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Chapter 1

Introduction

1.1 Motivation

When trying to understand the behavior of a quantum mechanical system, one often

has to resort to seeking approximate solutions to the Schrödinger equation due to the

complexity of the interactions involved. In atomic and molecular physics, for example, one

is faced with describing the many-body system of electrons, for which no exact solution

exists. Finding sufficiently accurate approximate solutions is thus necessary in the quest

to understand the finer details of the periodic table, molecular reaction dynamics, and

so on.

To find the eigenvalues and eigenvectors of a given Hamiltonian, one might try to

diagonalize a matrix representation in the associated Hilbert space of functions. How-

ever, this space is generally infinite-dimensional, and the convergence toward accurate

eigenvalues and eigenvectors may be slow depending on the choice of functions.

Alternatively, there is the idea of defining an approximate Hamiltonian which is close
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enough to the original that a more accurate solution to the problem can be found by

treating the neglected interactions as a perturbation. Essentially, one tries to ‘turn off’

parts of the interaction which prohibits an exact solution. This leaves a system which

can be described by an unperturbed Hamiltonian for which exact solutions are known or

can be found, at least within the limits of a finite space of functions spanning the relevant

space. Such approximate solutions could now form the basis with which one can pursue

more accurate solutions through a variety of methods.

In the case of electronic structure theory, the Hartree-Fock (HF) or self-consistent-

field (SCF) model often serves as the starting point for more sophisticated analysis [Szabo

& Ostlund (1996)]. In the case of describing the vibrational degrees of freedom of a

molecule, the lowest order approximation is typically a simple set of non-interacting

harmonic oscillators. In both of these cases, one makes use of the language of second

quantization, where occupation number operators are used to create or annihilate single

particle states. In the electronic case, these operators obey fermionic anti-commutation

relations, whereas harmonic oscillator operators are governed by bosonic commutation

relations.

Perhaps the most straightforward way to find improved solutions beyond the unper-

turbed system is by the use of standard perturbation theory. Here, the wavefunctions and

energies of the system are obtained as infinite series where the hope is that reasonably

accurate results can be obtained with only a small number of terms, provided of course

that the series converges at all. The perturbation approach is conceptually appealing, in

that the term-by-term contributions can be visualized as consisting of an ever-increasing

number of ways that the particles involved can interact for a given perturbation.
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We have previously [Huey-You (2020), Huey-You & Rittby (2024)] presented work

where we adopted ideas developed and used in perturbative approaches for the solution of

the non-relativistic problem of interacting electrons (fermions), to the problem of finding

solutions to a set of perturbed harmonic oscillators (bosons). This involved developing a

diagrammatic approach to analyzing the equations of the so called ‘equation-of-motion

coupled cluster’ (EoM-CC) method applied to perturbed quantum harmonic oscillators.

Coupled cluster (CC) methods have previously been used to study anharmonic oscilla-

tors by a number of authors. Early work [Hsue & Chern (1984), Kaulfuss & Altenbokum

(1986), Bishop & Flynn (1988)] focused on the method’s convergence behavior for simple

perturbations, whereas more recent studies [Banik et al. (2008), Christiansen (2004a),

Christiansen (2004b)] presented the application of CC methods to perturbed oscillators

modeling molecular vibrational motion.

In this work, we continue the development of our diagrammatic approach [Huey-You &

Rittby (2024)] to CC methods applied to perturbed oscillators in an attempt to generalize

the construction of the required equations for the EoM-CC approach to such systems. We

also further develop the use of a novel scheme of iterative Bogoliubov transformations

[Huey-You (2020)], in order to improve general convergence characteristics of the CC

amplitude equations. Finally, in anticipation of growing complexity when applying our

methods to a set of coupled harmonic oscillators, we develop Python code which makes

use of our diagrammatic approach to generate the necessary code to implement the EoM-

CC method for a given perturbation and set of coupled cluster excitation operators.
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1.2 Occupation Number Representation

Let us begin by writing the Hamiltonian for a set of quantum harmonic oscillators.

Each oscillator is indexed by i, corresponding to some position qi and momentum pi.

H0 =
∑
i

(
1

2m
p2i +

1

2
mω2

i q
2
i

)
; pi = −iℏ

∂

∂qi
(1.1)

As we are dealing with a set of oscillators, it becomes convenient to frame the problem

using the canonical ‘occupation number’ formalism. This entails defining a set of creation

operators a†i and annihilation operators ai as follows.

a†i =

√
mωi

2ℏ

(
qi −

i

ωi

pi

)
; ai =

√
mωi

2ℏ

(
qi +

i

ωi

pi

)
(1.2)

Together, these are known as ladder operators. These operators are defined such that

they satisfy the following bosonic commutation relations.

[
ai, a

†
j

]
= δij ;

[
ai, aj

]
= 0 ;

[
a†i , a

†
j

]
= 0 (1.3)

There are a few properties to keep in mind when one of these operators acts on the

system ket. As a result of their definitions, creation and annihilation operators increase

and decrease the number of quanta ni for a particular ith oscillator respectively.

a†i |n1, ..., ni, ..., nN⟩ =
√

ni + 1 |n1, ..., ni + 1, ..., nN⟩

ai |n1, ..., ni, ..., nN⟩ =
√
ni |n1, ..., ni − 1, ..., nN⟩

(1.4)
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This has the added effect that an annihilation operator acting on an oscillator in its

ground state (ni = 0) would necessarily result in zero. The ground state of the entire

system is that for which all oscillators are in their respective ground states.

|0⟩ = |01, ..., 0N⟩ (1.5)

We can describe the unperturbed system of harmonic oscillators with individual fre-

quencies ωi using the above formalism, by inverting the operator definitions in (1.2).

qi =

√
ℏ

2mωi

(
a†i + ai

)
; pi = i

√
mωiℏ

2

(
a†i − ai

)
(1.6)

In the new operator representation, the Hamiltonian in (1.1) and the Schrödinger

equation are written as follows.

H0 =
N∑
i=1

(
a†iai +

1

2

)
ℏωi ; H0 |n1, ..., nN⟩ = En1,...,nN

|n1, ..., nN⟩ (1.7)

What would otherwise be a set of differential equations in qi and pi are thus trans-

formed into what is effectively a set of algebraic equations. The energy eigenvalues for

this ‘unperturbed’ case are well known, and can be expressed as follows.

En1,...,nN
=
∑
i

(
ni +

1

2

)
ℏωi (1.8)

For the derivations and results in this paper, we will set ℏ = 1 for simplicity. This

factor can be easily re-introduced at any point.
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Allow us now to apply some perturbation V to the system. Any perturbation based

upon powers of qi or pi can be transformed from the regular coordinate space into lad-

der operators, using the same relations in (1.6). Let us therefore consider an example

perturbation expressed as a power series in qi, for simplicity.

V = c +
∑
i

αiqi +
∑
ij

βijqiqj +
∑
ijk

γijkqiqjqk +
∑
ijkl

δijklqiqjqkql + ... (1.9)

Note that the restriction to qi is only illustrative, and any following discussions can

be applied to a more general perturbation in powers of qi and pi. We choose to apply

the commutation relations, such that any terms from the polynomial can be written in

the form (a†ia
†
j...)(aras...). Writing terms with leading creation and trailing annihilation

operators as such is a process known as normal-ordering. We can then rearrange V to

be of the following form.

V = V0 + V1 + V2 + V3 + V4 + ... (1.10)

Each term Vm consists of all combinations of m normal-ordered operators, with the
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first few terms expressed below as examples.

V0 = (scalar) ; V1 =
∑
i

(
Qia

†
i + Qiai

)
V2 =

∑
ij

(
1

2!
Qija

†
ia

†
j + Qj

ia
†
iaj +

1

2!
Qijaiaj

)

V3 =
∑
ijk

(
1

3!
Qijka

†
ia

†
ja

†
k +

1

2!
Qk

ija
†
ia

†
jak +

1

2!
Qjk

i a†iajak +
1

3!
Qijkaiajak

)

V4 =
∑
ijkl

(
1

4!
Qijkla

†
ia

†
ja

†
ka

†
l +

1

3!
Ql

ijka
†
ia

†
ja

†
kal +

1

2!

1

2!
Qkl

ija
†
ia

†
jakal +

1

3!
Qjkl

i a†iajakal +
1

4!
Qijklaiajakal

)

(1.11)

In the above perturbation, we use Q to denote the coefficients for specific operator

terms. The placement of indices on each coefficient correspond to which type of ladder

operator is acting on the indexed oscillator. Specifically we will use subscripts to repre-

sent any creation operators and superscripts to represent any annihilation operators, a

convention which is repeated throughout the paper.

Given the commutation relations in (1.3), the coefficients Q are invariant with respect

to permutations solely within the subscript or superscript indices. Furthermore, if the

perturbation is Hermitian, taking the complex conjugate of a coefficient is equivalent to

the interchange of all subscripts with superscripts.

Qlm
ijk = Qml

jik = Qml
kji = ... ;

(
Qlm

ijk

)∗
= Qijk

lm (1.12)

With the form of our perturbation defined above, let us also call the perturbed sys-

tem ket |α̃⟩. This allows us to write the Schrödinger equation for a system of coupled
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anharmonic oscillators as follows.

H|α̃⟩ = (H0 + V ) |α̃⟩ = Ẽα|α̃⟩ (1.13)

1.3 Perturbation Theory

As we plan to approach a very general perturbed system, one may consider the use

of perturbation theory. This entails expressing the energy for some perturbed state

using order-by-order corrections, with each correction based upon a higher power of the

perturbation. Though we will not explicitly use the method in this paper, we include a

very brief presentation for reference.

Let us call the corresponding unperturbed state for this calculation some |α⟩. The

general form of each correction is then well known, and can be derived using what is

referred to as the Bracketing Theorem. This entails first defining the resolvent, R.

R =
∑
β ̸=α

|β⟩⟨β|(
Eα − Eβ

) (1.14)

Higher powers of R allow us to express certain parts of the energy corrections directly.

For example, the R2 term is written as follows.

R2 =
∑
β ̸=α

∑
γ ̸=α

|β⟩⟨β|γ⟩⟨γ|(
Eα − Eβ

) (
Eα − Eγ

)
=
∑
β ̸=α

∑
γ ̸=α

|β⟩δβγ⟨γ|(
Eα − Eβ

) (
Eα − Eγ

) =
∑
β ̸=α

|β⟩⟨β|(
Eα − Eβ

)2
(1.15)
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Alongside the resolvent, we utilize the bracketing definition ⟨X⟩ = ⟨α|X|α⟩. This

way, the nth order correction can be written with brackets resulting from V (RV )n−1.

E(1) = ⟨V ⟩ ; E(2) = ⟨V RV ⟩

E(3) = ⟨V (RV )2⟩ − ⟨V ⟩⟨V R2V ⟩

E(4) = ⟨V (RV )3⟩ − ⟨V ⟩
[
⟨V R(RV )2⟩ + ⟨(V R)2RV ⟩

]
+

⟨V ⟩2⟨V R3V ⟩ − ⟨V RV ⟩⟨V R2V ⟩

(1.16)

Apart from the leading ⟨V (RV )n−1⟩ term, we also have terms where more brackets

have been inserted around V , V RV , etc. in all possible ways (apart from those which

include the leftmost and rightmost V ). A term with nB brackets also has an associated

sign of (−1)nB . Following this pattern and expanding the resolvent powers, an example

for the first three energy corrections are shown below.

E(1) = ⟨α|V |α⟩ ; E(2) =
∑
β ̸=α

⟨α|V |β⟩⟨β|V |α⟩(
Eα − Eβ

)
E(3) =

∑
β ̸=α

∑
γ ̸=α

⟨α|V |β⟩⟨β|V |γ⟩⟨γ|V |α⟩(
Eα − Eβ

) (
Eα − Eγ

) − ⟨α|V |α⟩
∑
β ̸=α

⟨α|V |β⟩⟨β|V |α⟩(
Eα − Eβ

)2
(1.17)

The perturbed energy is then expressed as the sum of the unperturbed energy E(0)

and all of the energy corrections, which must be truncated at some point.

Ẽ = E(0) + E(1) + E(2) + E(3) + ... (1.18)

Rather than following perturbation theory, we have chosen to employ the coupled

9



cluster method for a handful of reasons. The main advantage given by coupled cluster

theory lies in its differing treatment of corrections to the calculated energies. Perturbation

theory does include all possible excitations, but in turn, forces us to truncate the order

of energy corrections used (i.e., at some E(n)).

Coupled cluster theory is defined in such a way that allows us to include energy

corrections to infinite order from each excitation level in the cluster operator. This way,

the excitation levels of the cluster operator we use are truncated, rather than the order of

the energy corrections. The general derivation for the EoM-CC method is discussed in the

following section. Then, the remainder of the paper expands upon this using diagrams

and Pythonic code for any arbitrary orders of the perturbation and cluster operator.
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Chapter 2

Methodology

2.1 Coupled Cluster Method for the Ground State

Coupled cluster methods have been in wide use since their introduction [Coester

(1958), Coester & Kümmel (1960), Č́ıžek (1966), Paldus & Č́ıžek (1975)], in both nu-

clear and electronic structure calculations [Bishop (1991), Bartlett & Musia l (2007)]. In

CC methods, one makes use of an exponential operator involving appropriate excitation

operators, which in principle can generate the exact ground state wavefunction and en-

ergy. Perturbative approaches become notoriously complex as one includes higher and

higher orders of the perturbation, or as in the case of CC theory, higher levels of exci-

tation in the cluster operator. Such methods are typically referred to as CCD, CCSD,

CCSDT, and so on reflecting the level of truncation of the excitation operators (doubles

only; singles and doubles; singles, doubles, and triples respectively).

We begin the EoM-CC derivation by considering the Schrödinger equation for the
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ground state of our perturbed system, denoting the state itself as |0̃⟩.

H|0̃⟩ = (H0 + V ) |0̃⟩ = Ẽ0|0̃⟩ (2.1)

The states of the unperturbed system form a complete set, allowing us to express |0̃⟩

as a linear combination of all possible unperturbed excitations. There are a number of

ways to accomplish this, but the CC method entails defining the cluster operator T .

T = T1 + T2 + T3 + ... =
∑
k

tka
†
k +

1

2!

∑
kl

tkla
†
ka

†
l +

1

3!

∑
klm

tklma
†
ka

†
la

†
m + ... (2.2)

The coefficients t in each operator are referred to as cluster amplitudes. Though these

would technically generate the desired states, it becomes far more useful to apply eT in

practice. This way, the inverse of the operator is given by e−T , and the linear combination

for the perturbed ground state is as follows.

|0̃⟩ = eT |0⟩ =

(
1 + T +

1

2!
T 2 +

1

3!
T 3 + ...

)
|0⟩ (2.3)

This relation is used to rewrite the perturbed Schrödinger equation in (2.1), directly

solving for Ẽ0.

H|0̃⟩ = HeT |0⟩ = Ẽ0e
T |0⟩ ; e−THeT |0⟩ = Ẽ0|0⟩ ; Ẽ0 = ⟨0|e−THeT |0⟩ (2.4)

Analysis surrounding the term e−THeT is therefore key to the remainder of our dis-

cussion. We first note that this is a similarity transformation of the more general form

12



H → P−1HP , which among other things conserves the spectrum of eigenvalues. Given

that we have used the exponential cluster operator in the transformation, the Baker-

Campbell-Hausdorff (BCH) expansion provides us with a view of any terms we should

consider.

e−THeT = H + [H,T ] +
1

2!
[[H,T ], T ] +

1

3!
[[[H,T ], T ], T ] + ... (2.5)

Despite the fact that the exponential operator eT is an infinite series, it can be shown

in practice that the expansion in (2.5) is self-truncating for any finite expansion as in

(1.9). Let us therefore select some maximum order perturbation VM . The cluster operator

T in (2.2) is the only other thing that needs to be truncated for the sake of calculations,

for which we also select some maximum order TN .

Inclusion of higher order cluster amplitudes would lead to better approximations

of the ground state, but deriving precise equations by hand for each amplitude is an

increasingly demanding process. Such equations are obtained by projecting all possible

unperturbed excited states onto the Schrödinger equation in (2.4). The process will be

explained in further detail later, but is included here for reference.

⟨0|aie−THeT |0⟩ = 0

⟨0|aiaje−THeT |0⟩ = 0

⟨0|aiajak...e−THeT |0⟩ = 0


→ ti, tij, tijk, ... (2.6)

Calculating the cluster amplitudes entails finding solutions for a number of coupled

non-linear equations, given by some increasing number of annihilation operators acting

on e−THeT . We seek to address the many combined operator terms in a more algorithmic

13



manner, which could be applied either by hand or in code.

2.2 Normal Ordering and Wick’s Theorem

Wick’s theorem will serve as our starting point, a convenient method for expressing

an operator term as its normal-ordered part and any terms that follow. The theorem

defines two operations, one of which is the simple normal-ordering described earlier. The

other is a ‘contraction’, occurring between some ai and an a†j to its right. These will be

denoted by curly brackets and bullet symbols, respectively.

{
aia

†
j

}
= a†jai ; a•i a

†•
j = δij (2.7)

Given enough operators in an individual term, one could also write multiple contrac-

tions so long as they occur between distinct pairs of operators. Wick’s theorem then states

that a term Â, comprised of some product of creation and annihilation operators, can be

written using a sum of all possible normal-ordered single contractions, normal-ordered

double contractions, and so on.

Â =
{
Â
}

+
∑
single

{
Â•
}

+
∑
double

{
Â••
}

+ ... (2.8)

As an example, consider the sum of all operators of the form aiaja
†
ka

†
l . Rather than

normal-ordering an individual product of operators alone, we choose to apply Wick’s

Theorem to the sum as it becomes far more useful, following the form of terms such as
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(1.11) or (2.2). The normal-ordered term with no contractions is shown below.

Â =
∑
ijkl

aiaja
†
ka

†
l →

{
Â
}

=
∑
ijkl

{
aiaja

†
ka

†
l

}
=
∑
ijkl

a†ka
†
laiaj (2.9)

Note that as we include a sum over oscillator indices i, j, k, and l, the upper limit

of the sums will simply be the number of oscillators in the system. Furthermore, we

are able to permute indices of the summation so long as the type of ladder operator is

retained, allowing us to collect terms of the same form as shown below for the singly and

doubly contracted cases.

∑
single

{
Â•
}

=
∑
ijkl

({
a•i aja

†•
k a†l

}
+
{
a•i aja

†
ka

†•
l

}
+
{
aia

•
ja

†•
k a†l

}
+
{
aia

•
ja

†
ka

†•
l

})
=
∑
ijkl

({
aja

†
l δik

}
+
{
aja

†
kδil

}
+
{
aia

†
l δjk

}
+
{
aia

†
kδjl

})
=
∑
ijkl

(
a†lajδik + a†kajδil + a†laiδjk + a†kaiδjl

)
= 4

∑
ijkl

a†lajδik = 4
∑
jkl

a†laj = 4N
∑
jl

a†laj

∑
double

{
Â••
}

=
∑
ijkl

({
a•i a

••
j a†•k a†••l

}
+
{
a•i a

••
j a†••k a†•l

})
=
∑
ijkl

({δikδjl} + {δilδjk}) =
∑
ijkl

(δikδjl + δilδjk) = 2
∑
ij

1 = 2N2

(2.10)

Multiple bullets are used to differentiate contracted pairs, but hold no further sig-

nificance. After inclusion of the sums and permuting indices, we note that each order

contracted results in an added power of N in the coefficient. As triple and higher order
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contractions are impossible for the given term, we can write the following equality.

∑
ijkl

aiaja
†
ka

†
l =

∑
ijkl

a†ka
†
laiaj + 4N

∑
jl

a†laj + 2N2 (2.11)

The theorem is especially useful in relation to the BCH expansion. Consider for

example the first commutator, [H,T ] = HT −TH. Any terms in TH are normal-ordered

by definition, as the cluster operator only adds more leading a†i operators to the already

normal-ordered Hamiltonian. The commutator as a whole can then be expressed as a

sum of any possible contractions between the two terms.

[H,T ] = HT − TH = HT − {HT}

=
∑
single

{(HT )•} +
∑
double

{(HT )••} + ...
(2.12)

There exists a bit of nuance to highlight in the above equation, as we now have two

terms H and T . We require both to actively participate, such that a contraction can

only occur between an ai in H and an a†j in T . In other words, neither term can contract

with itself. We will refer to the sum of all possible contractions between two terms as

expressed in (2.12) as their ‘connection’, denoted using a C subscript.

Let us also define the ‘open’ part of a normal-ordered operator as that which has a

nonzero amount of creation or annihilation operators. Then, the ‘closed’ part of that

term would contain any remaining scalars. This allows us to separate parts of equations
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such as (1.7) for more well defined analysis.

H0 =
N∑
i=1

(
a†iai +

1

2

)
ωi ; H0,open =

N∑
i=1

a†iaiωi ; H0,closed =
1

2

N∑
i=1

ωi

(2.13)

As such, any operator can be written straightforwardly as a sum of its open and

closed parts. Together with the concept of connections, we can apply the two formalisms

to the entire BCH expansion.

e−THeT = e−T
(
Hopen + Hclosed

)
eT = e−THopene

T + Hclosed

e−THopene
T = Hopen + (HT )C +

1

2!
(HT 2)C +

1

3!
(HT 3)C + ... = (HeT )C

(2.14)

The term (HeT )C will result in its own series of operators, as well as some scalars

which fall out of the connections. Therefore, we can separate them once again and write

out the explicit terms needed to calculate e−THeT .

e−THeT = e−THopene
T + Hclosed

= (HeT )C + Hclosed

= (HeT )C,open + (HeT )C,closed + Hclosed

(2.15)

The ability to express these three parts separately is extremely convenient for the

EoM-CC method, as the ground state energy can be directly expressed as a sum of the

closed parts of our equation.

Ẽ0 = (HeT )C,closed + Hclosed (2.16)
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The cluster amplitude equations in (2.6) also become much more approachable. The

only surviving terms which contribute to any given tijk... are connected and open, and

also must be combinations of only a†i operators so as not to eliminate the ground state

ket.

⟨0|ai(HeT )C,open|0⟩ = 0

⟨0|aiaj(HeT )C,open|0⟩ = 0

⟨0|aiajak...(HeT )C,open|0⟩ = 0


→ ti, tij, tijk, ... (2.17)

Although Wick’s Theorem does provide us with a way to directly manipulate terms

in H and T , expressing their numerous connections in the operator representation can

be a lengthy process. That said, we can also use the formalism for connected operators

to approach the excited state derivation.

2.3 Equation-of-Motion Coupled Cluster Method for

Excited States

The EoM-CC [Sekino & Bartlett (1984), Geertsen et al. (1989)] is a hybrid method

where an effective Hamiltonian is constructed from a CC calculation, which then is

subsequently diagonalized in the space of unperturbed states leading to information about

the excited state spectrum of the problem. In order to derive the excited state energies,

we begin by examining the excited states themselves. Let us express some kth excited

state of the perturbed system as a linear combination over the unperturbed basis, just
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as we did for the ground state. We will reserve eT for the ground state expansion, and

therefore will pick a more general excitation operator Ω†
k with new coefficients. This

operator would still generate all unique singly excited states, doubly excited states, and

so on, just as before with eT .

|ϕk⟩ = Ω†
k |0⟩ (2.18)

Using the above definition, the Schrödinger equation can be manipulated as follows.

H|ϕk⟩ = Ẽk|ϕk⟩

HΩ†
k |0⟩ = ẼkΩ†

k |0⟩

HeT e−TΩ†
k |0⟩ = Ẽke

T e−TΩ†
k |0⟩

e−THeT e−TΩ†
k |0⟩ = Ẽke

−TΩ†
k |0⟩

(2.19)

By inserting the identity eT e−T = 1, we have rewritten the equation in terms of our

more familiar transformed Hamiltonian. It then becomes useful to expand all of the

open and closed terms in e−THeT , noting that the sum of the closed terms is simply the

perturbed ground state given in (2.16). We also group the two common operators on

either side as some Ω̃†
k for convenience.

Ω̃†
k = e−TΩ†

k ; e−THeT Ω̃†
k |0⟩ = ẼkΩ̃†

k |0⟩(
(HeT )C,open + Ẽ0

)
Ω̃†

k |0⟩ = ẼkΩ̃†
k |0⟩

(2.20)

The following notation is introduced, such that the above equation can be written
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more clearly in terms of some H matrix and its eigenvalues.

H = (HeT )C,open ; ∆Ẽk = Ẽk − Ẽ0 ; HΩ̃†
k |0⟩ = ∆ẼkΩ̃†

k |0⟩ (2.21)

We will refer to the H matrix as the ‘effective’ Hamiltonian, with eigenvalues repre-

senting the gap between the ground state and a given kth excited state energy. The exact

form for H is discussed later, though we note that its elements in the multiple oscillator

case become block matrices corresponding to the multiple ways to excite the system.



0 ⟨0|H|1⟩ ⟨0|H|2⟩ · · ·

⟨1|H|0⟩ ⟨1|H|1⟩ ⟨1|H|2⟩ · · ·

⟨2|H|0⟩ ⟨2|H|1⟩ ⟨2|H|2⟩ · · ·

...
...

...
. . .





s0k

s1k

s2k

...


= ∆Ẽk



s0k

s1k

s2k

...


(2.22)

The element ⟨0|H|0⟩ will always be zero, as all terms in H are open by definition.

The above is an infinite matrix, which must be truncated at some maximum size for any

calculations in practice. Given that H is highly dependent on the behavior of T , there

are a few nuances to keep in mind when diagonalizing the matrix.

No Cluster Amplitudes: (T = 0)

Let us first establish the behavior for a case in which the EoM-CC approach is not

taken, effectively selecting T = 0. The transformed Hamiltonian e−THeT simply reduces

to the regular Hamiltonian, and the newly introduced operator reduces such that Ω̃†
k =

Ω†
k.

H = Hopen ; HΩ†
k |0⟩ = ∆ẼkΩ†

k |0⟩ (2.23)
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As higher order expansion coefficients in the Ω†
k operator are included, the eigenstate

more and more closely resembles the exact kth excited state. This is identical to the

equation in the second line of (2.19).

All Cluster Amplitudes: (T = Infinite Series)

We now introduce the series of cluster amplitudes, for which the equations are given

by ⟨m|H|0⟩ = 0 as outlined in (2.17). If infinitely many amplitudes are included and

fully converged, then the entire first column of the infinite H matrix is necessarily zero.

This has the effect of decoupling the ground state energy from the remaining excited

states.

H =



0 ⟨0|H|1⟩ ⟨0|H|2⟩ · · ·

0 ⟨1|H|1⟩ ⟨1|H|2⟩ · · ·

0 ⟨2|H|1⟩ ⟨2|H|2⟩ · · ·

...
...

...
. . .


(2.24)

Truncated Cluster Amplitudes: (T = Finite Series)

The above case is what happens in theory, but numerical calculations require trunca-

tion of both the matrix and the cluster amplitudes. To approximate the ground state up

to the Zth excited state, let us truncate the matrix at some particular Z + 1 dimension-

ality. In the case where TN is of higher order than Z, we still see that the ground state
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decouples for the truncated view of the matrix.

N ≥ Z → H =



0 ⟨0|H|1⟩ ⟨0|H|2⟩ · · · ⟨0|H|Z⟩

0 ⟨1|H|1⟩ ⟨1|H|2⟩ · · · ⟨1|H|Z⟩

0 ⟨2|H|1⟩ ⟨2|H|2⟩ · · · ⟨2|H|Z⟩

...
...

...
. . .

...

0 ⟨Z|H|1⟩ ⟨Z|H|2⟩ · · · ⟨Z|H|Z⟩


(2.25)

For lower order approximations of T , however, this image of the matrix changes.

Excluding higher order amplitudes results in their associated elements ⟨m|H|0⟩ no longer

being zero. The first eigenvalue ∆Ẽk is then nonzero, and we instead find some correction

to the ground state energy. As such, all states become coupled again.

N < Z → H =



0 ⟨0|H|1⟩ ⟨0|H|2⟩ · · · ⟨0|H|Z⟩

0 ⟨1|H|1⟩ ⟨1|H|2⟩ · · · ⟨1|H|Z⟩

0 ⟨2|H|1⟩ ⟨2|H|2⟩ · · · ⟨2|H|Z⟩

...
...

...
. . .

...

⟨Z|H|0⟩ ⟨Z|H|1⟩ ⟨Z|H|2⟩ · · · ⟨Z|H|Z⟩


(2.26)

This leads to a situation where the ground state energy Ẽ0 obtained from the EoM-CC

approach returns a different value from the ground state energy obtained from diagonal-

izing H. Though this is not an especially large computational issue, it remains a crucial

distinction to make.
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2.4 Infinite Orders and Truncation

With the form of the effective Hamiltonian matrix discussed above, we note the advan-

tageous manner by which coupled cluster theory manipulates infinite order contributions.

The cluster operator eT and its inverse e−T are expressed below.

eT = 1 + T +
1

2!
T 2 +

1

3!
T 3 + ...

e−T = 1 − T +
1

2!
T 2 − 1

3!
T 3 + ...

(2.27)

Note that both the exponential cluster operator and its inverse exclusively consist of

products of a†. As there are no annihilation operators included, the matrix representation

of eT must be lower triangular.

eT =



1 0 0 · · ·

⟨1|eT |0⟩ 1 0 · · ·

⟨2|eT |0⟩ ⟨2|eT |1⟩ 1 · · ·

...
...

...
. . .


(2.28)

We note that for the multiple oscillator case, the states |1⟩, |2⟩, etc. must again

represent the blocks of all possible single, double, etc. excitations. The leading 1 in the

Taylor expansion is the only term which has no raising or lowering affect as a scalar,

thereby appearing along the diagonal alone. Using the same arguments, the inverse
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matrix has a nearly identical form shown below.

e−T =



1 0 0 · · ·

⟨1|e−T |0⟩ 1 0 · · ·

⟨2|e−T |0⟩ ⟨2|e−T |1⟩ 1 · · ·

...
...

...
. . .


(2.29)

In the excited state derivation, we calculate the precise contributions to H in an ele-

ment by element manner, where different contributions are given by terms in (HeT )C,open.

Allow us to express the matrix of open and connected terms as follows, relating it directly

to the transformed Hamiltonian e−THeT .

H = (HeT )C,open = e−THeT − Ẽ0 (2.30)

Matrix elements of H can then be written in terms of elements of each of the con-

stituent operators, by taking advantage of the unperturbed eigenvector basis being com-

plete.

⟨m|H|n⟩ = ⟨m|e−THeT |n⟩ − δmnE0

=
∞∑
ij

⟨m|e−T |i⟩⟨i|H|j⟩⟨j|eT |n⟩ − δmnE0

(2.31)

Recall that in practice, the H matrix must be truncated to some (Z + 1) dimension-

ality, accounting for the ground state up to the Zth excited state. The coupled cluster

formalism allows us to still indirectly consider contributions from the full Hamiltonian
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matrix H of an infinite size, regardless of what truncated view we select. Truncations in

this sense are instead applied to e−T and eT , reducing them from infinite square matrices

to matrices of size (Z + 1) ×∞ and ∞× (Z + 1) respectively.
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Chapter 3

Diagrammatic Approach

3.1 Diagrammatic Representation of Normal Ordered

Operators

Diagrammatic techniques are ways to simplify and streamline the derivation of the

necessary equations for fermionic perturbation theory and CC methods. Such techniques

have been put to extensive use in the analysis of the perturbed many-body system of

electrons [Bartlett & Musia l (2007)], while adoptions of diagrammatic techniques for

perturbed harmonic oscillators have been much less extensive.

We now have enough groundwork to build a diagrammatic representation of any

product of normal-ordered operators needed for the above EoM-CC calculations. To keep

things simple, we begin with a horizontal line, representing the associated coefficient of

the term and acting as the vertex line of the diagram. Any operators a†i or ai are then

represented by vertical lines, leading up or down from the vertex line respectively. A few
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choice terms from the perturbed Hamiltonian and cluster operator are shown below as

examples.

1

2!

∑
ij

Qijaiaj = ;
1

2!

∑
kl

tkla
†
ka

†
l = (3.1)

A dotted vertex line will be used to represent terms in the Hamiltonian, while a solid

vertex line is used for cluster amplitudes. The length of any given line will have no

significance, as we only care for the overall structure of the diagrammatic term. When

writing and interpreting these diagrams, most of the explicit labels above become re-

dundant. The type of operator is already defined by the direction of the vertical line,

factorial coefficients can be derived later on, and any constants be directly inferred by

the numbers of creation and annihilation operators. Therefore, we only truly need to

label the associated operator indices for any given term.

1

2!

∑
ij

Qijaiaj = ;
1

2!

∑
kl

tkla
†
ka

†
l = (3.2)

These will be the diagrams used in practice when evaluating products of connected

operators from (HeT )C . Let us take the simple example of a Hamiltonian under some
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quadratic perturbation. This would result in a handful of V2 terms, expressed below.

Hopen =
∑
ij

ωj
i δija

†
iaj +

1

2!

∑
ij

Qija
†
ia

†
j +
∑
ij

Qj
ia

†
iaj +

1

2!

∑
ij

Qijaiaj

= + + +

(3.3)

The cross and square symbols on the vertices are used to differentiate the ωj
i energy

term and the Qj
i perturbation term, as they have the same diagrammatic structure. We

will also represent the cluster operator T in (2.2) using diagrams.

T = T1 + T2 + T3 + ... =
∑
k

tka
†
k +

1

2!

∑
kl

tkla
†
ka

†
l +

1

3!

∑
klm

tklma
†
ka

†
la

†
m + ...

= + + + ...
(3.4)

With this formalism, connecting two diagrams becomes an easy task. Given how a

contraction is defined, this is best visualized diagrammatically as connecting a down-

facing line in H and an up-facing line in T .

(
Q̂ij · T4

)
C

= + (3.5)

Here we have used the shorthand notation Q̂ij to represent the associated term in

the Hamiltonian from (3.3). Note that the connected line only requires one index, as the

other is removed by the Kronecker delta in (2.7). The connected terms above include

a singly connected as well as a doubly connected term, which together are the only
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possible structures that can result from a contraction between the two diagrams. That

being said, some extra care is required with regard to the indices in the results. This

evokes a discussion surrounding symmetry and the interchanging of these indices, which

should be thoroughly investigated before any diagrams can be fully interpreted.

3.2 Amplitude Symmetry Requirements

When working in the operator representation, there exist two ways of reordering

indices which should be reflected in the diagrammatic scheme. The first method comes

as a result of commutation relations in (1.3), allowing us the ability to freely exchange

creation operator indices with each other or annihilation operator indices with each other,

so long as the two are kept distinct and are in normal order.

[
a†i , a

†
j

]
= 0 ;

[
ai, aj

]
= 0 → 1

3!

∑
ijk

tijka
†
ia

†
ja

†
k =

1

3!

∑
ijk

tijka
†
ka

†
ia

†
j = ... (3.6)

We note that this manner of exchange only applies to the operators, but leaves the

coefficient intact. The other method makes use of the summation itself, as the indices

being summed over can be arbitrarily assigned. This affects both the coefficient and any

associated operators, as shown below.

∑
ijk...

=
∑
kji...

=
∑
kij...

= ... → 1

3!

∑
ijk

tijka
†
ia

†
ja

†
k =

1

3!

∑
kij

tkija
†
ka

†
ia

†
j = ... (3.7)

Any connected terms should exhibit the same behavior as well. This requires us to

take an extra step in symmetrizing the result, when returning from the diagrams back
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into operator representation. Let us write the following as an example, including both

the diagram and the result from Wick’s Theorem for a specific case.

(
Q̂j

i · T2

)
C

= =
∑
ij

∑
a

(
Qa

i taj
)
a†ia

†
j (3.8)

Clearly, the above indices are not symmetric with respect to interchanging the oper-

ators. Instead, symmetry can be forced onto the term by splitting it apart and including

all possible sets of permuted indices.

∑
ij

∑
a

(
Qa

i taj
)
a†ia

†
j =

1

2

∑
ij

∑
a

(
Qa

i taj + Qa
j tai
)
a†ia

†
j (3.9)

When interpreting diagrams by hand or implementing them into code, the coefficient

will be symmetrized as shown above. Any indices for unconnected upwards-facing vertical

lines are required to commute, and therefore we can write the following for the example.

= (3.10)

Allow us then to define the product of two normal-ordered terms with symmetrized

coefficients after n contractions, for use in diagrammatic interpretation. Consider the
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two generalized versions of some perturbation term and cluster amplitude.

Q̂ij...
rs... =

1

K!

1

L!

∑
ij...rs...

Q
ij...(L indices)
rs...(K indices)

(
a†ra

†
s...
)
(K operators)

(
aiaj...

)
(L operators)

TM =
1

M !

∑
uv...

tuv...(M indices)

(
a†ua

†
v...
)
(M operators)

(3.11)

Ideally, we wish to interpret any written connected diagram into the form below,

where the associated coefficient is already symmetrized.

Π̂ij...
rs... =

1

R!

1

S!

∑
ij...rs...

Π
ij...(S indices)
rs...(R indices)

(
a†ra

†
s...
)
(R operators)

(
aiaj...

)
(S operators) (3.12)

As R and S consist of any remaining creation and annihilation operators after con-

nections, they can be expressed in terms of K, L, M , and n. The creation operators in

the final result come from the K amount in Q̂ij...
rs... and the M amount in TM , while anni-

hilation operators can only be sourced from the L amount in Q̂ij...
rs.... An nth contraction

then removes n annihilation operators in Q̂ij...
rs... and n creation operators in TM , allowing

us to write the following equalities.

R = K + M − n ; S = L− n (3.13)

R and S will be called the ‘signature’ of the diagram, providing information about

the connected term’s overall structure. Later on, this will be used to sort diagrams

with the same number of creation and annihilation operators when evaluating the cluster

amplitude equations in (2.17).
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Let us also generalize the process of symmetrizing shown in (3.9). The same diagram

and its associated coefficient are provided below, isolated from any sums and operators

for better clarity.

Qa
i taj → 1

2

(
Qa

i taj + Qa
j tai
)

(3.14)

As the only source for annihilation operators is the perturbed Hamiltonian term

Q̂ij...
rs..., any interchange of their indices is symmetric by default. The inclusion of any

annihilation operators in Q̂ij...
rs... therefore has no effect on the number of terms required

for symmetrization. In the example below, the creation operators indexed by i and j

must be permuted, while the annihilation operators indexed by k and l are not.

Qakl
i taj → 1

2

(
Qakl

i taj + Qakl
j tai

)
(3.15)

Creation operators on the same vertex line are also symmetric by default. The only

permutations which need be accounted for are given by the exchange of indices on different

vertices as shown below.

Qab
ij tabkl → 1

6

(
Qab

ij tabkl + Qab
kjtabil + Qab

lj tabki +

Qab
ik tabjl + Qab

il tabkj + Qab
kl tabij

) (3.16)

Here we see that the fully symmetrized expansion does not include an exchange of
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i and j alone, nor an exchange of k and l alone. With this in mind, let us denote the

expanded symmetrized coefficient of a given diagram as follows.

Qab..ij..
rs.. tab..uv.. → 1

Vn

(
Qab..ij..

rs.. tab..uv..
)
σ

(3.17)

In the above equation, Vn represents the number of permuted terms a coefficient

must be separated into in order to achieve symmetry. The subscript σ then denotes the

expanded sum containing each of those permuted terms. For example, the symmetrizing

in (3.16) can be analyzed as follows.

Vn = 6 ;
(
Qab

ij tabkl
)
σ

= Qab
ij tabkl + Qab

kjtabil + Qab
lj tabki +

Qab
ik tabjl + Qab

il tabkj + Qab
kl tabij

(3.18)

The value of Vn can be explicitly derived using combinatorics. The result is included

here, for which further details and examples are shown in Section A of the Appendix.

Vn(K,M) =
(K + M − n)!

K!(M − n)!
(3.19)

This value accounts for the symmetry of any unconnected operators, but the con-

nected ones should be dealt with as well. More specifically, we wish to find the number

of possible unique nth contractions which could be represented by a given diagram, which

we will call some Un. The value of this Un is provided here, with its derivation also in-
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cluded in Section A of the Appendix.

Un(L,M) =
L!M !

(L− n)!(M − n)!

1

n!
(3.20)

By collecting the above coefficients as well as the ones in (3.11), we find that the full

coefficient simplifies greatly for the nth connection between two diagrams.

Yn(K,L,M) =
1

K!

1

L!

1

M !

Un(L,M)

Vn(K,M)
=

1

(K + M − n)!(L− n)!

1

n!
=

1

R!

1

S!

1

n!
(3.21)

We wish to keep the R and S factorials separate in order to write the result to mirror

(3.12). The coefficient Πab...
rs... can then be written as follows, again using σ to denote the

symmetrized expansion.

Πab...
rs... =

1

n!

(
Qab...

rs...tuv...
)
σ

(3.22)

This constitutes a general method for expressing a connection between any two op-

erators in H and eT . Continuing from (3.5), we can interpret the connected diagrams to

find terms in the BCH expansion.

(
Q̂ij · T4

)
C

= +

=
1

3!

1

1!

∑
ijk,l

∑
a

1

1!

(
Qaltaijk

)
σ
a†ia

†
ja

†
kal +

1

2!

1

0!

∑
ij

∑
ab

1

2!

(
Qabtabij

)
σ
a†ia

†
j

(3.23)

In the special case of the single oscillator, there exists only one index to sum over,
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and the operators in (3.11) simplify substantially.

Q̂L
K =

1

K!

1

L!
QL

K(a†)K(a)L ; TM =
1

M !
tM(a†)M (3.24)

The permuted terms denoted by the σ subscript pose an important caveat in the

single oscillator case. We still find that the same number of permutations Vn are required

to properly symmetrize a coefficient. With only one oscillator in the system, however,

the indices all refer to the same oscillator (i.e., a = b = i = j = k = l = ... = 1), and

therefore the sum collapses.

(
Qab

ij tabkl
)
σ

= Qab
ij tabkl + Qab

kjtabil + Qab
lj tabki + Qab

ik tabjl + Qab
il tabkj + Qab

kl tabij(
Q2

2t4
)
σ

= Q2
2t4 + Q2

2t4 + Q2
2t4 + Q2

2t4 + Q2
2t4 + Q2

2t4 = 6Q2
2t4

(3.25)

Effectively, this operation reintroduces a factor of Vn in the single oscillator case. To

better convert from the single oscillator case into the multiple oscillator case and back,

we will write the symmetrizing factor to mirror (3.19).

(
QL

KtM
)
σ

= VnQ
L
KtM =

(K + M − n)!

K!(M − n)!
QL

KtM (3.26)

As symmetry over one index is a trivial matter, the connected product of the two

terms now simplifies substantially.

Π̂S
R =

1

R!

1

S!
ΠS

R(a†)R(a)S ; ΠS
R =

1

n!

(K + M − n)!

K!(M − n)!
QL

KtM (3.27)
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The factorial coefficients derived above include ones relating to the operator signature,

connections, and symmetry of the diagram. A fourth factorial coefficient is also included,

not from the interpretation of diagrammatic structure, but instead directly from the

expansion of the exponential eT in (2.5). We will use a diamond 3 symbol above such

factorials when interpreting diagrammatic terms, to differentiate them from the other

structural factorials.

We present the methodology surrounding the remaining energy calculations in the

single oscillator representation, noting that the theoretical concepts and examples can be

generalized back to the multiple oscillator case. For diagrammatic interpretation, this is

simply accomplished by inserting the appropriate sums and indices, then replacing the

symmetrized coefficient by the actual permuted terms in (Qij..
rs..tuv..)σ.

=
1

4!

1

1!

1

2!

3

1

2!

(
Q4

1

4!

1!2!1!
t3t3

)
a†a†a†a†a

=
1

4!

1

1!

1

2!

3

1

2!

∑
ijkl,m

∑
abc

(
Qabcm

i tajktbcl
)
σ
a†ia

†
ja

†
ka

†
lam

(3.28)

3.3 Solving the Non-Linear Cluster Amplitude

Equations

This diagrammatic scheme will be used to express the terms in (HeT )C,open. After the

diagrams are all accounted for, they can be sorted into a total ‘collection’ of diagrams
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with the same overall structure. We will refer to such a collection as Ŵ S
R , denoted by a

diagram with a double solid line for its vertex. This represents the sum of all diagrams

with a certain operator signature R and S, an example of which is provided below for

the collection Ŵ 0
3 .

Ŵ 0
3 =

= + + + +

+ + + +

+ + + + ...

(3.29)

For reference, these diagrams are interpreted in their original operator representation

below. We have removed the associated a†a†a† from each term for simplicity.

1

3!
W 0

3 =
1

3!
Q0

3 +
1

3!
ω

3!

1!2!
t3 +

1

3!
Q1

1

3!

1!2!
t3 +

1

3!
Q1

0t4 +

1

3!

1

2!
Q2

2

3!

2!1!
t3 +

(
1

3!
Q2

0

3!

1!2!
t2t3 +

1

3!

1

2!
Q2

0t5 +
1

3!
Q2

0t1t4

)
+

1

3!
Q1

2

3!

2!1!
t2 +

(
1

3!
Q2

1

3!

1!2!
t1t3 +

1

3!

3

1

2!
Q2

1

3!

1!1!1!
t2t2 +

1

3!

1

2!
Q2

1

3!

1!2!
t4

)
+ ...

(3.30)

At this point we return to the EoM-CC discussion, applying the diagrams and col-

lections to derive any relevant cluster amplitudes tn. These will be calculated using the

coupled non-linear equations generated from (2.17), which can be written as follows for
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the single oscillator case.

⟨0|a(HeT )C,open|0⟩ = 0

⟨0|aa(HeT )C,open|0⟩ = 0

⟨0|aaa...(HeT )C,open|0⟩ = 0


→ t1, t2, t3, ... (3.31)

The only diagrams which would contribute to a specific tn equation are therefore those

with exclusively creation operators. Any such diagrams would constitute a collection of

the form Ŵ 0
n .

⟨0|(a)n(HeT )C,open|0⟩ = 0

⟨0|(a)nŴ 0
n |0⟩ = 0

1

n!
W 0

n⟨0|(a)n(a†)n|0⟩ = 0 → W 0
n = 0

(3.32)

Therefore, the set of amplitudes tn are simply solutions to the system of coupled

non-linear equations W 0
n = 0. These solutions can be found iteratively, by selecting some

term in W 0
n which directly connects to tn alone. For consistency, we choose this to be

the energy term (ω̂ · Tn)C , denoted by the cross symbol in (3.29). This term comes from

the unperturbed Hamiltonian, and will exist regardless of the perturbation or amplitude

chosen. The equation can be manipulated to ‘solve’ for this diagram, as shown below for

the t3 case.

= 0 → = − + (3.33)

38



We will interpret the diagram on the left hand side as it appears in (3.30), simplifying

the factorials down.

1

2!
ωt3 = − + (3.34)

This can be turned into an iterative scheme, where the associated diagrams are re-

calculated at each step using the full set of amplitudes until t
(i)
3 converges.

t
(i+1)
3 =

−
(i)

+
(i)

1

2!
ω

=
− 1

3!
W

0(i)
3 +

1

2!
ωt

(i)
3

1

2!
ω

(3.35)

The coefficient W 0
3 is a function of all amplitudes, which couples the iterative scheme

over all tn equations. It should also be noted that there are a number of ways to affect

the associated rate of convergence for the overall set of equations. First of all, the energy

term (ω̂ · T3)C is not the only diagram which connects to t3 in the first order. Two other

diagrams are shown in (3.29) which fulfill such a criterion.

=
1

2!
ωt3 ; =

1

2!
Q1

1t3 ; =
1

2!

1

2!
Q2

2t3 (3.36)

Diagrams of this form can be picked out of the collection, to be incorporated in the

iterative scheme as well. This can be used to improve convergence rates.

t
(i+1)
3 =

−
(i)

+
(i)

+
(i)

+
(i)

+ ...

1

2!
ω +

1

2!
Q1

1 +
1

2!

1

2!
Q2

2 + ...

(3.37)

39



Allow us now to generalize this equation for any cluster amplitude. The precise form

of diagrams that can be moved into the iterative scheme are the fully connected results of

some (Q̂k
k ·Tn)C . The resulting diagram of interest would necessarily have an n, 0 operator

signature, one kth order connection, and two groups of a† operators to symmetrize.

n≥k∑
k

(
1

n!

1

0!
· 1

k!
· n!

k!(n− k)!
Qk

ktn

)
=

n≥k∑
k

(
1

k!

1

k!(n− k)!
Qk

ktn

)
(3.38)

Given the general interpretation of some energy term (ω̂ · Tn)C , the iterative equation

for tn can be written as follows.

t(i+1)
n =

− 1

n!
W 0(i)

n +
1

(n− 1)!
ωt(i)n +

n≥k∑
k

(
1

k!

1

k!(n− k)!
Qk

kt
(i)
n

)
1

(n− 1)!
ω +

n≥k∑
k

(
1

k!

1

k!(n− k)!
Qk

k

) (3.39)

Again, it is not actually required to include any (Q̂k
k · Tn)C diagrams in the above

equation. They have no effect on the final converged value of the cluster amplitudes,

only the convergence rate.

The values of t
(i)
n from this scheme tend to be oscillatory, hopping between two so-

lutions which converge as we continue to iterate. Instead of iterating directly from one

value to the next, we can anticipate the oscillatory behavior and ‘guess’ a value which is

the average of the two solutions. This entails running calculations using the midpoint of

the two previous iterations, effectively shown below.

f
(
t(i)n

)
→ f

(
t
(i)
n + t

(i−1)
n

2

)
(3.40)

40



3.4 Calculating Energies

Using the diagrammatic formalism, the perturbed ground state calculation becomes

relatively straightforward. Recall the definition of (2.16), which states that the ground

state energy consists only of closed terms in the Hamiltonian and any closed connected

diagrams. Let us first express the closed terms in the Hamiltonian.

Hclosed =
1

2
ω + V0 (3.41)

In the above equation, V0 represents the total scalar after all polynomial terms in the

perturbation from (1.9) have been normal ordered. These scalars only come from even

terms which can be fully contracted, for example the aa† in q2, the
(
aa†aa† + aaa†a†

)
in

q4, and so on. We can therefore write the explicit form of V0 as follows for the single

oscillator.

V0 = c +
1

2
β +

3

4
δ + ... (3.42)

The other part of the ground state equation contains any closed terms from (HeT )C .

This is represented by the collection of diagrams Ŵ 0
0 generated earlier.

(HeT )C,closed = Ŵ 0
0

= +

(
+

)
+

(
+ +)

+

(
+ +

+ +

)
+ ...

(3.43)
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Note that the only perturbation coefficients to appear in the ground state energy are

of the form Q̂n
0 . Hamiltonian terms with any associated a† operators cannot be reduced

by connections, and therefore will only appear later in the amplitude convergence or

excited state calculations.

Furthermore, the maximum perturbation order M limits which cluster amplitudes

contribute directly. As VM can form a closed diagram with the same order TM at max-

imum, higher order amplitudes do not explicitly appear in the ground state equation.

They instead provide corrections to lower order amplitudes when the EoM-CC conver-

gence process takes place, resulting in more precise calculation of the ground state energy

indirectly.

Ẽ0 = Hclosed + (HeT )C,closed

=
1

2
ω + V0 + W 0

0

=
1

2
ω + V0 +

(
Q1

0t1
)

+

(
1

2!
Q2

0t2 +

3

1

2!
Q2

0t1t1

)
+(

1

3!
Q3

0t3 +
1

2!
Q3

0t1t2 +

3

1

3!
Q3

0t1t1t1

)
+(

1

4!
Q4

0t4 +
1

3!
Q4

0t1t3 +
1

2!

3

1

2!
Q4

0t1t1t2 +

3

1

4!
Q4

0t1t1t1t1 +
1

2!

1

2!

3

1

2!
Q4

0t2t2

)
+ ...

(3.44)

This is the explicit form of the ground state energy, which can be easily calculated

given the converged amplitudes from the previous section.

Let us also explore the excited state energies, derived from the effective Hamiltonian

matrix H. The general form of this matrix was discussed in Section 2.3, though now

we have a method by which to express the terms in (HeT )C,open. The collections of
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diagrams Ŵ n
m will directly contribute to the matrix elements, depending on the number

of operators each one is associated with.

It should be noted that an element ⟨m|H|n⟩ does not only consist of W n
m diagrams,

but instead consists of all diagrams with a difference of operators m − n. For example,

contributions to the matrix element ⟨3|H|4⟩ should include all of Ŵ 1
0 , Ŵ 2

1 , Ŵ 3
2 , and so

on. The general form for any such contribution to the overall matrix element can be

written as follows.

⟨m|Ŵ l
k|n⟩ =

1

k!

1

l!
W l

k⟨m|(a†)k(a)l|n⟩ = W l
k

√
m!n!

(n− l)!k!l!
iff m− k = n− l (3.45)

Other diagrams provide no contribution to ⟨m|H|n⟩. Furthermore, a given collection

of diagrams would only appear along one particular diagonal of the effective Hamiltonian.

In other words, diagrams which appear in ⟨m|H|n⟩ would also necessarily appear in

⟨m + 1|H|n + 1⟩, ⟨m + 2|H|n + 2⟩, and so on, but nowhere else in the matrix.

3.5 Bogoliubov Transformations

To increase accuracy in calculated energies, the strategies of the EoM-CC method are

to include higher levels of excitations in the cluster operator (2.2), or increase the space

in which the effective Hamiltonian is diagonalized. The form of the Hamiltonian itself

has an added effect on the precision of ground state calculations. This is highlighted by

transforming the basis, from ladder operators a and a† to a more optimum set of ladder

operators b and b†. This process is known as performing a Bogoliubov transformation
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[Bogoljubov (1958), Hsue et al. (1985)]. Let us define the new ladder operators as follows.

b† = Fa† + Ga + D ; b = F ∗a + G∗a† + D∗ (3.46)

We seek a transformation for which the b and b† operators still satisfy the bosonic

commutation relation in (1.3), and therefore exhibit any other expected ladder operator

behavior in their own |n⟩b basis.

[b, b†] = 1 ; b† |n⟩b =
√
n + 1 |n + 1⟩b ; b |n⟩b =

√
n |n− 1⟩b (3.47)

For simplicity, let us also assume the set of coefficients F , G, and D are real. Given

that the commutation relation holds true for the transformed operators, we can then

expand them to find a relation equating the two coefficients F and G.

[b, b†] = bb† − b†b

= (Fa† + Ga + D)(Fa + Ga† + D) − (Fa + Ga† + D)(Fa† + Ga + D)

= F 2 −G2 = 1

(3.48)

The transformed operator b must also annihilate the ground state in its basis, |0⟩b.

Let S represent a general cluster operator akin to the T we’ve been using, such that we

can express the transformed ground state as a linear combination over the complete set

of states from a and a†.

|0⟩b = eS |0⟩ → b |0⟩b = beS |0⟩ = 0 (3.49)
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Applying e−S to either side, we can derive a set of relations using the BCH expansion.

The Ga† term would commute with any term in eS, and D is merely a constant, both of

which allow us to write the following equation.

e−SbeS |0⟩ = e−S(Fa + Ga† + D)eS |0⟩ =
(
(Fa, eS)C + Ga† + D

)
|0⟩ = 0 (3.50)

Matching coefficients on either side and employing the use of (3.48), we arrive at the

explicit relation between the cluster amplitudes and the Bogoliubov coefficients.

F = (1 − s22)
−1/2 ; G = −Fs2 ; D = −Fs1 (3.51)

Given any cluster amplitudes s1 and s2, we have the ability to construct a new set

of transformed operators which satisfy all of the expected behavior using the above F ,

G, and D. For our case, we choose the converged cluster amplitudes s1 = t1 and s2 = t2

when we apply the above transformation to the problem. These transformations can then

be applied iteratively, forming new Hamiltonians that can be solved diagrammatically for

further accuracy. A generalized version of the unperturbed Hamiltonian can be written

for such a scheme as follows.

H0 =
1

2
ω + ∆a†a + Λa†a† + Λaa + Γ ; ∆(0) = ω, Λ(0) = 0, Γ(0) = 0 (3.52)

Though the original unperturbed Hamiltonian would have no Λ and Γ, the generalized

form should account for any cross-terms that fall out of future iterative transformations.

For an example of how this looks in practice, consider the above Hamiltonian with a
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quartic polynomial perturbation. Note here that the q’s (and generally, p’s) in the per-

turbation inherently contain some combination of a† and a operators as shown in (1.6),

and therefore must be transformed to the new basis too.

H =
1

2
ω + ∆a†a + Λa†a† + Λaa + Γ +

(
αq + βq2 + γq3 + δq4

)
(3.53)

By directly inverting and substituting in the operator definitions of (3.46) and collect-

ing terms, one can prove that the above Hamiltonian can be rearranged into an identical

form after being transformed.

Hb =
1

2
ω + ∆bb

†b + Λbb
†b† + Λbbb + Γb +

(
αbqb + βbq

2
b + γbq

3
b + δbq

4
b

)
(3.54)

The new coefficients of the transformed Hamiltonian after one iteration are therefore

defined as follows.

∆b = (F 2 + G2)∆ − 4FGΛ

Λb = (F 2 + G2)Λ − FG∆

Γb = Γ + G2∆ − 2FGΛ +

(
αξ + (2β + ∆ + 2Λ)

1

2
ξ2 + γξ3 + δξ4

)
αb = µ

(
α + (2β + ∆ + 2Λ) ξ + 3γξ2 + 4δξ3

)
βb = µ2

(
β + 3γξ + 6δξ2

)
; γb = µ3 (γ + 4δξ) ; δb = µ4δ

(3.55)

For simplicity, we have also introduced the following constants.

µ = F −G ; ξ =
√

2D(G− F ) (3.56)
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The above equations hold true for any future iterations as well, allowing us to ap-

ply the transformation a number of times to a point of convergence. The first major

advantage of Bogoliubov transformations to highlight is that, according to (3.55), the

coefficients of the transformed perturbation would converge to smaller values as they are

slowly incorporated into the simple constant Γ. Though the perturbation coefficients

generally do not converge to zero, the ability to decrease them by transferring some

amount into the unperturbed Hamiltonian is still invaluable.

For every new effective Hamiltonian, we would run the EoM-CC equations to converge

our cluster amplitudes in the transformed basis, resulting in a new t1 and t2 to create the

next set of operators. The ground state equations can be recalculated after any of these

iterations, using the closed parts of the new Hamiltonian and its associated connected

terms. Firstly, the new scalar Γ should be included in Hclosed, shown below.

Hclosed =
1

2
ω + Γ + V0 (3.57)

We also wish to include new diagrams from the generalized Hamiltonian, which is a

relatively straightforward process. The Λ terms have an identical structure to the Q̂2
0

and Q̂0
2 diagrams, so therefore the two pairs can be collected into the same coefficients.

Along with the diagram for ωa†a which has been generalized to some ∆a†a, we can use
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these new coefficients when interpreting diagrams in H and (HeT )C .

: ωa†a → ∆a†a

:
1

2!
Q0

2a
†a† → 1

2!

(
Q0

2 + 2!Λ
)
a†a†

:
1

2!
Q2

0aa → 1

2!

(
Q2

0 + 2!Λ
)
aa

(3.58)

This substitution applies to the two closed Q̂2
0 diagrams in the ground state calcula-

tion, as well as any others contributing to excited states. These would then represent the

only steps needed to generalize the diagrammatic method. The second major advantage

we find comes from (3.46), where we expect the coefficients to approach values of F → 1,

G → 0, and D → 0 as the iterative transformations converge. Given their explicit ex-

pressions in (3.51), running these iterations to convergence will necessarily result in a

basis where our cluster amplitudes t1 and t2 both converge to zero.

3.6 Computational Scheme

As we have completed the discussion for deriving ground state and excited state ener-

gies, we can construct a code which runs through all the necessary numerical calculations.

An explicit flowchart of the steps taken in this section are provided in Figure 1.

(a.) Generate Diagrams

Based on the input truncation for VM and TN , we most crucially require a method

to generate all possible diagrams. This should result in any nonzero collections

Ŵ S
R , which would be referenced throughout later equations. It should be noted
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that saving the resulting collections in some file would be ideal, as the generating

process would then only need be run once for a given M and N . This is a deeply

involved process, which acts as the core of the project to be addressed in detail

later.

(b.) Converge Amplitudes

The iterative scheme to converge amplitudes is the next step. A number of param-

eters could be changed here by the user to affect convergence. These include which

diagrams are included in the denominator, oscillatory dampening, and the toler-

ance with which to consider tn converged. Rather than converging one amplitude

order and then the next, the iterative scheme must run simultaneously over all tn

amplitudes, as their equations are coupled together by definition.

(c.) Matrix Elements

After calculating the ground state energy, we move on to the excited states. The

construction of the matrix is represented as a loop of sorts, as all elements ⟨m|H|n⟩

must be calculated individually. For this reason, we note that constructing the

matrix in practice takes up some nontrivial amount of time. This depends on the

number of diagrams contributing to each given element, which in turn depends on

the chosen perturbation and amplitude truncations VM and TN . Increasing matrix

size to calculate higher excited states or increasing M and N to include more

diagrams would therefore both lengthen the process.

(d.) Bogoliubov Transformations

We first note that Bogoliubov transformations can in principle be calculated im-
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mediately after converging the cluster amplitudes, as the new Hamiltonian only

depends on t1 and t2. That being said, it is also possible to use any new Hamilto-

nians to generate their own ground state and excited state energies. In doing so,

we can more easily track the effect of each iterative transformation on the overall

system.

(e.) Energy Output

After the spectrum of eigenvalues is calculated from the diagonalized matrix H,

some energy correction may appear depending on the matrix size and included

amplitude orders. This does not occur in the physically accurate infinite case, nor

for matrices of a truncated size Z ≤ N , but is still shown for cases where it may

be relevant.
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Figure 1: Flowchart for calculating the ground state and excited state energies.
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Chapter 4

Considerations of Parity

4.1 Effects on Ladder Operators

As is common with many problems in physics, considering parity in certain systems

of perturbed oscillators can greatly simplify our calculations. Proving that parity exists

in the unperturbed case is trivial, and can be achieved by testing the transformation

(q → −q and p → −p) on (1.1). To derive the same result in the operator representation,

allow us to define the parity operator P as follows.

P = eiπa
†a (4.1)

The operator is defined such that eigenstates of the unperturbed Hamiltonian all have

definite parity. Specifically, the parity operator will have eigenvalues of ±1 depending on
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whether the state is even or odd.

P |n⟩ = eiπa
†a |n⟩ = eiπn |n⟩ = (−1)n |n⟩ (4.2)

Given this expression, we can make a handful of conclusions regarding symmetry in

the perturbed case as well. This can be achieved by deriving some relation between P

and any term in the perturbed Hamiltonian H. We begin by writing the result of some

normal ordered product of ladder operators acting on an unperturbed state |n⟩.

(a†)k(a)l |n⟩ =

√
n!(n + k − l)!

(n− l)!
|n + k − l⟩ (4.3)

The excitation level of the state is thus changed by (k − l). If the parity operator is

applied to the above equation, the coefficient is simply multiplied by a power of −1.

P (a†)k(a)l |n⟩ = (−1)n+k−l

√
n!(n + k − l)!

(n− l)!
|n + k − l⟩ (4.4)

Alternatively, we could apply the parity operator before any ladder operators. In this

case, P acts directly on |n⟩, and the power of −1 is not changed by k and l.

(a†)k(a)lP |n⟩ = (−1)n
√

n!(n + k − l)!

(n− l)!
|n + k − l⟩ (4.5)

Together, these two equations form very general commutation relations between P

and any operators which might be found in H. If the disparity in powers of −1 is even, we

find that both results are identical and the terms commute. If the disparity in powers is
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odd, the terms will anti-commute. The anti-commutator is denoted by the ‘+’ subscript

below, such that [A,B]+ = AB + BA.

[
P, (a†)k(a)l

]
= 0 iff (k − l) is even.[

P, (a†)k(a)l
]
+

= 0 iff (k − l) is odd.

(4.6)

Consider for example, the unperturbed Hamiltonian as shown in (1.7). As it only

contains two ladder operators, we know immediately that it commutes with the parity

operator. Therefore, H and P share a common basis of eigenstates.

[P,H0] = 0 (4.7)

Any perturbation with an even number of ladder operators must also necessarily

commute with P . Grouping terms in the perturbation by orders Vm allows us to write

the following.

[P, V2] = [P, V4] = [P, V6] = ... = [P, V2a] = 0 (4.8)

As a result, the eigenstates of a Hamiltonian under any purely even perturbation

(e.g., quadratic, quartic, sextic, octic, etc.) will have well defined parity identical to the

associated eigenstate of the unperturbed Hamiltonian.

Heven = H0 + V0 + V2 + V4 + ... → [P,Heven] = 0 (4.9)

Multiple simplifications in our formalism become applicable in the case of an even

perturbation, but do not apply if parity is disrupted by the inclusion of any odd or-
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ders. Even the lowest order inclusion of some V1 term returns the problem to being

asymmetrical, and the resulting perturbed eigenstates have no parity.

H = H0 + V0 + V1 + V2 + V4 + ... → [P,H] = [P, V1] ̸= 0 (4.10)

A similarly destructive phenomenon occurs in the case of an exclusively odd perturba-

tion (e.g., linear, cubic, quintic, septic, etc.). Even if all perturbation orders are odd, the

number of ladder operators in the unperturbed Hamiltonian is always two. Symmetry

remains mixed in such a case, and the resulting perturbed eigenstates still have no parity.

H = H0 + V1 + V3 + V5 + ... → [P,H] ̸= 0 (4.11)

We will therefore limit discussion in the coming section to the simplifications exclu-

sively found for Heven, before providing an example of a low-order even perturbation later

in the document.

4.2 Simplifications for Even Parity Perturbations

Due to the fact that much of the coupled cluster formalism surrounds calculation

of the perturbed ground state
∣∣0̃〉, we now focus our attention there. The unperturbed

ground state |0⟩ is known to be of even parity, and therefore
∣∣0̃〉 will be even as well.

This means that rather than including all cluster operators as in (2.2), the new perturbed
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ground state of Heven can be expressed as a linear combination of only even states.

T = T2 + T4 + T6 + ... ; t1 = t3 = t5 = ... = 0 (4.12)

All of the VM and TN diagrammatic calculations would then continue as usual in

the Python code. Diagram collections are still generated, sorted, and used to calculate

the ground state energy, although any diagrams which include odd cluster amplitudes

are calculated as having a value of zero. These odd cluster amplitudes would next

come into use for Bogoliubov transformations, noting their form as given in (3.51). The

resulting coefficients, such as those in (3.55) for the quartic case, are greatly simplified

with t1 = D = ξ = 0. The only remaining terms in the transformation are thus shown

below.

∆b = (F 2 + G2)∆ − 4FGΛ

Λb = (F 2 + G2)Λ − FG∆

Γb = Γ + G2∆ − 2FGΛ

βb = µ2β ; δb = µ4δ ; µ = F −G

(4.13)

This is the main reduction for calculations of the ground state, but the excited state

derivation is notably simplified as well. Given that the odd cluster amplitudes become

zero, nonzero diagrams will only be the result of connections between the even terms

in the Hamiltonian with some combination of even cluster operators. Therefore, any

collections of diagrams Ŵ l
k at this stage have an operator signature such that (k − l) is

even as well. Contributions to any matrix elements evaluated between states with an
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odd difference as calculated in (3.45) will be zero, leading to the effective Hamiltonian

matrix H taking on a checkerboard pattern.

H =



0 0 ⟨0|H|2⟩ 0 · · ·

0 ⟨1|H|1⟩ 0 ⟨1|H|3⟩ · · ·

⟨2|H|0⟩ 0 ⟨2|H|2⟩ 0 · · ·

0 ⟨3|H|1⟩ 0 ⟨3|H|3⟩ · · ·

...
...

...
...

. . .


(4.14)

In this way, the elements of the matrix are completely decoupled by parity. Rear-

ranging H allows for the use of two separate block matrices, with one containing all even

states and the other containing all odd states.



0 ⟨0|H|2⟩ ⟨0|H|4⟩ · · ·

⟨2|H|0⟩ ⟨2|H|2⟩ ⟨2|H|4⟩ · · ·

⟨4|H|0⟩ ⟨4|H|2⟩ ⟨4|H|4⟩ · · ·

...
...

...
. . .





s0k

s2k

s4k

...


= ∆Ẽk



s0k

s2k

s4k

...


(4.15)



⟨1|H|1⟩ ⟨1|H|3⟩ ⟨1|H|5⟩ · · ·

⟨3|H|1⟩ ⟨3|H|3⟩ ⟨3|H|5⟩ · · ·

⟨5|H|1⟩ ⟨5|H|3⟩ ⟨5|H|5⟩ · · ·

...
...

...
. . .





s1k

s3k

s5k

...


= ∆Ẽk



s1k

s3k

s5k

...


(4.16)

Although this reduced form of the matrix is not explicitly utilized in the more general

code outlined in Figure 1 to keep things general, it still becomes useful to note the
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decoupling of states when analyzing results. Allow us now to present a simple example

where these results are applicable.
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Chapter 5

The Quadratic Perturbation

5.1 Connecting Diagrams

In order to highlight the effects of parity, we look to the purely quadratic case. For

a single oscillator in the q coordinate representation, such a perturbation may take the

form of V = βq2. Converting this to our normal-ordered operator representation results

in the following expansion.

βq2 =
β

2

(
a†a† + 2a†a + aa + 1

)
(5.1)

Each operator term in the perturbation would contain a product of two ladder opera-

tors. Let us briefly generalize to a multiple oscillator perturbation in order to discuss the

full scope of the quadratic case, using the form shown in (1.11). This is the lowest-order
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even perturbation, only including operators from the term V2 alongside the scalar V0.

V = V2 + V0

=
1

2!

∑
ij

Qija
†
ia

†
j +
∑
ij

Qj
ia

†
iaj +

1

2!

∑
ij

Qijaiaj + V0

(5.2)

This quadratic perturbation will be added on to the unperturbed Hamiltonian, H0,

to form the Hamiltonian of the system. Let us therefore separate the open and closed

parts of the new Hamiltonian, expressing its open part using the diagrammatic scheme

as follows.

Hopen =
∑
ij

ωj
i δija

†
iaj +

1

2!

∑
ij

Qija
†
ia

†
j +
∑
ij

Qj
ia

†
iaj +

1

2!

∑
ij

Qijaiaj

= + + +

Hclosed = V0 +
1

2

∑
i

ωi

(5.3)

The above diagrams in the open part were introduced as an example in (3.3). The

form of the quadratic Hamiltonian allows us to make a handful of simplifications, starting

with the cluster operators required for our calculation. As all included terms are of even

parity, the cluster operator T takes on the form shown in (4.12).

T = T2 + T4 + T6 + ... (5.4)

Any odd amplitudes are immediately taken to be zero. Additionally, note that the
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term in Hopen with the greatest number of annihilation operators is Q̂ij. With a maximum

of two annihilation operators, the maximum number of amplitudes that can possibly

connect is also two, leading to the self-truncation of the BCH expansion in (2.5). As a

result, the only terms in the exponential cluster operator eT which can connect are those

below and including T 2.

eT → 1 + T +
1

2!
T 2 (5.5)

Note that this is not a truncation of eT itself, but rather a simplification in practice as

connections with higher-order terms cannot be created. There is one further simplification

that can be made uniquely in the quadratic case. Let us begin by looking for terms in

the perturbed Hamiltonian which directly contribute to the cluster equations (i.e., the

collections of diagrams Ŵ 0
n). The only such term is Q̂ij, which would be used in the

calculation for T2. It can also be proven that using T2 alone, generating diagrams which

contribute to higher order cluster amplitudes is impossible with the given Hamiltonian.

To illustrate this, we first truncate the cluster operator T at T2.

eT = eT2 → 1 + T2 +
1

2!
T 2
2

= 1 + +
1

2!

(5.6)

The connections between the Hamiltonian and eT2 are then represented in diagram-
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matic form as follows.

(
HeT2

)
C

= Hopen + + + +

+

(5.7)

Note the inclusion of the original terms Hopen shown in (5.3), the result of (H · 1)C .

Using the diagrammatic rules, each term is interpreted in the operator representation

below.

(
HeT2

)
C

= Hopen +
1

2!

∑
ij

∑
a

(
ωa
i δaitaj

)
σ
a†ia

†
j +

1

2!

∑
ab

Qabtab +

∑
i,j

∑
a

Qajtaia
†
iaj +

1

2!

∑
ij

∑
a

(
Qa

i taj
)
σ
a†ia

†
j +

1

2!

3

1

2!

∑
ij

∑
ab

(
Qabtaitbj

)
σ
a†ia

†
j

(5.8)

Given the relatively small number of terms required for symmetrization in this case,

let us also write out the permuted σ coefficients explicitly.

(
HeT2

)
C

= Hopen +
1

2!

∑
ij

∑
a

(
ωa
i δaitaj + ωa

j δajtai
)
a†ia

†
j +

1

2!

∑
ab

Qabtab +

∑
i,j

∑
a

Qajtaia
†
iaj +

1

2!

∑
ij

∑
a

(
Qa

i taj + Qa
j tai
)
a†ia

†
j +

1

2!

3

1

2!

∑
ij

∑
ab

(
2Qabtaitbj

)
a†ia

†
j

(5.9)

This is the full form of the connected Hamiltonian using eT2 . Just as before, we wish
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to group terms with the same number of operators together. Gathering all available

terms, the only groups formed are Ŵij, Ŵ
j
i , Ŵ ij, and the leftover scalar Ŵ 0

0 from the

closed part of the connection.

(
HeT2

)
C,open

=
1

2!

∑
ij

Wija
†
ia

†
j +
∑
ij

W j
i a

†
iaj +

1

2!

∑
ij

W ijaiaj

(
HeT2

)
C,closed

= W 0
0

(5.10)

The same conclusion can be reached straightforwardly with diagrams, by directly

grouping terms in (5.7) into collections based on their signature.

(
HeT2

)
C,open

= + + (5.11)

The cluster amplitudes are generally given by the coupled set of equations Wij... = 0,

shown in (3.32) for the single oscillator case. However, no diagrams in
(
HeT2

)
C,open

exist which contribute to T4 or any higher order cluster amplitudes. Coupled with the

crucial fact that none of the unconnected diagrams Hopen contribute to these higher order

amplitudes either, exclusively using T2 for our calculations is sufficient. Even if T4, T6,

and so on were forcibly included, their values would remain zero during the iterative

scheme in the code.

For now, let us express the collections in both their diagrammatic and operator rep-
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resentations, beginning with Ŵij.

Ŵij =

= + + +

(5.12)

These diagrams have already been interpreted, but are shown again below without

their associated summations and operators in order to focus on the coefficients themselves.

1

2!
Wij =

1

2!
Qij +

1

2!

∑
a

(
ωa
i δaitaj + ωa

j δajtai
)

+

1

2!

∑
a

(
Qa

i taj + Qa
j tai
)

+
1

2!

3

1

2!

∑
ab

(
2Qabtaitbj

) (5.13)

Similarly, the collection Ŵ j
i consists of the following diagrams.

Ŵ j
i = = + +

W j
i = ωj

i δij + Qj
i +
∑
a

Qajtai

(5.14)

The final collection of open diagrams, Ŵ ij, only contains a singular diagram which

comes directly from the perturbed Hamiltonian.

Ŵ ij = =

1

2!
W ij =

1

2!
Qij

(5.15)
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We should also take care to collect any closed terms from the connection process, into

the Ŵ 0
0 group. These are terms without any remaining operators, and in this case, only

one such diagram exists.

Ŵ 0
0 =

W 0
0 =

1

2!

∑
ab

Qabtab

(5.16)

As we have only used T2 and V2 in this problem, note that all coefficients (Qij, Q
j
i ,

Qij, tkl) have two indices. It is therefore uniquely possible in the quadratic case to write

each term using two-dimensional matrices. To accomplish this, let us define three new

matrices with elements corresponding to different coefficients.

Bij = Qij ; Jij = Qj
i ; (T2)ij = tij (5.17)

A handful of identities involving these matrices can be stated. Firstly, consider the

complex conjugate of the B matrix. This would be the equivalent of taking the complex

conjugate of each element Qij, flipping the superscripts to subscripts. There is no need

for a separate Qij matrix, as both coefficients are implicitly taken care of by B.

Furthermore, consider the transpose of the B and T2 matrices. As the associated

elements are symmetric (i.e., Qij = Qji, tij = tji), the two matrices must be as well.

(
Bij

)∗
= Qij ; BT = B ; (T2)

T = T2
(5.18)

65



Using these matrix definitions, let us rewrite (5.13), (5.14), and (5.15).

Wij =
(
Bij

)∗
+
(
ωitij + ωjtij

)
+ (JT2)ij + (T2J)ij + (T2BT2)ij

W j
i = ωiδij + Jij + (T2B)ij

W ij = Bij

(5.19)

Note above that the unconnected ωi term only contributes to W j
i for terms pertaining

to the same oscillator (i = j). The closed W 0
0 collection in (5.16) can also be rewritten,

using Tr to denote the trace of a matrix.

W 0
0 =

1

2!
Tr (BT2) (5.20)

As mentioned earlier, the cluster amplitudes are solutions to the coupled set of equa-

tions Wij... = 0. With only one order of amplitudes T2, however, we only require one

general equation.

Wij =
(
Bij

)∗
+
(
ωitij + ωjtij

)
+ (JT2)ij + (T2J)ij + (T2BT2)ij = 0 (5.21)

Forming an iterative scheme is quickly accomplished by solving for the tij amplitudes.

t
(n+1)
ij = −

[
B∗ + JT

(n)
2 + T

(n)
2 J + T

(n)
2 BT

(n)
2

]
ij(

ωi + ωj

) (5.22)

With such a scheme, we would customarily begin by setting an initial value of T
(0)
2 = 0.

Then, the next matrix iteration T
(1)
2 is filled in element by element t

(1)
ij using the above
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equation. This process is repeated until all elements in the T2 matrix converge. Once

this is achieved, the ground state is calculated from the closed parts of the connected

and unconnected Hamiltonian.

Ẽ0 = Hclosed + (HeT )C,closed

=
1

2

∑
i

ωi + V0 + W 0
0 = E0 + V0 +

1

2!
Tr (BT2)

(5.23)

Let us now show the single oscillator equations explicitly, in order to compare the

results. The diagrammatic structures shown in (5.7) are still applicable, only this time

they must be interpreted for one oscillator. After the diagrams are sorted into collections,

we find the following results.

1

2!
W 0

2 =
1

2!
Q0

2 +
1

2!
ω

2!

1!1!
t2 +

1

2!
Q1

1

2!

1!1!
t2 +

1

2!

3

1

2!
Q2

0

2!

1!1!
t2t2

W 1
1 = ω + Q1

1 + Q2
0t2

1

2!
W 2

0 =
1

2!
Q2

0

W 0
0 =

1

2!
Q2

0t2

(5.24)

It becomes straightforward to generalize the collections above into the multiple os-

cillator collections (5.13), (5.14), (5.15), and (5.16). We will therefore continue to list

out diagrammatic terms with their single oscillator form like this for longer equations in

the next section, knowing that the multiple oscillator form can be easily achieved after

applying the appropriate summations and symmetries as outlined by (3.28).

In order to compute the only cluster amplitude t2, we again seek the solution for

67



which Ŵ 0
2 = 0. The term resulting from (ω̂ · T2)C is highlighted below.

1

2!
W 0

2 =
1

2!
Q0

2 +

(ω̂·T2)C︷ ︸︸ ︷
1

2!
ω

2!

1!1!
t2 +

1

2!
Q1

1

2!

1!1!
t2 +

1

2!

3

1

2!
Q2

0

2!

1!1!
t2t2 = 0

(5.25)

Note that in the unique case of the single quadratic perturbation, the ‘coupled set of

equations’ used to determine the amplitudes are instead a singular equation W 0
2 = 0 in

the quadratic case. In this case alone, we have the opportunity to solve for t2 directly.

t2 =
1

Q2
0

[
−
(
ω + Q1

1

)
+
((

ω + Q1
1

)2 − ∣∣Q2
0

∣∣2)1/2] (5.26)

This is not the usual case, and therefore we will continue by writing the iterative

scheme to converge t
(n)
2 . By solving for the (ω̂ · T2)C term as described earlier, we can

write an iterative scheme as follows.

t
(n+1)
2 = −

1

2!
Q0

2 +
1

2!
Q1

1

2!

1!1!
t
(n)
2 +

1

2!

3

1

2!
Q2

0

2!

1!1!
t
(n)
2 t

(n)
2

1

2!
ω

2!

1!1!

(5.27)

In order to make this scheme mirror the matrix form in (5.22), we may cancel the

1

2!
factorials in the numerator and denominator and simplify any leftover symmetrizing

factors.

t
(n+1)
2 = −Q0

2 + 2! ·Q1
1t

(n)
2 + Q2

0t
(n)
2 t

(n)
2

2! · ω
(5.28)

While this explicit form is a direct visual match to the matrix equations, it becomes
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more convenient in code to run a convergence scheme expressed in terms of the associated

collection W 0
n .

t
(n+1)
2 =

− 1

2!
W

0(n)
2 +

1

2!
ω

2!

1!1!
t
(n)
2

1

2!
ω

2!

1!1!

=
− 1

2!
W

0(n)
2 + ωt

(n)
2

ω
(5.29)

This form now matches the generalized iterative scheme devised in (3.39). As before,

we can also choose to separate other diagrams of a particular form (e.g., (Q̂1
1 · T2)C in

this case) to change the rate of convergence.

t
(n+1)
2 =

− 1

2!
W

0(n)
2 +

(
ω + Q1

1

)
t
(n)
2

ω + Q1
1

(5.30)

This is the general scheme that would be used in the code, as if we were expecting

an arbitrary VM and TN being used. Any of the schemes listed above would necessarily

result in the same converged value of t2, which is then used to calculate the ground state

energy.

Ẽ0 = Hclosed + (HeT )C,closed =
1

2
ω + V0 +

1

2!
Q2

0t2

= E0 + V0 +
1

2!
Q2

0t2

(5.31)

5.2 Quadratic Excited States

With the explicit form of the ground state revealed, we now look to calculate the

excited state energies from the effective Hamiltonian matrix H. The purely quadratic

perturbation leaves us with an even Hamiltonian, which we have already shown takes on
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the decoupled form in (4.15) and (4.16).



0 ⟨0|H|2⟩ ⟨0|H|4⟩ ⟨0|H|6⟩ · · ·

⟨2|H|0⟩ ⟨2|H|2⟩ ⟨2|H|4⟩ ⟨2|H|6⟩ · · ·

⟨4|H|0⟩ ⟨4|H|2⟩ ⟨4|H|4⟩ ⟨4|H|6⟩ · · ·

⟨6|H|0⟩ ⟨6|H|2⟩ ⟨6|H|4⟩ ⟨6|H|6⟩ · · ·

...
...

...
...

. . .





s0k

s2k

s4k

s6k

...


= ∆Ẽk



s0k

s2k

s4k

s6k

...


(5.32)



⟨1|H|1⟩ ⟨1|H|3⟩ ⟨1|H|5⟩ ⟨1|H|7⟩ · · ·

⟨3|H|1⟩ ⟨3|H|3⟩ ⟨3|H|5⟩ ⟨3|H|7⟩ · · ·

⟨5|H|1⟩ ⟨5|H|3⟩ ⟨5|H|5⟩ ⟨5|H|7⟩ · · ·

⟨7|H|1⟩ ⟨7|H|3⟩ ⟨7|H|5⟩ ⟨7|H|7⟩ · · ·

...
...

...
...

. . .





s1k

s3k

s5k

s7k

...


= ∆Ẽk



s1k

s3k

s5k

s7k

...


(5.33)

Noting the collections in (5.11), we see that the only number of operators in any open

term is two. Therefore, the only nonzero matrix elements are those evaluated between

states with a difference of two or less. For example, the element ⟨7|H|3⟩ must necessarily
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be zero, as there are no terms associated with a†a†a†a†, a†a†a†a†a†a, and so on.



0 ⟨0|H|2⟩ 0 0 · · ·

⟨2|H|0⟩ ⟨2|H|2⟩ ⟨2|H|4⟩ 0 · · ·

0 ⟨4|H|2⟩ ⟨4|H|4⟩ ⟨4|H|6⟩ · · ·

0 0 ⟨6|H|4⟩ ⟨6|H|6⟩ · · ·

...
...

...
...

. . .





s0k

s2k

s4k

s6k

...


= ∆Ẽk



s0k

s2k

s4k

s6k

...


(5.34)



⟨1|H|1⟩ ⟨1|H|3⟩ 0 0 · · ·

⟨3|H|1⟩ ⟨3|H|3⟩ ⟨3|H|5⟩ 0 · · ·

0 ⟨5|H|3⟩ ⟨5|H|5⟩ ⟨5|H|7⟩ · · ·

0 0 ⟨7|H|5⟩ ⟨7|H|7⟩ · · ·

...
...

...
...

. . .





s1k

s3k

s5k

s7k

...


= ∆Ẽk



s1k

s3k

s5k

s7k

...


(5.35)

This is the general form of the effective Hamiltonian with a quadratic perturbation.

We can simplify things even further if the t2 amplitude is converged, as the equation used

to find its convergence is simply
1

2!
W 0

2 a
†a† = 0. In other words, calculating the H matrix

with converged values of t2 means that the a†a† collection is zero, causing the elements
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⟨m + 2|H|m⟩ to all become zero in turn.



0 ⟨0|H|2⟩ 0 0 · · ·

0 ⟨2|H|2⟩ ⟨2|H|4⟩ 0 · · ·

0 0 ⟨4|H|4⟩ ⟨4|H|6⟩ · · ·

0 0 0 ⟨6|H|6⟩ · · ·

...
...

...
...

. . .





s0k

s2k

s4k

s6k

...


= ∆Ẽk



s0k

s2k

s4k

s6k

...


(5.36)



⟨1|H|1⟩ ⟨1|H|3⟩ 0 0 · · ·

0 ⟨3|H|3⟩ ⟨3|H|5⟩ 0 · · ·

0 0 ⟨5|H|5⟩ ⟨5|H|7⟩ · · ·

0 0 0 ⟨7|H|7⟩ · · ·

...
...

...
...

. . .





s1k

s3k

s5k

s7k

...


= ∆Ẽk



s1k

s3k

s5k

s7k

...


(5.37)

With the converged t2, both matrices become upper diagonal. As such, the eigenvalues

are straightforwardly given by the diagonal elements ⟨m|H|m⟩ and there is no longer any

need for diagonalization.

∆Ẽm = ⟨m|H|m⟩ = ⟨m|Ŵ 1
1 |m⟩ = mW 1

1

= m
(
ω + Q1

1 + Q2
0t2
) (5.38)

To better explain this result, let us call the value in parentheses some new ω̃. The
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excited states can then be written explicitly as follows.

ω̃ = ω + Q1
1 + Q2

0t2 → ∆Ẽm = Ẽm − Ẽ0 = mω̃

Ẽm = mω̃ + Ẽ0

(5.39)

One can also express the ground state energy in terms of this ω̃.

Ẽ0 =
1

2
ω + V0 +

1

2!
Q2

0t2

=
1

2

(
ω + Q1

1 + Q2
0t2
)

+

(
V0 −

1

2
Q1

1

)
=

1

2
ω̃ +

(
V0 −

1

2
Q1

1

) (5.40)

The full list of excited state energies is then given by the following equation.

Ẽm =

(
m +

1

2

)
ω̃ +

(
V0 −

1

2
Q1

1

)
(5.41)

We have therefore shown that a harmonic oscillator under a purely quadratic pertur-

bation can simply be expressed as a new harmonic oscillator. The ground state energy

of the new oscillator has been shifted up by

(
V0 −

1

2
Q1

1

)
, and the transition energy of

the new oscillator is given by ω̃ = ω + Q1
1 + Q2

0t2.

5.3 Quadratic Bogoliubov Transformations

As noted in Section 4.2, the formalism for Bogoliubov transformations simplifies sig-

nificantly for even perturbations. Let us begin by generalizing the form of the perturbed
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Hamiltonian itself, using the coefficients ∆, Λ, and Γ.

H =
ω

2
+ ∆(0)a†a + Λ(0)a†a† + Λ(0)aa + Γ(0) + β(0)q2

=
ω

2
+ ∆(0)a†a + Λ(0)a†a† + Λ(0)aa + Γ(0) + β(0)

[
1√
2

(
a† + a

)]2 (5.42)

As is customary, the coefficients keep their initial values of ∆(0) = ω, Λ(0) = 0, and

Γ(0) = 0 shown in (3.52). Let us directly apply one Bogoliubov transformation, writing

the generalized Hamiltonian in terms of the new operators b† and b.

b = Fa + Ga† ; a = Fb−Gb†

b† = Ga + Fa† ; a† = −Gb + Fb†
(5.43)

The ∆ and Λ terms are expanded and normal-ordered as shown below.

∆(0)a†a = ∆(0)
((
F 2 + G2

)
b†b− FGb†b† − FGbb + G2

)
Λ(0)

(
a†a† + aa

)
= Λ(0)

((
F 2 + G2

) (
b†b† + bb

)
− 4FGb†b− 2FG

) (5.44)

The quadratic perturbation must also be transformed, though we note that it takes

on a unique form as well.

β(0)

[
1√
2

(
a† + a

)]2
= (F −G)2 β(0)

[
1√
2

(
b† + b

)]2
= (F −G)2

β(0)

2

(
b†b† + 2b†b + bb + 1

) (5.45)

As the transformed quadratic perturbation will always result in pairs of two operators

(and a constant), the perturbed terms could easily be expanded and grouped in with
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∆(1), Λ(1), and Γ(1). This suggests that a new ‘unperturbed’ Hamiltonian in the b† and b

representation can be created in a single transformation, similar to what was shown in

(5.41) by the excited states.

This can be explicitly achieved using the matrix representation of a Bogoliubov trans-

formation. Let us write the operator definitions in (5.43) as follows.

 b

b†

 =

 F G

G F


 a

a†

 (5.46)

The square matrix of coefficients above can be quickly inverted, leading to the two

inverse relationships in (5.43).

 a

a†

 =

 F −G

−G F


 b

b†

 (5.47)

Let us apply these new matrix transformations to the normal-ordered quadratic

Hamiltonian with coefficients Q.

H = ωa†a +
1

2!
Q0

2a
†a† + Q1

1a
†a +

1

2!
Q2

0aa + V0 +
1

2
ω (5.48)

In order to perform matrix transformations here, we must first write the Hamiltonian

itself using matrices. This can be done by introducing a new square matrix ha.

H =

(
a† a

)
ha

 a

a†

+ V0 +
1

2
ω (5.49)
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When expanded out, the matrix multiplication above generates all combinations of

a† and a. These can then be compared to the existing coefficients Q.

(
a† a

)h00 h01

h10 h11


 a

a†

 = h00a
†a + h01a

†a† + h10aa + h11aa
† (5.50)

As the Hamiltonian is assumed to be normal-ordered, we must always have that

h11 = 0. The other elements of ha are written as follows.

ha =


ω + Q1

1

1

2!
Q0

2

1

2!
Q2

0 0

 (5.51)

A Bogoliubov transformation now entails writing the multiplied matrices above in

terms of the new Bogoliubov operators b† and b. This would change the square matrix

ha into some new matrix hb, with the two related as follows.

(
a† a

)
ha

 a

a†

 =

(
b† b

)
hb

 b

b†

 (5.52)

Using the inverse relationships, it can be shown that hb is simply the result of the
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following matrix multiplication.

hb =

 F −G

−G F

ha

 F −G

−G F



=

 F −G

−G F


h00 h01

h10 h11


 F −G

−G F


(5.53)

Expanding the product of all three matrices allows us to express hb in terms of the

known elements of ha.

hb =

 h00F
2 − h01FG− h10FG + h11G

2 −h00FG + h01F
2 + h10G

2 − h11FG

−h00FG + h01G
2 + h10F

2 − h11FG h00G
2 − h01FG− h10FG + h11F

2


(5.54)

The matrix can be greatly simplified using the form of the Hamiltonian. As mentioned

before, the operators are normal-ordered such that h11 = 0. As the Hamiltonian is

Hermitian (i.e., Q0
2 = Q2

0), we must also have h10 = h01. This allows us to combine terms

as follows.

hb =

 h00F
2 − 2h01FG −h00FG + h01 (F 2 + G2)

−h00FG + h01 (F 2 + G2) h00G
2 − 2h01FG

 (5.55)

We lastly use the relationship between F and G defined in (3.51), such that each
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element contains some factor of F 2.

hb =

 h00F
2 + 2h01F

2s2 h00F
2s2 + h01F

2 (1 + s22)

h00F
2s2 + h01F

2 (1 + s22) h00F
2s22 + 2h01F

2s2

 (5.56)

For any value of s2 chosen, we can make a new transformed matrix of the form hb.

Let us therefore solve for the value of s2 needed to diagonalize the matrix (i.e., to make

the off-diagonal elements zero).

h00F
2s2 + h01F

2
(
1 + s22

)
= 0

F 2
(
h01 + h00s2 + h01s

2
2

)
= 0

h01 + h00s2 + h01s
2
2 = 0

1

2!
Q0

2 +
(
ω + Q1

1

)
s2 +

1

2!
Q0

2s
2
2 = 0

(5.57)

Comparing this equation to (5.25), we find that this is equivalent to the convergence

criterion for t2. In other words, the new Hamiltonian hb is proven to become diagonalized

after a transformation using the converged amplitude s2 = t2.

hb =

h00F
2 + 2h01F

2t2 0

0 h00F
2t22 + 2h01F

2t2

 (5.58)

Let us call these two elements hb,11 and hb,22. Factoring out an F 2, both terms can
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be expressed only in terms of t2 using (3.51).

hb,11 =
(
1 − t22

)−1
(h00 + 2h01t2)

hb,22 =
(
1 − t22

)−1 (
h00t

2
2 + 2h01t2

) (5.59)

With the newly diagonalized hb, the matrix multiplication in the Hamiltonian reduces

to the following in terms of b† and b.

(
b† b

)
hb

 b

b†

 = hb,11b
†b + hb,22bb

†

=
(
hb,11 + hb,22

)
b†b + hb,22

(5.60)

As expected, the Hamiltonian can be represented by a new harmonic oscillator in b†

and b after only one Bogoliubov transformation.

H =
(
hb,11 + hb,22

)
b†b + hb,22 + V0 +

1

2
ω (5.61)

5.4 Links to Perturbation Theory

Let us also provide some context linking the illustrated behavior of the quadratic

case to perturbation theory. Recall that by taking the effective Hamiltonian matrix H

at T = 0, the only remaining terms constitute the open part of the original perturbed

Hamiltonian H as shown in (2.23). The coupled cluster results using no amplitudes can

therefore be roughly compared with those from perturbation theory.
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To start, consider the Hamiltonian matrix truncated at the second excited state for

simplicity. The matrix elements themselves include the unperturbed energies along the

diagonal, in addition to the other ⟨m|V |n⟩ perturbation terms filling out the matrix. We

will temporarily employ the shorthand Vmn for these elements, such that the Hamiltonian

is written as follows.

H =

E0 + ⟨0|V |0⟩ ⟨0|V |2⟩

⟨2|V |0⟩ E2 + ⟨2|V |2⟩

 =

E0 + V00 V02

V20 E2 + V22

 (5.62)

Solving for the eigenvalues of the matrix can be accomplished using the characteristic

equation. We will call the two solutions λ0 and λ2.

λ0,2 =
1

2

[
E0 + E2 + V00 + V22 ±

(
(E0 − E2 + V00 − V22)

2 + 4 |V20|
2)1/2] (5.63)

The eigenvalues above can be written to mirror the form achieved by perturbation

theory. This is accomplished using two separate Taylor expansions, the results of which

are shown below.

λ0 = E0 + ⟨0|V |0⟩ +
|⟨2|V |0⟩|2

(E0 − E2)
− (⟨0|V |0⟩ − ⟨2|V |2⟩) |⟨2|V |0⟩|2

(E0 − E2)
2 + ...

λ2 = E2 + ⟨2|V |2⟩ − |⟨2|V |0⟩|2

(E0 − E2)
+ (⟨0|V |0⟩ − ⟨2|V |2⟩) |⟨2|V |0⟩|2

(E0 − E2)
2 + ...

(5.64)

For this limited case, the sum of energy corrections is identical to (1.17). Each of the
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elements of V are known, given by terms from V0 and V2.

V00 = ⟨0|V0|0⟩ ; V02 = ⟨0|Q̂2
0|2⟩

V20 = ⟨2|Q̂0
2|0⟩ ; V22 = ⟨2|

(
V0 + Q̂1

1

)
|2⟩

(5.65)

We note that the eigenvalues in (5.64) are represented by an infinite series, which may

or may not converge depending on the size of the perturbation. The convergence crite-

rion is dependent upon the values of the Q coefficients, which would change depending

on the problem at hand. Similar behavior is to be expected in our methodology, where

sufficiently large perturbations may cause divergence when iterating through cluster am-

plitudes or in other areas of the process.

This concludes our study of the quadratic perturbation, the simplest case of the

normal-ordered form in (1.11). The quadratic case has a handful of important physi-

cal applications despite its low order, especially noting that a diatomic molecule is the

physical analog for a single oscillator. In fact, it can be shown that a perturbation in

the molecule’s mass or elasticity can be written in the quadratic order [Huey-You &

Rittby (2024)]. This derivation, alongside explicit parameters for such a perturbation, is

provided in Section B of the Appendix.
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Chapter 6

Higher Order Perturbations

6.1 Connecting Diagrams

Let us now consider the case of the quartic perturbation. This entails using all

normal-ordered perturbations from V0 to V4, destroying the parity-specific simplifications

we previously used by including the odd orders V1 and V3. However, this case is far more

representative of the general problem. Following the steps in this case is therefore more

akin to what steps the code performs explicitly. The terms used for the full quartic

perturbation are all given in (1.11), written here for the single oscillator case.

V = V0 + V1 + V2 + V3 + V4

= V0 +
(
Q0

1a
† + Q1

0a
)

+

(
1

2!
Q0

2a
†a† + Q1

1a
†a +

1

2!
Q2

0aa

)
+(

1

3!
Q0

3a
†a†a† +

1

2!
Q1

2a
†a†a +

1

2!
Q2

1a
†aa +

1

3!
Q3

0aaa

)
+(

1

4!
Q0

4a
†a†a†a† +

1

3!
Q1

3a
†a†a†a +

1

2!

1

2!
Q2

2a
†a†aa +

1

3!
Q3

1a
†aaa +

1

4!
Q4

0aaaa

)
(6.1)
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The diagrammatic representation of the Hamiltonian then includes all above terms

in addition to the ω̂ diagram.

Hopen = + + + + + +

+ + + + +

+ + +

(6.2)

As V has now been truncated at the quartic term, we have that the highest allowed

connection order is four (with Q̂4
0). Therefore, the BCH expansion self-truncates after

T 4. In this case, however, we must deal with the full series of even and odd cluster

amplitudes.

T = T1 + T2 + T3 + T4 + ... ; eT → 1 + T +
1

2!
T 2 +

1

3!
T 3 +

1

4!
T 4 (6.3)

To calculate the amplitudes, we must also select some order to truncate the cluster

operator. This is an arbitrary choice, so let us pick T4 for this example. This leaves us

with four different cluster amplitudes (t1, t2, t3, t4) to converge in the iterative scheme.
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The convergence equation for each amplitude is governed by a different Ŵ 0
n collection.

Ŵ 0
1 = ; Ŵ 0

2 =

Ŵ 0
3 = ; Ŵ 0

4 =

(6.4)

Given the perturbation order V4 and T4, we must write all possible diagrams, sort

them into collections, and interpret each each one. This process results in the explicit

form of collections Ŵ 0
n associated with the amplitude equations, as well as any others

which may result from (HeT )C . The other collections are later used to build the effective

Hamiltonian matrix H for the excited state calculation.

Once all diagrams are written and interpreted, we find 21 terms in Ŵ 0
1 , 31 terms in

Ŵ 0
2 , 35 terms in Ŵ 0

3 , and 35 terms in Ŵ 0
4 . Due to the number of terms, we will not show

all of the diagrammatic expansions explicitly. That said, an example for reference was

provided for Ŵ 0
3 in (3.29). Once all of the diagrams in the four relevant Ŵ 0

n collections

are written, the single oscillator interpretations are as follows.

W 0
1 = ωt1 + Q0

1 + Q1
0t2 + Q1

1t1 + Q2
0

(
1

2!
t3 + t1t2

)
+ Q2

1

(
1

2!
t2 +

3

1

2!
t1t1

)
+

Q3
0

(
1

3!
t4 +

1

2!

3

1

2!
t2t2 +

1

2!
t1t3 +

3

1

2!
t1t1t2

)
+ Q3

1

(
1

3!
t3 +

1

2!
t1t2 +

3

1

3!
t1t1t1

)
+

Q4
0

(
1

3!
t1t4 +

1

2!

1

2!
t2t3 +

1

3!
t2t3 +

1

2!

3

1

2!
t1t2t2 +

1

2!

3

1

2!
t1t1t3 +

3

1

3!
t1t1t1t2

)
(6.5)
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1

2!
W 0

2 =
1

2!
2ωt2 +

1

2!
Q1

0t3 +
1

2!
Q0

2 +
1

2!
2Q1

1t2 +
1

2!
Q2

0

( 3

1

2!
2t2t2 +

1

2!
t4 + t1t3

)
+

1

2!
Q1

2t1 +
1

2!
Q2

1

(
1

2!
2t3 + 2t1t2

)
+

1

2!
Q3

0

(
1

2!
t1t4 +

1

2!
2t2t3 +

1

2!
t2t3 +

3

1

2!
t1t1t3 +

3

1

2!
2t1t2t2

)
+

1

2!
Q2

2

(
1

2!
t2 +

3

1

2!
t1t1

)
+

1

2!
Q3

1

(
1

2!

3

1

2!
2t2t2 +

1

3!
2t4 +

1

2!
2t1t3 +

3

1

2!
2t1t1t2

)
+

1

2!
Q4

0

(
1

2!

3

1

3!
2t2t2t2 +

1

2!

1

2!
t2t4 +

1

3!
2t2t4 +

1

2!

1

2!

3

1

2!
2t3t3 +

1

3!

3

1

2!
t3t3 +

1

2!
2t1t2t3 +

1

2!
t1t2t3 +

1

2!

3

1

2!
t1t1t4 +

3

1

2!

3

1

2!
2t1t1t2t2 +

3

1

3!
t1t1t1t3

)

(6.6)

1

3!
W 0

3 =
1

3!
3ωt3 +

1

3!
Q1

0t4 +
1

3!
3Q1

1t3 +
1

3!
Q2

0 (t1t4 + 3t2t3) +
1

3!
Q0

3 +
1

3!
3Q1

2t2 +

1

3!
Q2

1

(
1

2!
3t4 + 3t1t3 +

3

1

2!
6t2t2

)
+

1

3!
Q3

0

(
1

2!
t2t4 +

1

2!
3t2t4 +

1

2!

3

1

2!
3t3t3 + 3t1t2t3 +

3

1

2!
t1t1t4 +

3

1

3!
6t2t2t2

)
+

1

3!
Q1

3t1 +

1

3!
Q2

2

(
1

2!
3t3 + 3t1t2

)
+

1

3!
Q3

1

(
1

2!
3t1t4 +

1

2!
6t2t3 +

1

2!
3t2t3 +

3

1

2!
6t1t2t2 +

3

1

2!
3t1t1t3

)
+

1

3!
Q4

0

(
1

3!
t3t4 +

1

2!

1

2!
3t3t4 +

1

3!
3t3t4 +

1

2!
t1t2t4 +

1

2!
3t1t2t4 +

1

2!

3

1

2!
3t1t3t3 +

1

2!

3

1

2!
6t2t2t3 +

1

2!

3

1

2!
3t2t2t3 +

3

1

3!
6t1t2t2t2 +

3

1

2!
3t1t1t2t3 +

3

1

3!
t1t1t1t4

)

(6.7)
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1

4!
W 0

4 =
1

4!
4ωt4 +

1

4!
4Q1

1t4 +
1

4!
Q2

0

(
4t2t4 +

3

1

2!
6t3t3

)
+

1

4!
6Q1

2t3 +

1

4!
Q2

1 (4t1t4 + 12t2t3) +
1

4!
Q3

0

(
1

2!
6t3t4 +

1

2!
4t3t4 + 4t1t2t4 +

3

1

2!
6t1t3t3 +

3

1

2!
12t2t2t3

)
+

1

4!
Q0

4 +
1

4!
4Q1

3t2 +
1

4!
Q2

2

(
1

2!
6t4 +

3

1

2!
12t2t2 + 6t1t3

)
+

1

4!
Q3

1

(
1

2!
12t2t4 +

1

2!
4t2t4 +

1

2!

3

1

2!
12t3t3 + 12t1t2t3 +

3

1

2!
4t1t1t4 +

3

1

3!
24t2t2t2

)
+

1

4!
Q4

0

(
1

3!

3

1

2!
4t4t4 +

1

2!

1

2!

3

1

2!
6t4t4 +

1

2!
4t1t3t4 +

1

2!
6t1t3t4 +

1

2!

3

1

2!
12t2t3t3 +

1

2!

3

1

2!
6t2t3t3 +

1

2!

3

1

2!
12t2t2t4 +

1

2!

3

1

2!
4t2t2t4 +

3

1

2!
12t1t2t2t3 +

3

1

2!
4t1t1t2t4 +

3

1

2!

3

1

2!
6t1t1t3t3 +

3

1

4!
24t2t2t2t2

)

(6.8)

By setting these collections to zero and solving for the (ω̂·Tn)C term in each expression,

we derive the convergence criterion for each amplitude. Let us write these convergence

criteria mirroring the general form in (3.39).

t(i+1)
n =

− 1

n!
W 0(i)

n +
1

(n− 1)!
ωt(i)n

1

(n− 1)!
ω

; W 0(i)
n = W 0

n(t
(i)
1 , t

(i)
2 , t

(i)
3 , t

(i)
4 ) (6.9)

The collections themselves are functions of all the amplitudes, and are thus responsible

for ‘coupling’ the convergence equations together in the above representation. We also

note that, as shown in (3.39), other diagrams can be pulled out of the collection apart

from (ω̂ · Tn)C to affect the rate of convergence. Once the amplitudes are calculated, we

can solve for the ground state energy using the closed collection W 0
0 . These terms were
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included in (3.44), given again here for the maximum cluster amplitude T4.

Ẽ0 =
1

2
ω + V0 + W 0

0

=
1

2
ω + V0 + Q1

0t1 + Q2
0

(
1

2!
t2 +

3

1

2!
t1t1

)
+ Q3

0

(
1

3!
t3 +

1

2!
t1t2 +

3

1

3!
t1t1t1

)
+

Q4
0

(
1

4!
t4 +

1

3!
t1t3 +

1

2!

3

1

2!
t1t1t2 +

3

1

4!
t1t1t1t1 +

1

2!

1

2!

3

1

2!
t2t2

) (6.10)

6.2 Further Notes

Thus far, we have defined a diagrammatic method through which to obtain energy

eigenvalues of a system of anharmonic oscillators. This is a general method which can be

adapted to any perturbed system, both in the single and multiple oscillator cases. We

note that while the collections and equations above were presented in the single oscillator

form, they can quickly be generalized to multiple oscillators following the process outlined

in (3.28). The main problem we seek to resolve in this paper is the quickly increasing

number of terms in the cluster equations for higher order amplitudes, exemplified by the

collections in (6.5) through (6.8).

While simple cases such as the quadratic perturbation can have their cluster equations

derived manually using diagrams, the sheer number of terms becomes unreasonable to

interpret by hand even for relatively low orders of V and T . There exist roughly 130

diagrams explicitly interpreted above for the amplitudes and ground state (in Ŵ 0
0 , Ŵ 0

1 ,

Ŵ 0
2 , Ŵ 0

3 , and Ŵ 0
4 ), but this does not include the larger number of diagrams which

contribute to the effective Hamiltonian and excited states. It can be shown that the

total number of diagrams for the V4 and T4 case is just over 300, a number which very
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quickly increases as higher order amplitudes or perturbations are included.

For this reason, we resort to Python to handle the generation, interpretation, and

implementation of diagrams in the coupled cluster process. As we have already outlined

the use of Python for the peripheral steps in Figure 1, we write the code in such a way

that allows the generated collections to be reliably referenced later on. For example, the

iterative scheme in (3.39) requires that the collections Ŵ 0
n must be efficiently evaluated at

each iteration for any set of amplitudes. Furthermore, the effective Hamiltonian matrix

elements must all be calculated individually, based on contributions from Ŵ 0
n . By saving

a generated file of equations for each collection, we can quickly perform these calculations

for any given input.
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Chapter 7

Computer Generated Equations

Diagrams cannot quite be put to use in Python visually, but their structural infor-

mation can be stored and used for calculations with object-oriented code. While we

have introduced a general diagrammatic method here and have provided single oscillator

equations up to V4 and T4 by hand, we will now present a practical manner of generating

equations up to any arbitrary order VM and TN . We will also limit the discussion in

this section to a single oscillator, with possible generalizations for multiple oscillators

discussed in the following section.

Often in Python, so-called ‘classes’ are employed as a template to create a number

of similar objects, adding a level of functionality and structure to the stored data. Here

we wish to define a class, for which each object is a separate diagram. We will later be

able to freely manipulate these objects, but first let us discuss their definitions in code.

Diagrams will require a few basic pieces of information which are to be input when a new

one is initialized. The three structural components of the diagram are all required at this

stage - the vertex line representing a term in the perturbed Hamiltonian, any involved
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amplitudes, and the connection orders.

Input Equation Representation Code Representation

Vertex Line QL
Ka

†KaL K,L, ‘Q’

Amplitudes
ti(p), tj(q), tk(r), ...

τ = (i, j, k, ...)

Connections χ = (p, q, r, ...)

Table 1: Inputs to a diagram object.

Note for this discussion that the indices i, j, k, and so on in the single oscillator

context will represent the number of associated ladder operators, rather than the index

of the oscillator being operated on. For example, some t3 will denote the third order

cluster amplitude which has a†a†a†, following (3.24).

For ease of reference, we introduce the list of involved amplitudes τ and associated

list of connections χ. These are ordered tuples, such that every τnth-order amplitude has

an associated χnth-order connection. As defined in Section 3.1, these three attributes

give enough information to construct one diagram. The inputs must pass a number

of different checks during the object’s initialization, to ensure that the diagram being

created is valid. These were also alluded to in a previous section, but for the code’s sake,

we must properly specify these conditions.

Let us create a function C, which simply denotes the number of entries, or ‘length’,

of a given set of values. As an example, the length of a tuple (5, 3, 8, 8) would be four, as

there are four total entries. Generally speaking, we can define this function as follows.

C (b1, b2, ..., bN) = N (7.1)
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A tuple of length N is typically referred to as an N -tuple. Note as well that the

length function only provides a total count of how many values are included, such that

duplicate values are all counted separately. The conditions for a valid diagram can then

be written as shown in Table 2.

Diagram is only valid if... Equation Representation

i. All inputs are integers.
K,L ∈ Z

i, j, k, ... ∈ Z ; p, q, r, ... ∈ Z
ii. All exponents are positive (or zero). K,L ≥ 0

iii. All indices are positive (and non-zero). i, j, k, ... > 0 ; p, q, r, ... > 0

iv. Number of amplitudes fits with the vertex line. C (i, j, k, ...) ≤ L

v. Sum of connections fits with the vertex line.
∑

(p, q, r, ...) ≤ L

vi. Each amplitude has one associated connection. C (i, j, k, ...) = C (p, q, r, ...)

vii. All amplitude-connection pairs are applicable. i ≥ p , j ≥ q , k ≥ r, ...

Table 2: Ensuring a diagram is valid.

If the input passes all these checks at initialization, a new diagram object can be suc-

cessfully created. Addressing the first three can be kept brief, as we expect each input

to be a positive integer (aside from the alphabetic coefficient ‘Q’). These criteria are

stricter for the amplitude and connection values, as any t0 or zeroth-order connections

are undefined. The latter four are more involved criteria, and will likely be better il-

lustrated with counterexamples. The cases below are all specific inputs which would be

immediately rejected by the code.

iv. Q2
1a

†aa connected with amplitudes t1t2t3t4.

There are too many amplitudes to connect to the limited number of annihilation

operators L = 2 on the vertex line (i.e., in the given perturbed Hamiltonian term).
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v. Attempting a triple-connection with Q2
1a

†aa.

The attempted connection order exceeds the number of available annihilation op-

erators L = 2.

vi. An input t1t2t3t4 with given connections (1, 2, 2).

The amplitudes and connections cannot be paired one-to-one.

vii. Attempting a triple-connection with t2.

The amplitude term does not have enough creation operators to support the given

connection order.

As such, each object will be subjected to these constraints to ensure our working

diagrams are valid. Our challenge, for efficiency’s sake, is generating all valid diagrams

while never accidentally creating one which is invalid. An invalid output could be filtered

out if these rules were applied to every diagram, but the added redundancy in double-

checking each structure quickly becomes unreasonable for even low order perturbations

and amplitudes. With these constraints being well defined, avoiding false diagrams is a

much easier task to accomplish.

The second step at initialization is calculating and storing other attributes surround-

ing the diagram at hand for fast reference later on. Aspects such as symmetrization or

other associated factorial coefficients are more mathematical in nature, and therefore will

be calculated at a later time. At this stage, we only wish to carry around information

relevant to the diagram’s structure.

• The number of creation operators R and annihilation operators S remaining after

connections, called the diagram’s signature. This is crucial when sorting diagrams
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and figuring out which collection they will eventually contribute to.

R = K +
∑
n

(τn − χn) ; S = L−
∑
n

(χn) (7.2)

• A unique list of amplitude-connection pairs, which we will call the diagrammatic

components. Let us assume this list is sorted, to ensure that each diagram only

has one proper order by which to express its components.

components = ((τ1, χ1), (τ2, χ2), (τ3, χ3), ...) sorted by τn and then χn (7.3)

• Some notion of the diagram’s uniqueness, which will be addressed later in depth.

This is in reference to the list of components above, and will be used to filter out

any duplicate diagrams which may arise in the code.

Combined with the three necessary structural requirements (vertex line, amplitudes,

and connections), these three extra attributes are all stored for any diagram by default

from the moment it’s created. We have thusly defined the overall structure of the dia-

grammatic class, and can provide the code with a few utilities to apply to these diagrams

where needed.

7.1 Specifying Inputs

With the base of the diagrammatic class set up, we can discuss where the structural

inputs for all generated objects come from. We have the maximum orders of VM and TN
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introduced in Section 2.1, and all individual diagrams should be derived from these two

values alone. Allow us first to give the normal-ordered terms in V a more explicit form

for the single oscillator case.

V = V1 + V2 + V3 + ... + VM ; Vm =
m∑
k=0

1

k!

1

(m− k)!
Qm−k

k a†kam−k (7.4)

Here, the perturbation is truncated at the Mth-order. Obtaining the possible value

pairs K and L of Table 1 then becomes relatively straightforward, given that the indi-

vidual orders Vm include all terms with m total operators. In other words, we should be

able to quickly generate all terms for which K + L = m as follows.

(K,L) = (k,m− k) from all 0 ≤ k ≤ m ; 0 ≤ m ≤ M (7.5)

Terms from the perturbed Hamiltonian will act as ‘starter’ diagrammatic objects, as

they too have some level of structure despite not being connected to any amplitudes. The

other two main inputs for these cases are still well defined, instead denoted by empty

tuples (i.e., tuples of length zero). From here, we can build upon the empty starter

diagrams by filling in more amplitudes.

Vertex Line Amplitudes Connections Signature Components

K,L, ‘Q’ ( ) ( ) K,L ( )

Table 3: A diagrammatic object from the perturbed Hamiltonian.

For the next step, it should again be noted that the allowed amplitudes are truncated

twice. First, the cluster operator itself is directly truncated by the input TN , in a similar
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manner as VM above. Furthermore, we only need include values based on what VM is

capable of connecting to. Since this allows for M single connections at maximum, the

exponent eT is limited by the Mth-order term in its expansion.

T = T1 + T2 + T3 + ... + TN ; eT → 1 + T +
1

2!
T 2 + ... +

1

M !
TM (7.6)

The above truncation at M more specifically occurs as a result of the BCH expansion

for a connected Hamiltonian as mentioned before, where the term TM+1 has too many

operators in VM to fully connect to as shown in rule (iv). Furthermore, this expansion

allows us to streamline the problem as a whole by making use of the fact that all cluster

amplitudes commute with each other. Diagrams can then be created progressively for

each amplitude order, first using only eT1 terms, then including eT2 , and so on.

e−THeT =
(
H, eT

)
C

= H + [H,T ] +
1

2!
[[H,T ] , T ] +

1

3!
[[[H,T ] , T ] , T ] + ...

... ⇒
(((

H, eT1
)
C
, eT2

)
C
, eT3 ...

)
C

(7.7)

Generating allowed connections is a discussion of its own, more involved than being di-

rectly tied to the maximum VM or TN as before. To make connections at a diagrammatic

level, we would effectively separate operators into different groups, which then connect

together to a specific amplitude term ti. Grouping elements like this allows the connec-

tion input to be framed as a different problem, mirroring the concept of partitioning a

mathematical set. This concept arises often in areas of combinatorics and permutations,

though we need to adapt it for our own use.

Rather than showing explicit diagrams, allow us to imply nth-order connections by
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grouping together operators with dotted boxes. A dotted box could represent any ar-

bitrary (and valid) amplitude in practice, used here for the sake of highlighting the

connections themselves. Consider for example the possible connections one could have

for a diagram D̂4
0 (i.e., D4

0aaaa). This equates to partitioning four elements into different

distinct groups.

; ;

(7.8)

The goal is then to generate all of the above possibilities, such that they can be input

into the diagrammatic class to form proper objects. For reference, Python could store

the above partitioned connections as shown in Table 4.

Connections Connections Connections

Diagram 0.0 ( ) Diagram 3.1 (3) Diagram 4.2a (2, 2)

Diagram 1.1 (1) Diagram 3.2 (2, 1) Diagram 4.2b (3, 1)

Diagram 2.1 (2) Diagram 3.3 (1, 1, 1) Diagram 4.3 (2, 1, 1)

Diagram 2.2 (1, 1) Diagram 4.1 (4) Diagram 4.4 (1, 1, 1, 1)

Table 4: Partitioning a diagram.

The number of ways to partition a general set of n distinct elements into k groups

is well known, given by the combinatoric Stirling numbers of the second kind S(n, k).
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Our problem is a bit more complex due to the fact that diagrams impose many extra

variables and conditions to consider, such as equivalent operators, amplitude-connection

pairs, and other caveats which render the general formalism inapplicable. Additionally,

we wish to generate the partitions themselves, rather than only knowing how many there

are. Generating partitions in Python is typically accomplished using an iterative method,

and accounting for these caveats is included as part of the diagram class structure.

7.2 Static Methods

Classes allow us to define static methods, which are functions generally related to

a set of objects, while not acting directly on them. These come with a wide range

of possibilities, but here we will only need use of two static methods. For one static

method, we explore a manner of populating all possible connections between an existing

diagram and an amplitude term. Then for the second, we wish to use existing diagrams

to create new ones as discussed earlier - slowly building on top of a lower-order eTi

instead of starting from scratch. These static methods are crucial tools in the pursuit of

a generalized VM and TN code, and need be just as rigorously defined as the definitions

in the previous section.

Firstly, we explore the population of connections for given amplitudes. In other words,

we wish to find all possible values of χn if provided with a given L and amplitudes τ .

There are two validity checks directly related to connections, from rules (v) and (vii).

We should have enough connections while keeping limits of the associated amplitude and

the other connections to be used in mind. Allow us to rewrite these rules in terms of τ

97



and χ.

v.

C(χ)∑
n

χn ≤ L ; vii. χn ≤ τn (7.9)

We write the upper limit above the sum here, as the highest n is given by the number

of elements in the associated tuple. For example, a tuple of length 3 should have an

index running from 1 to 3. The two above equations are both higher limiting factors

to be respected, which means that a general range of allowed connections can now be

developed. The most effective way to apply these rules is iterative to some degree, going

in order from the first associated connection χ1 and progressing forward. This way, an

expression can be derived from rule (v) for the absolute maximum case. By maximizing a

given χn, we are in effect minimizing all other connections. The lowest value a connection

can have is that of a single order, which means we can write the following for such an

assumption.

C(χ)∑
n

χn =

C(τ)∑
n

χn ≤ L

χ1 + χ2 + χ3 + ... + χn ≤ L

χmax + 1 + 1 + ... + 1 = L

(7.10)

Here we have used C(τ) = C(χ) as required by rule (vi) to write the equation in

terms of the input list τ , exercising the fact that both the amplitudes and connections

should have the same tuple length. Solving for the maximum connection order becomes

straightforward from here, as the number of 1s included can be expressed using the upper

limit of the sum. We remove an entry from the total as we’ve separated χmax from the

98



rest, accounting for the −1 in the following equation.

χmax = L− (1 + 1 + ... + 1)

χmax = L− (C(τ) − 1)

χmax = L−C(τ) + 1

(7.11)

Thus, we arrive at a definite expression for the maximum number of connections via

rule (v). Note that this expression on its own is holistically sufficient, not depending on

any specific τi nor χi. Rule (v) provides us with a limit from the overall diagrammatic

structure, while rule (vii) gives an individual limit from the associated amplitude. Taking

both rules into account, we can write the following.

1 ≤ χi ≤ min [τi, (L−C(τ) + 1)i] (7.12)

Although derived only in terms of χ1, this expression becomes sufficient for parti-

tioning any diagram if handled correctly. The above allows us to generate all possible

connections for a single amplitude, without knowing anything about other existing con-

nections overall. This is ideal for an iterative method, so long as we keep in mind that L

and C(τ) will change as we progressively connect more amplitudes. Our derived right-

hand expression must be reevaluated for each step, hence the i subscript.

This also parallels the method for generating partitions of a more simplistic set in

code where we lack the extra constraints. Rather than splitting n distinct elements into

k groups, we have now derived a method of partitioning L non-distinct operators into

C(τ) groups - where we have one group paired to each given τi. This is sufficient to
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generate all possible connections for a given τ , and this process will be shown in further

detail later.

It also becomes useful to properly define how we can build on top of an already

connected diagram, rather than starting from scratch. Consider the diagrams below,

where we begin with some Case 1. This diagram consists of some perturbation term Q3
1

and has already been singly connected to an amplitude t2.


× 1

2!


C

= (7.13)

Note that the extra factor of
1

2!
comes directly from the expansion of eT in (2.3), and

will simply be reintroduced after all other calculations are complete. We wish to use the

original diagram in order to create Case 2, a new diagram which has been connected with

both t2 and t3t3. Though it may seem trivial visually, expressing this in useful terms for

the code is still necessary. Let us ignore the equality and consider these two as separate

Pythonic objects for now, shown in Table 5.

Vertex Line Amplitudes Connections Signature Components

Diagram 1. 1, 3, ‘Q’ (2) (1) 2, 2 ((2, 1))

Diagram 2. 1, 3, ‘Q’ (2, 3, 3) (1, 1, 1) 6, 0 ((2, 1), (3, 1), (3, 1))

Table 5: Diagrammatic attributes from (7.13).

If we wish to create these from input alone, it becomes more clear that all we need to

do is append the new amplitude-connection pairs (in this case, two singly connected t3
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amplitudes). Any attributes such as remaining terms or eventually factorial coefficients

can still be calculated from the adjusted input when needed, either at initialization or

in forming the equations later. Generally speaking, if we have an existing diagram with

amplitudes and connections τA and χA which is being compounded with some other

amplitudes and connections τ s and χs, we can simply combine both tuples. We should

just be slightly careful here, to ensure that the pairs remain in order.

τB = (τA1 , ..., τ
A
m, τ

s
1 , ..., τ

s
n) ; χB = (χA

1 , ..., χ
A
m, χ

s
1, ..., χ

s
n) (7.14)

These two static methods are the only ones needed to generate all diagrammatic

equations for any arbitrary order. A slightly more complex example is shown below, to

illustrate how these two static methods can be applied to a certain input now that we

have defined them mathematically. Depending on the maximum eT , we expect thousands

of diagram objects which will be progressively generated using the following process.

7.3 Allowed Connections

Consider the following example, for a specific perturbation term Q̂4
0 connected with

amplitudes t3t4t5. This diagram will be partitioned and built progressively as discussed
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earlier, so the first step will be calculating the connections that can occur from t3 alone.

L = 4 ; τ = (3, 4, 5), τ1 = 3

χ1 ≤ min [τ1, L−C(τ) + 1] = min [3, 4 − 3 + 1] = min [3, 2] = 2

χ1 = 1, 2

(7.15)

Despite the fact that this is t3, only single and double connections are allowed. A triple

connection would take up too many annihilation operators to allow for the given set of

amplitudes as a whole, and this way we have avoided such an invalid case. Regardless, we

can now evaluate both of these instances separately. Let us move forward by considering

t3 successfully connected and calculating the remaining annihilation operators via (7.2).

t3 t4 t5 Remaining

Case 1a. χ1 = 1 ... ... → S = 4 − (1) = 3

Case 1b. χ1 = 2 ... ... → S = 4 − (2) = 2

(7.16)

We will now take a moment in order to visualize the cases above. Note that these

are not the resulting diagrams, only a representation of the ‘intermediate’ diagrams we

would effectively have from this stage.

; (7.17)

All diagrams from a certain amplitude (e.g., the missing triply connected case here)

are still generated in practice, but we have limited our discussion to consider the process
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for a larger input such as t3t4t5. In other words, these calculations are tailored for cases

when we expect higher order amplitudes, where we explicitly wish to avoid creating

anything invalid for the sake of efficiency. It should be noted that intermediate diagrams

are shown for visualization rather than being used in the code per se, and the diagrams

in (7.17) would only appear as a result for their associated input. To generate these

diagrams as a final result including their triply connected version, we would use the

input τ = (3) to represent t3 alone. This way, no other amplitudes are expected and this

is reflected in the calculation.

From this stage, the process is repeated to build on top of either diagram. With the

first t3 being taken care of, we can address the next amplitude in the series. This leaves

us with the set of amplitudes t4t5, continued on in connecting with the above diagrams

via the following calculations. Re-evaluating the limiting expression in (7.12) for both

cases then gives us all available connections.

Case 1a. S = 3 ; τ = (4, 5), τ2 = 4

χ2 ≤ min [τ2, S −C(τ) + 1] = min [4, 3 − 2 + 1] = min [4, 2] = 2

χ2 = 1, 2

Case 1b. S = 2 ; τ = (4, 5), τ2 = 4

χ2 ≤ min [τ2, S −C(τ) + 1] = min [4, 2 − 2 + 1] = min [4, 1] = 1

χ2 = 1

(7.18)

Continuing to fill out the feasible values, we have now derived the allowed cases for t4.

One thing of note is that as we include more amplitudes, the number of ways to distribute
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connections increases. Starting from Case 1b., we only get one possible diagram, but Case

1a. branches into two possibilities. The connections thus far and resulting annihilation

operators which remain are as follows.

t3 t4 t5 Remaining

Case 2a. χ1 = 1 χ2 = 1 ... → S = 4 − (1 + 1) = 2

Case 2b. χ1 = 1 χ2 = 2 ... → S = 4 − (1 + 2) = 1

Case 2c. χ1 = 2 χ2 = 1 ... → S = 4 − (2 + 1) = 1

(7.19)

Once again, we’ve successfully connected a new amplitude and therefore can visualize

the new set of intermediate diagrams if we wanted to. It is in this sense that the code

‘iterates’ through more and more complex diagrams without need to change anything,

effectively just applying the same function to different parts of the input (e.g., t3, t4, and

t5 separately) to build up different results.

; ; (7.20)

Yet again, the above intermediate diagrams are simply for show, but can be generated

with an input of only τ = (3, 4) alongside any other possibilities. Continuing through

the process to the final iteration, these are evaluated in a case by case manner where we

‘start’ with the diagrams above and find the connections allowed for t5 alone. Repeating
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the calculations one last time leaves us with the outcomes below.

Case 2a. S = 2 ; τ = (5), τ3 = 5

χ3 ≤ min [τ3, S −C(τ) + 1] = min [5, 2 − 1 + 1] = min [5, 2] = 2

χ3 = 1, 2

Case 2b. S = 1 ; τ = (5), τ3 = 5

χ3 ≤ min [τ3, S −C(τ) + 1] = min [5, 1 − 1 + 1] = min [5, 1] = 1

χ3 = 1

Case 2c. S = 1 ; τ = (5), τ3 = 5

χ3 ≤ min [τ3, S −C(τ) + 1] = min [5, 1 − 1 + 1] = min [5, 1] = 1

χ3 = 1

(7.21)

All in all, we have found four different possible connections between some perturbation

with L annihilation operators and amplitudes τ . If these are all thought of as separate

objects, this would correlate to four different diagrams that could be produced with the

same vertex line and amplitudes using this method.

t3 t4 t5 Remaining

Case 3a. χ1 = 1 χ2 = 1 χ3 = 1 → S = 4 − (1 + 1 + 1) = 1

Case 3b. χ1 = 1 χ2 = 1 χ3 = 2 → S = 4 − (1 + 1 + 2) = 0

Case 3c. χ1 = 1 χ2 = 2 χ3 = 1 → S = 4 − (1 + 2 + 1) = 0

Case 3d. χ1 = 2 χ2 = 1 χ3 = 1 → S = 4 − (2 + 1 + 1) = 0

(7.22)

Rather than intermediate diagrams as shown for previous steps, the iterating process
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is complete and therefore we can write the full equation here. This equation is an equality,

as we have now derived all the ways to connect the given amplitudes.

 ×


C

=

+ +

+

(7.23)

All four of these results are then stored as diagrammatic objects in code, each with

their own set of attributes. These can later be freely interpreted and sorted into different

contributions as necessary, based on the number of remaining operators and component

term.

Vertex Line Amplitudes Connections Signature Components

Diagram 3a. 0, 4, ‘Q’ (3, 4, 5) (1, 1, 1) 9, 1 ((3, 1), (4, 1), (5, 1))

Diagram 3b. 0, 4, ‘Q’ (3, 4, 5) (1, 1, 2) 8, 0 ((3, 1), (4, 1), (5, 2))

Diagram 3c. 0, 4, ‘Q’ (3, 4, 5) (1, 2, 1) 8, 0 ((3, 1), (4, 2), (5, 1))

Diagram 3d. 0, 4, ‘Q’ (3, 4, 5) (2, 1, 1) 8, 0 ((3, 2), (4, 1), (5, 1))

Table 6: Diagrammatic attributes resulting from the connection between Q̂4
0 and t3t4t5.

Our iterating process also has a perk of adaptability. Whether we investigate the

single oscillator or multiple oscillator case, the presented method and final diagrammatic

result stay the same. The code to generate the structures themselves has no need to

change, so long as we have a different manner of interpreting the final result.
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(
Q̂ijkl · T3T4T5

)
C

=
(
Q̂4

0 · T3T4T5

)
C

=

Case 3a.
1

9!

∑
ij..pq,d

∑
abc

(
Qabcdtaijtbklmtcnopq

)
σ

1

9!
Q4

0

9!

2!3!4!
t3t4t5

Case 3b.
1

8!

1

2!

∑
ij..op

∑
abcd

(
Qabcdtaijtbklmtcdnop

)
σ

1

8!

1

2!
Q4

0

8!

2!3!3!
t3t4t5

Case 3c.
1

8!

1

2!

∑
ij..op

∑
abcd

(
Qabcdtaijtbckltdmnop

)
σ

1

8!

1

2!
Q4

0

8!

2!2!4!
t3t4t5

Case 3d.
1

8!

1

2!

∑
ij..op

∑
abcd

(
Qabcdtabitcjkltdmnop

)
σ

1

8!

1

2!
Q4

0

8!

1!3!4!
t3t4t5

Table 7: Coefficients for the single and multiple-oscillator interpretation of diagrams for
each case.

7.4 Uniqueness

The method presented above can still encounter an occasional issue. Although the

result derived in the previous section is completely correct, a few outcomes do exist

where a type of structural degeneracy begins to show. There exist multiple ways that a

diagram can be considered degenerate, most of which are accounted for with the factorial

coefficients and symmetrizing factors. The degeneracy highlighted in this section is a bit

more intricate, and has to do with the nature of the step by step approach itself. Since

each step is done without consideration of other amplitude-connection pairs, there is a

chance to generate diagrammatic components that have already been accounted for.

This only occurs in extremely specific cases depending on the values input, and can

be accounted for rather quickly. Consider what happens if we change the above example

for t3t4t5, to t23t5 instead. It can be shown that the allowed connection values are still

identical to the ones found before, following the same method and noting that the results

calculated in (7.19) all remain the same. We still find four possible sets of connections
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and can write them to directly mirror (7.22).

t3 t3 t5 Remaining

Case 3a. χ1 = 1 χ2 = 1 χ3 = 1 → S = 4 − (1 + 1 + 1) = 1

Case 3b. χ1 = 1 χ2 = 1 χ3 = 2 → S = 4 − (1 + 1 + 2) = 0

Case 3c. χ1 = 1 χ2 = 2 χ3 = 1 → S = 4 − (1 + 2 + 1) = 0

Case 3d. χ1 = 2 χ2 = 1 χ3 = 1 → S = 4 − (2 + 1 + 1) = 0

(7.24)

For these amplitudes, however, structuring things as a diagrammatic object reveals a

distinct flaw. Diagrams 3c. and 3d. are now identical, each having a single connection

and double connection to the t3 terms. The component attribute is extremely useful for

illustrating this, by keeping only one sorted order for amplitude-connection pairs.

Vertex Line Amplitudes Connections Signature Components

Diagram 3a. 0, 4, ‘Q’ (3, 3, 5) (1, 1, 1) 8, 1 ((3, 1), (3, 1), (5, 1))

Diagram 3b. 0, 4, ‘Q’ (3, 3, 5) (1, 1, 2) 7, 0 ((3, 1), (3, 1), (5, 2))

Diagram 3c. 0, 4, ‘Q’ (3, 3, 5) (1, 2, 1) 7, 0 ((3, 1), (3, 2), (5, 1))

Diagram 3d. 0, 4, ‘Q’ (3, 3, 5) (2, 1, 1) 7, 0 ((3, 1), (3, 2), (5, 1))

Table 8: Diagrams resulting from the connection between Q̂4
0 and t23t5.

Using the definition that all components are sorted in increasing order, first by τn and

then by χn, we can define a simple yet rigorous concept of ‘equality’ between diagrams.

Components already account for the amplitude and connections together, and therefore
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the only other requirement is for the vertex line (i.e., the perturbed Hamiltonian term).

Diagram A = Diagram B ⇐⇒


Vertex Line A = Vertex Line B

Components A = Components B

(7.25)

Although the definition itself is relatively straightforward, applying it in practice

becomes more difficult. A massive number of diagrams is expected already, and evaluating

each one against another is a vastly unreasonable computational time sink. Realistically,

only a small fraction of these diagrams even have the possibility of being degenerate, and

we can check for this possibility early on. This is why it becomes necessary to define some

level of uniqueness among diagrams before this stage, included as a default attribute at

initialization. We only wish to filter through diagrams that can be duplicated in the first

place, which shaves off a substantial portion of those generated from consideration.

Therefore, let us define three different types of structural uniqueness as follows.

i. Unique: τi ̸= τj for all i ̸= j

If all involved amplitudes are of unique orders, there is only one way to generate

a given component. For these cases, we have no reason to spend time checking for

degeneracy. This would be the case for the example discussed at length, with t3t4t5

in Table 6.

ii. Semi-Unique: τi = τj ⇐⇒ χi = χj

For cases where some amplitudes are repeated, we should check if they are all

treated in an equivalent manner (i.e., connected equally). Cases with duplicate

amplitude-connection pairs can only be generated once, for instance the Diagram

109



3b. in Table 8. In these cases, there is again no need to check for degeneracy.

iii. Degenerate: τi = τj and χi ̸= χj

This occurs if neither of the above uniqueness checks are true. Degenerate diagrams

are the only ones we wish to filter through, instead of wasting our time checking

against those which are already unique.

By defining a trait for each diagram at the beginning, we only need consider those

that fail the above checks. Unique and semi-unique diagrams are free to move past

this step immediately, while degenerate diagrams should be filtered through. The group

of ‘degenerate’ diagrams here includes both originals we would wish to keep (such as

Diagram 3c.) and duplicates of those originals which should be pruned (such as Diagram

3d.). Specific examples of the uniqueness terms are shown for six amplitude-connection

pairs below.

Components Unique τ Equivalent χ Overall Uniqueness(
(1, 1), (2, 2), (4, 3)

)
True → Unique(

(2, 1), (3, 2), (4, 2)
)

True → Unique(
(2, 2), (3, 3), (3, 3)

)
False True Semi-Unique(

(2, 1), (2, 1), (2, 1)
)

False True Semi-Unique(
(2, 1), (2, 2), (3, 3)

)
False False Degenerate(

(3, 1), (3, 1), (3, 2)
)

False False Degenerate

Table 9: Further examples of degenerate components.

As for how effective the uniqueness definitions are, the amount of degenerate diagrams

to sift through only make up about 10% of the total objects, assuming we work with

lower-order calculations at a maximum of around T8. For those on the order of T15 and
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higher, the number of degenerate diagrams we need to consider drops from 10% of the

total to roughly 5%. This does not reflect the number of degenerate diagrams lessening,

but rather the sheer number of unique and semi-unique diagrams growing substantially.

Removing these diagrams from the filtering process before it begins leaves us with only a

sliver of what we are otherwise faced with, a number much more manageable and efficient

for code.

Figure 2: The number of diagrams generated using a maximum order V4 and a given Tn,

sorted into different categories based on their uniqueness. Values in the legend are shown

for T20, before filtering for degeneracy.

The precise breakdown in how the diagrams are categorized is presented in Figure 2,

for amplitudes up to T20. We note that these are relatively high orders for the cluster

amplitudes and are not typically necessary in practice. Still, this acts as an illustration

for what the code could easily generate and how it deals with certain types of uniqueness.

The ‘degenerate’ category includes all possible generated diagrams marked as such
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before being filtered, including an original copy and any repeated instances. It should

then be noted that connecting diagrams iteratively as shown in (7.7) and filtering at

each step can help to avoid the creation of certain degeneracies entirely. In doing this,

diagrams which need to be filtered out only technically occur at the highest order of T .

Figure 3 then provides insight as to how these degeneracies are handled, as well as

how much computation can be saved by avoiding the unique and semi-unique terms.

Figure 3: Diagrams marked as degenerate, generated using a maximum order V4 and

a given Tn. One original copy of a degenerate diagram is saved, while any repeated

instances are removed. Values in the legend are shown for T20.

For a degenerate set of diagrams, only one object is saved, while any future instances

are removed. The saved diagrams can be further split into two categories depending

on whether duplicates actually arise or not. Diagrams with a lower order structural

degeneracy will still be marked as such, but would not create actual duplicates.

For an example of this in practice, a diagram created with some t23 and filtered for
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uniqueness would never create degenerate diagrams on its own later on. Any subsequent

terms such as t23t4, t
2
3t5, t

2
3t5t6, and so on would already have had their degenerate am-

plitude ‘pruned’ at its introduction in the BCH expansion. Only when encountering an

amplitude term degenerate in a higher order such as t23t
2
5, would filtering be required

again.

Max Tn Diagrams Max Tn Diagrams Max Tn Diagrams Max Tn Diagrams

1 35 6 774 11 3916 16 10564

2 86 7 1120 12 4605 17 12665

3 177 8 1562 13 5772 18 15057

4 315 9 2115 14 7140 19 17765

5 510 10 2795 15 8730 20 20815

Table 10: The number of final diagrams in the generated equations, using maximum
orders V4 and Tn.

At this point, we’ve discussed in depth how diagrams are created and represented

in code. Let us also briefly address the manner in which explicit collections for the

ground state and excited state energy equations are written. In order to generate these

contributions from some given maximum perturbation and amplitude orders VM and TN ,

we split the code into three distinct sections.

Initialization

Based on the input, we can form some initial ‘pool’ of diagrams which come directly

from the perturbed Hamiltonian. These would include all of the base unconnected terms,

written directly from (1.11).

H = H0 + V = H0 +
M∑

m=1

Vm = H0 +
M∑

m=1

m∑
k=0

(
Qm−k

k a†kam−k
)

(7.26)
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Furthermore, we include the two relevant truncations of amplitudes expressed in (7.6).

This allows us to generate the limited number of amplitudes to connect in the following

section.

Iterative Connections

An explicit flowchart of the steps taken in this section are provided in Figure 4.

(a.) We wish to perform a loop over all orders of eTi , running through any connections

in an order by order method as outlined in the rewritten BCH expansion.

(H, eT )C =
(((

H, eT1
)
C
, eT2

)
C
, ... , eTN

)
C

(7.27)

(b.) Two further loops are nested within (a), one over eligible diagrams in the pool and

one over the amplitude powers in the selected ith order. This allows us to generate

all (H,T n
i )C , one by one.

(c.) If any amplitudes are included in a term, generate the allowed contractions. This

results in some diagrammatic ‘group’ which all have the same vertex line and am-

plitude attributes, of which the included diagrams are the only ones which could

be duplicates of each other.

The diagrams in each group are then run through a filter for degeneracy. Any

surviving ones are included in a new result pool, representing all connected terms

up to some order Ti.

(d.) The pool of resulting diagrams can then be connected to the next order of eTi as the

BCH expansion outlines, continuing the loop until the defined maximum truncation
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order. Once complete, we have successfully derived all necessary diagrammatic

structures.

Interpretation

This section entails returning the diagrams to their operator forms and grouping

terms with the same signatures into their respective collections. These collections are

all interpreted explicitly, then saved in a file to be called on later for two uses. Firstly,

this facilitates calculations such as the amplitude convergence scheme or excited state

elements, enabling the collections to be evaluated at any point for any set of amplitude

values. Second, this allows us to avoid having to generate the same diagrammatic struc-

tures each time we wish to perform a calculation. An example of this generated code is

provided in Section C of the Appendix.
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Figure 4: Flowchart for generating iterative connections of all diagrams.
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Chapter 8

Generalization for Multiple

Oscillators

8.1 Normal Ordering of a Three-Mode System

In order to complete our discussion, allow us to present the adaptation of some three-

mode system into our formalism. We begin with a Hamiltonian of three oscillators under

an example anharmonic perturbation of cubic order. The three oscillators in the system

will be labeled with uppercase letters A, B, and C in the following equation.

H = hA + hB + hC + V (qA, qB, qC)

hi =
1

2
p2i +

1

2
ω2
i q

2
i =

(
a†iai +

1

2

)
ωi

V = k300q
3
A + k030q

3
B + k120qAq

2
B + k012qBq

2
C

(8.1)

The perturbation above should first be adapted into normal-ordered ladder operators,
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in order to fit our diagrammatic scheme. Allow us therefore to rewrite the general cubic

term expressed in (1.9).

γijkqiqjqk =
γijk√

8ωiωjωk

(
a†i + ai

)(
a†j + aj

)(
a†k + ak

)
=

γijk√
8ωiωjωk

(
a†ia

†
ja

†
k + a†ja

†
kai + a†ia

†
kaj + a†ia

†
jak+

a†kaiaj + a†jaiak + a†iajak + aiajak+

δjka
†
i + δika

†
j + δija

†
k + δjkai + δikaj + δijak

)
(8.2)

Applying this expansion to each of the position terms in V , we find the associated

normal-ordered operators. The k300 and k030 terms are thereby written as follows, where

each operator product acts purely on oscillator A or B.

k300q
3
A =

k300√
8ω3

A

(
a†Aa

†
Aa

†
A + 3a†Aa

†
AaA + 3a†AaAaA + aAaAaA + 3a†A + 3aA

)
k030q

3
B =

k030√
8ω3

B

(
a†Ba

†
Ba

†
B + 3a†Ba

†
BaB + 3a†BaBaB + aBaBaB + 3a†B + 3aB

) (8.3)

In terms where the oscillators are mixed, the normal-ordered result changes as shown

below for k120 and k012. Note that all cubic perturbations will result in some combination

of V3 and V1 terms as a result of Wick’s Theorem.

k120qAq
2
B =

k120√
8ωAω

2
B

(
a†Aa

†
Ba

†
B + a†Ba

†
BaA + 2a†Aa

†
BaB+

2a†BaAaB + a†AaBaB + aAaBaB + a†A + aA

)
k012qBq

2
C =

k012√
8ωBω

2
C

(
a†Ba

†
Ca

†
C + a†Ca

†
CaB + 2a†Ba

†
CaC+

2a†CaBaC + a†BaCaC + aBaCaC + a†B + aB

)
(8.4)
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Allow us now to collect terms, calling the coefficients of each operator product some η.

This will be done straightforwardly, without regard for normalization or other factorials.

ηAAA = ηAAA =
k300√
8ω3

A

; ηBBB = ηBBB =
k030√
8ω3

B

ηABB = ηABB =
k120√
8ωAω

2
B

; ηBCC = ηBCC =
k012√
8ωBω

2
C

(8.5)

Since there only exists one way to obtain a product of three purely creation or anni-

hilation operators from (8.2), the above η03 = η30 terms have no multiplicative integers.

The η12 = η21 terms may include some, depending on how their indices are distributed.

ηAAA = ηAA
A =

3k300√
8ω3

A

; ηBBB = ηBB
B =

3k030√
8ω3

B

ηABB = ηBB
A =

k120√
8ωAω

2
B

; ηBAB = ηAB
B =

2k120√
8ωAω

2
B

ηBCC = ηCC
B =

k012√
8ωBω

2
C

; ηCBC = ηBC
C =

2k012√
8ωBω

2
C

(8.6)

Unlike the previous cases with terms of three operators only coming from one unique

expansion, terms of only one operator can be sourced from multiple different normal-

ordered results. These are shown below for the final coefficients, where η01 = η10.

ηA = ηA =
3k300√

8ω3
A

+
k120√
8ωAω

2
B

; ηB = ηB =
3k030√

8ω3
B

+
k012√
8ωBω

2
C

(8.7)

With the above expansions, we can begin to mirror the form of the ordered pertur-

bation in (1.11). A bit of caution must be exercised in doing so, as now we must include
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factors which account for multiple permutations of indices.

V1 =
∑
i

(
Qia

†
i + Qiai

)
V3 =

∑
ijk

(
1

3!
Qijka

†
ia

†
ja

†
k +

1

2!
Qk

ija
†
ia

†
jak +

1

2!
Qjk

i a†iajak +
1

3!
Qijkaiajak

) (8.8)

We now write expressions relating the η terms from the problem and the Q terms

above. Since the original perturbation V in (8.1) is Hermitian, we have that all Qijk =

Qijk, Qk
ij = Qij

k , and Qi = Qi. We will therefore only provide the relations between half

of the η’s and Q’s, as the other half are effectively identical.

ηAAA =
1

3!
QAAA ; ηBBB =

1

3!
QBBB (8.9)

For cases where permutations apply, we must include each possible coefficient to

ensure that the summations in (8.8) give rise to the correct value. The Q coefficients

must be symmetrical under exchange of indices such that Qijk = Qjik = Qkji = ..., which

allows for the following expressions.

ηABB =
1

3!
(QABB + QBAB + QBBA) =

1

2!
QABB

ηBCC =
1

3!
(QBCC + QCBC + QCBB) =

1

2!
QBCC

(8.10)

A similar approach is taken for the remaining terms as shown below. Note that

as no permutations nor factorials can be applied to the single operator terms, the two
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coefficients are equal.

ηAAA =
1

2!
QA

AA ; ηBBB =
1

2!
QB

BB

ηABB =
1

2!
QA

BB ; ηBAB =
1

2!

(
QA

AB + QA
BA

)
= QA

AB

ηBCC =
1

2!
QB

CC ; ηCBC =
1

2!

(
QC

BC + QC
CB

)
= QC

BC

ηA = QA ; ηB = QB

(8.11)

Inverting all of the above expressions, we can write the normal-ordered perturbation

coefficients in terms of the original three-mode k parameters.

QAAA =
3!k300√

8ω3
A

; QBBB =
3!k030√

8ω3
B

QABB =
2!k120√
8ωAω

2
B

; QBCC =
2!k012√
8ωBω

2
C

QA
AA =

2! · 3k300√
8ω3

A

; QB
BB =

2! · 3k030√
8ω3

B

; QA
BB =

2!k120√
8ωAω

2
B

QB
AB =

2k120√
8ωAω

2
B

; QB
CC =

2!k012√
8ωBω

2
C

; QC
BC =

2k012√
8ωBω

2
C

QA =
3k300√

8ω3
A

+
k120√
8ωAω

2
B

; QB =
3k030√

8ω3
B

+
k012√
8ωBω

2
C

(8.12)

With these as the coefficients Q in (8.8), we now know their specific values when in-

terpreting the diagrams. The diagrammatic representations in this problem still proceed
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as expected, shown below for Hopen alongside the energy term.

Hopen = + + +

+ + +

(8.13)

From here, the ground state energy is derived from the diagrammatic connections.

The process of truncating the cluster amplitudes at some maximum T and collecting

any closed diagrams in (HeT )C remains the same as shown in the examples for other

perturbations. Rather than showing this again explicitly, let us briefly direct our attention

to the excited state energy calculations.

8.2 Changes in the Effective Hamiltonian

Until this point, the excited states for different perturbations have been discussed

almost exclusively in the single oscillator case. Excited state energies are still derived

from the effective Hamiltonian matrix H for multiple oscillators, but a handful of concepts

surrounding their calculation must be generalized.

Let us begin this process by discussing the states of the system themselves. The

ground state of the three-mode system is defined as that for which each oscillator (A, B,

and C) is in its respective ground state.

|ϕ⟩ = |nA, nB, nC⟩ ; |0⟩ = |0, 0, 0⟩ (8.14)
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While the ground state of the system is still unique, excitations can now be applied in

multiple ways. Consider, for example, the first excited states. In the three-mode system,

there are three ways for one quanta of energy to excite an oscillator, shown below.

|1⟩ → |1, 0, 0⟩ , |0, 1, 0⟩ , |0, 0, 1⟩ (8.15)

These three states are all different, and must be accounted for separately in the

H matrix. Furthermore, the number of states grows quickly even for relatively low

excitations. Taking the second excited states as another example, we must account for

states with the two excitations applied to the same oscillator, as well as those with the

excitations applied to different oscillators.

|2⟩ → |2, 0, 0⟩ , |0, 2, 0⟩ , |0, 0, 2⟩ , |1, 1, 0⟩ , |1, 0, 1⟩ , |0, 1, 1⟩ (8.16)

The continued expansion of multiple oscillator states displayed here poses a large

complication when calculating and manipulating elements in H. Let us also show the

expansion of |3⟩ and |4⟩, for reference.

|3⟩ → |3, 0, 0⟩ , |0, 3, 0⟩ , |0, 0, 3⟩ , |2, 1, 0⟩ , |2, 0, 1⟩ ,

|1, 2, 0⟩ , |0, 2, 1⟩ , |1, 0, 2⟩ , |0, 1, 2⟩ , |1, 1, 1⟩

|4⟩ → |4, 0, 0⟩ , |0, 4, 0⟩ , |0, 0, 4⟩ , |3, 1, 0⟩ , |3, 0, 1⟩ ,

|1, 3, 0⟩ , |0, 3, 1⟩ , |1, 0, 3⟩ , |0, 1, 3⟩ , |2, 2, 0⟩ ,

|2, 0, 2⟩ , |0, 2, 2⟩ , |2, 1, 1⟩ , |1, 2, 1⟩ , |1, 1, 2⟩

(8.17)
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For a single oscillator, calculating the first four excited state energies (and corrections

to the ground state energy) would simply require a 5×5 matrix. In the three-mode case,

however, we see that the size needed for the same calculation increases to 35 × 35. The

required size of H therefore depends both on the number of oscillators N , as well as the

desired maximum excitation Z.

To further specify this effect, we will derive the necessary size for the H matrix, given

some general N and Z. This entails finding the number of ways to distribute anywhere

from 0 to Z quanta of energy, among N ordered oscillators. We accomplish this by first

defining the total excitation value of a particular state as some z.

|ϕ⟩ = |nA, nB, nC , ...⟩ ; z =
N∑
i

ni = nA + nB + nC + ... (8.18)

As an example, (8.17) shows that there are 10 unique states with z = 3, and 15 unique

states with z = 4. Rather than continuing with states and oscillators, let us represent

each individual state as its respective sum.

3 = 3 + 0 + 0 ; 0 + 3 + 0 ; 0 + 0 + 3 ; 2 + 1 + 0 ; 2 + 0 + 1 ;

1 + 2 + 0 ; 0 + 2 + 1 ; 1 + 0 + 2 ; 0 + 1 + 2 ; 1 + 1 + 1

4 = 4 + 0 + 0 ; 0 + 4 + 0 ; 0 + 0 + 4 ; 3 + 1 + 0 ; 3 + 0 + 1 ;

1 + 3 + 0 ; 0 + 3 + 1 ; 1 + 0 + 3 ; 0 + 1 + 3 ; 2 + 2 + 0 ;

2 + 0 + 2 ; 0 + 2 + 2 ; 2 + 1 + 1 ; 1 + 2 + 1 ; 1 + 1 + 2

(8.19)

Using this representation, each excited state corresponds to a so-called ‘weak com-
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position’ of z. These are defined as the ways to write some integer z as the sum of N

non-negative integers (i.e., including zeroes). The number of weak compositions are well

known and have a closed form, expressed below.

fN(z) =

(
z + N − 1

z

)
=

(
z + N − 1

N − 1

)
=

(z + N − 1)!

z!(N − 1)!
(8.20)

Note that unique permutations of the same sum are considered separate when count-

ing weak compositions, which is required for our excited state application. The value

above can also be directly expressed by the multiset coefficient

((
N

z

))
, but we will avoid

using such notation for the sake of simplicity.

Knowing the number of states corresponding to a particular excitation z, we can write

the size of the matrix for a maximum excitation Z as follows.

DN(Z) =
Z∑

z=0

fN(z) =
Z∑

z=0

(
z + N − 1

z

)
(8.21)

We then take advantage of the fact that DN(Z) is written as a sum of binomial

coefficients of a specific form. The summation can be further simplified using a version

of the Christmas stocking identity (or, hockey-stick identity), stated below.

m−r∑
j=0

(
j + r

j

)
=

(
m + 1

m− r

)
(8.22)

Substituting j = z, r = N − 1, and m = N − 1 + Z, the size of the matrix can be
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expressed with a singular binomial coefficient.

DN(Z) =
Z∑

z=0

(
z + N − 1

z

)
=

(
N + Z

Z

)
=

(
N + Z

N

)
(8.23)

We have therefore derived the new number of zth excited states fN(z), as well as the

size of the truncated H matrix DN(Z). Both values are shown below for comparison.

fN(z) =

(
z + N − 1

N − 1

)
; DN(Z) =

(
Z + N

N

)
(8.24)

The H matrix is thus shown to expand from a size of Z + 1 in the single oscillator

case, to a size of

(
Z + N

N

)
in the multiple oscillator case. Constructing the H matrix in

practice requires some nuance as well, due to the number of possible zth excited states.

In order to save space during the coming discussion, we introduce the following shorthand

for the matrix elements.

⟨0, 2, 1|H|1, 1, 1⟩ = H021,111 (8.25)

In the single oscillator case, the matrix elements are calculated between two states

as some ⟨m|H|n⟩. As there are now multiple ways to excite the system m or n times,

it becomes convenient to define some block matrix Amn, which accounts for all possible

mth and nth matrix elements.

⟨1|H|1⟩ → A11 =


H100,100 H100,010 H100,001

H010,100 H010,010 H010,001

H001,100 H001,010 H001,001

 (8.26)
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These block matrices are then used to express the effective Hamiltonian H. For

instance, the matrix truncated at the second excited states can be written as follows.

H =


⟨0|H|0⟩ ⟨0|H|1⟩ ⟨0|H|2⟩

⟨1|H|0⟩ ⟨1|H|1⟩ ⟨1|H|2⟩

⟨2|H|0⟩ ⟨2|H|1⟩ ⟨2|H|2⟩

 → H =



A00 A01 A02

A10 A11 A12

A20 A21 A22


(8.27)

The blocks Amn will be of increasing size, given by the corresponding number of

states fN(z) for their rows and columns. We also note that block matrices Amm along

the diagonal must be square matrices, while other non-diagonal blocks will not be. For

example, the size of block A21 in the three-mode system is given by f3(2)×f3(1) = 6×3.

A21 =



H200,100 H200,010 H200,001

H020,100 H020,010 H020,001

H002,100 H002,010 H002,001

H110,100 H110,010 H110,001

H101,100 H101,010 H101,001

H011,100 H011,010 H011,001



(8.28)

Given the manner in which the block matrices are defined, Amn and Anm will neces-

sarily have the same size as each other’s transpose. However, the effective Hamiltonian
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H is not Hermitian, and the two A matrices have no direct relation (i.e., A†
mn ̸= Anm).

A12 =


H100,200 H100,020 H100,002 H100,110 H100,100 H100,011

H010,200 H010,020 H010,002 H010,110 H010,101 H010,011

H001,200 H001,020 H001,002 H001,110 H001,101 H001,011

 (8.29)

Just like the case for single oscillators, the matrix elements of H must all be calculated

individually. Along with the newly increased size of the matrix, this is a major source

of computational strain for multiple oscillator calculations which drastically increases for

higher excited states. As an example, the truncated matrix only covering the first two

excited states shown in (8.27) will be of size D3(2) = 10, requiring 100 unique matrix

elements to be evaluated.

H =



H000,000 H000,100 H000,010 H000,001 H000,200 · · · H000,011

H100,000 H100,100 H100,010 H100,001 H100,200 · · · H100,011

H010,000 H010,100 H010,010 H010,001 H010,200 · · · H010,011

H001,000 H001,100 H001,010 H001,001 H001,200 · · · H001,011

H200,000 H200,100 H200,010 H200,001 H200,200 · · · H200,011

...
...

...
...

...
. . .

...

H011,000 H011,100 H011,010 H011,001 H011,200 · · · H011,011



(8.30)

A 10 × 10 matrix for the single oscillator would be sufficient to calculate energy

eigenvalues up to the |9⟩ excited state. Attempting to perform excited state calculations

with Z = 9 in the three-mode case would in turn require a matrix of size D3(9) = 220.
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Such a matrix contains 48400 elements which, again, would necessarily be evaluated

one-by-one.

With the structure of the effective Hamiltonian matrix as the last major addition to

the multiple oscillator formalism, let us take a step back to consider the requirements a

code must meet to achieve a numerical value for the ground states and excited states.

Due in part to the complications listed above, no code has yet been developed to handle

such calculations. Therefore, this will all be considered future work.

8.3 Future Work

Let us round out the multiple oscillator discussion by explicitly outlining the steps

needed to calculate numerical values for energies of an N oscillator system. This entails

performing the same steps outlined by the EoM-CC process, while making the general-

izations needed for multiple oscillators.

Beginning with the manipulation of diagrams, a handful of difficulties immediately

arise for their evaluation. Consider the following result from a connection between Q̂jklm
i

and cluster amplitudes
1

2!
T 2
3 , which was shown in (3.28).

=
1

4!

1

1!

1

2!

3

1

2!

∑
ijkl,m

∑
abc

(
Qabcm

i tajktbcl
)
σ
a†ia

†
ja

†
ka

†
lam

(8.31)

The operators themselves need not be dealt with directly in practice, but are included

here for the sake of completeness. Apart from the factorials, the critical parts of the
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term are the summations over operator indices and connected indices, as well as the

symmetrized coefficients marked by the σ subscript. Let us therefore explicitly expand

the coefficients in this example.

Vn =
4!

1!2!1!
= 12(

Qabcm
i tajktbcl

)
σ

= Qabcm
i tajktbcl + Qabcm

i talktbcj + Qabcm
i tajltbck +

Qabcm
j taiktbcl + Qabcm

j talktbci + Qabcm
j tailtbck +

Qabcm
k tajitbcl + Qabcm

k talitbcj + Qabcm
k tajltbci +

Qabcm
l tajktbci + Qabcm

l taiktbcj + Qabcm
l tajitbck

(8.32)

• The formalism for generating diagrammatic structures applies for both single and

multiple oscillators, which means that there is no need to change this particular

part of the code. However, a method of interpreting the diagrams for the multiple

oscillator case must still be developed.

• The first part of this would be developing a manner of summing over any indices

i, j, k, ... and a, b, ... in a given diagram. The second part, which is arguably more

difficult, entails reliably expressing and evaluating the full sum of permuted sym-

metrized coefficients
(
Qab...

ij... tkl...
)
σ
.

Completing these steps would allow for multiple oscillator diagrams to be sorted into

collections Ŵ rs...
ij... and numerically evaluated given some amplitudes tij.... The next step

in the EoM-CC formalism is solving the cluster equations for these amplitudes, using

the convergence schemes as outlined earlier. What was once a limited system of coupled

equations for t1, t2, t3, and so on also becomes more complicated, as there is now a
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different tij... value associated with different combinations of oscillator excitations.

Ŵij... = 0 → tij... (8.33)

• An iterative scheme covering the convergence of all cluster amplitudes must be

developed. While the general equation for a given order of cluster amplitudes (e.g.,

t
(n)
ijk) can be straightforwardly expressed as shown before, the equation in practice

refers to the multiple cluster amplitudes within that order (e.g., t
(n)
ABC , t

(n)
ABB, t

(n)
AAC ,

etc.). Each of these amplitudes must therefore be evaluated individually, before

moving onto the next step in the iteration.

• To ease computations here, one would ideally take advantage of the fact that the

cluster amplitudes are symmetric. For example, tAB = tBA, tABC = tBAC = tCAB =

..., and so on. While this does not completely remove the necessity of converging

multiple cluster operators (e.g., tABB ̸= tAAB), removing the aforementioned re-

dundancy does make the process far more efficient.

With knowledge of the converged cluster amplitudes and the ability to evaluate any

given diagrams, one can now calculate the ground state energy.

Ẽ0 = Hclosed + (HeT )C,closed =
1

2

∑
i

ωi + V0 + W 0
0 (8.34)

The excited state formalisms were elaborated on in the previous section, but we will

now discuss their adaptation into code. The elements of H = (HeT )C,open are given

by the contributions of all relevant collections of diagrams Ŵ rs...
ij... , as outlined in (3.45).
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Obtaining numerical values for these is an extension of the diagrammatic interpretation

and evaluation.

For the task of constructing the H matrix, the first problem one might encounter

is how to reliably reference states based on their position in the matrix. In the single

oscillator case, mapping rows and columns with their corresponding states is trivial. The

first row and column correspond to |0⟩, the second row and column to |1⟩, the third to

|2⟩, and so on. As the block matrices Amn have variable size, referencing states as such

is not so simple.

• An efficient way to map the row or column in H to its corresponding state therefore

becomes necessary for any N and Z. As an example, the code should know that

the 5th column in (8.30) is associated with the |2, 0, 0⟩ state.

• As mentioned before, calculating elements by the contributions of Ŵ rs...
ij... is the last

step to constructing the matrix. A more general form of (3.45) should therefore be

employed for multiple oscillators, either explicitly written or implicitly coded.

• Once the matrix element calculations can be approached regularly, note that the size

of the matrix means that there are significantly more elements to calculate. This

will likely be the biggest limiting computational factor for finding higher excited

state energies.

This concludes the work required to derive the ground state and excited state energies

for an N oscillator system. Still, a number of peripheral areas also exist in which progress

can be made. A few of these areas are listed as follows.
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• In order to reduce error in the energy calculations, one may attempt to perform

a Bogoliubov transformation to generate a new Hamiltonian. Thus far, however,

the formalism for Bogoliubov transformations tailored to the problem have only

been derived in the single oscillator case. The multiple oscillator transformation

entails writing the Hamiltonian in terms of a new set of operators b†i and bi, defined

roughly as follows.

b†i =
∑
j

(
Fija

†
j + Gijaj + Dijδij

)
; bi =

∑
j

(
F ∗
ijaj + G∗

ija
†
j + D∗

ijδij

)
(8.35)

• There is also plenty of room for further numerical study in the singular oscillator

case. As one example, we have shown that a Bogoliubov transformation (and

therefore a new Hamiltonian) can be created with any amplitudes s1 and s2. We

customarily choose the converged values of s1 = t1 and s1 = t2, but using different

starting values would result in different transformed Hamiltonians with their own

ground state and excited state energies. Although running multiple transformations

to convergence would result in the true values regardless, studying the numerical

effects of a singular transformation with different s1 and s2 values may be of interest.

• Other areas to further investigate may include the convergence schemes of cluster

amplitudes tm, the behavior of relatively large perturbations, or any unforeseen

phenomena in the multiple oscillator case.

In the single oscillator case, numerical integration suffices as a reliable way to bench-

mark the code and compare numerical results. However, numerical integration only

works over one coordinate, and cannot be applied for multiple oscillators. One may still
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consider a handful of different sources for comparing results as follows.

• Consider a ‘decoupled’ Hamiltonian, where the perturbation does not include any

cross-terms (i.e., Qrs
ij... ̸= 0 iff i = j = r = s = ...). In such a case, the eigenvalues

found could be straightforwardly expressed as the sum of eigenvalues from each

individual perturbed oscillator.

H =
∑
i

(hi + Vi (qi))

hi =
1

2
p2i +

1

2
ω2
i q

2
i =

(
a†iai +

1

2

)
ωi

(8.36)

• Though general systems of N oscillators at high excitations Z may be difficult

to compare, studies of specific systems and their energies using other methods do

exist. As one example mentioned earlier, the three-mode system itself has multiple

different approaches and results for comparison in the literature.

• In an earlier section, isotopes of a diatomic molecule were briefly explored as a phys-

ical analogue to the quadratic perturbation of one oscillator. As larger molecules

can be described by systems of multiple oscillators, one may also eventually com-

pare molecular spectra with the transitions between states (i.e., difference in energy

eigenvalues) from the code.

8.4 Conclusion

In this paper, we have presented a practical methodology by which to describe a

system of coupled anharmonic oscillators. This methodology combines coupled cluster

theory and iterative Bogoliubov transformations, which was later adapted into a Python
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code capable of generating explicit equations for any perturbation order VM and cluster

amplitudes TN . This was accomplished independently using a handful of steps which we

make individual conclusions for below.

The first major note to highlight is the adaptation of Wick’s Theorem into a general

diagrammatic scheme applicable to any system of oscillators. As shown in the earlier

sections, this is a practical scheme complete with its own rigorous set of rules which can be

readily used alongside the equation-of-motion coupled cluster method. This also greatly

streamlines the process of contracting operators associated with the BCH expansion by

hand, instead allowing us to represent terms by connected diagrammatic structures.

For the lowest-order quadratic case, we proved by hand that the perturbed Hamil-

tonian reduces to a new ‘unperturbed’ system with equally spaced eigenvalues after a

suitable Bogoliubov transformation. While the code is written for the general case and

therefore does not explicitly apply certain parity-specific simplifications, it still becomes

extremely useful to highlight the symmetries in a given system. This provides us with

a better understanding of the system itself, and eases any smaller calculations we may

choose to execute by hand.

While the diagrams themselves can assist in calculations visually and by hand, man-

ually evaluating energies with higher cluster amplitudes or higher excited states quickly

becomes unreasonable to accomplish as shown for the quartic case. The same rules and

methodology surrounding the scheme have therefore been adapted into Python code.

This allows us to efficiently perform calculations given any arbitrary VM and TN , as

outlined by the coupled cluster theory.

Building upon the code for diagrammatic generation, we have also proven that the
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methodology is valid in the single oscillator case by the independent development of other

Python codes. We have essentially developed a virtual laboratory within which we may

freely study the anharmonic oscillator problem. This also works for an arbitrarily high

order of cluster amplitudes, and can feasibly be generalized to the multiple oscillator

case.

Lastly, we discussed the future of the project in both theoretical and physical areas.

The required developments to generalize the single oscillator code to multiple oscillators

were all listed in a step by step manner. Once accomplished, this would allow us to

accurately study the system of anharmonic oscillators under a power series perturbation,

using whichever cluster amplitudes are desired. As the molecule provides an analogue to

the multiple oscillator system, this code could also be used to simulate molecular spectra

from the transitions between states.
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Appendix

A Details of Symmetrization

In this section, we will derive and discuss the values Un(L,M) and Vn(K,M) given

in equations (3.19) and (3.20). Let us begin with Un, the number of possible unique nth

contractions which could be represented by a given diagram. Forming an nth contraction

is best described as a process in three separate steps.

1. First, n annihilation operators are selected from the L amount offered by the per-

turbed Hamiltonian term Q̂L
K .

2. Then, n creation operators are selected from the M amount offered by the amplitude

term TM .

3. Lastly, the n creation and annihilation operators are connected.

We will refer to the number of ways each step can be accomplished individually as

u1, u2, and u3. The total number of ways an nth contraction can be formed is then the
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product of the three individual values.

Un = u1u2u3
(A.1)

Note here that the annihilation operators chosen in Step 1 commute, and the creation

operators chosen in Step 2 commute. The order in which these operators are chosen does

not matter, and therefore we expect to be dealing with combinations (as opposed to

permutations). Anticipating this, the three steps can be rewritten using more general

language.

1. First, n unordered elements are selected from a set of L elements.

2. Then, n unordered elements are selected from a set of M elements.

3. Lastly, the two subsets of n items each are paired together.

The first two steps conveniently entail the use of binomial coefficients, most commonly

found in combinatoric problems such as this. The coefficient

(
A

B

)
describes the number

of different ways an unordered subset of B elements can be chosen from a larger set of

A elements, expressed below for u1 and u2.

u1 =

(
L

n

)
=

L!

n!(L− n)!
; u2 =

(
M

n

)
=

M !

n!(M − n)!
(A.2)

The value u3 can be achieved by pairing the two subsets, one element at a time. An

element in the first subset has n total choices to connect to in the second subset. Once this

connection is made, (n−1) choices remain for the next element. This incremental decrease
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in options continues until the last element has only 1 remaining option. Multiplying the

options for each element together, the total number of possible connections that can be

made is given by the factorial n!.

u3 = n× (n− 1) × (n− 2) × ...× 1 = n! (A.3)

With all three values known, the full product Un is written as follows.

Un = u1u2u3 =

(
L

n

)(
M

n

)
n!

=
L!

n!(L− n)!

M !

n!(M − n)!
n!

=
L!M !

(L− n)!(M − n)!

1

n!

(A.4)

Let us now move on to Vn, the number of unique permuted terms a coefficient must be

separated into for symmetry. Recall the number of operators R and S after connection,

provided in (3.13). As there are R total creation operators in the diagram, the total

number of ways to permute their indices is simply given by R!. Some of these permuta-

tions will be redundant, due to the fact that creation operators on the same vertex line

are already symmetrized by definition (i.e., Q̂L
K is symmetric, and tM is symmetric).

The K creation operators provided by Q̂L
K are unaffected by connections, and therefore

K! of these permutations will be redundant. Similarly, (M − n) creation operators

associated with tM are left unconnected, which means that (M−n)! further permutations
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are redundant. By dividing these two factors out, we find the symmetrizing value Vn.

Vn =
R!

K! (M − n)!
=

(K + M − n)!

K! (M − n)!
=

(
R

K

)
(A.5)

We note that this value can be written using the binomial coefficient, though it is

typically unnecessary. The symmetrizing value can also be generalized to the product

of multiple operators (i.e., Q̂L
K connected to multiple TM terms), following similar logic.

The general form is written below without the use of variables, to illustrate how the

diagrammatic structure is taken into account.

Vn =
(total remaining creation operators)!∏

(remaining creation operators on each vertex)!
(A.6)

A few examples of symmetrizing coefficients with multiple amplitudes are provided

below. Note that the inclusion of annihilation operators in Q̂L
K has no effect on the

symmetrizing coefficient, as they will all be on the same vertex line.

→ Vn =
2!

1!1!

→ Vn =
4!

2!1!1!

→ Vn =
5!

2!3!

(A.7)
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B Isotopes and Elasticity

Since the physical parallel in the singular oscillator case is a diatomic molecule, we

may wish to explore what occurs in the isotopic case. In other words, we will discuss the

behavior of the system if the oscillator mass m is perturbed to some m′, representing a

change in the atomic nuclei. We begin with the original Hamiltonian in (1.1), written in

terms of position q and momentum p.

H0 =
1

2m
p2 +

1

2
kq2 ; p = −i

d

dq
(B.1)

The coefficient k = mω2 is the force constant of the oscillator, related to how stiff or

elastic the molecular bond is. At first glance, a mass perturbation is not straightforwardly

expressed using additive ladder operators as in H = H0 + V . We will instead approach

the problem by comparing the Hamiltonian before and after the mass perturbation is

applied, using some δH to represent the change in the system.

H = H0 + δH → δH = H −H0 (B.2)

This representation is extremely helpful for dealing with ‘indirect’ perturbations such

as isotopes. The difference between the two Hamiltonians is expressed below, using the

m subscript as we discuss the change in mass.

δHm =

(
1

2m′p
2 +

1

2
kq2
)
−
(

1

2m
p2 +

1

2
kq2
)

=
1

2

(
1

m′ −
1

m

)
p2 (B.3)
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In order to return to the more familiar ladder operator representation, we simply use

the inverted definitions in (1.6) for the single oscillator.

δHm =
1

2

(
1

m′ −
1

m

)
p2 = −1

2

(
1

m′ −
1

m

)
mω

2

(
a† − a

)2
=

ω

4

(
1 − m

m′

) (
a† − a

)2 (B.4)

Noting that δHm only consists of products of two ladder operators, we have proven

that the mass perturbation is quadratic. A similar derivation applies to an elasticity

perturbation, where the force constant k changes to some new k′.

δHk =

(
1

2m
p2 +

1

2
k′q2

)
−
(

1

2m
p2 +

1

2
kq2
)

=
1

2
(k′ − k) q2 (B.5)

Returning to the operator representation as before, we quickly find that such a per-

turbation is also quadratic.

δHk =
1

2
(k′ − k) q2 =

1

2
(k′ − k)

1

2mω

(
a† + a

)2
=

ω

4

(
k′

k
− 1

)(
a† + a

)2 (B.6)

Allow us to simplify the above expressions by collecting the coefficients into some

strength parameters ϵm and ϵk. We will keep the ω term separate, such that the strength

parameters are dimensionless.

ϵm = 1 − m

m′ ; ϵk =
k′

k
− 1 (B.7)

Our mass and elasticity perturbations can then be expressed as follows after normal
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ordering the squared combinations of operators.

δHm =
ω

4
ϵm
(
a†a† − 2a†a + aa − 1

)
δHk =

ω

4
ϵk
(
a†a† + 2a†a + aa + 1

) (B.8)

In order to define a molecular perturbation applicable to mass or elasticity, we will

combine both δHm and δHm into some general V . Anticipating this step, we first define

two coefficients B+ and B− as combinations of the strength parameters.

B+ =
ω

2
(ϵk + ϵm) ; B− =

ω

2
(ϵk − ϵm) (B.9)

The form of the perturbation can then be written directly as the more familiar V2

and some constant V0, collecting terms and replacing them with the new coefficients.

V = δHm + δHk

=
ω

4
ϵm
(
a†a† − 2a†a + aa − 1

)
+

ω

4
ϵk
(
a†a† + 2a†a + aa + 1

)
=

ω

4

[
(ϵk + ϵm) a†a† + 2 (ϵk − ϵm) a†a + (ϵk + ϵm) aa + (ϵk − ϵm)

]
=

(
1

2
B+a

†a† + B−a
†a +

1

2
B+aa

)
+

1

2
B−

(B.10)

As expected of a physical perturbation, we note that V here is Hermitian. Any change

of mass or elasticity in a diatomic molecule can thus be expressed in the quadratic order

with the following coefficients.

Q0
2 = Q2

0 = B+ ; Q1
1 = B− ; V0 =

1

2
B− (B.11)
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This fact also works in reverse, such that any Hermitian quadratic perturbation can

be said to directly represent a physical change in mass or elasticity. To prove this, allow

us to invert the coefficients in (B.9).

ϵm =
1

ω

(
B+ −B−

)
; ϵk =

1

ω

(
B+ + B−

)
(B.12)

Expanding the strength parameters as in (B.7), solving each equation for m′ and k′,

and then returning to the standard coefficients Q reveals the following equalities.

1

m′ =
1

m

(
1 − Q0

2 −Q1
1

ω

)
; k′ = k

(
1 +

Q0
2 + Q1

1

ω

)
(B.13)

As long as the relations in (B.11) hold true, the above equations can be used to

directly express a quadratic perturbation as its equivalent perturbations in mass and

elasticity. This effectively creates some new harmonic oscillator with angular frequency

ω̃, as shown from discussions in Chapter 5.

ω =

√
k

m
→ ω̃ =

√
k′

m′ (B.14)
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C Generated Code

The file presented in this section is generated by Python, given orders M and N

by which to truncate VM and TN . We have chosen to present the V4 and T4 output

to mirror the collections in (6.5) through (6.8), but note that these truncations are

entirely arbitrary. The purpose of this file is to define a function get_diagrams, which

takes an input of relevant parameters in the Hamiltonian and coupled cluster process.

These include the generalized unperturbed coefficients ∆, Λ, and Γ outlined in (3.52),

the normal ordered perturbation coefficients QL
K , any amplitudes tn, and the angular

frequency ω of the oscillator. Also included is some mode parameter, which helps to load

certain collections only at whichever point they are utilized (i.e., in the ground state

energy calculation, amplitude convergence, or excited states).

The output of get_diagrams is then a dictionary of all collections Ŵ S
R , paired with

their numerical evaluation given the input parameters. This allows us the freedom to

evaluate diagrammatic contributions at any point, including the critical steps below.

• During the amplitude convergence scheme at each iteration as shown in (3.39).

• When calculating the ground state Ẽ0 using closed diagrams in (3.44).

• While constructing the effective Hamiltonian H element by element, with contri-

butions given by (3.45).

• Repeating any of the above calculations with a new Hamiltonian after a number of

Bogoliubov transformations.

Let us therefore make a handful of notes regarding the collections before providing
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the generated code itself. Due to their identical structure, we first note that the ω̂ and Q̂1
1

terms appear on the same line of code, and are therefore counted as one diagrammatic

entry rather than two. This explains the ‘missing’ entry when comparing the number of

terms in the passage before (6.5). The diagrammatic contributions are also written in

anticipation of Bogoliubov transformations, such that a few choice terms are interpreted

using the coefficients in (3.58).

Additionally, we note that the explicit form of the operator products in (3.27) have

been slightly reduced, as follows.

Π̂S
R =

1

R!

1

S!
QL

K

1

n!

(K + M − n)!

K!(M − n)!
tM(a†)R(a)S

=
1

S!
QL

K

1

n!

1

K!(M − n)!
tM(a†)R(a)S

(C.1)

The factorials associated with R = K +M −n are thus cancelled out. This is done to

avoid the inclusion of very large factorials R! which may result when dealing with higher-

order diagrams. Such factorials could lead to numerical errors relating to the treatment

of large numbers in code (i.e., rounding or truncation), and therefore removing them

is ideal. The ‘reduced’ symmetrizing coefficient
1

K!(M − n)!
is provided explicitly in

each line of code, while other factorials S! and n! are conserved for readability where

applicable.

For further readability, the collections themselves have been sorted and ordered based

on where they appear in the effective Hamiltonian. Any collections Ŵ S
R which are not

already grouped as part of the ground state or amplitude calculations are commented

with a particular ‘offset’, corresponding to a diagonal line in H. Specifically, contributions
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labeled by ‘Offset: k’ will appear along the diagonal with elements ⟨m + k|H|m⟩. For

example, the ‘Offset: −1’ group includes collections Ŵ 1
0 , Ŵ 2

1 , and Ŵ 3
2 , all contributing

to ⟨m− 1|H|m⟩.

With these notes in mind, the generated file which contains all diagrammatic equa-

tions associated with V4 and T4 is shown below.

loadeqns_sho_V4_T4.py

1 from scipy.special import factorial as fac

2

3 invf2 = 1/fac(2)

4 invf3 = 1/fac(3)

5 invf4 = 1/fac(4)

6

7 def get_diagrams(unpert , normal_ordered_coefficients , amplitudes ,

angu_freq , mode):

8

9 contrib = dict ({})

10

11 hamil_delta , hamil_lambda , hamil_gamma = unpert

12 R = 2* hamil_lambda

13 Q_0_0 , Q_0_1 , Q_0_2 , Q_0_3 , Q_0_4 = normal_ordered_coefficients [0]

14 Q_1_0 , Q_1_1 , Q_1_2 , Q_1_3 , _ = normal_ordered_coefficients [1]

15 Q_2_0 , Q_2_1 , Q_2_2 , _ , _ = normal_ordered_coefficients [2]

16 Q_3_0 , Q_3_1 , _ , _ , _ = normal_ordered_coefficients [3]

17 Q_4_0 , _ , _ , _ , _ = normal_ordered_coefficients [4]

18

19 t1 , t2, t3, t4 = amplitudes

20

21 if mode in ["all", "closed"]:

22

23 #Ground State | 12 entries.

24 contrib["0,0"] = (Q_0_0 + (1/2)*angu_freq + hamil_gamma) + \

25 Q_0_1 *1*t1 + \

26 (Q_0_2 + R)*invf2 *1*t2 + \

27 (Q_0_2 + R)*invf2 *1*t1*t1 + \

28 Q_0_3*invf3 *1*t3 + \

29 Q_0_3*invf2 *1*t1*t2 + \

30 Q_0_3*invf3 *1*t1*t1*t1 + \

31 Q_0_4*invf4 *1*t4 + \

32 Q_0_4*invf3 *1*t1*t3 + \

33 Q_0_4*invf2*invf2*invf2 *1*t2*t2 + \

34 Q_0_4*invf2*invf2 *1*t1*t1*t2 + \

35 Q_0_4*invf4 *1*t1*t1*t1*t1

36

37

38 if mode in ["all", "open", "amplitude"]:

39
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40 #Amplitude t1 | 20 entries.

41 contrib["1,0"] = Q_0_1 *1*t2 + \

42 Q_1_0 + \

43 (Q_0_2 + R)*invf2 *1*t3 + \

44 (Q_0_2 + R)*1*t1*t2 + \

45 (Q_1_1 + hamil_delta)*1*t1 + \

46 Q_0_3*invf3 *1*t4 + \

47 Q_0_3*invf2 *1*t1*t3 + \

48 Q_0_3*invf2*invf2 *1*t2*t2 + \

49 Q_0_3*invf2 *1*t1*t1*t2 + \

50 Q_1_2*invf2 *1*t2 + \

51 Q_1_2*invf2 *1*t1*t1 + \

52 Q_0_4*invf3 *1*t1*t4 + \

53 Q_0_4*invf3 *1*t2*t3 + \

54 Q_0_4*invf2*invf2 *1*t2*t3 + \

55 Q_0_4*invf2*invf2 *1*t1*t1*t3 + \

56 Q_0_4*invf2*invf2 *1*t1*t2*t2 + \

57 Q_0_4*invf3 *1*t1*t1*t1*t2 + \

58 Q_1_3*invf3 *1*t3 + \

59 Q_1_3*invf2 *1*t1*t2 + \

60 Q_1_3*invf3 *1*t1*t1*t1

61

62

63 #Amplitude t2 | 30 entries.

64 contrib["2,0"] = Q_0_1 *0.5*t3 + \

65 (Q_0_2 + R)*invf2 *0.5* t4 + \

66 (Q_0_2 + R)*0.5* t1*t3 + \

67 (Q_0_2 + R)*invf2 *1*t2*t2 + \

68 (Q_1_1 + hamil_delta)*1*t2 + \

69 invf2 *(Q_2_0 + R) + \

70 Q_0_3*invf2 *0.5* t1*t4 + \

71 Q_0_3*invf2 *1*t2*t3 + \

72 Q_0_3*invf2 *0.5* t2*t3 + \

73 Q_0_3*invf2 *0.5* t1*t1*t3 + \

74 Q_0_3*invf2 *1*t1*t2*t2 + \

75 Q_1_2*invf2 *1*t3 + \

76 Q_1_2 *1*t1*t2 + \

77 Q_2_1 *0.5* t1 + \

78 Q_0_4*invf3 *1*t2*t4 + \

79 Q_0_4*invf2*invf2 *0.5* t2*t4 + \

80 Q_0_4*invf2*invf2*invf2 *1*t3*t3 + \

81 Q_0_4*invf3*invf2 *0.5* t3*t3 + \

82 Q_0_4*invf2*invf2 *0.5* t1*t1*t4 + \

83 Q_0_4*invf2 *1*t1*t2*t3 + \

84 Q_0_4*invf2 *0.5* t1*t2*t3 + \

85 Q_0_4*invf2*invf3 *1*t2*t2*t2 + \

86 Q_0_4*invf3 *0.5* t1*t1*t1*t3 + \

87 Q_0_4*invf2*invf2 *1*t1*t1*t2*t2 + \

88 Q_1_3*invf3 *1*t4 + \

89 Q_1_3*invf2 *1*t1*t3 + \

90 Q_1_3*invf2*invf2 *1*t2*t2 + \

91 Q_1_3*invf2 *1*t1*t1*t2 + \

92 Q_2_2*invf2 *0.5* t2 + \

93 Q_2_2*invf2 *0.5* t1*t1
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94

95

96 #Amplitude t3 | 34 entries.

97 contrib["3,0"] = Q_0_1 *0.16666666666666666* t4 + \

98 (Q_0_2 + R)*0.16666666666666666* t1*t4 + \

99 (Q_0_2 + R)*0.5* t2*t3 + \

100 (Q_1_1 + hamil_delta)*0.5* t3 + \

101 Q_0_3*invf2 *0.5* t2*t4 + \

102 Q_0_3*invf2 *0.16666666666666666* t2*t4 + \

103 Q_0_3*invf2*invf2 *0.5* t3*t3 + \

104 Q_0_3*invf2 *0.16666666666666666* t1*t1*t4 + \

105 Q_0_3 *0.5* t1*t2*t3 + \

106 Q_0_3*invf3 *1*t2*t2*t2 + \

107 Q_1_2*invf2 *0.5* t4 + \

108 Q_1_2 *0.5* t1*t3 + \

109 Q_1_2*invf2 *1*t2*t2 + \

110 Q_2_1 *0.5* t2 + \

111 invf3*Q_3_0 + \

112 Q_0_4*invf3 *0.5* t3*t4 + \

113 Q_0_4*invf2*invf2 *0.5* t3*t4 + \

114 Q_0_4*invf3 *0.16666666666666666* t3*t4 + \

115 Q_0_4*invf2 *0.5* t1*t2*t4 + \

116 Q_0_4*invf2 *0.16666666666666666* t1*t2*t4 + \

117 Q_0_4*invf2*invf2 *0.5* t1*t3*t3 + \

118 Q_0_4*invf2*invf2 *1*t2*t2*t3 + \

119 Q_0_4*invf2*invf2 *0.5* t2*t2*t3 + \

120 Q_0_4*invf3 *0.16666666666666666* t1*t1*t1*t4 + \

121 Q_0_4*invf2 *0.5* t1*t1*t2*t3 + \

122 Q_0_4*invf3 *1*t1*t2*t2*t2 + \

123 Q_1_3*invf2 *0.5* t1*t4 + \

124 Q_1_3*invf2 *1*t2*t3 + \

125 Q_1_3*invf2 *0.5* t2*t3 + \

126 Q_1_3*invf2 *0.5* t1*t1*t3 + \

127 Q_1_3*invf2 *1*t1*t2*t2 + \

128 Q_2_2*invf2 *0.5* t3 + \

129 Q_2_2 *0.5* t1*t2 + \

130 Q_3_1 *0.16666666666666666* t1

131

132

133 #Amplitude t4 | 34 entries.

134 contrib["4,0"] = (Q_0_2 + R)*0.16666666666666666* t2*t4 + \

135 (Q_0_2 + R)*invf2 *0.25* t3*t3 + \

136 (Q_1_1 + hamil_delta)*0.16666666666666666* t4 + \

137 Q_0_3*invf2 *0.25* t3*t4 + \

138 Q_0_3*invf2 *0.16666666666666666* t3*t4 + \

139 Q_0_3 *0.16666666666666666* t1*t2*t4 + \

140 Q_0_3*invf2 *0.25* t1*t3*t3 + \

141 Q_0_3*invf2 *0.5* t2*t2*t3 + \

142 Q_1_2 *0.16666666666666666* t1*t4 + \

143 Q_1_2 *0.5* t2*t3 + \

144 Q_2_1 *0.25* t3 + \

145 Q_0_4*invf2*invf2*invf2 *0.25* t4*t4 + \

146 Q_0_4*invf3*invf2 *0.16666666666666666* t4*t4 + \

147 Q_0_4*invf2 *0.25* t1*t3*t4 + \
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148 Q_0_4*invf2 *0.16666666666666666* t1*t3*t4 + \

149 Q_0_4*invf2*invf2 *0.5* t2*t2*t4 + \

150 Q_0_4*invf2*invf2 *0.16666666666666666* t2*t2*t4 + \

151 Q_0_4*invf2*invf2 *0.5* t2*t3*t3 + \

152 Q_0_4*invf2*invf2 *0.25* t2*t3*t3 + \

153 Q_0_4*invf2 *0.16666666666666666* t1*t1*t2*t4 + \

154 Q_0_4*invf2*invf2 *0.25* t1*t1*t3*t3 + \

155 Q_0_4*invf2 *0.5* t1*t2*t2*t3 + \

156 Q_0_4*invf4 *1*t2*t2*t2*t2 + \

157 Q_1_3*invf2 *0.5* t2*t4 + \

158 Q_1_3*invf2 *0.16666666666666666* t2*t4 + \

159 Q_1_3*invf2*invf2 *0.5* t3*t3 + \

160 Q_1_3*invf2 *0.16666666666666666* t1*t1*t4 + \

161 Q_1_3 *0.5* t1*t2*t3 + \

162 Q_1_3*invf3 *1*t2*t2*t2 + \

163 Q_2_2*invf2 *0.25* t4 + \

164 Q_2_2 *0.25* t1*t3 + \

165 Q_2_2*invf2 *0.5* t2*t2 + \

166 Q_3_1 *0.16666666666666666* t2 + \

167 invf4*Q_4_0

168

169

170 if mode in ["all", "open", "other"]:

171

172 #=-=

173

174 #Offset: -4 | 1 entries.

175 contrib["0,4"] = invf4*Q_0_4

176

177 #=-=

178

179 #Offset: -3 | 2 entries.

180 contrib["0,3"] = invf3*Q_0_3 + \

181 invf3*Q_0_4 *1*t1

182

183 #=-=

184

185 #Offset: -2 | 4 entries.

186 contrib["0,2"] = invf2*( Q_0_2 + R) + \

187 invf2*Q_0_3 *1*t1 + \

188 invf2*Q_0_4*invf2 *1*t2 + \

189 invf2*Q_0_4*invf2 *1*t1*t1

190

191 #Offset: -2 | 2 entries.

192 contrib["1,3"] = invf3*Q_0_4 *1*t2 + \

193 invf3*Q_1_3

194

195 #=-=

196

197 #Offset: -1 | 7 entries.

198 contrib["0,1"] = Q_0_1 + \

199 (Q_0_2 + R)*1*t1 + \

200 Q_0_3*invf2 *1*t2 + \

201 Q_0_3*invf2 *1*t1*t1 + \
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202 Q_0_4*invf3 *1*t3 + \

203 Q_0_4*invf2 *1*t1*t2 + \

204 Q_0_4*invf3 *1*t1*t1*t1

205

206 #Offset: -1 | 5 entries.

207 contrib["1,2"] = invf2*Q_0_3 *1*t2 + \

208 invf2*Q_1_2 + \

209 invf2*Q_0_4*invf2 *1*t3 + \

210 invf2*Q_0_4 *1*t1*t2 + \

211 invf2*Q_1_3 *1*t1

212

213 #Offset: -1 | 1 entries.

214 contrib["2,3"] = invf3*Q_0_4 *0.5*t3

215

216 #=-=

217

218 #Offset: 0 | 11 entries.

219 contrib["1,1"] = (Q_0_2 + R)*1*t2 + \

220 (Q_1_1 + hamil_delta) + \

221 Q_0_3*invf2 *1*t3 + \

222 Q_0_3 *1*t1*t2 + \

223 Q_1_2 *1*t1 + \

224 Q_0_4*invf3 *1*t4 + \

225 Q_0_4*invf2 *1*t1*t3 + \

226 Q_0_4*invf2*invf2 *1*t2*t2 + \

227 Q_0_4*invf2 *1*t1*t1*t2 + \

228 Q_1_3*invf2 *1*t2 + \

229 Q_1_3*invf2 *1*t1*t1

230

231 #Offset: 0 | 6 entries.

232 contrib["2,2"] = invf2*Q_0_3 *0.5*t3 + \

233 invf2*Q_0_4*invf2 *0.5* t4 + \

234 invf2*Q_0_4 *0.5* t1*t3 + \

235 invf2*Q_0_4*invf2 *1*t2*t2 + \

236 invf2*Q_1_3 *1*t2 + \

237 invf2*invf2*Q_2_2

238

239 #Offset: 0 | 1 entries.

240 contrib["3,3"] = invf3*Q_0_4 *0.16666666666666666* t4

241

242 #=-=

243

244 #Offset: 1 | 14 entries.

245 contrib["2,1"] = (Q_0_2 + R)*0.5*t3 + \

246 Q_0_3*invf2 *0.5* t4 + \

247 Q_0_3 *0.5* t1*t3 + \

248 Q_0_3*invf2 *1*t2*t2 + \

249 Q_1_2 *1*t2 + \

250 invf2*Q_2_1 + \

251 Q_0_4*invf2 *0.5* t1*t4 + \

252 Q_0_4*invf2 *1*t2*t3 + \

253 Q_0_4*invf2 *0.5* t2*t3 + \

254 Q_0_4*invf2 *0.5* t1*t1*t3 + \

255 Q_0_4*invf2 *1*t1*t2*t2 + \
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256 Q_1_3*invf2 *1*t3 + \

257 Q_1_3 *1*t1*t2 + \

258 Q_2_2 *0.5* t1

259

260 #Offset: 1 | 4 entries.

261 contrib["3,2"] = invf2*Q_0_3 *0.16666666666666666* t4 + \

262 invf2*Q_0_4 *0.16666666666666666* t1*t4 + \

263 invf2*Q_0_4 *0.5* t2*t3 + \

264 invf2*Q_1_3 *0.5* t3

265

266 #=-=

267

268 #Offset: 2 | 15 entries.

269 contrib["3,1"] = (Q_0_2 + R)*0.16666666666666666* t4 + \

270 Q_0_3 *0.16666666666666666* t1*t4 + \

271 Q_0_3 *0.5* t2*t3 + \

272 Q_1_2 *0.5* t3 + \

273 Q_0_4*invf2 *0.5* t2*t4 + \

274 Q_0_4*invf2 *0.16666666666666666* t2*t4 + \

275 Q_0_4*invf2*invf2 *0.5* t3*t3 + \

276 Q_0_4*invf2 *0.16666666666666666* t1*t1*t4 + \

277 Q_0_4 *0.5* t1*t2*t3 + \

278 Q_0_4*invf3 *1*t2*t2*t2 + \

279 Q_1_3*invf2 *0.5* t4 + \

280 Q_1_3 *0.5* t1*t3 + \

281 Q_1_3*invf2 *1*t2*t2 + \

282 Q_2_2 *0.5* t2 + \

283 invf3*Q_3_1

284

285 #Offset: 2 | 3 entries.

286 contrib["4,2"] = invf2*Q_0_4 *0.16666666666666666* t2*t4 + \

287 invf2*Q_0_4*invf2 *0.25* t3*t3 + \

288 invf2*Q_1_3 *0.16666666666666666* t4

289

290 #=-=

291

292 #Offset: 3 | 11 entries.

293 contrib["4,1"] = Q_0_3 *0.16666666666666666* t2*t4 + \

294 Q_0_3*invf2 *0.25* t3*t3 + \

295 Q_1_2 *0.16666666666666666* t4 + \

296 Q_0_4*invf2 *0.25* t3*t4 + \

297 Q_0_4*invf2 *0.16666666666666666* t3*t4 + \

298 Q_0_4 *0.16666666666666666* t1*t2*t4 + \

299 Q_0_4*invf2 *0.25* t1*t3*t3 + \

300 Q_0_4*invf2 *0.5* t2*t2*t3 + \

301 Q_1_3 *0.16666666666666666* t1*t4 + \

302 Q_1_3 *0.5* t2*t3 + \

303 Q_2_2 *0.25* t3

304

305 #Offset: 3 | 1 entries.

306 contrib["5,2"] = invf2*Q_0_4 *0.08333333333333333* t3*t4

307

308 #=-=

309
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310 #Offset: 4 | 8 entries.

311 contrib["5,1"] = Q_0_3 *0.08333333333333333* t3*t4 + \

312 Q_0_4*invf2*invf2 *0.08333333333333333* t4*t4 + \

313 Q_0_4 *0.08333333333333333* t1*t3*t4 + \

314 Q_0_4*invf2 *0.16666666666666666* t2*t2*t4 + \

315 Q_0_4*invf2 *0.25* t2*t3*t3 + \

316 Q_1_3 *0.16666666666666666* t2*t4 + \

317 Q_1_3*invf2 *0.25* t3*t3 + \

318 Q_2_2 *0.08333333333333333* t4

319

320 #Offset: 4 | 1 entries.

321 contrib["6,2"] = invf2*Q_0_4*invf2 *0.027777777777777776* t4*t4

322

323 #=-=

324

325 #Offset: 5 | 25 entries.

326 contrib["5,0"] = (Q_0_2 + R)*0.08333333333333333* t3*t4 + \

327 Q_0_3*invf2*invf2 *0.08333333333333333* t4*t4 + \

328 Q_0_3 *0.08333333333333333* t1*t3*t4 + \

329 Q_0_3*invf2 *0.16666666666666666* t2*t2*t4 + \

330 Q_0_3*invf2 *0.25* t2*t3*t3 + \

331 Q_1_2 *0.16666666666666666* t2*t4 + \

332 Q_1_2*invf2 *0.25* t3*t3 + \

333 Q_2_1 *0.08333333333333333* t4 + \

334 Q_0_4*invf2*invf2 *0.08333333333333333* t1*t4*t4 + \

335 Q_0_4*invf2 *0.25* t2*t3*t4 + \

336 Q_0_4*invf2 *0.16666666666666666* t2*t3*t4 + \

337 Q_0_4*invf2 *0.08333333333333333* t2*t3*t4 + \

338 Q_0_4*invf2*invf3 *0.25* t3*t3*t3 + \

339 Q_0_4*invf2 *0.08333333333333333* t1*t1*t3*t4 + \

340 Q_0_4*invf2 *0.16666666666666666* t1*t2*t2*t4 + \

341 Q_0_4*invf2 *0.25* t1*t2*t3*t3 + \

342 Q_0_4*invf3 *0.5* t2*t2*t2*t3 + \

343 Q_1_3*invf2 *0.25* t3*t4 + \

344 Q_1_3*invf2 *0.16666666666666666* t3*t4 + \

345 Q_1_3 *0.16666666666666666* t1*t2*t4 + \

346 Q_1_3*invf2 *0.25* t1*t3*t3 + \

347 Q_1_3*invf2 *0.5* t2*t2*t3 + \

348 Q_2_2 *0.08333333333333333* t1*t4 + \

349 Q_2_2 *0.25* t2*t3 + \

350 Q_3_1 *0.08333333333333333* t3

351

352 #Offset: 5 | 5 entries.

353 contrib["6,1"] = Q_0_3*invf2 *0.027777777777777776* t4*t4 + \

354 Q_0_4*invf2 *0.027777777777777776* t1*t4*t4 + \

355 Q_0_4 *0.08333333333333333* t2*t3*t4 + \

356 Q_0_4*invf3 *0.125* t3*t3*t3 + \

357 Q_1_3 *0.08333333333333333* t3*t4

358

359 #=-=

360

361 #Offset: 6 | 21 entries.

362 contrib["6,0"] = (Q_0_2 + R)*invf2 *0.027777777777777776* t4*t4 + \

363 Q_0_3*invf2 *0.027777777777777776* t1*t4*t4 + \
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364 Q_0_3 *0.08333333333333333* t2*t3*t4 + \

365 Q_0_3*invf3 *0.125* t3*t3*t3 + \

366 Q_1_2 *0.08333333333333333* t3*t4 + \

367 Q_0_4*invf2*invf2 *0.08333333333333333* t2*t4*t4 + \

368 Q_0_4*invf2*invf2 *0.027777777777777776* t2*t4*t4 + \

369 Q_0_4*invf2*invf2 *0.125* t3*t3*t4 + \

370 Q_0_4*invf2*invf2 *0.08333333333333333* t3*t3*t4 + \

371 Q_0_4*invf2*invf2 *0.027777777777777776* t1*t1*t4*t4 + \

372 Q_0_4 *0.08333333333333333* t1*t2*t3*t4 + \

373 Q_0_4*invf3 *0.125* t1*t3*t3*t3 + \

374 Q_0_4*invf3 *0.16666666666666666* t2*t2*t2*t4 + \

375 Q_0_4*invf2*invf2 *0.25* t2*t2*t3*t3 + \

376 Q_1_3*invf2*invf2 *0.08333333333333333* t4*t4 + \

377 Q_1_3 *0.08333333333333333* t1*t3*t4 + \

378 Q_1_3*invf2 *0.16666666666666666* t2*t2*t4 + \

379 Q_1_3*invf2 *0.25* t2*t3*t3 + \

380 Q_2_2 *0.08333333333333333* t2*t4 + \

381 Q_2_2*invf2 *0.125* t3*t3 + \

382 Q_3_1 *0.027777777777777776* t4

383

384 #Offset: 6 | 3 entries.

385 contrib["7,1"] = Q_0_4*invf2 *0.027777777777777776* t2*t4*t4 + \

386 Q_0_4*invf2 *0.041666666666666664* t3*t3*t4 + \

387 Q_1_3*invf2 *0.027777777777777776* t4*t4

388

389 #=-=

390

391 #Offset: 7 | 13 entries.

392 contrib["7,0"] = Q_0_3*invf2 *0.027777777777777776* t2*t4*t4 + \

393 Q_0_3*invf2 *0.041666666666666664* t3*t3*t4 + \

394 Q_1_2*invf2 *0.027777777777777776* t4*t4 + \

395 Q_0_4*invf2*invf2 *0.041666666666666664* t3*t4*t4 + \

396 Q_0_4*invf2*invf2 *0.027777777777777776* t3*t4*t4 + \

397 Q_0_4*invf2 *0.027777777777777776* t1*t2*t4*t4 + \

398 Q_0_4*invf2 *0.041666666666666664* t1*t3*t3*t4 + \

399 Q_0_4*invf2 *0.08333333333333333* t2*t2*t3*t4 + \

400 Q_0_4*invf3 *0.125* t2*t3*t3*t3 + \

401 Q_1_3*invf2 *0.027777777777777776* t1*t4*t4 + \

402 Q_1_3 *0.08333333333333333* t2*t3*t4 + \

403 Q_1_3*invf3 *0.125* t3*t3*t3 + \

404 Q_2_2 *0.041666666666666664* t3*t4

405

406 #Offset: 7 | 1 entries.

407 contrib["8,1"] = Q_0_4*invf2 *0.013888888888888888* t3*t4*t4

408

409 #=-=

410

411 #Offset: 8 | 9 entries.

412 contrib["8,0"] = Q_0_3*invf2 *0.013888888888888888* t3*t4*t4 + \

413 Q_0_4*invf2*invf3 *0.013888888888888888* t4*t4*t4 + \

414 Q_0_4*invf2 *0.013888888888888888* t1*t3*t4*t4 + \

415 Q_0_4*invf2*invf2 *0.027777777777777776* t2*t2*t4*t4 + \

416 Q_0_4*invf2 *0.041666666666666664* t2*t3*t3*t4 + \

417 Q_0_4*invf4 *0.0625* t3*t3*t3*t3 + \

154



418 Q_1_3*invf2 *0.027777777777777776* t2*t4*t4 + \

419 Q_1_3*invf2 *0.041666666666666664* t3*t3*t4 + \

420 Q_2_2*invf2 *0.013888888888888888* t4*t4

421

422 #Offset: 8 | 1 entries.

423 contrib["9,1"] = Q_0_4*invf3 *0.004629629629629629* t4*t4*t4

424

425 #=-=

426

427 #Offset: 9 | 5 entries.

428 contrib["9,0"] = Q_0_3*invf3 *0.004629629629629629* t4*t4*t4 + \

429 Q_0_4*invf3 *0.004629629629629629* t1*t4*t4*t4 + \

430 Q_0_4*invf2 *0.013888888888888888* t2*t3*t4*t4 + \

431 Q_0_4*invf3 *0.020833333333333332* t3*t3*t3*t4 + \

432 Q_1_3*invf2 *0.013888888888888888* t3*t4*t4

433

434 #=-=

435

436 #Offset: 10 | 3 entries.

437 contrib["10,0"] = Q_0_4*invf3 *0.004629629629629629* t2*t4*t4*t4 + \

438 Q_0_4*invf2*invf2 *0.006944444444444444* t3*t3*t4*t4 + \

439 Q_1_3*invf3 *0.004629629629629629* t4*t4*t4

440

441 #=-=

442

443 #Offset: 11 | 1 entries.

444 contrib["11,0"] = Q_0_4*invf3 *0.0023148148148148147* t3*t4*t4*t4

445

446 #=-=

447

448 #Offset: 12 | 1 entries.

449 contrib["12,0"] = Q_0_4*invf4 *0.0007716049382716049* t4*t4*t4*t4

450

451 return contrib
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ABSTRACT

DIAGRAM DRIVEN COMPUTER GENERATION OF EQUATION-OF-MOTION
COUPLED CLUSTER EQUATIONS FOR PERTURBED QUANTUM

OSCILLATORS

by Carson Huey-You, Ph.D., 2024
Department of Physics and Astronomy

Texas Christian University

Major Professor: Dr. Magnus Rittby

We consider a set of quantum harmonic oscillators subjected to perturbations express-

ible as a power series in position and momentum. A diagrammatic scheme is developed,

by which to generate equation-of-motion coupled cluster (EoM-CC) equations for the

calculation of the perturbed energy spectrum of the system. The diagrammatic scheme

is then adapted into a Python code, capable of generating the necessary equations and

computer code associated with any arbitrary order of the perturbation and coupled clus-

ter excitation levels. The generated equations are made readily accessible for numerical

evaluation, alongside convergence schemes and the application of iterative Bogoliubov

transformations.
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