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Abstract: Dendrimers are attractive macromolecules for a broad range of applications owing to their
well-defined shapes and dimensions, highly branched and globular architectures, and opportunities
for exploiting multivalency. Triazine dendrimers in particular offer advantages such as ease of
synthesis, stability, well-defined spherical structure, multivalency, potential to achieve acceptable
drug loadings, and low polydispersity. In this study, the potential utility of alkyne-azide “click”
cycloadditions of first-, second-, and third-generation triazine dendrimers containing three or six
alkynyl groups with benzyl azide was examined using copper catalysts. “Click-and-grow” and
“grow-then-click” strategies were employed. For the first- and second- generation dendrimers, the
desired triazole derivatives were obtained in high yields and purified by simple reprecipitation
without column chromatography; however, some difficulties were observed in the preparation of
third-generation dendrimers. The desired reaction proceeded under microwave irradiation as well as
with simple heating. This click chemistry can be utilized for various melamine dendrimers that are
fabricated with other amine linkers.

Keywords: dendrimer; triazine; click chemistry; Huisgen cycloaddition

1. Introduction

Dendrimers are attractive macromolecules for a broad range of applications owing to
their well-defined shapes and dimensions, highly branched and globular architectures, and
opportunities for exploiting multivalency [1–3]. Dendrimers can also be modified by an
introduction of various functional groups, which is a promising strategy for enabling their
use in drug delivery vehicles and catalysis [4–13]. For example, triazine dendrimers are a
class of dendrimers that offer notable advantages such as ease of synthesis, stability, well-
defined spherical structure, multivalency, potential to achieve acceptable drug loadings,
and low polydispersity [14,15]. Recently, Simanek et al., synthesized various triazine
dendrimers with multiple functional groups such as hydroxy and amino groups at the end
of the molecule, and modified each functional group to incorporate multiple functionalities
into the triazine dendrimers [16–18]. To further expand the potential of triazine dendrimers,
Huisgen cycloaddition reaction was employed. Huisgen cycloaddition is a typical click
reaction that affords 1,2,3-triazoles by the cycloaddition of azides and alkynes. Using
this reaction, various substituents can be readily introduced into molecules with high
functional selectivity without significant by-products. In recent years, click chemistry
has been applied to the syntheses of dendrimers. Expanding the use of click reactions to
dendrimers can contribute to the development of dendrimer science [19–24]. However, the
application of Huisgen cycloaddition to triazine dendrimers has not been reported to date.
Herein, synthesis of triazine dendrimers with alkyne chains and a molecular modification
of triazine dendrimers using Huisgen cycloaddition is reported. For this reaction, the
traditional piperazine linker was selected to obtain the triazine dendrimer. Subsequently,
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two strategies, namely “click-and-grow” and “grow-then-click,” were proposed for the
synthesis and molecular modification of the triazine dendrimers. The “click-and-grow”
strategy allows the generation of radial diversity by employing different azides at each
generation, while the “grow-then-click” strategy relies on carrying alkynes through the
synthesis and performing click reactions globally. After each generation of dendrimers was
synthesized, all alkyne side chains were subjected to Huisgen cycloaddition.

2. Results and Discussion

The “click-and-grow” strategy to prepare the first-generation (G1) dendrimer 3 contain-
ing three alkynes is outlined in Scheme 1. A stoichiometric amount of monochlorotriazine
2 [17] was treated with tris(piperazyl) triazine core 1 [25] in the presence of excess base
for three days by refluxing CHCl3 to afford G1 dendrimer 3 in 91% yield. The desired
dendrimer 3 was easily purified from unreacted 2 and incompletely substituted cores by
silica gel column chromatography.
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A well-known catalyst, CuSO4/ascorbic acid [26], was initially used for the Huisgen
cycloaddition reaction of G1 dendrimer 3 with benzyl azide at room temperature. The
progress of the reaction was monitored using thin layer chromatography (TLC) and mass
spectrometry; the reaction remained incomplete after three days. This low reactivity was
likely due to the solubility of dendrimer 3. While this catalytic reaction is typically per-
formed in an aqueous solution, dendrimer 3 did not show sufficient solubility in mixed
solvent systems (THF/water). The same cycloaddition reaction of G1 dendrimer 3 was
performed with CuI as the copper catalyst in THF. However, the reaction remained in-
complete after three days, but the solubility of dendrimer 3 was improved. In addition, a
byproduct with 5-iodo-1,2,3-triazole ring [27,28] was generated. This cycloaddition of G1
dendrimer 3 was optimized using microwave irradiation based on the previously published
reports; [29] the results are summarized in Table 1. The desired triazole dendrimer 4 was
obtained in 85% yield when the reaction was performed with CuSO4/ascorbic acid in
THF/water under microwave irradiation for 15 min (Entry 1). The remaining copper salts
were easily removed by washing with aqueous NaOH solution. The desired product was
obtained by simple reprecipitation with MeOH from a clear solution of the crude product



Molecules 2023, 28, 131 3 of 15

in CHCl3. Dendrimer 4 was obtained in 94% yield when the reaction was performed with
CuI in THF under identical microwave irradiation conditions (Entry 2). The byproduct
with the 5-iodo-1,2,3-triazole ring was not generated in this case. These results suggested
that microwave irradiation significantly improved the yield of the cycloaddition reaction of
the triazine dendrimer. The same reaction was carried out using a pressure vessel in an oil
bath at 110 ◦C without microwave irradiation. The desired reaction occurred, affording
comparably high yields (Entries 3 and 4), albeit more slowly.

Table 1. Alkyne-azide cycloaddition reaction of dendrimers 3, 6, 9, 12, and 18 with BnN3.

Entry Substrate Product Source of Cu Solvent Heating
Condition Time Yield (%)

1 a 3 (G1) 4 CuSO4/AA THF/H2O 110 ◦C (MW) 15 min 85
2 b 3 (G1) 4 CuI/DIPEA THF 110 ◦C (MW) 15 min 94
3 a 3 (G1) 4 CuSO4/AA THF/H2O 110 ◦C 1 h 83
4 b 3 (G1) 4 CuI/DIPEA THF 110 ◦C 1 h 89
5 c 6 (G2) 7 CuSO4/AA THF/H2O 110 ◦C (MW) 30 min 91
6 d 6 (G2) 7 CuI/DIPEA THF 110 ◦C (MW) 30 min 91
7 c 6 (G2) 7 CuSO4/AA THF/H2O 110 ◦C 2 h 85
8 d 6 (G2) 7 CuI/DIPEA THF 110 ◦C 2 h 91
9 e 9 (G3) 10 CuSO4/AA THF/H2O 110 ◦C (MW) 2 h 11
10 f 9 (G3) 10 CuI/DIPEA THF 110 ◦C (MW) 2 h 14
11 e 9 (G3) 10 CuSO4/AA THF/H2O 110 ◦C 8 h 16
12 f 9 (G3) 10 CuI/DIPEA THF 110 ◦C 8 h 28
13 g 12 (G2) 7 CuSO4/AA THF/H2O 110 ◦C (MW) 30 min 87
14 h 12 (G2) 7 CuI/DIPEA THF 110 ◦C (MW) 30 min 86
15 g 12 (G2) 7 CuSO4/AA THF/H2O 110 ◦C 2 h 88
16 h 12 (G2) 7 CuI/DIPEA THF 110 ◦C 2 h 90
17 i 18 (G3) 10 CuSO4/AA THF/H2O 110 ◦C (MW) 3 h 11
18 j 18 (G3) 10 CuI/DIPEA THF 110 ◦C (MW) 3 h 10
19 i 18 (G3) 10 CuSO4/AA THF/H2O 110 ◦C 12 h 11
20 j 18 (G3) 10 CuI/DIPEA THF 110 ◦C 12 h 16

AA; ascorbic acid. a Substrate (101 mg), BnN3 (3.3 eq), CuSO4 (0.3 eq), AA (1.5 eq), THF/H2O (1:1 v/v, 5 mL).
b Substrate (101 mg), BnN3 (3.3 eq), CuI (0.3 eq), DIPEA (3.0 eq), THF (5 mL). c Substrate (93 mg), BnN3 (3.3 eq),
CuSO4 (0.3 eq), AA (1.5 eq), THF/H2O (1:1 v/v, 5 mL). d Substrate (100 mg), BnN3 (3.3 eq), CuI (0.3 eq), DIPEA
(3.0 eq), THF (5 mL). e Substrate (90 mg), BnN3 (3.3 eq), CuSO4 (0.3 eq), AA (1.5 eq), THF/H2O (1:1 v/v, 5 mL).
f Substrate (90 mg), BnN3 (3.3 eq), CuI (0.3 eq), DIPEA (3.0 eq), THF (5 mL). g Substrate (101 mg), BnN3 (6.6 eq),
CuSO4 (0.6 eq), AA (3.0 eq), THF/H2O (1:1 v/v, 5 mL). h Substrate (101 mg), BnN3 (6.6 eq), CuI (0.6 eq), DIPEA
(6.0 eq), THF (5 mL). i Substrate (90 mg), BnN3 (6.6 eq), CuSO4 (0.6 eq), AA (3.0 eq), THF/H2O (1:1 v/v, 5 mL).
j Substrate (90 mg), BnN3 (6.6 eq), CuI (0.6 eq), DIPEA (6.0 eq), THF (5 mL).

The synthesis and modification of the second-generation dendrimer 6 is shown in
Scheme 2. The deprotection of the Boc groups of dendrimer 4 was achieved with 50%
trifluoroacetic acid (TFA) in CH2Cl2. Dendrimer 5 was extracted using CHCl3 from a basic
solution of NaOH, and then used without further purification. This material was treated
with a stoichiometric amount of monochlorotriazine 2 in the presence of excess base for five
days under reflux conditions to afford 6 in 97% yield. Dendrimer 6 was easily purified by
silica gel column chromatography. Copper-catalyzed alkyne-azide cycloaddition reaction
of 6 with benzyl azide was examined under microwave irradiation with CuSO4/ascorbic
acid and CuI, and the desired triazole dendrimer 7 was obtained in 91% yields, respectively
(Entries 5 and 6). When the reactions were performed at 110 ◦C in a pressure vessel, the
desired triazole dendrimer 7 was also obtained in high yield (Entries 7 and 8). However,
a longer reaction time (2×) was required to complete the reaction compared to the G1
dendrimer 3. G2 dendrimer 7 was purified through simple precipitation by MeOH addition
to the crude organic phase obtained from extraction as well as G1 dendrimer 4.
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The successful cycloaddition-mediated derivatization of 6 led us to investigate the
click chemistry of a third-generation dendrimer. Dendrimer 9 was prepared via an iterative
extension of 7 (Scheme 3) and purified using silica gel column chromatography. The copper-
catalyzed alkyne-azide cycloaddition reaction of 9 with benzyl azide was investigated
under microwave irradiation using CuSO4/ascorbic acid and CuI; the desired triazole
dendrimer 10 was obtained with low yields of 11% and 14%, respectively (Entries 9 and
10). When the reactions were performed at 110 ◦C in a pressure vessel, the desired triazole
dendrimer 10 was also obtained (Entries 11 and 12). The click modification of G3 dendrimer
9 required a longer reaction time than that in the case of G2 dendrimer 6 for the complete
disappearance of 9. TLC analysis showed evidence for the formation of polar, potentially
polymeric species that could arise from alkyne–alkyne homocoupling reactions [30]. In
addition, triazole dendrimer 10 could not be purified by simple precipitation because
of its solubility limitations in various solvents and the presence of multiple impurities.
Dendrimer 10 was purified using silica gel column chromatography.

Although not explored in the syntheses described above, the “click-and-grow” strat-
egy allows the incorporation of different azide-bearing groups at each generation of the
dendrimer. Alternatively, a single azide-bearing group can be incorporated throughout the
dendrimer if pendant alkynes are carried through the iterative growth of these targets and
globally “clicked.” To explore the “grow-then-click” strategy, second- and third-generation
dendrimers having six and nine alkynyl groups in the molecules, respectively, were tar-
geted for synthesis. Dendrimer 12 was prepared from 3 in 76% overall yield using a
similar method as that employed for preparing G2 dendrimer 6 (Scheme 4). The reaction
of 12 with benzyl azide under microwave irradiation with CuSO4/ascorbic acid and CuI
yielded the desired triazole dendrimer 7 in high yields (Entries 13 and 14). When the same
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reactions were carried out at 110 ◦C in a pressure vessel, the desired triazole dendrimer
7 was also obtained in high yields (Entries 15 and 16). The yields and reaction times of the
cycloaddition reaction of dendrimer 12 were similar to those of dendrimer 6. However,
the preparation of dendrimer 14 was more challenging than the synthesis of G2 dendrimer
12 (Scheme 5). Although deprotection of 12 was achieved with 50% TFA in CH2Cl2, the low
solubility of 13 in organic solvents prevented the synthesis of 14. TLC analysis indicated
that a significant amount of 2 remained after one week. Notably, dendrimer 14 could not
be synthesized even after changing the solvents to CHCl3/MeOH (5:1), CHCl3/THF, THF,
dichloroethane, and dioxane. The poor solubility of dendrimer 13 led to the abandonment
of this route.
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An alternative approach to prepare 14 was attempted. The reaction of G1 dendrimer
11 with second-generation dendron 17 was envisioned to afford G3 dendrimer 14. Dendron
17 was prepared from 2 in 65% overall yield (Scheme 6). Monochlorotriazine 2 was treated
with excess piperazine, which afforded mono-N-substituted piperazine 15. Subsequently,
15 was converted into dichlorotriazine 16 with excess cyanuric chloride. The by-products of
the reaction with excess reactants were observed in both cases. A stoichiometric amount of
dendron 17 was treated with G1 dendrimer 11 for one week under reflux conditions using
CHCl3/THF (1:1) mixture. In this case, the reaction mixture was a clear solution at the
beginning of the reaction, but precipitation gradually increased in the mixture. However,
TLC analysis showed the presence of a large amount of remaining 17, while the desired G3
dendrimer 14 was not observed. These results suggested that the synthesis of dendrimer
14 was difficult because of solubility issues.
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Additionally, the synthesis of G3 triazine dendrimers 9 and 10 with 1-benzyl-1,2,3-triazole
rings was accomplished. This result led us to attempt a new strategy for synthesizing G3
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dendrimer 18 with three 1-benzyl-1,2,3-triazole rings. Dendrimer 18 was prepared via
an iterative extension of 17 (Scheme 7) with dendrimer 5 and purified using silica gel
column chromatography. The copper-catalyzed alkyne-azide cycloaddition reaction of
18 and benzyl azide was investigated under microwave irradiation with CuSO4/ascorbic
acid and CuI. The desired triazole dendrimer 10 was obtained with low yields of 11%
(with CuSO4/ascorbic acid) and 10% (with CuI) (Entries 17 and 18). When the reactions
were performed at 110 ◦C in a pressure vessel, the desired triazole dendrimer 10 was also
obtained (Entries 19 and 20).
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Scheme 7. Reagents and conditions: (i) 17, DIPEA, CHCl3, reflux, 91%; (ii) see Table 1.

3. Materials and Methods
3.1. General Experimental

All chemicals were obtained from TCI Fine Chemicals, Tokyo, Japan, Wako Pure Chem-
ical Industries, Tokyo, Japan, Kanto Chemical, Tokyo, Japan and Sigma-Aldrich, St. Louis,
MO, USA, and used without further purification. NMR spectra were recorded in CDCl3 or
CDCl3/CD3OD (5:1) on either a JEOL ECS-400 or a JEOL ECA-600 spectrometer, Tokyo,
Japan. 1H NMR data are reported in ppm (δ) relative to TMS. 13C NMR data are reported in
ppm (δ) relative to the central line of the triplet for CDCl3 at 77.0 ppm. Mass spectra were
recorded on a JEOL JMS-S3000 SpialTOF instrument, Tokyo, Japan. Microwave experiments
were carried out using a CEM Discover Microwave Synthesizer (CEM Corporation, Tokyo,
Japan), and the irradiation was performed at a maximum power of 150 W. Chromatographic
separations were carried out on a silica gel column (Kanto Chemical 60N, 63–210 µm, Tokyo,
Japan; or Chromatorex® NH-DM1020, 100–200 mesh, Fuji Silysia Chemical Ltd., Tokyo,
Japan). The NMR spectra are shown in Supplementary Materials Pages S1–S15.

3.2. Synthesis of G1 Dendrimer 3

Compound 2 (4.75 g, 13.5 mmol) and DIPEA (7.1 mL, 41.8 mmol) were successively
added to a solution of triazine core 1 (1.37 g, 4.11 mmol) in CHCl3 (30 mL), and the resulting
mixture was refluxed for three days. After the reaction mixture was concentrated under
reduced pressure, the residue was dissolved in CHCl3 (70 mL). The organic phase was
washed with water (50 mL × 3), dried over Na2SO4, and concentrated under reduced
pressure. The crude product was purified by silica gel column chromatography (gradient
elution using CH2Cl2/EtOAc (2:1) until no detectable 2 was observed, as determined by
UV spotting, to CHCl3/MeOH (10:1) to obtain the desired product) to afford 3 as a white
solid (4.82 g, 91%). 1H NMR (600 MHz, CDCl3) δ 4.94 (t, J = 5.7 Hz, 3H), 4.19 (dd, J = 5.7,
2.5 Hz, 6H), 3.85–3.71 (m, 36H), 3.48–3.42 (m, 12H), 2.20 (t, J = 2.5 Hz, 3H), 1.49 (s, 27H).
13C NMR (150 MHz, CDCl3) δ 165.8, 165.4, 165.2, 154.8, 80.8, 79.9, 70.7, 43.1, 43.0, 42.9, 30.4,
28.4. HRMS (MALDI): calcd for C60H87N27NaO6, 1304.7225 (M + Na+); found, 1304.7240.
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3.3. Synthesis of G1 Dendrimer 4
3.3.1. CuSO4/Ascorbic Acid

Benzyl azide (33.0 µL, 0.264 mmol), ascorbic acid (21 mg, 0.119 mmol), and copper (II)
sulfate (3.7 mg, 0.0232 mmol) were successively added to a solution of compound 3 (101 mg,
0.0787 mmol) in THF/H2O (1:1 v/v, 5 mL). The resulting mixture was subjected to microwave
irradiation at 110 ◦C for 15 min in a sealed vial or stirred at 110 ◦C for 1 h in a pressure vessel.
After the reaction mixture was concentrated, the residue was dissolved in CHCl3 (70 mL), and
the solution was washed with 5% aqueous NaOH (30 mL × 2) and water (30 mL × 2). The
organic phase was dried over Na2SO4 and then evaporated. The crude product was purified
by reprecipitation with MeOH from a clear solution of CHCl3 to afford 4 as an off-white solid.
Yield; MW: (113 mg, 0.0672 mmol, 85%), pressure vessel: (110 mg, 0.0654 mmol, 83%).

3.3.2. CuI/DIPEA

Benzyl azide (33.0 µL, 0.264 mmol), DIPEA (40 µL, 0.235 mmol), and copper (I) iodide
(4.9 mg, 0.0257 mmol) were successively added to a solution of compound 3 (101 mg,
0.0787 mmol) in THF (5 mL). The resulting mixture was subjected to microwave irradiation
at 110 ◦C for 15 min in a sealed vial or stirred at 110 ◦C for 1 h in a pressure vessel. After
the reaction mixture was concentrated, the residue was dissolved in CHCl3 (70 mL) and
the solution was washed with 5% aqueous NaOH (30 mL × 2) and water (30 mL × 2).
The organic phase was dried over Na2SO4 and then evaporated. The crude product was
purified by reprecipitation with MeOH from a clear solution of CHCl3 to afford 4 as an off-
white solid. Yield, MW: (125 mg, 0.0743 mmol, 94%); pressure vessel: (118 mg, 0.0702 mmol,
89%). 1H NMR (600 MHz, CDCl3) δ 7.44–7.29 (m, 12H), 7.27–7.20 (m, 6H), 5.48 (s, 6H),
5.23 (t, J = 6.1 Hz, 3H), 4.67 (d, J = 6.0 Hz, 6H), 3.83–3.65 (m, 36H), 3.49–3.32 (m, 12H), 1.49 (s,
27H). 13C NMR (150 MHz, CDCl3) δ 166.1, 165.4, 165.2, 154.8, 146.9, 134.6, 129.1, 128.8, 128.0,
121.5, 79.9, 54.1, 43.0, 43.0, 42.9, 36.6, 28.4. HRMS (MALDI): calcd for C81H108N36NaO6,
1703.9145 (M + Na+); found, 1703.9137.

3.4. Synthesis of G1 Dendrimer 5

TFA (10 mL) was added to a solution of compound 4 (309 mg, 0.184 mmol) in CH2Cl2
(10 mL), and the resulting mixture was stirred for 3 h at room temperature. After the reaction
mixture was concentrated under reduced pressure, the residue was basified with 20%
aqueous NaOH (50 mL). The aqueous solution was extracted with CHCl3 (50 mL × 6). The
organic phase was washed with water (30 mL × 1), dried over Na2SO4, and concentrated
under reduced pressure to afford 5 as a white solid (228 mg, 90%), which was used for the
next reaction without further purification. 1H NMR (600 MHz, CDCl3) δ 7.39–7.31 (m, 12H),
7.26–7.20 (m, 6H), 5.47 (s, 6H), 5.24 (t, J = 6.1 Hz, 3H), 4.67 (d, J = 6.1 Hz, 6H), 3.96–3.55 (m,
39H), 2.88–2.79 (m, 12H).13C NMR (150 MHz, CDCl3) δ 166.1, 165.3, 165.2, 165.1, 147.0,
134.6, 129.1, 128.7, 128.0, 121.5, 54.1, 46.0, 44.2, 43.0, 43.0, 36.6. HRMS (MALDI); calcd for
C66H84N36Na, 1403.7572 (M + Na+); found, 1403.7561.

3.5. Synthesis of G2 Dendrimer 6

Compound 2 (219 mg, 0.621 mmol) and DIPEA (301 µL, 1.77 mmol) were successively
added to a solution of G1 dendrimer 5 (215 mg, 0.156 mmol) in CHCl3 (20 mL), and the
resulting mixture was refluxed for 5 days. After the reaction mixture was concentrated
under reduced pressure, the residue was dissolved in CHCl3 (50 mL). The organic phase
was washed with water (50 mL × 3), dried over Na2SO4, and concentrated under reduced
pressure. The crude product was purified by silica gel column chromatography (gradient
elution using CH2Cl2/EtOAc (2:1) until no detectable 2 was observed, as determined by UV
spotting, to CHCl3/MeOH (10:1) to obtain the desired product) to afford 6 as an off-white
solid (352 mg, 97%). 1H NMR (400 MHz, CDCl3) δ 7.38–7.30 (m, 12H), 7.26–7.22 (m, 6H),
5.48 (s, 6H), 5.30–5.20 (m, 3H), 4.99–4.89 (m, 3H), 4.68 (d, J = 6.1 Hz, 6H), 4.20 (dd, J = 5.7,
2.5 Hz, 6H), 3.78–3.68 (m, 60H), 3.49–3.40 (m, 12H), 2.21 (t, J = 2.5 Hz, 3H), 1.48 (s, 27H).
13C NMR (100 MHz, CDCl3) δ 166.1, 165.8, 165.4, 165.2, 154.8, 146.9, 134.6, 129.1, 128.7,
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128.0, 121.5, 80.8, 79.9, 70.7, 54.1, 43.0, 43.0, 36.6, 30.5, 28.4. HRMS (MALDI): calcd for
C111H144N54NaO6, 2352.2515 (M + Na+); found, 2352.2524.

3.6. Synthesis of G2 Dendrimer 7 from Compound 6
3.6.1. CuSO4/Ascorbic Acid

Benzyl azide (16.5 µL, 0.132 mmol), ascorbic acid (10.4 mg, 0.0591 mmol), and copper
(II) sulfate (1.9 mg, 0.0119 mmol) were successively added to a solution of compound 6
(93 mg, 0.0399 mmol) in THF/H2O (1:1 v/v, 5 mL). The resulting mixture was subjected to
microwave irradiation at 110 ◦C for 30 min in a sealed vial or stirred at 110 ◦C for 2 h in a
pressure vessel. After the reaction mixture was concentrated, the residue was dissolved in
CHCl3 (70 mL), and the solution was washed with 5% aqueous NaOH (30 mL × 2) and
water (30 mL × 2). The organic phase was dried over Na2SO4 and then evaporated. The
crude product was purified by reprecipitation with MeOH from a clear solution of CHCl3
to afford 7 as an off-white solid. Yield; MW: (99.1 mg, 0.0363 mmol, 91%), pressure vessel:
(92.2 mg, 0.0338 mmol, 85%).

3.6.2. CuI/DIPEA

Benzyl azide (17.7 µL, 0.142 mmol), DIPEA (22 µL, 0.129 mmol), and copper (I) iodide
(2.6 mg, 0.0137 mmol) were successively added to a solution of compound 6 (100 mg,
0.0429 mmol) in THF (5 mL). The resulting mixture was subjected to microwave irradiation
at 110 ◦C for 30 min in a sealed vial or stirred at 110 ◦C for 2 h in a pressure vessel. After
the reaction mixture was concentrated, the residue was dissolved in CHCl3 (70 mL) and
the solution was washed with 5% aqueous NaOH (30 mL × 2) and water (30 mL × 2). The
organic phase was dried over Na2SO4 and then evaporated. The crude product was purified
by reprecipitation with MeOH from a clear solution of CHCl3 to afford 7 as an off-white
solid. Yield; MW: (107 mg, 0.0392 mmol, 91%), pressure vessel: (106 mg, 0.0388 mmol, 91%).
1H NMR (600 MHz, CDCl3) δ 7.45–7.29 (m, 24H), 7.26–7.19 (m, 12H), 5.48 (d, J = 3.8 Hz,
12H), 5.35–5.15 (m, 6H), 4.67 (dd, J = 11.0, 6.0 Hz, 12H), 3.86–3.63 (m, 60H), 3.49–3.30 (m,
12H), 1.48 (s, 27H). 13C NMR (150 MHz, CDCl3) δ 166.1, 165.4, 165.2, 154.8, 146.9, 134.6,
129.1, 128.7, 128.0, 121.5, 79.9, 54.1, 43.1, 43.0, 42.9, 42.9, 36.6, 28.4. HRMS (MALDI): calcd
for C132H165N63NaO6, 2751.4435 (M + Na+); found, 2751.4466.

3.7. Synthesis of G2 Dendrimer 8

TFA (10 mL) was added to a solution of compound 7 (467 mg, 0.171 mmol) in CH2Cl2
(10 mL), and the resulting mixture was stirred for 3 h at room temperature. After the reaction
mixture was concentrated under reduced pressure, the residue was basified with 20%
aqueous NaOH (30 mL). The aqueous solution was extracted with CHCl3 (30 mL × 5). The
organic phase was washed with water (30 mL × 1), dried over Na2SO4, and concentrated
under reduced pressure to afford 8 as a white solid (385 mg, 93%), which was used for the
next reaction without further purification. 1H NMR (400 MHz, CDCl3) δ 7.44–7.28 (m, 24H),
7.26–7.19 (m, 12H), 5.47 (d, J = 2.6 Hz, 12H), 5.26 (t, J = 6.1 Hz, 6H), 4.67 (t, J = 5.5 Hz, 12H),
3.99–3.49 (m, 63H), 2.91–2.73 (m, 12H). 13C NMR (100 MHz, CDCl3) δ 166.1, 165.4, 165.2,
165.1, 147.0, 134.7, 134.6, 129.1, 128.7, 128.7, 128.0, 121.6, 121.5, 54.1, 46.0, 44.2, 43.1, 43.0,
36.6. HRMS (MALDI): calcd for C117H141N63Na, 2451.2862 (M + Na+); found, 2451.2861.

3.8. Synthesis of G3 Dendrimer 9

Compound 2 (85 mg, 0.241 mmol) and DIPEA (122 µL, 0.718 mmol) were successively
added to a solution of G2 dendrimer 8 (145 mg, 0.0597 mmol) in CHCl3 (20 mL), and the
resulting mixture was refluxed for 7 days. After the reaction mixture was concentrated
under reduced pressure, the residue was dissolved in CHCl3 (100 mL). The organic phase
was washed with water (50 mL × 2), dried over Na2SO4, and concentrated under reduced
pressure. The crude product was purified by silica gel column chromatography (gradient
elution using CH2Cl2/EtOAc (2:1) until no detectable 2 was observed, as determined by
UV spotting, to CHCl3/MeOH (15:1) to obtain the desired product) to afford 9 as a pale
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yellow solid (161 mg, 80%). 1H NMR (400 MHz, CDCl3) δ 7.38–7.31 (m, 24H), 7.26–7.20 (m,
12H), 5.48 (d, J = 4.3 Hz, 12H), 5.26–5.16 (m, 6H), 4.68 (t, J = 5.9 Hz, 12H), 4.19 (dd, J = 5.8,
2.6 Hz, 6H), 3.92–3.65 (m, 84H), 3.47–3.40 (m, 12H), 2.20 (t, J = 2.5 Hz, 3H), 1.48 (s, 27H).
13C NMR (100 MHz, CDCl3) δ 166.2, 165.9, 165.4, 165.2, 165.2, 154.8, 146.9, 134.7, 129.1,
128.8, 128.1, 121.5, 80.9, 79.9, 70.7, 54.1, 43.0, 36.6, 30.5, 28.4. HRMS (MALDI): calcd for
C162H201N81NaO6, 3399.7805 (M + Na+); found, 3399.7780.

3.9. Synthesis of G3 Dendrimer 10 from Compound 9
3.9.1. CuSO4/Ascorbic Acid

Benzyl azide (11 µL, 0.0880 mmol), ascorbic acid (7.6 mg, 0.0432 mmol), and copper
(II) sulfate (1.5 mg, 0.0094 mmol) were successively added to a solution of compound 9
(90 mg, 0.0266 mmol) in THF/H2O (1:1 v/v, 5 mL). The resulting mixture was subjected
to microwave irradiation at 110 ◦C for 2 h in a sealed vial or stirred at 110 ◦C for 8 h in a
pressure vessel. After the reaction mixture was concentrated, the residue was dissolved
in CHCl3 (70 mL) and the solution was washed with 5% aqueous NaOH (30 mL × 2) and
water (30 mL × 2). The organic phase was dried over Na2SO4 and then evaporated. The
crude product was purified with column chromatography on silica gel (CHCl3/MeOH,
20:1) to afford 10 as a pale yellow solid. Yield; MW: (11.1 mg, 2.91 µmol, 11%), pressure
vessel: (16.0 mg, 4.23 µmol, 16%).

3.9.2. CuI/DIPEA

Benzyl azide (11 µL, 0.0880 mmol), DIPEA (14 µL, 0.0823 mmol), and copper (I) iodide
(2.0 mg, 0.0105 mmol) were successively added to a solution of compound 9 (90 mg,
0.0266 mmol) in THF (5 mL). The resulting mixture was subjected to microwave irradiation
at 110 ◦C for 2 h in a sealed vial or stirred at 110 ◦C for 8 h in a pressure vessel. After the
reaction mixture was concentrated, the residue was dissolved in CHCl3 (70 mL) and the
solution was washed with 5% aqueous NaOH (30 mL × 2) and water (30 mL × 2). The
organic phase was dried over Na2SO4 and then evaporated. The crude product was purified
with column chromatography on silica gel (CHCl3/MeOH, 20:1) to afford 10 as a pale
yellow solid. Yield; MW: (14.0 mg, 3.71 µmol, 14%), pressure vessel: (28.2 mg, 7.46 µmol,
28%). 1H NMR (400 MHz, CDCl3:CD3OD = 5:1 v/v) δ 7.79–7.15 (m, 54H), 5.49 (d, J = 3.8 Hz,
18H), 4.81–4.48 (m, 18H), 4.41–4.16 (m, 9H), 3.92–3.56 (m, 84H), 3.45–3.35 (m, 12H), 1.49 (s,
27H). 13C NMR (100 MHz, CDCl3:CD3OD = 5:1 v/v) δ 165.8, 165.2, 164.9, 154.9, 146.8, 134.3,
130.9, 128.9, 128.6, 127.9, 121.8, 80.2, 65.5, 54.0, 42.8, 36.0, 29.5, 28.1, 25.4. HRMS (MALDI):
calcd for C183H222N90NaO6, 3798.9725 (M + Na+); found, 3798.9722.

3.10. Synthesis of G1 Dendrimer 11

TFA (20 mL) was added to a solution of compound 3 (843 mg, 0.657 mmol) in CH2Cl2
(20 mL), and the resulting mixture was stirred for 3 h at room temperature. After the reaction
mixture was concentrated under reduced pressure, the residue was basified with 20%
aqueous NaOH (50 mL). The aqueous solution was extracted with CHCl3 (70 mL × 6). The
organic phase was washed with water (30 mL × 1), dried over Na2SO4, and concentrated
under reduced pressure to afford 11 as a white solid (555 mg, 86%), which was used for the
next reaction without further purification. 1H NMR (400 MHz, CDCl3) δ 4.97 (t, J = 5.7 Hz,
3H), 4.19 (dd, J = 5.5, 2.5 Hz, 6H), 3.88–3.66 (m, 39H), 2.92–2.82 (m, 12H), 2.19 (t, J = 2.5 Hz,
3H). 13C NMR (100 MHz, CDCl3) δ 165.8, 165.4, 165.2, 165.1, 81.0, 70.6, 46.0, 44.3, 43.1, 43.0,
30.4. HRMS (MALDI): calcd for C45H64N27, 982.5833 (M + H+); found, 982.5820.

3.11. Synthesis of G2 Dendrimer 12

Compound 2 (775 mg, 2.20 mmol) and DIPEA (1.0 mL 5.91 mmol) were successively
added to a solution of G1 dendrimer 11 (542 mg, 0.552 mmol) in CHCl3 (20 mL), and the
resulting mixture was refluxed for 5 days. After the reaction mixture was concentrated
under reduced pressure, the residue was dissolved in CHCl3 (100 mL). The organic phase
was washed with water (50 mL × 2), dried over Na2SO4, and concentrated under reduced
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pressure. The crude product was purified by silica gel column chromatography (gradient
elution using CH2Cl2/EtOAc (2:1) until no detectable 2 was observed, as determined by UV
spotting, to CHCl3/MeOH (10:1) to obtain the desired product) to afford 12 as an off-white
solid (936 mg, 88%). 1H NMR (600 MHz, CDCl3) δ 4.95 (t, J = 6.1 Hz, 6H), 4.25–4.15 (m,
12H), 3.92–3.70 (m, 60H), 3.49–3.41 (m, 12H), 2.21 (t, J = 2.5 Hz, 6H), 1.48 (s, 27H). 13C NMR
(150 MHz, CDCl3) δ 165.8, 165.4, 165.2, 154.8, 80.9, 80.9, 79.9, 70.7, 43.1, 43.0, 42.9, 30.5, 28.4.
HRMS (MALDI): calcd for C90H123N45NaO6, 1953.0595 (M + Na+); found, 1953.0604.

3.12. Synthesis of G2 Dendrimer 7 from Compound 12
3.12.1. CuSO4/Ascorbic Acid

Benzyl azide (43.0 µL, 0.344 mmol), ascorbic acid (27.7 mg, 0.157 mmol), and copper
(II) sulfate (5.3 mg, 0.0332 mmol) were successively added to a solution of compound 12
(101 mg, 0.0523 mmol) in THF/H2O (1:1 v/v, 5 mL). The resulting mixture was subjected
to microwave irradiation at 110 ◦C for 30 min in a sealed vial or stirred at 110 ◦C for 2 h in
a pressure vessel. After the reaction mixture was concentrated, the residue was dissolved
in CHCl3 (70 mL) and the solution was washed with 5% aqueous NaOH (30 mL × 2) and
water (30 mL × 2). The organic phase was dried over Na2SO4 and then evaporated. The
crude product was purified by reprecipitation with MeOH from a clear solution of CHCl3
to afford 7 as an off-white solid. Yield; MW: (124 mg, 0.0454 mmol, 87%), pressure vessel:
(126 mg, 0.0462 mmol, 88%).

3.12.2. CuI/DIPEA

Benzyl azide (43.0 µL, 0.344 mmol), DIPEA (53 µL, 0.312 mmol), and copper (I) iodide
(6.8 mg, 0.0357 mmol) were successively added to a solution of compound 12 (101 mg,
0.0523 mmol) in THF (5 mL). The resulting mixture was subjected to microwave irradiation
at 110 ◦C for 30 min in a sealed vial or stirred at 110 ◦C for 2 h in a pressure vessel. After
the reaction mixture was concentrated, the residue was dissolved in CHCl3 (70 mL) and the
solution was washed with 5% aqueous NaOH (30 mL × 2) and water (30 mL × 2). The
organic phase was dried over Na2SO4 and then evaporated. The crude product was purified
by reprecipitation with MeOH from a clear solution of CHCl3 to afford 7 as an off-white solid.
Yield; MW: (123 mg, 0.0451 mmol, 86%), pressure vessel: (129 mg, 0.0472 mmol, 90%).

3.13. Synthesis of G2 Dendrimer 13

TFA (15 mL) was added to a solution of compound 12 (193 mg, 0.100 mmol) in CH2Cl2
(15 mL), and the resulting mixture was stirred for 3 h at room temperature. After the reaction
mixture was concentrated under reduced pressure, the residue was basified with 20%
aqueous NaOH (50 mL). The aqueous solution was extracted with CHCl3 (100 mL × 5). The
organic phase was washed with water (30 mL × 1), dried over Na2SO4, and concentrated
under reduced pressure to afford 13 as a white solid (127 mg, 78%), which was used for the
next reaction without further purification. 1H NMR (600 MHz, CDCl3) δ 4.87 (t, J = 5.8 Hz,
6H), 4.21 (td, J = 5.5, 2.5 Hz, 12H), 3.85–3.72 (m, 63H), 2.90–2.85 (m, 12H), 2.22–2.19 (m,
6H). 13C NMR (150 MHz, CDCl3) δ 165.9, 165.4, 165.3, 165.1, 81.0, 80.9, 70.7, 70.7, 46.1,
44.3, 43.1, 43.1, 43.0, 30.5. HRMS (MALDI): calcd for C75H99N45Na, 1652.9022 (M + Na+);
found, 1652.9012.

3.14. Synthesis of Compound 15

Piperazine anhydrous (5.45 g, 63.3 mmol) was added to a solution of compound 2
(2.23 g, 6.32 mmol) in CHCl3 (30 mL), and the resulting mixture was stirred for 1 h at
room temperature. After the reaction mixture was concentrated under reduced pressure,
the residue was dissolved in CHCl3 (70 mL). The organic phase was washed with water
(35 mL × 2), dried over Na2SO4, and concentrated under reduced pressure. The crude
product was purified by column chromatography on NH silica gel (CHCl3/EtOAc, 20:1) to
afford 15 as a white solid (2.01 g, 79%). 1H NMR (400 MHz, CDCl3) δ 5.01 (t, J = 5.8 Hz,
1H), 4.17 (dd, J = 5.6, 2.5 Hz, 2H), 3.85–3.61 (m, 9H), 3.48–3.38 (m, 4H), 2.93–2.79 (m, 4H),
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2.19 (t, J = 2.5 Hz, 1H), 1.48 (s, 9H). 13C NMR (100 MHz, CDCl3) δ 165.8, 165.2, 165.0, 154.8,
80.9, 79.8, 70.6, 46.0, 44.2, 42.9, 30.4, 28.4. HRMS (MALDI): calcd for C19H31N8O2, 403.2565
(M + H+); found, 403.2565.

3.15. Synthesis of Compound 16

Cyanuric chloride (1.10 g, 5.99 mmol) and DIPEA (510.0 µL, 3.00 mmol) were suc-
cessively added to a solution of compound 15 (1.20 g, 2.99 mmol) in CHCl3 (15 mL), and
the resulting mixture was stirred for 2 h at 0 ◦C. After the reaction mixture was concen-
trated under reduced pressure, the residue was dissolved in CHCl3 (70 mL). The organic
phase was washed with water (25 mL × 2), dried over Na2SO4, and concentrated under
reduced pressure. The crude product was purified by column chromatography on silica gel
(CHCl3/EtOAc, 15:1) to afford 16 as a white solid (1.60 g, 97%). 1H NMR (400 MHz, CDCl3)
δ 4.94 (t, J = 5.7 Hz, 1H), 4.19 (dd, J = 5.7, 2.5 Hz, 2H), 3.95–3.68 (m, 12H), 3.49–3.40 (m,
4H), 2.20 (t, J = 2.5 Hz, 1H), 1.49 (s, 9H). 13C NMR (100 MHz, CDCl3) δ 170.4, 165.8, 165.2,
165.1, 164.1, 154.8, 80.6, 80.0, 70.8, 44.0, 43.0, 42.6, 30.5, 28.4. HRMS (MALDI): calcd for
C22H29Cl2N11NaO2, 572.1775 (M + Na+); found, 572.1784.

3.16. Synthesis of Compound 17

Propargylamine (140 µL, 2.19 mmol) and DIPEA (1.24 mL, 7.29 mmol) were added
to a solution of compound 16 (801 mg, 1.46 mmol) in THF (20 mL), and the resulting
mixture was stirred for 1.5 h at room temperature. After the reaction mixture was concen-
trated under reduced pressure, the residue was dissolved in CHCl3 (70 mL). The organic
phase was washed with water (50 mL × 3), dried over Na2SO4, and concentrated under
reduced pressure. The crude product was purified by column chromatography on silica
gel (CHCl3/MeOH, 20:1) to afford 17 as a white solid (708 mg, 85%). 1H NMR (400 MHz,
CDCl3) δ 6.33–6.20 (m, 1H), 4.99 (t, J = 5.3 Hz, 1H), 4.26–4.14 (m, 4H), 3.93–3.70 (m, 12H),
3.48–3.41 (m, 4H), 2.23 (t, J = 2.5 Hz, 1H), 2.20 (t, J = 2.5 Hz, 1H), 1.48 (s, 9H). 13C NMR
(100 MHz, CDCl3) δ 169.1, 165.8, 165.2, 165.2, 164.4, 154.8, 80.7, 79.9, 79.5, 71.2, 70.7, 43.4, 42.9,
42.7, 30.6, 30.5, 28.4. HRMS (MALDI): calcd for C25H33ClN12NaO2, 591.2430 (M + Na+);
found, 591.2436.

3.17. Synthesis of G3 Dendrimer 18

Compound 17 (542 mg, 0.952 mmol) and DIPEA (502 µL, 2.95 mmol) were successively
added to a solution of G1 dendrimer 5 (326 mg, 0.236 mmol) in CHCl3 (20 mL), and the
resulting mixture was refluxed for 8 days. After the reaction mixture was concentrated
under reduced pressure, the residue was dissolved in CHCl3 (100 mL). The organic phase
was washed with water (30 mL × 1), dried over Na2SO4, and concentrated under reduced
pressure. The crude product was purified by silica gel column chromatography (gradient
elution using (CH2Cl2/EtOAc 2:1) until no detectable 16 was observed, as determined
by UV spotting, to (CHCl3/MeOH 15:1) to obtain the desired product) to afford 18 as a
slightly yellow solid (638 mg, 91%). 1H NMR (600 MHz, CDCl3) δ 7.41–7.29 (m, 12H),
7.26–7.22 (m, 6H), 5.49 (s, 6H), 5.32–5.23 (m, 3H), 5.17–4.84 (m, 6H), 4.69 (d, J = 6.1 Hz, 6H),
4.23–4.16 (m, 12H), 3.88–3.70 (m, 84H), 3.47–3.41 (m, 12H), 2.23–2.18 (m, 6H), 1.48 (s, 27H).
13C NMR (150 MHz, CDCl3) δ 166.1, 165.8, 165.4, 165.2, 154.8, 147.0, 134.6, 129.1, 128.8,
128.0, 121.5, 80.9, 80.9, 79.9, 70.7, 54.1, 43.0, 43.0, 36.6, 30.5, 28.4. HRMS (MALDI): calcd for
C141H180N72NaO6, 3000.5885 (M + Na+); found, 3000.5873.

3.18. Synthesis of G3 Dendrimer 10 from Compound 18
3.18.1. CuSO4/Ascorbic Acid

Benzyl azide (25.0 µL, 0.200 mmol), ascorbic acid (16.6 mg, 0.0943 mmol), and copper
(II) sulfate (2.9 mg, 0.0182 mmol) were successively added to a solution of compound 18
(90 mg, 0.0302 mmol) in THF/H2O (1:1 v/v, 5 mL). The resulting mixture was subjected
to microwave irradiation at 110 ◦C for 3 h in a sealed vial or stirred at 110 ◦C for 12 h in
a pressure vessel. After the reaction mixture was concentrated, the residue was dissolved



Molecules 2023, 28, 131 13 of 15

in CHCl3 (70 mL) and the solution was washed with 5% aqueous NaOH (30 mL × 2). The
organic phase was dried over Na2SO4 and then evaporated. The crude product was purified
with column chromatography on silica gel (CHCl3/MeOH, 20:1) to afford 10 as a yellow solid.
Yield; MW: (12.3 mg, 3.26 µmol, 11%), pressure vessel: (12.6 mg, 3.33 µmol, 11%).

3.18.2. CuI/DIPEA

Benzyl azide (25.0 µL, 0.200 mmol), DIPEA (31.0 µL, 0.182 mmol), and copper (I)
iodide (4.2 mg, 0.0221 mmol) were successively added to a solution of compound 18 (90 mg,
0.0302 mmol) in THF (5 mL). The resulting mixture was subjected to microwave irradiation
at 110 ◦C for 3 h in a sealed vial or stirred at 110 ◦C for 12 h in a pressure vessel. After
the reaction mixture was concentrated, the residue was dissolved in CHCl3 (70 mL) and
the solution was washed with 5% aqueous NaOH (30 mL × 2). The organic phase was
dried over Na2SO4 and then evaporated. The crude product was purified with column
chromatography on silica gel (CHCl3/MeOH, 20:1) to afford 10 as a pale yellow solid.
Yield; MW: (11.0 mg, 2.91 µmol, 10%), pressure vessel: (18.1 mg, 4.79 µmol, 16%).

4. Conclusions

In this study, we conducted a fundamental investigation of click chemistry for melamine-
based dendrimers. The click chemistry of G1 and G2 dendrimers containing three or six
alkynyl groups with benzyl azide afforded the desired triazole dendrimers in high yields
without undesirable byproducts, but some challenges were encountered in the case of G3
dendrimers. The desired reaction proceeded under microwave irradiation as well as with
simple heating. This click chemistry can be utilized for various melamine dendrimers
that are prepared with other amine linkers. Changing the piperazine linker may resolve
the issues encountered here. In addition, this transformation may be used to achieve
diverse functionalized azides with components showing medicinal activities, conjugation
of biocompatible groups, and diagnostic labels. The stepwise methodology, which allows
the repetition of divergent synthesis and click chemistry, can be suitable for introducing
different triazole components. Further studies may allow the development of diverse
functionalized melamine dendrimers.
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