) and the power law observed in the density
spectrum (figure 24) point to an underlying fractal structure of the matter distribution, as was
the case for theN-body simulations [118]. Box counting is themost standardmethod to analyze
the properties of a fractal structure and here we use it to determine the generalized fractal
dimension Dq [128]. The approach is similar to the above but with the replacement of the
number of particles in a given cell by the included mass, mi. As above, the system (0⩽ x̂⩽ L)
is covered with boxes of length ℓ of decreasing size: ℓ= L/2, ℓ= L/4, and so on. Then the

quantity I(q, ℓ) =
∑

im
q
i (ℓ) is computed for each value of ℓ, wheremi =

´ (i+1)ℓ
iℓ ρ(ξ)dξ/mtot is

the proportion of mass contained in the ith box,mtot is the total mass, and q is an integer which
is intended to give more weight to high-density (when q> 0) or low-density regions (q< 0).
As before, the fractal dimension is defined as
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Figure 24. Power spectrum of the matter density |ρk|2 for different scaled times θ. A
moving average over 41 points is taken in order to smooth the fluctuations. The scaled
time θ is related to the time t̂ [equation (112)] by the expression: ωĴt= 3ln

(
1+ 1

3ωJθ
)
,

where ωJ is the Jeans frequency at θ= 0. Reprinted with permission from [120]. Copy-
right (2016) by the American Physical Society.

Dq =
1

q− 1
lim
ℓ→0

ln[I(q, ℓ)]
ln(ℓ)

. (131)

To improve the statistics, the value I(q, ℓ) was averaged over 1024 realizations.
It can be proven [138] that Dq should be a monotonically decreasing function of the expo-

nent q. However, N-body simulations showed that, whileDq displays the expected (decreasing)
trend for q> 0, it is an increasing function for q< 0 (see open circles in figure 25). Since neg-
ative values of q over-represent low-density regions, this behavior was attributed to the poor
sampling of these regions, where the number of particles is small and the statistics is thus very
noisy [118].

Vlasov codes, by sampling the entire phase space with the same accuracy irrespective of
the matter content, should provide better results precisely in such low-density regions. This is
indeed what we observe in figure 25. For positive values of q, which are dominated by large-
density regions, the Vlasov and N-body results coincide; in contrast, for negative q the Vlasov
curve (open squares) is basically flat (within the accuracy of the simulations) and definitely
greater than the corresponding N-body results.

In order to compare to the N-body result, we have introduced an artificial cutoff in the dens-
ity ρ obtained from the Vlasov simulations. Values of ρ that are below a certain threshold are
set to zero. In figure 25, we show the results for four values of the threshold, ρth = 10−6, 10−4,
10−2, and 1. It is clear that, by increasing the cutoff level, the Vlasov results progressively
move towards the N-body results.

These findings nicely prove that the incorrect behavior of Dq observed in N-body sim-
ulations obtained from the box-counting approach was indeed due to poor sampling of the
low-density regions. In summary, the Vlasov approach confirmed the N-body results for high-
density regions, and extended such results to regions of low matter density. Therefore, in addi-
tion to employing mass-oriented methods for computing multifractal properties, Vlasov codes
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Figure 25. Fractal dimension Dq for various values of the exponent q and different
cutoffs of the matter density. Open circles correspond to the N-body results obtained
with N≈ 262000 particles. Open squares correspond to the full Vlasov results (no
cutoff). Other symbols correspond to Vlasov results with cutoff threshold at ρth = 10−4,
10−2, 1, and 4. Reprinted with permission from [120]. Copyright (2016) by the Amer-
ican Physical Society.

should be recommended for future studies focussing on cosmic voids, where the matter density
is extremely thin.

3.6. Structure formation in the ΛCDM and Dirac-Milne cosmologies

The Einstein-de Sitter model discussed above (sections 3.2 and 3.5) predicts a Universe whose
expansion is slowing down. Indeed, as the scale factor behaves as a(t)∝ t2/3, the expansion
rate goes as ȧ(t)∝ t−1/3, and thus decreases with time. However, since the late 1990, several
observations point to the fact that the Universe expansion is actually accelerating, or at least
not decelerating. As a consequence, the Einstein-de Sitter model was progressively abandoned
in favor of other cosmologies that account for such accelerating expansion.

To date, the generally accepted standard model of cosmology, known as ΛCDM, comprises
an unusual mix of baryonic matter (ordinary nuclear matter) constituting less than 5% of the
total mass-energy content of the Universe, cold dark matter (CDM, ≈ 25%) and dark energy
(in the form of a cosmological constant Λ, ≈ 70%). The Friedmann equations corresponding
to different cosmological models have been described in section 3.2, see equation (122). It
is interesting that the various models differ only in the fictitious friction term present in the
respective Friedmann equations, a term that results from the different expansion rates. In the
case of ΛCDM, the rate of expansion goes through different phases: a rapid exponential accel-
eration in the very early Universe, followed by a slowing down in the matter-dominated-epoch,
then a further exponential acceleration when the cosmological constant becomes dominant.
The latter transition occurs roughly at the present epoch.

Given that the standard ΛCDM model features several unobserved ‘dark’ components,
some cosmologists have been looking for alternative descriptions of the Universe history.
An important family of such models are the so-called ‘coasting’ cosmologies [139], for
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Table 2. Interactions betweenmatter (+) and antimatter (−) particles in theDirac-Milne
universe.

Type of matter Type of matter Interaction

+ + Attraction
− − Repulsion
− + Repulsion
+ − Repulsion

which the scale factor grows linearly with time a(t)∝ t, hence displaying no acceleration nor
deceleration. The first of such coasting models, a Universe void of matter, was proposed by
Milne [140] long ago.

More recently, Benoit-Lévy and Chardin [23] proposed an alternative matter-antimatter
symmetric Universe, which they named the ‘Dirac-Milne’ Universe, where the gravitational
interaction between matter and antimatter, and between antimatter masses themselves, is
repulsive (see table 2). This Universe, analogous in its gravitational behavior to the Dirac
electron–hole system, avoids annihilation between matter and antimatter domains after cos-
mological recombination. The effect of gravity on antimatter is currently being investigated
with several experiments developed at CERN which measure the acceleration of antihydrogen
atoms free-falling in the gravitational field of the Earth. The first results of the Gbar [141],
ALPHA-g [142], and AEgIS [143] collaborations are expected within the next few years.

Here, we summarize some recent results that compare gravitational structure formation in
the Dirac-Milne Universe with that occurring in the Einstein-de Sitter andΛCDMcosmologies
[114, 144]. The results were obtained with an N-body code that solves the equations of
motion (122) for the various cosmologies. Typically, the simulations were performed with
N= 2.5× 105 particles.

3.6.1. Dirac-Milne vs. Einstein-de Sitter. In figure 26, we show the 1D power spectra of
the matter density for the EdS and Dirac-Milne cosmologies. At t= 0, both spectra follow a
power law |ρ̃k|2 ∼ kp with p= 2. The initial evolution is clearly linear, with each mode grow-
ing independently as a result of the Jeans instability. As time increases, nonlinearities become
dominant and the spectrum takes a similar shape in both the Dirac-Milne and EdS cases. At
low wave numbers, the spectrum is still of the type |ρ̃k|2 ∼ k2, a remnant of the initial con-
dition; at intermediate wavenumbers, the spectra follow a power-law spectrum with negative
exponent, slightly steeper for Dirac-Milne (p=−0.78) compared to EdS (p=−0.67). This
power-law region is a signature of hierarchical clustering in the phase space, as was observed
in earlier works [108]. For even larger wavenumbers, the spectra are again flat, as one reaches
the limit of resolution compatible with the number of particles used.

The spectra display a peak at wavenumber kpeak, which represents the inverse of the typ-
ical cluster size. The position of this peak against time is shown in figure 27. In both cases, the
peak initially moves towards smaller and smaller wavenumbers, somewhat faster for the Dirac-
Milne case. For longer times (>109 y) the behaviors diverge: for EdS, kpeak(t) keeps moving to
larger scales, eventually reaching the size of the computational box, while for Dirac-Milne it
saturates at a constant value. At the present epoch, the typical cluster size in comoving coordin-
ates (k−1

peak) is almost two orders of magnitude larger for the Dirac-Milne Universe compared to
the EdS case. We also stress that such cluster size is determined primarily by nonlinear effects
occurring during the matter-dominated epochs.
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Figure 26. Power spectra of the matter density for the EdS (top panel) and Dirac-Milne
(bottom panel) universes. Time is expressed in years after the Big Bang. The thick lines
correspond to the present epoch (t= 14× 109y). Reprinted with permission from [144].
Copyright (2018) by the American Physical Society.

3.6.2. Dirac-Milne vs. ΛCDM. Finally, using the same N-body code, we performed numer-
ical simulations comparing structure formation in the Dirac-Milne and ΛCDM cosmologies
[114], assuming for the latterΩM = 0.3 andΩΛ = 0.7. Here, distances (in the comoving frame)
are measured in physical units, and time is expressed in terms of the cosmological redshift
z= (1− a)/a, where a(t) is the scale factor. We set the initial condition at recombination
(z= 1080), but note that this redshift does not correspond to the same epoch in the Dirac-Milne
(≈14 million years) and ΛCDM (≈380000 years) cosmologies, see [144]. As above, the ini-
tial matter density fluctuations follow a power law spectrum P1D(k) = |ρ̃k|2 ∼ kp, with p= 3.
The 3D spectrum P(k) then satisfies: P1D(k)dk= P(k)2πk2dk, yielding P(k) = P1D/(2πk2),
and hence behaves as the standard Harrison-Zeldovich spectrum P(k)∼ k.

The power spectra at z= 0 for the Dirac-Milne and ΛCDM cases are displayed in
figure 28. The horizontal axis was scaled so the peaks are located at 0.018hMpc−1, where
h= H0/(100 km s−1 Mpc−1), as in the observed SDSS spectrum [145].9 The shape of the two
spectra are virtually identical, pointing to the fact that, although the Dirac-Milne and ΛCDM

9 This is always possible, without loss of generality, because the equation of motion (122) is invariant under a scale
transformation: x̂→ λx̂, Ê→ λÊ.
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Figure 27. Wave number corresponding to the peak in the power spectrum for the Dirac-
Milne and Einstein-de Sitter universes as a function of time (expressed in years after the
Big Bang), in comoving coordinates. Reprinted with permission from [144]. Copyright
(2018) by the American Physical Society.

Figure 28. Power spectra at z= 0 for the Dirac-Milne and ΛCDM universes. Reprinted
with permission from [114]. Copyright (2020) by the American Physical Society.

universes go through very different evolution stages, the outcomes at z= 0 are very similar
(and compatible with observations). In addition, the expected slopes for long wavelengths
(P∼ k) and short wavelengths (P∼ k−3) are recovered by the Dirac-Milne simulations. We
also note that this power law behavior, which is mainly due to nonlinear effects after recombin-
ation, suggests a self-similar matter distribution and the existence of a robust fractal dimension
[108, 119].

The evolution of the peak wave number of the power spectrum (figure 29) shows that
structure formation is initially faster in the Dirac-Milne Universe. However, for scale factors
a≈ 0.25 or larger (cosmological redshift z≈ 3, or≈ 3.5 billion years after the Big Bang), kpeak
saturates around a value corresponding to ≈ 50h−1 Mpc. This indicates that structure forma-
tion has stopped at a similar epoch for both universes.

Overall, the above results show that precise cosmological estimations can be obtained using
1D models. Comparisons between the ΛCDM and Einstein-de Sitter cosmologies show that
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Figure 29. Wave number kpeak corresponding to the peak of the power spectra for the
Dirac-Milne and ΛCDM universes as a function of the scale factor a(t). A striking fea-
ture of these simulations is that kpeak evolves in time, describing the nonlinear evolution
in both the Dirac-Milne and ΛCDM models, whereas in the standard ΛCDM analysis
the usual assumption is that the nonlinear evolution represents only a small correction,
while the peak position is fixed at kpeak ∼ 0.018hMpc−1 corresponding to the mode
entering the horizon at matter-radiation equality. Reprinted with permission from [114].
Copyright (2020) by the American Physical Society.

the latter is ruled out by current data on the large-scale structure of the Universe. Alternatives,
such as the Dirac-Milne cosmology, fare better as long as structure formation is concerned,
although more studies are needed to evaluate their validity against other cosmological data,
particularly the CMB spectrum.

3.7. Concluding discussion

In this section, we discussed the use of 1D methods to study various cosmological scenarios.
Although obviously not realistic, as our Universe possesses three spatial dimensions (not to
mention the 10 dimensions of string theory), 1D models present some distinct advantages for
cosmological applications.

First, the Newtonian interaction is very simple in 1D: it displays no divergence at short range
(hence no need for an artificial cutoff as in 3D) and is constant in space at long range (actu-
ally, at all distances), again needing no long-range cutoff. This peculiar form of the interaction
allows one to integrate exactly the N equations of motion of the particles (which, in 1D, are
in fact infinite plane sheets) in between two subsequent crossings between the particles them-
selves. For the RF model the crossing times can be computed analytically: hence, by moving
from one crossing event to the next, one can solve exactly the N-body dynamics, the only
source of error originating from the finite number of decimals available to code real numbers
in the computer. For the Q model, it is necessary to solve for the crossing times numerically,
but the overall scheme going from one crossing event to the next remains the same. The result-
ing exact N-body code is described in some details in the appendix B. This type of approach is
distinct from the more usual molecular dynamics approach, where the equations of motion are
solved in an approximate fashion using some time-stepping techniques (Runge-Kutta, Verlet,
. . .) that are exact only up to a certain order in the time step ∆t.
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Further, the low dimensionality of the models is also advantageous for the development of
grid-based codes, which integrate directly the Vlasov equation on a phase-space mesh, see the
appendix B. Although potentially more accurate, these codes imply a higher computational
cost, which is prohibitive in 3D as the corresponding phase space is 6D. In this review, we
presented results obtained with both types of codes. Grid-based codes were more costly, but
particularly efficient to evince subtle structures in low-density regions, which are difficult to
access for particle-based codes.

3D codes often suffer from poor sampling, because of the limited number of particles
that can be used. Hence, whenever accurate statistical results are required, 1D models can be
advantageous. For instance, this is the case when one wants to study the (multi)fractal nature
of the mass distribution in the Universe. In order to extract the value of the fractal dimension
from the code, it is necessary to have good statistical sampling over several decades, which is
easily feasible in 1D, but much less so in 3D.

Some tension between the 3D physics and the 1D models arises when one deals with the
Universe’s expansion. Indeed, the expansion itself is intrinsically 3D (e.g. in spherical coordin-
ates): to obtain a 1D model, one considers a thin shell around some radius R and then assim-
ilates this shell to a planar slab. However, this procedure—which amounts to considering 1D
perturbations embedded in a 3D Universe—is not entirely consistent, and the resulting 1D
Poisson equation has to be slightly modified ad hoc. This yields the so-called ‘Quintic’ (Q)
model.

Alternatively, one can start from a fully 1D expanding Universe. In this case, the whole
procedure is exact, but one has to assume that the surface mass density of each sheet decreases
as 1/a2 in order to mimic the 3D expansion, where a is the expansion factor. This yields the
so-called Rouet-Feix (RF) model. Historically, the RF model was the first 1D cosmological
model considered. In practice, the Q and RF models are very similar, and differ only in one of
the coefficients in the equations of motion of the sheets.

Cosmological simulations are usually performed in comoving coordinates, i.e. coordinates
that follow the Universe expansion with the time-dependent scale factor a(t). In the comov-
ing coordinates, the Universe is static: however, due to the Jeans instability, this static state is
unstable and after some time it develops intricate hierarchical structures in the form of galax-
ies, clusters of galaxies, and superclusters. As stated above, 1D codes enable us to resolve these
complex gravitational structures with such precision that their statistical properties can be thor-
oughly investigated, in particular their fractal or multifractal dimension and the evolution of
the power spectrum of the mass density P(k).

Here, we showed some examples of such results obtained for several ‘universes’ character-
ized by different scale factors a(t). Most simulations were performed within the Einstein-de
Sitter Universe, which is a critical case where the expansion is self-similar and a(t)∝ t3/2.
While the exact N-body code is useful to evince gravitational structures in regions of large
density (where many particles are present and thus the statistics is good), the grid-based code
provided yet-unattained insights into the behavior of dilute regions such as cosmological voids.

We also discussed structure formation for two other cosmological models: the ΛCDM
model, which includes a cosmological constant and is the standard scenario of modern cosmo-
logy; and the so-called Dirac-Milne Universe, which is an alternative scenario where matter
and antimatter coexist in equal amounts, and the latter possesses negative gravitational mass,
leading to a linear scale factor a(t)∝ t. Both universes display very similar features as regards
to cosmological structure formation.

Finally we mention two other recent approaches for investigating gravitational collapse:
Firstly, the study of singularities with a Lagrangian-based dynamical approach, which origin-
ates from the use of Burgers’ equation for the study of turbulence in fluid dynamics. Recently,
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there have been extensions of the Zeldovich approximation to investigate the development
of secondary singularities in the mass flow [146]. This an analytic approach to studying the
mechanism for clustering. Secondly, we mention the recent application of wavelet analysis to
the dynamics of gravitational clustering, both in 1D using the Zeldovich approximation and in
3D employing large scale N-body codes [147]. It will be interesting to see what new insights
develop from these methods.

In summary, 1D gravitational models have proved very useful to explore themajor outstand-
ing questions of today’s cosmology and constitute a valuable tool alongside more standard 3D
simulations.

4. Conclusion

We hope that the reader is convinced by now that one-dimensional models of Newtonian grav-
ity provide a useful laboratory for investigating concepts of current interest. The observation
that stellar motion perpendicular to the plane of a highly flattened galaxy could be modeled
by 1D gravity provided some initial motivation. Starting in the 1960s, the ability to precisely
simulate the evolution of these toy systems has distinguished them from their more realistic 3D
counterparts. Because of the long range of the gravitational force, these systems do not admit
to standard theories of statistical mechanics, both in 1D and 3D. Their investigation requires
non-extensive thermodynamics and reveals ensemble inequivalence. Moreover, in the infinite
particle limit, these systems obey the Vlasov (or collisionless Boltzmann) equation, so their
relaxation time grows indefinitely with N, the number of particles. We have shown here that
this dependence is still open to question after all these years. About forty years ago invest-
igations by two groups (see [39, 148]) showed that relaxation depended preferentially on the
initial condition and, in spite of intense investigation, this picture still remains today. As a
result of filamentation in µ-space (ie, the single-particle phase space), relaxation of the Vlasov
equation would require some type of coarse graining or, alternatively, a time dependent spec-
tral analysis, and recent work has shown progress in this direction.

In order to understand the nature and source of ergodic behavior in these systems, invest-
igators turned to small systems which were amenable to nonlinear analysis. The equivalence
of a wedge-like geometry with the three-particle system led to laboratory experiments using
optical lattices and inelastic collisions. It was shown that the µ-space consists of both stable
and unstable regions identified with periodic orbits and the unstable regions dominate with
increasing N. The study of Lyapunov spectra provided great insight into the relaxation pro-
cess. Analogous studies were undertaken on relativistic versions of the three and four particle
systems. The mathematical structure of the phase space is still an open question. Recently the
role of dissipation in the relaxation process has also been investigated.

The hypothesis that the evolution of the Universe after recombination proceeded by the
early formation of Zeldovich pancakes surely stimulated interest in 1D models of cosmology.
This arose from the failure of the more commonly invoked spherical collapse model to explain
the size of structures in the present Universe [21, 149]. Nonetheless much insight has been
gained from the spherical collapse model and it also continues to play a role in exploring
different cosmologies [150, 151].

By appropriately scaling both position and time, it was shown in the 1980s that it was
possible to formulate a workable version of the 1D system in a comoving coordinate frame
incorporating the expansion of the Universe. The ability to precisely explore the system evol-
ution made it possible to capture the underlying fractal nature revealed in the simulations as
time evolved. The investigations were refined by improved algorithms and the addition of
periodic boundary conditions. The multi-fractal aspects of the evolution have only begun to
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be explored. The system was later extended to include two components—one dissipative rep-
resenting baryonic matter and one conservative representing dark matter. It was shown that
the fractal properties of each component differ. Recently the 1D system was used to compare
different cosmological scenarios. In particular, a recent comparison of the standard ΛCDM
and less conventional Dirac-Milne cosmologies demonstrated that both exhibit ‘freeze out’ in
the clustering process on similar time scales. Work is continuing in this arena. The application
of wavelet analysis and the evolving application of Lagrangian dynamics in the configuration
space may provide additional insight in the future. In conclusion, it is unlikely that the original
investigators of the 1D gravitational system could have anticipated all of these applications and
developments. Clearly the story still has not been completed.
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Appendix A. Proofs

A.1. Proof of proposition 1

The constrained variational problem (17) can be expressed as an unconstrained variational
problem for the functional, with λ a Lagrange multiplier

gQ[ρ] := fQ[ρ] +λ

(ˆ L/2

−L/2
ρ(x)dx− 1

)
. (A.1)

Taking the variation with respect to ρ gives the integral equation

g2
ˆ L/2

−L/2
|x− y|ρ(y)dy+ kBT(logρ(x)+ 1)+λ= 0. (A.2)

Taking two derivatives with respect to x this integral equation can be transformed into a
differential equation

d2

dx2
logρ(x) =−2βg2ρ(x). (A.3)

This is the Lane-Emden equation for this system. The solution can be found in closed form.
Define the new function h(x) = logρ(x), which satisfies h ′ ′(x) =−2βg2eh(x). The solution of
this equation has the form

h(x) = ε+ δx− 2log

(
eδx+ γ

1+ γ

)
. (A.4)

Substituting into the ODE h ′ ′(x) =−2βg2eh(x) for h(x), one finds the relation among the para-
meters of this function
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2γδ2 = 2βg2eε(1+ γ)2. (A.5)

Imposing the boundary condition h ′(0) = 0 we get furthermore γ= 1, and (A.5) becomes
δ2 = 4βg2eε. We note that the central density is ρ(0) = eh(0) = eε. This gives (20).

Finally, δ is obtained from the normalization condition
ˆ L/2

−L/2
ρ(x)dx= eε

ˆ L/2

−L/2

dx

cosh2
(
1
2δx
) = 4

δ
eε tanh

(
1
4
Lδ

)
= 1. (A.6)

This equation gives (19).

A.2. Proof of proposition 2

The proof follows closely the derivation of thermodynamical properties of a one-dimensional
gas with long-range interaction in [19], see section 3 in this reference. The configurational
contribution to the free energy is the extremal value of the functional fQ[ρ] given in (17). It is
convenient to put it into a simpler form as

fQ =
1
2
kBT(J− 1)− 1

2
λ (A.7)

where J=
´ L/2
−L/2 ρ(x) logρ(x)dx, and λ is the Lagrange multiplier introduced in (A.1). The

Lagrange multiplier λ has a physical interpretation as the chemical potential of the gas. They
are given explicitly by

J= 2h

(
L
2

)
h ′
(
L
2

)
−
ˆ L/2

−L/2
[h ′(x)]2dx

= ε− 2logcosh

(
1
4
δL

)
− 2+

1
2δL

tanh
(
1
4δL
) (A.8)

λ=−kBT
(
h

(
L
2

)
+

1
2
Lh ′
(
−L

2

)
+ 1

)
. (A.9)

The density function h(x) = logρ(x) and its derivative at the boundary are given by the solution
of the Lane-Emden equation (18)

h

(
L
2

)
= ε− 2logcosh

(
1
4
δL

)
(A.10)

h ′
(
−L

2

)
= δ tanh

(
1
4
δL

)
. (A.11)

We start by presenting the derivation of (A.7). This is obtained by multiplying the Lane-
Emden equation (A.2) with 1

2ρ(x) and integrating over x. This expresses the interaction energy
as a one-dimensional integral

U=
1
2
g2
ˆ L/2

−L/2
|x− y|ρ(x)ρ(y)dxdy (A.12)

=−1
2
kBT

(ˆ L/2

−L/2
ρ(x) logρ(x)dx+ 1

)
− 1

2
λ

=−1
2
kBT(J+ 1)− 1

2
λ.

Substituting into fQ gives the result (A.7).
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Appendix B. Numerical methods

B.1. Exact N-body code

In one spatial dimension (1D) and planar geometry, the dynamics of N bodies interacting
through Coulomb or Newton forces can be solved exactly. Indeed, in 1D the ‘particles’ are
actually infinite planes of uniform surface mass density. In that case, the field created by a
particle is −sign(x− xi)2πGµi, where xi the position of the particle i and µi its surface mass
density. Unlike in the 3D case, the field has no divergence at the particle position xi (only a
discontinuity), so that there is no need to regularize (smooth) the field at short range, and the
particles are allowed to cross each other (see figure B1).

For a collection of N particles, the field perceived by any one particle is piece-wise constant
in space and only depends on the number of particles situated to its right and to its left. Thus,
as long as the particle does not cross one of its neighbors, the field is constant in time and its
trajectory can be computed exactly.

More precisely, the equation of motion of particle i is given by equation (125):

d2x̂i
d̂t2

+
1√
2d
ωJ0

dx̂i
d̂t

−ω2
J0xi = Êx(x̂i), (B.1)

with the one-dimensional field

Êx = 2πGρ0 [N+(x̂)−N−(x̂)] , (B.2)

N+(x̂) and N−(x̂) being the number of particles located respectively on the right and on the
left of xi. As these numbers remain constant, so does the field Êx, which consequently has a
step-like shape. It is convenient to normalize the time to the Jeans frequency by introducing
t̄= ωj0̂t, and to take the mean distance between two particles equal to unity (so that N=L).
In these units, we have to solve the following equation of motion (overcarets are omitted for
simplicity of notation):

d2xi
dt2

+
1√
2d

dxi
dt

− x=
1
2
(N+(xi)−N−(xi)). (B.3)

In between two crossings, the field Ei experienced by particle i is constant and the solution
of equation (B.1) reads:{

xi(t) = Ai exp(r1(t− ti0))+Bi exp(r2(t− ti0))−Ei
vi(t) = Air1 exp(r1(t− ti0))+Bir2 exp(r2(t− ti0)),

(B.4)

where ti0 is some initial time for which xi(ti0) = xi0 and vi(ti0) = vi0 , r1 and r2 are the solutions
of the characteristic equation: r1 =

−1+
√

1+8d
2
√

2d

r2 =
−1+

√
1+8d

2
√

2d

(B.5)

and  Ai(ti0) =
r2(xi0−Ei)−vi0

r2−r1

Bi(ti0) =
r2(xi0−Ei)−vi0

r1−r2

. (B.6)
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Figure B1. A system of three sheets and the corresponding field generated by this
configuration.

For each pair of particles that see a new neighbor (because one of their neighbors experi-
enced a crossing), or at initial time for all pairs of neighbors, we have to compute their crossing
time tc for say particle i and its right neighbor j= i+ 1. At t= tc, we have

xi(tc) = xj(tc), (B.7)

which leads to

Aexp(r1tc)+Bexp(r2tc) = Ej−Ei, (B.8)

where Ej−Ei = 1 with our normalization and{
A= Ai exp(−r1ti0)−Aj exp(−r1tj0),
B= Bi exp(−r2ti0)−Bj exp(−r2tj0).

(B.9)

Let

z= exp(r1tc), (B.10)

then the crossing time is given by

Az+Bzr2/r1 = 1. (B.11)

For the RF model, equation (B.11) yields a third-order algebraic equation, which reduces to
a second order equation after particles i and j have just collided (at ti0 = tj0 , xi0 = xj0 , so tc = ti0
is an obvious solution). For the Qmodel, equation (B.11) yields a fifth order equation. For the
simple gravitational system (without friction nor background) crossing times are determined
by the resolution of a second order equation.

We note that, as the 1D gravitational field is constant and does not decrease to infinity as
the inverse square of the distance, long-range collective effects are even more important in 1D
than they are in 3D. Thanks to these special features of the 1D Coulomb and Newton forces,
an exact algorithm can be set up, which works according to the following steps:
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• Compute the crossing times between all neighboring pairs of particles;
• Select the smallest crossing time and the corresponding particle pair;
• Advance these two particles until the computed crossing time;
• Recalculate the field seen by the particles and compute their velocities at the last crossing

time;
• Go back to initial step.

Note that only the field seen by the two particles that cross each other is to be recalcu-
lated (the other particles keep the same number of particles to their right and to their left, so
that the total fields they perceive are unchanged) and only three new crossing times are to be
recalculated at each crossing, i.e. those of the two particles that have just crossed and their dir-
ect neighbors on the right and on the left. The information needed to compute the successive
crossings is the initial condition for each particle after a crossing, ie the position, velocity, and
field felt by each particle at the last crossing time.

Finally, if the system is confined in a box (with either periodic or hard edges), the box edges
may be modeled as fictitious particles. In the case of a periodic box, an Ewald sumwhich takes
into account the field of the replicas could be computed [93]. As already mentioned, periodic
boundary conditions are a common choice to mimic infinite systems, but they act as a low-
pass filter and erase wavelengths longer than the system size. The field at a given point takes
into account all the particles in the box and all its replicas. The non-decreasing nature of the
1D Newton field prevents the sum of all these replica contributions to converge. A way to
obtain the convergence was suggested by Kiessling [10], who proposed to screen the field by
an exponential factor whose length scale is set to infinity at the end of the calculation.

The same purposemay be achieved by polarising the boundaries: as soon as a particle leaves
the system on one boundary, this side receives the (gravitational) charge of this particle, while
another particle enters from the opposite side and leaves an opposite charge on that boundary.
Hence, the particles do not experience any change of their respective fields, even though the
number of particles at the right and the left have changed.

In this type of algorithm, the particles advance two by two at the rhythm of the crossing
times. If the system is frozen at any one instant in this process, the particles are located at
different times that correspond to their last crossing time with their neighbor. In order to store
the state of the system at a given moment, one just needs to advance the set of all particles
until that time, which is necessarily between two crossings.

With the above algorithm, the trajectories are known exactly (or, rather, with the precision
allowed by the number of bits with which are coded floating numbers), crossing-time after
crossing-time. Double or quadruple precision is required to avoid the risk of miscalculating a
crossing time, which would result in the particles being no longer ordered according to their
position. This is a crucial criterion that must be respected by this type of code.

The heart of the algorithm is to keep the order relation between the positions of the particles,
so as to search for the smallest crossing time over all the N− 1 crossings of the N particles
with their neighbors. However, it is not necessary to sort all the crossing times, as only the
smallest one is relevant for the algorithm. To this purpose, two different techniques have been
proposed in the past, namely the fast table and the heap-sorting technique.

B.1.1. Fast table technique. The ‘fast table’ is an array of M boxes that divide the [T,T+
M∆T] duration into M time intervals of duration ∆T. With this table, the crossings that take
place during this time interval will be treated. Once all these events have been dealt with, those
that take place over the next time interval [T+M∆T,T+ 2M∆T] are processed in turn, and so
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Figure B2. Example with N= 8 particles. Particle are ordered according to their pos-
itions. Here, particles 4 and 5 do not cross, and the rightmost particle 8 has no other
particle on its right, so no crossing time. The fast table has M= 5 boxes, each repres-
enting a time interval ∆T= 0.1.

on. At the initial time of the simulation, the table is empty and all theN− 1 crossing times have
to be computed. If the crossing time between the particles i and i+ 1 belongs to the duration
covered by the table, then the index i of the particle is placed in the box corresponding to the
time interval during which the crossing will take place (figure B2 gives an example of a system
of 8 particles).

Once this procedure has been performed for the N− 1 crossing times, one just needs to
check the first box of the table: if it is empty, there is no crossing between T and T+∆T, then
we look at the next box, and so on. If one box contains a particle index, then the corresponding
crossing is processed, three new crossing times are calculated, and the indexes of the respective
particles are assigned to one of the cells of the table (if the corresponding crossings take place
during the interval of time covered by the table). Beforehand, it is advisable to erase from the
table, if they are there, the indexes of the three particles whose crossing times have become
obsolete. When the last box in the table has been processed, the table is empty again and ready
to process the events occurring over the nextM∆T duration.

If the table contains enough boxes, each box is the seat of only one particle index at a time.
Otherwise, one needs to shift the indexes of the particle that have the largest crossing time to
the right of the table, so as to have only one index per box. If a box is already occupied with
an index, it also has to be shifted to the right until an empty box is reached. Alternatively,
when a crossing is treated, it is necessary to check if backward shifts have to be performed.
These shifts slow down the sorting process and should be avoided by having a sufficiently large
table, i.e. boxes whose time interval is sufficiently short. A table that is 75% empty seems to
be an optimum (an even higher rate would result in exploring an almost empty table, thus
unnecessarily occupying memory space). The algorithm scales as O(N) for the filling of the
table and as O(1) for the search of the smallest crossing time.

B.1.2. Heap-sorting technique. For sorting using the heap-sorting method [152], a tree with
N− 1 nodes is built from top to bottom, each node having two (or more) branches. The nodes
contain the N− 1 crossing times of the N particles with their neighbors. Initially, the tree is
empty and is filled from above (ie, from its root), crossing time after crossing time. If the
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crossing time of a child node is smaller than that of the parent node, then the values are inter-
changed, and the smaller crossing time climbs up one level in the tree. At the end of the fill,
the smallest crossing time is at the top of the tree. At each crossing, one must readjust the pos-
itions of the three recalculated crossing times. In order to allow the updating of the tree, this
algorithm requires two complementary tables to associate a node with a particle index, and
vice-versa. The complexity of the algorithm (once the tree has been constructed) is of order
O(logN) per crossing.

An alternative technique of the same complexity consists in starting from the bottom of
a tree comprising (N− 1)/2 ‘leaves’ (a leaf is a node with no ramifications to the bottom).
Initially, as the tree is empty, one compares two by two the crossing times of consecutive
particles (for example crossings between particles (i, i+ 1) and particles (i+ 1, i+ 2)), and the
label of the particle which experience the smallest crossing with its right neighbor is record
at the bottom of the tree. As i goes from 1 to N, there are N− 1 crossings, so that (N− 1)/2
leaves are necessary. The process is repeated to fill the next level of the tree and so on to reach
the top of the tree, which will contain the index of the particles that have the smallest crossing
time with their right neighbor. Taking N= 2k+ 1, the tree has k levels for N− 1 nodes. At
each new crossing, there will be 2 k new comparisons at most, and k at the least. It is possible
to reduce this number by comparing not only two but rather three or more crossings at each
level. An equivalent question has been raised for the heap sorting method, and three appears
to be an optimum [152].

B.2 Molecular dynamics and particle-in-cell (PIC) codes.

The methods discussed above can be applied whenever it is possible to integrate exactly the
equations of motion. When this is not the case, they can be integrated numerically on a time
grid with time step h. If two particles cross each other, it is necessary to recalculate the field.
The numerical error depends on the order of the time-stepping integrator (usually, the Störmer–
Verlet method of order 4 or the velocity–Verlet method of order 3). This technique is similar
to the ‘molecular dynamics’ methods currently employed in other areas (condensed matter,
biophysics . . .). It is less precise than the exact algorithm described above, but avoids the cum-
bersome computation and ranking of the crossing times.

Finally, it is worth mentioning the particle-in-cell (PIC) method, whereby the gravitational
field E(x, t) is computed on a fixed mesh using Poisson’s equation: ∂xE=−4πGρ, where ρ is
the mass density. The N particles obey the standard equations of motion ẍi = E(xi, t). A typical
PIC code operates along the following steps:

• From the discrete distribution of the N particles, compute the smooth mass density ρ, using
some regularizing kernel;

• Using Poisson’s equation, compute the field E(x, t);
• Using the computed field and a time stepping algorithm, integrate the equations of motions

from t to t+ h;
• Update the particle positions xi(t+ h);
• Go back to initial step.

It must be noted that the PIC algorithm does not solve the full N-body problem (as does
the exact code described above), but rather a mean-field approximation to it. This should be
evident from the fact that the field employed in the equations of motion is not the exact (piece-
wise constant) field, but a smoothed approximation to it. In this approximation, two-body and
higher-order correlations are neglected and only the mean (self-consistent) field is retained.
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Figure B3. Schematic view of the splitting method. Each step in equations (B.16)–
(B.18) corresponds to a shift of the distribution function along the x axis or the v axis.

B.3 Mesh-based (Vlasov) codes.

Numerical simulations of self-gravitating systems are generally based on N-body codes, such
as those described above in B.1 and B.1.3, which solve the equations of motion of a large num-
ber of interacting particles. However, this approach may suffer from poor statistical sampling
in regions of low density, where the distribution of particles is insufficient to accurately sample
the mass density. Instead, Vlasov codes work by covering the entire phase space (x, v) with
a uniformly spaced grid and evolving in time the particle probability distribution function
f(x,v, t). They are able to provide an accurate description of the distribution function in all
regions of the phase space, but their computational cost is higher, because the entire phase
space needs to be meshed.

Vlasov codes work by solving numerically the Vlasov equation:

∂f
∂t

+ v
∂f
∂x

+E
∂f
∂v

= 0, (B.12)

where the gravitational field E obeys the equation:

∂E
∂x

=−4πGρ (B.13)

and ρ=
´
fdv is the mass density. Just like the PIC codes described in the B.1.3, Vlasov codes

also solve a mean-field approximation of the exact N-body problem.
The time-stepping technique used to solve equation (B.12) and depicted in figure B3 is

based on a splitting algorithm [136], which treats separately the free-streaming term

∂f
∂t

+ v
∂f
∂x

= 0, (B.14)
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and the acceleration term
∂f
∂t

+E
∂f
∂v

= 0, (B.15)

in the Vlasov equation (B.12). The solution from time tn to time tn+1 can thus be obtained in
three steps, corresponding to the solution of the free-streaming term (B.14) over half a time
step, then the solution of the acceleration term (B.15) over a full time step, and finally again
the free-streaming term (B.14) over half a time step:

f ∗(x,v) = f(x− v∆t/2,v, tn), (B.16)

f ∗∗(x,v) = f ∗(x,v−E∆t), (B.17)

f(x,v, tn+1) = f ∗∗(x− v∆t/2,v), (B.18)

where f ∗ and f ∗∗ denote intermediate solutions. The gravitational field E is computed from
Poisson’s equation (B.13) just before equation (B.17). Using the above symmetric scheme, the
method is second-order accurate in the time step ∆t.

We note that each term in equations (B.16)–(B.18) gives rise to a constant shift in either
position or velocity space. In their numerical implementation, these shifts require the interpol-
ation of the distribution function in phase space, which can be performed by means of different
schemes (cubic splines, finite volumes, fast Fourier transforms . . .). For the results reported in
section 3.5, we employed a numerical technique based on a finite-volume algorithm, in which
the mass distribution is assimilated to a phase-space ‘fluid’ [137]. The scheme performs a
detailed balance of the fluid entering and leaving each phase space cell: in this way, the total
mass

´ ´
fdxdv is conserved exactly. Using a slope limiter, the finite-volume method can be

made to avoid spurious negative values in the distribution function.
Recent simulations of self-gravitating systems in more than 1D using Vlasov codes have

employed adaptive meshes [153] and higher-order time stepping techniques [154].
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