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Abstract 

 

a) Research Question: In Emergency Department (ED) presenting patients within the 

United States, will our 6 previously internally validated machine-learning (ML) 

models be able to utilize patient’s triage data, vitals, chief complain, and 

demographics to successfully identify those who have had an emergency department-

based cardiac arrest (EDCA) event? 

 

b) Background, Significance, and Rationale 

Through our initial approach, we were able to identify utility and predictive strength 

of ML models for patients at risk of emergency department-based cardiac arrest 

(EDCA) who presented in an ED in Taiwan. Our cross-country study aims to prove 

the utility, reliability, and predictive strength of the initial ML models in an ED 

population within the United States. We hope to provide reliability through an 

external validation of our initial ML models as a clinical tool to predict and respond 

appropriately to patients at risk of cardiac arrest who present to the emergency 

department.  

 

c) Materials and Methods 

We utilized the same training cohort models developed from the database of adult 

patients at a tertiary training hospital in Taiwan between Jan. 1, 2009, to December 

31, 2015. We retrospectively collected data from the ED of a tertiary teaching 

hospital in the United States between August 31, 2019, to December 31, 2020, to be 

utilized for external validation as the testing cohort of our ML models. In addition, we 

trained 6 different ML models in the training cohort using patient features such as 

triage information and clinical symptoms. We then employed K-fold cross validation 

and evaluated the performance of our models based on the area under the receiver 

operating characteristic curve (AUC) in the external validation cohort.  

 

 

 



d) Results 

237,349 and 49,792 patients were included in the training and testing cohort 

respectively;  477 (0.2%) and 166 (0.3%) were identified to have had an EDCA. All 

the ML models performed with excellent discrimination based on AUC. Of the 

constructed ML models, light gradient-boosting machine (LGBM) achieved the best 

performance of AUC (0.897, 95%, 95% CL: 0.876-0.916) through utility of 7-fold 

cross validation. There were no significant differences between the constructed 

models.  

 

e) Conclusions 

Through our study we were able to develop and externally validate our constructed 

ML models for prediction of EDCA in patients presenting to the ED. Our findings 

suggest that our ML models have the capabilities to be generalized and applicable as 

a tool to be used in the ED to predict, prevent, and respond to potential EDCA events 

based on their discriminatory abilities described in the study.  

 

 

 

 

 

 

 

 

 

 

 

 



 

Research Question  

In our previous study, the main objective was comparison of the NEWS 2 criteria to 3 

supervised ML models in their ability to predict EDCA in a patient population within Taiwan. 

Our 3 ML models exemplified excellent predictive ability with comparison to the NEWS 2 score 

in that population.  

In our current study our objective is if in Emergency Department (ED) presenting 

patients within the United States, will our 6 previously internally validated machine-learning 

(ML) models be able to utilize patient’s triage data, vitals, chief complain, and demographics to 

successfully identify those who have had an emergency department-based cardiac arrest (EDCA) 

event? We predict that based on our prior research and implementation of similar feature 

selection, our ML models should show strong predictive power in identifying patients at risk of 

EDCA events while identifying patients who are not at risk of EDCA events using readily 

available triage data and features to learn and apply from. Through the goals of our research, our 

hope is to provide more evidence of the reliability of ML models as a tool in healthcare for 

improving patient outcomes, resource allocation, and triage efficiency for patients in need of 

higher level of care for treatment of cardiac arrest events.  

 

 

 

 

 

 

 

 

 

 



 

Introduction and Significance 

In-Hospital Cardiac Arrest 

In hospital cardiac arrest (IHCA) is an acute event most commonly defined as loss of circulation 

requiring prompt resuscitation during a patient’s hospitalization.1 The estimated occurrence of 

in-hospital arrest in the United States is approximately 290,000 cases annually.1 Recent 

recognition of in-hospital cardiac arrest as an essentially different disease from out-of-hospital 

cardiac arrest (OHCA) has led to independent studies on the disease process.2,3 In regards to the 

etiology of the disease process of IHCA, a recent large systematic review and meta-analysis 

provided evidence of cause of IHCA events with a 95% confidence interval with the most 

prevalent causes being hypoxia (14.2-38.7%), acute coronary syndrome (13.9%-22.6%), 

arrhythmias (0-34.9%), infection (9.5-19.3%), and heart failure (6.5-18.8%).4,5 A recent 

retrospective multicenter observational study in southern Sweden conducted to identify 

characteristics and outcomes of patients admitted to the ICU after return of spontaneous 

circulation (ROSC) identified differences regarding 30-day mortality based on patents IHCA vs. 

OHCA events.3 In addition, the study also identified a higher rate of witnessed arrest and shorter 

delay times in treatment for patients in IHCA vs. OHCA, the difference likely stemming from 

monitoring and proximity to care.3 In addition, the research identified that patients who had 

suffered an IHCA event had a lower 30-day mortality and good long-term neurological outcomes 

in comparison to patients with OHCA events; there was no noted significant difference in 

survival curve between the two cohorts.3 With the discussion of independent disease process 

between IHCA and OHCA events, there have been limited research regarding the treatment of 

IHCA with most of the guidelines for management being provided through research on 

OHCA.3,6–8 Based on the distinct characteristics of IHCA, there stems a need for more dedicated 

research not only in the management of IHCA events but also in prediction of these events.  

 

Early Warning Scores (EWS) 

 

 Previous research has noted that patients who experience cardiac arrest or requiring ICU 

admission and management show signs of clinical deterioration several hours before the time of 

the event.9–14 The Modified Early Warning Score (MEWS) has been studied as a pre-prognostic 



factor in patients who may be at risk of IHCA events15. The MEWS scoring system is a utilized 

system designed to identify patients at risk of deterioration. The scoring system takes into 

account patient data such as systolic blood pressure, heart rate, respiratory rate, blood pressure 

and level of consciousness, offering utility as a bedside test to identify patients requiring higher 

level of medical attention.15–17 A study on the comparison of the number of IHCA compared 

between 18 months before and after the introduction of the MEWS system has been reported in a 

study in Japan which showed a reduction of rate of IHCA events per 1000 admission from 5.21% 

(79/15,170) to 2.05% (43/17,961).9 The utility of MEWS as a predictive tool for IHCA events 

cannot be overlooked but limitations and room for improvement in the scoring system have also 

been discussed in the research. A previously conducted nested case-control study of 88 patients 

comparing vital signs and MEWS were compared at admission and 48 hours prior to cardiac 

arrest (CA).18 The study found that the MEWS scoring system was significantly different 

between patients experiencing CA and control patients 48 hours prior to the event, but found that 

it included poor predictors of CA such as temperature and omitted significant predictors such as 

diastolic blood pressure (BP) and pulse pressure index.18 With this in mind, the current utility of 

MEWS as a predictive factor does take into account evidence based predictors of patients at risk 

of IHCA events, but leaves room for further studies on predictive modeling inclusive of other 

significant predictors of IHCA.  

 In addition to the MEWS and other early warning score (EWS), one scoring system 

which has shown strong data in its ability to discriminate ward patients at risk of cardiac arrest, 

death, or ICU admissions is the National Early Warning Score (NEWS).19 The NEWS was 

developed by the Royal College of Physicians of London in 2012, taking into account seven 

parameters (temperature, systolic blood pressure, respiratory rate, oxygen saturation, heart rate, 

and level of consciousness.20 A previous retrospective case-control study with the aim of 

evaluating NEWS in the 24 hour preceding in-hospital cardiac arrest among ward patients noted 

that there was a 3.17 in odds of IHCA events compared to low-risk category, providing evidence 

of strong discriminatory properties for patients at risk of these events.21 

 

Emergency Department Cardiac Arrest (EDCA) 

As mentioned, the focus of predictive modeling is on patients at risk of IHCA who may 

be identified with signs of clinical deterioration based on EWS systems. Currently, most of the 



models have focused on the subset of populations who have been hospitalized or admitted with 

limited data on predictive modeling of the emergency department patient population. With 

limited data on this population, the importance of a strong predictive model focused on 

identifying predictive outcomes is necessary for advancing the level of patient care for those at 

risk of EDCA events. One model which we highlight is the updated NEWS 2 system. In 2017, an 

updated version of the NEWS, NEWS 2, was created with additional parameters inclusive of 

SpO2 scoring scale, and the variable “new confusion” to the alert/verbal/pain/unresponsive 

score.22 A Swedish cohort study in 2022 focused on adult cardiac arrest in the emergency 

department identified within their study population that 1.6 cardiac arrest occur in 10,000 ED 

visits (10% of total IHCA events) and identified that every fifth patient was not captured by 

NEWS 2 identifying a need for stronger predictive models for IHCA events of the emergency 

department presenting patient population.23  

This brings forth a focus and interest in further studies and evidence based predictive 

modalities for IHCA events, but also specific studies focused on predictive modeling of IHCA 

events for patients in the emergency department (EDCA). With the recent advancements and 

biomedical focus on artificial intelligence, we believe strongly in its utility in expanding on the 

current available models for prediction of EDCA events.  

 

Machine Learning (ML) Models Overview 

  

 Machine learning (ML) is an evolving field, utilizing algorithms designed to emulate 

human intelligence and learn from large data sets to provide helpful predictions based on 

provided information.24 As mentioned, with the growing trend in predictive modeling as well as 

the utility of artificial intelligence, the field of machine learning has been utilized in a multitude 

of different fields spanning from finance, entertainment, computer science, as well as medicine.24 

There are many different types of learnings readily utilized by ML models. Supervised learning 

is a form of machine learning that works to map and infer the function of outputs based on 

previously prescribed inputs.25 In this setting, these algorithms are those in which need some 

external assistance in identifying and pairing connections between the inputs and outputs.25 This 

form of external assistance comes from the division of a training and testing data set in which the 

ML models are provided data in the training set to learn how to match and classify said output 



variables.25 By learning patterns through the training data sets, these ML models can then be 

applied to a different set of input data and utilize the learned patterns for accurate and efficient 

predictions.25 Through supervised learning ML models trained and tested on large data sets, the 

application and possibilities for their use in the field of medicine remains to be seen. Several 

previous studies have focused on machine learning to predict cardiac arrest in septic, ward, 

pediatric, and acute coronary syndrome patients but there are limited studies on machine learning 

in the predictive ability of EDCA based solely on triage data.26–30 

 

Recent Research 

 As discussed, current research has not only placed emphasis on IHCA but also on the 

utility of ML models and their ability to predict such events. A retrospective cohort study from 

2018 identified utility in the usage of deep learning algorithms to identify patients at risk of 

IHCA events.31 In their study focused on admitted patients over 2 hospital systems from 2010 to 

2017, they identified that deep learning-based warning system (DEWS) was able to outperform 

modified early warning score, a random forest algorithm, and logistic regression based on the 

area under the precision-recall curve (AUPRC).31 They noted that their DEWS system was able 

to identify >50% of patients with IHCA events 14-hours prior to the event with low false-alarm 

rates and high sensitivity with 24% higher sensitivity and 14.6% reduced alarms compared to 

modified early warning systems.31 This highlights the ability of artificial intelligence as a strong 

prediction tool for patients who may be at risk of IHCA events. In addition, this study focused on 

predictive modeling of IHCA events for patients admitted in the 2 respective hospitals ICU’s and 

general wards.  

The focus of our prior and current research is to identify the strength in prediction of our 

ML models focused on emergency department based patients who may be at risk of EDCA 

events utilizing solely triage available data, chief complaints, and patient demographics.26 Over a 

7 year period of data from a tertiary teaching hospital in Taiwan, we were able to train and test 3 

supervised ML models (Random Forest, Gradient Boosting, and Extra Trees classifier) and 

compared their predictive ability to that of the NEWS2 scoring system.26 All of the constructed 

models showed strong ability to discriminate and identify EDCA based only on the triage 

information provided in comparison to the NEWS 2 scoring system.26 



Rationale and Impact 

 The purpose of our current research is to continue to identify and validate our findings 

from our previous study to a general population outside of the initial population of ED patients in 

a tertiary teaching hospital in Taiwan. During our previous research our ML models were able to 

obtain and represent strong predictive abilities. We hope that through utilization of our models 

within a cross-country population will provide external validation of our ML models to patient 

populations presenting to the ED globally.  

 With limited research on EDCA and continued growth in the field of artificial 

intelligence we hope to provide a possible ML model to be implemented within EMR systems 

throughout all EDs to not only identify patients who may be at risk of EDCA events, but also for 

hospital personnel to be prepared to respond with appropriate resource allocation and utilization 

for providing the best care. In addition, by providing external validation of our ML models, we 

hope to continue to provide evidence-based impact of the utility of ML models and their 

predictive abilities and impact for future studies on predictive model development in the field of 

medicine.  

 

 

 

 

 

 

 

 

 

 

 

 



Materials and Methods  

Study Design and Data Collection 

 Our previous study consisted of a retrospective cohort study utilizing the electronic 

medical record (EMR) data from the integrated Medical Database (iMD) of The National Taiwan 

University Hospital (NTUH). During the analysis process of the study, we included a total of 

316,465 adult patients above the age of 18; of this population, 237,349 were assigned to the 

training cohort. The patient population selected encompassed ED visits between January 1, 2009, 

to December 31, 2015. The initial training cohort of our data was utilized as the cohort for 

development and training of our current studies ML models. The main focus of our current 

research was on the prediction of EDCA events which we defined as patients presenting with 

absence of a palpable pulse despite attempted resuscitation within the ED of BAS that could be 

identified with the use of our 6 trained ML models.  

 The current study is also a retrospective cohort study which included the additional data 

retrieved from the EMR system of Baylor Scott & White All Saints Medical Center (BAS), a 

tertiary teaching hospital within the United States. The patient population was sampled from 

patients who presented to the ED between the time of August 31, 2019 and December 31, 2020. 

Patient data such as demographics, past medical history, ED triage vital signs, as well as 

laboratory results were retrieved from the EMR system at BAS. All adult patients (18 years of 

age>) who presented as OHCA or without blood testing were excluded. In addition, patients 

presenting to ED due to a non-emergent reason (for instance, issuing a certificate) or substantial 

missing information (loss of vital-signs or loss of age record) were excluded. For patients who 

had presented to BAS for repeat visits, we selected the last visit per patient to maximize the 

statistical power of our analysis. After doing so, we then entered data into Microsoft Excel 2010 

and came up with further columns and rows for entry of each relevant data point inclusive to the 

testing model. After the data was entered and completed in the Microsoft excel document, we 

then reviewed the patient data for missing variables. We replaced the missing variables of data 

within columns with the mean, median, or mode of the class being evaluated.  All adult patients 

who presented to the BAS ED during the time listed were identified in the study. The study was 

approved by the Institutional Review Board of NTUH (201606072RINA) and BAS (reference 

number: 344143) and waived the requirements for informed consent.  



 After the initial data retrieval, entry, and review, the statistical analysis team at BAS 

utilized IBM SPSS Statistics for Windows for processing and data analysis testing as discussed 

below. In efforts to assess normality of the distribution of our data, we employed the Shapiro-

wilk test. The Shapiro-wilk test has shown in previous studies to give the most powerful test and 

the preferred test in most situations of research.32(p1) The results of our initial processing on the 

training data from the initial study were represented by means with standard deviation (SD) or 

medians with an interquartile range based on the (Shapiro-Wilk) normality test for continuous 

variables. Percentages were calculated and evaluated for all our categorical variables. For the 

assessment of our single variable distributions (univariate analysis) within our sample, we 

utilized student’s t-test, Chi-squared test, Fisher’s exact test, or Mann-Whitney U test for 

outcome differences. Overview of the data testing discussed above are listed as follows: 

- Student’s t-test is a test commonly utilized for continuous data points where the expected 

values between two groups are the same with the assumption of normality within the 

distribution of data.33  

- Fisher’s exact test is a test commonly utilized for binary data within unpaired samples.33 

- Chi-square test is similar test to Fisher’s exact test that can be used for comparison of two 

or more categories of the variable outcomes. Chi-square test has some conditions when 

utilized for analysis as the sample size of each variable must be above >60 and the 

expected number of each field above or equal to 5.33 

- Mann-Whitney test (also known as the Wilcoxon’s rank sum test) is a test commonly 

utilized for continuous data in a sample. In regards to comparison to Student’s t-test, 

Mann-Whitney is able to test data that is not normally distributed and can be used for 

testing of paired or unpaired data points within a sample.33 

 Variables with a P<0.1 on our previous training cohort were chosen as input features to be 

utilized for the construction of our initial studies ML models. In our previous study a total of 54 

clinical features were chosen based on this setting, inclusive of 5 demographics, 35 symptoms, 

and 14 triage data points based on statistical analysis with a P value of less than 0.1. In our 

current data we utilized a total of 41 features based on prior constructed models including 2 

demographics (age, sex), 9 triage data, and 30 laboratory results.  

 



Machine Learning Models 

For our ML models, we utilized 6 supervised ML algorithms for our testing cohort on 

patients presenting to BAS ED. These models included, Light Gradient Boosting Machine 

(LGBM), Gradient Boosting (GB), Categorical Boosting (CB), Random Forest (RF), and Extra 

trees (ET). The construction of these models utilized the same features we had selected from our 

previous study whenever it was deemed best fit. During the model training process, we employed 

the k-fold cross validation.  

K- fold and Cross Validation 

 Cross validation is often utilized when using ML models for the purpose of prediction as 

a way to identify how accurate a predictive model is performing in training.34,35 When creating a 

ML model, an initial dataset labeled as the training dataset or training cohort is utilized as the 

source of data to train a ML model on carrying out its goal of prediction.34 Once the model has 

been trained on this initial dataset or training cohort, the model is employed using a testing data 

set as a way of validation of its predictive ability.34 As a way for evaluation, k-fold cross 

validation is utilized to process and identify the impact of a model’s performance.34 In this 

process a dataset is divided into K fold, where a fold is used once as the testing set for the data 

and the remaining folds are utilized as the training set of data.34,36 This process is repeated until 

all datasets have been evaluated and the values for K-fold cross validation are represented with a 

mean score of the values within a ML model.34 Based on prior research, a k value of 5 to 10 is 

believed to provide test error rate estimates without high biases or rates of variance.34 For our 

data set we utilized the k-fold cross-validation and set our k from 7 to 10. Due to the imbalance 

of patients presenting for EDCA and non-EDCA patients, we utilized the Synthetic Minority 

Oversampling Technique (SMOTE) method.  

Synthetic Minority Oversampling Technique (SMOTE) 

 In the setting of our data, evaluating the rates of EDCA based on large data plots of 

patients presenting to the ED, the value of the minority population (EDCA patients) is 

underrepresented in comparison to the majority (non-EDCA patients). Prior research has 

identified utility in the application of SMOTE. SMOTE works by creating synthetic values of the 

minority class from the provided training data within a ML model.37 In essence, extra training 

data is created through operations on “real data” that allows for the creation of synthetic 



examples that join each minority class data point.37 The method of SMOTE allows for better 

classification and predictive performance of ML models as well as eliminating the need to under-

sample the majority population of data points (non-EDCA patients).37 For our research we 

applied the SMOTE technique with an oversampling of our sub-population of interest (EDCA 

patients) with an oversampling ratio of 0.6 times the majority population (non-EDCA patients). 

To evaluate the transparency and understanding of the connection of input to output of our 

constructed ML models, we utilized Shapley Additive exPlanations (SHAP).  

Shapley Additive exPlanations (SHAP) 

 The importance of creating a model that can assess and make accurate predictions based 

on the data sets provided cannot be overstated. But as important as the creation and prediction of 

the model is the importance of being able to explain how the model can create its prediction 

based on each data set. SHAP provides for assignment of an importance value for a particular 

prediction based on the data sets entered.38 From the data provided and the predictions made, 

SHAP technique allows for a unique solution to be made giving each data category considered 

within the training and testing cohort a value of importance to the solution at hand.38 By utilizing 

SHAP in our data point, we are able to not only create our predictive models but also evaluate 

and interpret the importance of each feature selected for to construct our ML models and their 

predictions of patients at risk of EDCA events.38 Lastly as a way to evaluate the performance and 

assess our metrics on the ML models ability to classify and predict accurately the occurrence of 

EDCA events, multitude of metrics were accounted for with definitions of interpretability listed.  

Evaluation Metrics 

- Specificity: The specificity of a test can best be defined in the setting of our ML models 

as the model’s ability to predict accurately patients who are not at risk of having an 

EDCA event based on the data provided and analysis.39 

 

- Negative predictive value (NPV): NPV in the setting of our test is the ability of our ML 

models to accurately predict patients who have the condition under study (EDCA) versus 

those who do not (non-EDCA patients). The ability of a predictive model to accurately 

screen patients and stratify their risk appropriately is incredibly important in the setting of 



our ML models. A test with a strong NPV should be able to correctly predict a negative 

result in regards to risk stratification of those at risk of EDCA events.39 

 

- Recall (sensitivity) The sensitivity of a test or predictive model is best defined as the 

ability of a test or predictive model to identify and detect correctly the true positive. In 

the case of our ML models, sensitivity is best reflected as the ability of our ML models to 

identify patients correctly who have an EDCA based on the data used to identify the 

condition.39 

 

- Positive predictive value (PPV):  Positive predictive value is strongly related to the 

sensitivity of a test. The positive predictive value of a test or ML model is best inferred as 

the percentage of patients predicted to have had an EDCA event who actually had an 

EDCA event based on the data provided.39 

 

- F-1 score: In the field of machine learning, it is important to be able to evaluate and 

identify the ability of a ML models performance in the context of data classification.40 As 

mentioned, in the development of ML models, a testing and training set is utilized to train 

and assess the performance of predictive power of a ML model.40 The F-measure or F-1 

score has been utilized to identify any issues in the ML models classification of the data 

used for making its predictions.40 The F-1 score can be defined as the correctly classified 

data points expressed as a number as the correctly, incorrectly, or not classified objects 

being evaluated in a data set utilized by ML models.40 

 

- Area under the receiver operative characteristic curve (AUC): The AUC is a common 

measure of the performance and predictive ability of ML models.41 In terms of our ML 

models, the AUC is a predictive model that we use to identify whether a ML model is 

able to predict patients at risk of EDCA events based on the sensitivity and 1-

specificity.41 In terms of the area under the receiver operative characteristic curve, the 

AUC can be formed by drawing a straight line between each pairs of sensitivity and 

specificity which defines the AUC based on the sensitivity and 1-specificity.41 

 



- Area under the precision recall curve (AUPRC): An AUPRC also known as a precision 

recall curve is closely similar to the AUC as an evaluator of the performance of a ML 

models predictive ability.42 The utility of an AUPRC is that is can be utilized in ML 

model curves where there may be imbalances in the amount of observations or data 

points being studied (EDCA vs. non-EDCA patients). Prior research has identified 

AUPRC as a means to denote or identify a prediction or test and the results of patients 

with the presumed diagnosis (EDCA) versus those without the disease (non-EDCA) in a 

binary and understandable way.42 The labeling of data points with use of AUPRC is those 

patients or data points with the disease of interest (EDCA) and those without the disease 

of interest; through this, a relationship in the ML models ability to predict accurately 

those with the disease process and the focus is on the true positive values within the 

data.42 The relationship of an AUPRC is defined as the average of precision weighted by 

the probability of a given incident; for our research, this would be the ability of a test to 

make a prediction as compared to the probability of having an EDCA event.42 

All our ML analyses took place with usage of Python 3.8 with the scikit-learn 0.23.1 package 

installed. Scikit-learn is a Python application designed for the utilization of supervised machine 

learning with emphasis on ease of use, performance, and API consistency.43 The application was 

designed with the focus on allowing non-machine learning specialist to be able to perform tasks 

with the use of ML models with ease and efficiency.43 

 

 

 

 

 

 

 

 

 



 

 

Results  

A total of 237,349 patient cases were evaluated in the study based on the data from 

NTUH which served as our training set for our ML models. After screening for eligibility in 

effort to support our external validation based on the patient cases from BAS, 49,792 cases were 

included within our training data set. In total there were 477 (0.2%) and 166 (0.3%) cases which 

were identified as EDCA from the NTUH and BAS data sets, respectively. Our study population 

data sets and characteristics are represented within Table 1.  

The characteristics and univariate analysis of features used to construct our ML models 

between patients with or without EDCA are listed within Table 2. In our prior study, a total of 54 

clinical features were selected after setting the P value of less than 0.1 for the training cohort. 

These features included 14 triage data, 35 symptoms, as well as 5 demographics. In our study, 

we utilized a total of 41 features based on the prior models constructed which included 9 triage 

data, 30 laboratory results, as well as two demographics (age, sex). 

Using K-fold cross-validation, with K ranges from 7 to 10, our constructed models 

demonstrated excellent ability to discriminate without the use of SMOTE both within the 

training and testing cohort. To be noted, the model built using the LGBM algorithm with a 7-fold 

approach achieved an AUC of 0.996 (95% Cl: 0.993-0.998) in the training cohort and an AUC of 

0.897 (95% Cl: 0.876-0.916) in the testing cohort.  No statistically significant differences were 

noted between the 6 ML models we had developed. Additional performance metrics, presenting 

the outcomes of the 6 distinct ML models without the incorporation of SMOTE are noted in 

Table 3 listed below. 

With the application of the SMOTE technique the distinctions in AUC between the 6 ML 

models did not reach statistical significance. The LGBM algorithm was shown to have an AUC 

of 0.938 (95% CI: 0.929-0.948) with the training cohort and an AUC of 0.881 (95% CI:0.852-

0.899) within the testing cohort. The outcomes from the 7-fold cross validation with features of 

performance for the 6 models are reflected in Table 1. Performance metrics for the classification 



results with the application of SMOTE across K values of 7 to 10 of the 6 distinct ML models is 

listed in table 4 below.  

The representation of each respective ML models functions as AUC both with and 

without the application of SMOTE is listed in Figure 1.  

Figure 2 is a heat map of the features ordered by their median normalized importance in 

the predictive abilities of EDCA events both before the application of SMOTE (Figure 2A) and 

after SMOTE (Figure 2B). Of the features we utilized to train and test our ML models on, the top 

selected features included respiratory rate, consciousness, triage level, oxygen saturation, age, 

pulse rate, blood pressure, temperature, dyspnea, and pain severity. 

Figure 3 is a visual construction using the SHAP values approach, where outcomes of 

each feature are analyzed, represented, and given a score for a specific prediction made using the 

constructed LGBM model. The model discussed was created through a 7-fold cross-validation 

process both with (Figure 3A) and without SMOTE (Figure 3B). 



 

Figure 1. Comparative predictive powers of each of the six ML models in both the training (A), 

testing (B), training with SMOTE (C), and testing cohorts with SMOTE (D) based on their 

respective predictive abilities represented by the area under the receiver operating characteristics 

(AUPRC) 



 

Figure 2A. Representation of feature importance for the 6 ML models prior to the 

application of SMOTE method.  



 

 

 
Figure 2B. Representation of feature importance for the 6 ML models after the 

application of SMOTE method. 



Figure 3A LGBM Without SMOTE                                        Figure 3B LGBM with SMOTE 



Table 1.  Characteristics of the study population and the features utilized to train and           

test the ML models. 

Variables 
(Features)

Total (n= 
287,141)

Training 
Cohort (n= 
237,349)

Testing Cohort 
(n=49,792) P value

Age, Mean (SD) 48.8 (19.9) 48.9 (20.0) 48.1 (19.6) < 0.001
Systolic BP, Mean 
(SD) 135.9 (26) 136.2 (26.7) 134.7 (22.4) < 0.001

Diastolic BP, Mean 
(SD) 80.0 (15.4) 80.5 (15.3) 77.8 (15.2) <0.001

Mean Arterial 
Pressure, Mean 
(SD)

98.7 (17.2) 99.1 (17.5) 96.7 (15.5) <0.001

Pulse Rate, Mean 
(SD) 88.7 (18.8) 89.1 (19.0) 86.7 (17.5) <0.001

SpO2, Mean (SD) 97.4 (2.7) 97.1 (2.7) 98.4 (2.5) <0.001
Respiratory Rate, 
Mean (SD) 18.1 (2.2) 18.2 (2.1) 17.8 (2.5) <0.001

Temperature, Mean 
(SD) 98.5 (1.4) 98.5 (1.5) 98.5 (0.8) <0.001

Sex
Female 158111 126241 31870
Male 129026 111108 17918
Unknown 4 0 4
GCS

Clear 275376 
(95.9)

227654 
(95.9) 47722 (95.8)

Mild 1464 (0.5) 0 1464 (2.9)
Minor 1957 (0.7) 1957 (0.8) 0
Moderate 4044 (1.4) 3712 (1.6) 332 (0.7)
Others 2308 (0.8) 2145 (0.9) 163 (0.3)
Severe 1992 (0.7) 1881 (0.8) 111 (0.2)
AMS 5111 (1.8) 4163 (1.8) 948 (1.9) 0.02
Abdominal Pain 35595 (12.4) 29130 (12.3) 6465 (13.0) <0.001
Bloody Stool 3874 (1.3) 3512 (1.5) 362 (0.7) <0.001
Chest Pain 14893 (5.2) 11381 (4.8) 3512 (7.1) <0.001
Dental Problems 4940 (1.7) 4564 (1.9) 376 (0.8) <0.001
Diarrhea 7473 (2.6) 7084 (3.0) 389 (0.8) <0.001
Dyspnea 17534 (6.1) 14252 (6.0) 3282 (6.6) <0.001
Edema 1899 (0.7) 1076 (0.5) 823 (1.7) <0.001
Fracture 4114 (1.4) 4106 (1.7) 8 (0.0) <0.001
GI Bleed 4898 (1.7) 4426 (1.9) 472 (0.9) <0.001
GSW 17 (0.0) 5 (0.0) 12 (0.0) <0.001
Seizure 383 (0.1) 84 (0.0) 299 (0.6) <0.001
Headache 10124 (3.5) 8883 (3.7) 1241 (2.5) <0.001
Hematemesis 939 (0.3) 860 (0.4) 79 (0.2) <0.001
Hemoptysis 870 (0.3) 846 (0.4) 24 (0.0) <0.001
Injury 32994 (11.5) 32093 (13.5) 901 (1.8) <0.001
Intubated 381 (0.1) 296  (0.1) 85 (0.2) 0.01
Jaundice 717 (0.2) 705 (0.3) 12 (0.0) <0.001
Laceration Wound 8708 (3.0) 8402 (3.5) 306 (0.6) <0.001
Malaise 4712 (1.6) 3729 (1.6) 983 (2.0) <0.001
Pain Moderate 59822 (20.8) 58024 (24.4) 1798 (3.6) <0.001
Pain Severe 36574 (12.7) 26663 (11.2) 9911 (19.9) <0.001
Pregnancy 5256 (1.8) 4834 (2.0) 422 (0.8) <0.001
Respiratory 
Distress 1519 (0.5) 1478 (0.6) 41 (0.1) <0.001

Shock 1337 (0.5) 1180 (0.5) 157 (0.3) <0.001
Skin Rash 4915 (1.7) 4566 (1.9) 349 (0.7) <0.001
Syncope 1574 (0.5) 1455 (0.6) 119 (0.2) <0.001
Urinary Problems 2986 (1.0) 2472 (1.0) 514 (1.0) 0.85
Dizziness/Vertigo 12524 (4.4) 11525 (4.9) 999 (2.0) <0.001
Triage

1 6768 (2.4) 6577 (2.8) 191 (0.4)
2 70560 (24.6) 61011 (25.7) 9549 (19.2)

3 174042 
(60.6)

141637 
(59.7) 32405 (65.1)

4 29639 (10.3) 22415 (9.4) 7224 (14.5)
5 6132 (2.1) 5709 (2.4) 423 (0.8)



 

Table 2. Characteristics and univariate analysis of features selected between patients                                 

with EDCA and without EDCA events in the training and testing cohorts respectively.  

EDCA (-) (n= 
236,872)

EDCA (+) (n= 
477) P value EDCA (-) (n= 

49,626)

EDCA 
(+) 
(n=166)

P value

Age, Mean (SD) 48.9 (19.9) 68.6 (15.8) <0.001 48.1 (19.5) 67.3 
(13.5) <0.001

Systolic BP, Mean (SD) 136.2 (26.7) 121.9 (34.5) <0.001 134.7 (22.4) 125.3 
(34.1) <0.001

Diastolic BP, Mean (SD) 80.5 (15.3) 71.9 (19.8) <0.001 77.8 (15.1) 73.8 
(21.9) <0.001

MAP, Mean (SD) 99.1 (17.5) 88.6 (23.4) <0.001 96.8 (15.5) 91.0 
(24.0) <0.001

Pulse Rate, Mean (SD) 89.1 (19.0) 100.7 (28.2) <0.001 86.7 (17.5) 93.2 
(25.1) <0.001

SpO2, Mean (SD) 97.1 (2.7) 93.3 (8.8) <0.001 98.5 (2.4) 93.3 
(11.1) <0.001

Respiratory Rate, Mean (SD) 18.2 (2.1) 21.4 (4.6) <0.0001 17.8 (2.5) 20.8 
(5.5) <0.001

Temperature, Mean (SD) 98.5 (1.4) 98.2 (2.4) <0.001 98.5 (0.8) 98.2 
(1.8) <0.001

Sex <0.001 <0.001
Female 126942 (53.2) 199 (41.7) 31797 (64.1) 73 (44.0)
Male 110830 (46.8) 278 (58.3) 31797 (64.1) 73 (44.0)
Unknown 0 0 4 (0.0) 0
GCS <0.001 <0.001

Clear 227343 (96.0) 311 (65.2) 47614 (95.9) 108 
(65.1)

Mild 0 0 1442 (2.9) 22 (13.3)
Minor 1947 (0.8) 10 (2.1) 0 0
Moderate 3665 (1.5) 47 (9.9) 330 (0.7) 2 (1.2)
Others 2083 (0.9) 62 (13.0) 147 (0.3) 16 (9.6)
Severe 1834 (0.8) 47 (9.9) 93 (0.2) 18 (10.8)
AMS 4094 (1.7) 69 (14.5) <0.001 927 (1.9) 21 (12.7) <0.001
Abdominal Pain 29103 (12.3) 27 (5.7) <0.001 6449 (13.0) 16 (9.6) 0.2
Bloody Stool 3498 (1.5) 14 (2.9) 0.008 362 (0.7) 0 0.27
Chest Pain 11350 (4.8) 31 (6.5) 0.08 3499 (7.1) 13 (7.8) 0.69
Dental Problems 4564 (1.9) 0 0.002 376 (0.8) 0 0.26
Diarrhea 7077 (3.0) 7 (1.5) 0.05 389 (0.8) 0 0.25
Dyspnea 14112 (6.0) 140 (29.4) <0.001 3254 (6.6) 28 (16.9) <0.001
Edema 1068 (0.5) 8 (1.7) <0.001 823 (1.7) 0 0.09
Fracture 4104 (1.7) 2 (0.4) 0.03 8 (0.0) 0 0.87
GI Bleeding 4400 (1.9) 26 (5.5) <0.001 471 (0.9) 1 (0.6) 0.65
GSW 4 (0.0) 1(0.2) 0.04 12 (0.0) 0 0.84
Seizure 83 (0.0) 1 (0.2) 0.04 299 (0.6) 0 0.32
Headache 8880 (3.7) 3 (0.6) <0.001 1240 (2.5) 1 (0.6) 0.12
Hematemesis 847 (0.4) 13 (2.7) <0.001 78 (0.2) 1 (0.6) 0.15
Hemoptysis 842 (0.4) 4 (0.8) 0.08 24 (0.0) 0 0.78
Injury 32072 (13.5) 21 (4.4) <0.001 900 (1.8) 1 (0.6) 0.24
Intubated 275 (0.1) 21 (4.4) <0.001 69 (0.1) 16 (9.6) <0.001
Jaundice 698 (0.3) 7 (1.5) <0.001 12 (0.0) 0 0.84
Laceration Wound 8399 (3.5) 3 (0.6) <0.001 306 (0.6) 0 0.31
Malaise 3707 (1.6) 22 (4.6) <0.001 971 (2.0) 12 (7.2) <0.001
Pain moderate 58002 (24.5) 22 (4.6) <0.001 1795 (3.6) 3 (1.8) 0.21
Pain severe 26626 (11.2) 37 (7.8) 0.02 9883 (19.9) 28 (16.9) 0.33
Pregnancy 4833 (2.0) 1 (0.2) 0.005 422 (0.9) 0 0.23
Respiratory Distress 1419 (0.6) 59 (12.4) <0.001 33 (0.1) 8 (4.8) <0.001
Shock 1141 (0.5) 39 (8.2) <0.001 152 (0.3) 5 (3.0) <0.001
Skin Rash 4566 (1.9) 0 0.002 349 (0.7) 0 0.28
Syncope 1448 (0.6) 7 (1.5) 0.02 119 (0.2) 0 0.53
Tarry Stool 3660 (1.5) 15 (3.1) 0.005 24 (0.0) 0 0.78
Urinary Problems 2472 (1.0) 0 (0.0) 0.02 513 (1.0) 1 (0.6) 0.58
Dizziness/Vertigo 11513 (4.9) 12 (2.5) 0.02 997 (2.0) 2 (1.2) 0.46
Triage <0.001 <0.001

1 6388 (2.7) 189 (39.6) 160 (0.3) 31 (18.7)
2 60825 (25.7) 186 (39.0) 9456 (19.1) 93 (56.0)
3 141540 (59.8) 97 (20.3) 32363 (65.2) 42 (25.3)
4 22411 (9.5) 4 (0.8) 7224 (14.6) 0 (0.0)
5 5708 (2.4) 1 (0.2) 423 (0.9) 0 (0.0)

                    Training Cohort (n = 237,349)                  Testing Cohort (n = 49,792)



 

Table 3. Data and analysis of ML models with a k-fold cross-validation between 7 and 10 without 

SMOTE.  

Classifier Cohort k fold AUC (95% CI) AUPRC (95% CI) Accuracy F1 Kappa Sensitivity Specificity PPV NPV
RF test 7 0.885 (0.865-0.905) 0.086 (0.052-0.135 0.997 0 0 0 1 NaN 0.997
GB test 7 0.863 (0.836-0.888) 0.065 (0.042-0.095 0.995 0.181 0.179 0.169 0.998 0.196 0.997
ET test 7 0.884 (0.862-0.905) 0.091 (0.057-0.14 0.997 0 0 0 1 NaN 0.997
XGB test 7 0.892 (0.871-0.91) 0.081 (0.049-0.125 0.997 0.024 0.024 0.012 1 1 0.997
LGBM test 7 0.897 (0.876-0.916) 0.082 (0.05-0.123 0.997 0.058 0.058 0.03 1 0.833 0.997
CB test 7 0.892 (0.87-0.911) 0.077 (0.05-0.119 0.997 0.012 0.012 0.006 1 1 0.997
RF test 8 0.885 (0.865-0.905) 0.089 (0.053-0.138 0.997 0 0 0 1 NaN 0.997
GB test 8 0.857 (0.828-0.882) 0.065 (0.042-0.096 0.995 0.181 0.178 0.169 0.998 0.194 0.997
ET test 8 0.884 (0.862-0.905) 0.091 (0.057-0.14 0.997 0 0 0 1 NaN 0.997
XGB test 8 0.892 (0.871-0.91) 0.081 (0.049-0.125 0.997 0.024 0.024 0.012 1 1 0.997
LGBM test 8 0.897 (0.876-0.916) 0.082 (0.05-0.123 0.997 0.058 0.058 0.03 1 0.833 0.997
CB test 8 0.887 (0.865-0.907) 0.083 (0.049-0.127 0.997 0.024 0.024 0.012 1 1 0.997
RF test 9 0.884 (0.862-0.905) 0.085 (0.051-0.13 0.997 0 0 0 1 NaN 0.997
GB test 9 0.857 (0.828-0.882) 0.065 (0.042-0.096 0.995 0.181 0.178 0.169 0.998 0.194 0.997
ET test 9 0.876 (0.851-0.899) 0.097 (0.061-0.149 0.997 0 0 0 1 NaN 0.997
XGB test 9 0.896 (0.876-0.915) 0.086 (0.054-0.13 0.997 0 0 0 1 NaN 0.997
LGBM test 9 0.897 (0.876-0.916) 0.082 (0.05-0.123 0.997 0.058 0.058 0.03 1 0.833 0.997
CB test 9 0.887 (0.866-0.908) 0.078 (0.046-0.12 0.997 0.012 0.012 0.006 1 1 0.997
RF test 10 0.885 (0.865-0.905) 0.089 (0.053-0.138 0.997 0 0 0 1 NaN 0.997
GB test 10 0.862 (0.836-0.886) 0.065 (0.042-0.095 0.995 0.18 0.178 0.169 0.998 0.193 0.997
ET test 10 0.876 (0.852-0.9) 0.097 (0.061-0.149 0.997 0 0 0 1 NaN 0.997
XGB test 10 0.892 (0.871-0.91) 0.081 (0.049-0.125 0.997 0.024 0.024 0.012 1 1 0.997
LGBM test 10 0.897 (0.876-0.916) 0.082 (0.05-0.123 0.997 0.058 0.058 0.03 1 0.833 0.997
CB test 10 0.892 (0.87-0.911) 0.077 (0.05-0.119 0.997 0.012 0.012 0.006 1 1 0.997
RF train 7 0.988 (0.984-0.992) 0.805 (0.773-0.836 0.998 0.312 0.311 0.184 1 1 0.998
GB train 7 0.919 (0.904-0.934) 0.038 (0.032-0.044 0.983 0.095 0.092 0.44 0.984 0.053 0.999
ET train 7 0.994 (0.993-0.995) 0.348 (0.308-0.396 0.998 0 0 0 1 NaN 0.998
XGB train 7 0.966 (0.96-0.973) 0.439 (0.396-0.484 0.998 0.391 0.39 0.243 1 0.991 0.998
LGBM train 7 0.996 (0.993-0.998) 0.732 (0.692-0.769 0.998 0.345 0.345 0.212 1 0.935 0.998
CB train 7 0.923 (0.91-0.935) 0.324 (0.282-0.364 0.998 0.375 0.374 0.231 1 1 0.998
RF train 8 0.987 (0.983-0.991) 0.793 (0.761-0.826 0.998 0.312 0.311 0.184 1 1 0.998
GB train 8 0.922 (0.906-0.936) 0.039 (0.033-0.044 0.983 0.094 0.091 0.438 0.984 0.053 0.999
ET train 8 0.994 (0.993-0.995) 0.348 (0.308-0.396 0.998 0 0 0 1 NaN 0.998
XGB train 8 0.966 (0.96-0.973) 0.439 (0.396-0.484 0.998 0.391 0.39 0.243 1 0.991 0.998
LGBM train 8 0.996 (0.993-0.998) 0.732 (0.692-0.769 0.998 0.345 0.345 0.212 1 0.935 0.998
CB train 8 0.925 (0.913-0.937) 0.346 (0.301-0.388 0.998 0.378 0.377 0.233 1 1 0.998
RF train 9 0.972 (0.963-0.979) 0.669 (0.628-0.708 0.998 0.133 0.133 0.071 1 1 0.998
GB train 9 0.922 (0.906-0.936) 0.039 (0.033-0.044 0.983 0.094 0.091 0.438 0.984 0.053 0.999
ET train 9 0.992 (0.991-0.993) 0.279 (0.243-0.326 0.998 0 0 0 1 NaN 0.998
XGB train 9 0.959 (0.95-0.966) 0.396 (0.353-0.437 0.998 0.375 0.374 0.231 1 1 0.998
LGBM train 9 0.996 (0.993-0.998) 0.732 (0.692-0.769 0.998 0.345 0.345 0.212 1 0.935 0.998
CB train 9 0.924 (0.912-0.937) 0.341 (0.297-0.383 0.998 0.378 0.377 0.233 1 1 0.998
RF train 10 0.987 (0.983-0.991) 0.793 (0.761-0.826 0.998 0.312 0.311 0.184 1 1 0.998
GB train 10 0.92 (0.904-0.935) 0.038 (0.033-0.044 0.983 0.094 0.091 0.438 0.984 0.053 0.999
ET train 10 0.992 (0.991-0.993) 0.283 (0.246-0.329 0.998 0 0 0 1 NaN 0.998
XGB train 10 0.966 (0.96-0.973) 0.439 (0.396-0.484 0.998 0.391 0.39 0.243 1 0.991 0.998
LGBM train 10 0.996 (0.993-0.998) 0.732 (0.692-0.769 0.998 0.345 0.345 0.212 1 0.935 0.998
CB train 10 0.923 (0.91-0.935) 0.324 (0.282-0.364 0.998 0.375 0.374 0.231 1 1 0.998



Table 4. Data and analysis of ML models with a k-fold cross-validation between 7 and 10 

with SMOTE.  

 

 

 

 

Classifier Cohort k fold AUC (95% CI) AUPRC (95% CI) Accuracy F1 Kappa Sensitivity Specificity PPV NPV
RF test 7 0.868 (0.845-0.892) 0.025 (0.018-0.04 0.987 0.052 0.047 0.108 0.99 0.034 0.997
GB test 7 0.841 (0.812-0.869) 0.023 (0.017-0.03 0.988 0.054 0.05 0.102 0.991 0.037 0.997
ET test 7 0.836 (0.805-0.866) 0.017 (0.013-0.02 0.979 0.029 0.024 0.096 0.982 0.017 0.997
XGB test 7 0.853 (0.827-0.878) 0.023 (0.017-0.03 0.982 0.058 0.052 0.169 0.984 0.035 0.997
LGBM test 7 0.881 (0.862-0.899) 0.021 (0.016-0.02 0.967 0.041 0.035 0.211 0.97 0.023 0.997
CB test 7 0.817 (0.78-0.851) 0.027 (0.018-0.04 0.976 0.058 0.052 0.223 0.978 0.033 0.997
RF test 8 0.87 (0.846-0.893) 0.026 (0.018-0.04 0.987 0.055 0.05 0.114 0.99 0.036 0.997
GB test 8 0.841 (0.812-0.869) 0.023 (0.017-0.03 0.988 0.054 0.05 0.102 0.991 0.037 0.997
ET test 8 0.836 (0.806-0.866) 0.017 (0.013-0.02 0.979 0.029 0.024 0.096 0.982 0.017 0.997
XGB test 8 0.853 (0.827-0.878) 0.023 (0.017-0.03 0.982 0.058 0.052 0.169 0.984 0.035 0.997
LGBM test 8 0.881 (0.862-0.899) 0.021 (0.016-0.02 0.967 0.041 0.035 0.211 0.97 0.023 0.997
CB test 8 0.817 (0.78-0.851) 0.027 (0.018-0.04 0.976 0.058 0.052 0.223 0.978 0.033 0.997
RF test 9 0.87 (0.846-0.893) 0.026 (0.018-0.04 0.987 0.055 0.05 0.114 0.99 0.036 0.997
GB test 9 0.841 (0.812-0.869) 0.023 (0.017-0.03 0.988 0.054 0.05 0.102 0.991 0.037 0.997
ET test 9 0.836 (0.805-0.866) 0.017 (0.013-0.02 0.979 0.029 0.024 0.096 0.982 0.017 0.997
XGB test 9 0.853 (0.827-0.878) 0.023 (0.017-0.03 0.982 0.058 0.052 0.169 0.984 0.035 0.997
LGBM test 9 0.881 (0.862-0.899) 0.021 (0.016-0.02 0.967 0.041 0.035 0.211 0.97 0.023 0.997
CB test 9 0.817 (0.78-0.851) 0.027 (0.018-0.04 0.976 0.058 0.052 0.223 0.978 0.033 0.997
RF test 10 0.87 (0.846-0.893) 0.026 (0.018-0.04 0.987 0.055 0.05 0.114 0.99 0.036 0.997
GB test 10 0.841 (0.812-0.869) 0.023 (0.017-0.03 0.988 0.054 0.05 0.102 0.991 0.037 0.997
ET test 10 0.836 (0.805-0.866) 0.017 (0.013-0.02 0.979 0.029 0.024 0.096 0.982 0.017 0.997
XGB test 10 0.853 (0.827-0.878) 0.023 (0.017-0.03 0.982 0.058 0.052 0.169 0.984 0.035 0.997
LGBM test 10 0.881 (0.862-0.899) 0.021 (0.016-0.02 0.967 0.041 0.035 0.211 0.97 0.023 0.997
CB test 10 0.817 (0.78-0.851) 0.027 (0.018-0.04 0.976 0.058 0.052 0.223 0.978 0.033 0.997
RF train 7 0.969 (0.962-0.975) 0.305 (0.259-0.35 0.997 0.33 0.329 0.405 0.998 0.279 0.999
GB train 7 0.9 (0.887-0.914) 0.231 (0.188-0.27 0.998 0.294 0.293 0.224 0.999 0.425 0.998
ET train 7 0.946 (0.939-0.953) 0.104 (0.078-0.13 0.996 0.158 0.156 0.189 0.998 0.136 0.998
XGB train 7 0.919 (0.908-0.931) 0.128 (0.097-0.16 0.996 0.193 0.192 0.226 0.998 0.169 0.998
LGBM train 7 0.938 (0.929-0.948) 0.134 (0.103-0.16 0.994 0.153 0.151 0.268 0.995 0.107 0.999
CB train 7 0.879 (0.864-0.894) 0.081 (0.059-0.11 0.992 0.112 0.11 0.249 0.994 0.073 0.998
RF train 8 0.969 (0.962-0.975) 0.307 (0.262-0.35 0.997 0.33 0.329 0.405 0.998 0.279 0.999
GB train 8 0.9 (0.887-0.914) 0.231 (0.188-0.27 0.998 0.294 0.293 0.224 0.999 0.425 0.998
ET train 8 0.946 (0.939-0.953) 0.104 (0.078-0.13 0.996 0.16 0.158 0.189 0.998 0.138 0.998
XGB train 8 0.919 (0.908-0.931) 0.128 (0.097-0.16 0.996 0.193 0.192 0.226 0.998 0.169 0.998
LGBM train 8 0.938 (0.929-0.948) 0.134 (0.103-0.16 0.994 0.153 0.151 0.268 0.995 0.107 0.999
CB train 8 0.879 (0.864-0.894) 0.081 (0.059-0.11 0.992 0.112 0.11 0.249 0.994 0.073 0.998
RF train 9 0.969 (0.962-0.975) 0.307 (0.262-0.35 0.997 0.33 0.329 0.405 0.998 0.279 0.999
GB train 9 0.9 (0.887-0.914) 0.231 (0.188-0.27 0.998 0.294 0.293 0.224 0.999 0.425 0.998
ET train 9 0.946 (0.939-0.953) 0.104 (0.078-0.13 0.996 0.158 0.156 0.189 0.998 0.136 0.998
XGB train 9 0.919 (0.908-0.931) 0.128 (0.097-0.16 0.996 0.193 0.192 0.226 0.998 0.169 0.998
LGBM train 9 0.938 (0.929-0.948) 0.134 (0.103-0.16 0.994 0.153 0.151 0.268 0.995 0.107 0.999
CB train 9 0.879 (0.864-0.894) 0.081 (0.059-0.11 0.992 0.112 0.11 0.249 0.994 0.073 0.998
RF train 10 0.969 (0.962-0.975) 0.307 (0.262-0.35 0.997 0.33 0.329 0.405 0.998 0.279 0.999
GB train 10 0.9 (0.887-0.914) 0.231 (0.188-0.27 0.998 0.294 0.293 0.224 0.999 0.425 0.998
ET train 10 0.946 (0.939-0.953) 0.104 (0.078-0.13 0.996 0.158 0.156 0.189 0.998 0.136 0.998
XGB train 10 0.919 (0.908-0.931) 0.128 (0.097-0.16 0.996 0.193 0.192 0.226 0.998 0.169 0.998
LGBM train 10 0.938 (0.929-0.948) 0.134 (0.103-0.16 0.994 0.153 0.151 0.268 0.995 0.107 0.999
CB train 10 0.879 (0.864-0.894) 0.081 (0.059-0.11 0.992 0.112 0.11 0.249 0.994 0.073 0.998



Discussion  

Through our cross-country approach for external validation, our ML models showed strong 

predictive performance as recognized by the AUC, specificity, as well as NPV. Values for AUC 

at a k-fold cross validation of 7 within the testing cohort showed an AUC for each model of 

0.868 (RF), 0.841 (GB), 0.836 (ET), 0.853 (XGB), 0.881 (LGBM), and  0.817 (XGB). In 

addition, the NPV for all 6 of our ML models at a k-fold cross-validation of 7 was 0.997; this 

value shows strong ability of our ML models to discriminate patients without EDCA events 

based on the selected features. Although as previously mentioned, there was not a statistically 

significant difference between the individual ML models discriminatory abilities, all models 

performed with excellent discriminatory abilities to predict patients at risk of EDCA events 

based on the data presented. Our models were not only able to discriminate against patients who 

were not at risk of EDCA events within the training and testing cohort but were also able to 

predict patients at risk of EDCA events based on the AUC listed above.  

The focus of our study was on the validation of our ML models in a diverse population 

outside of the initial testing population of NTUH ED. The importance of showing external 

validation in a cross-country setting provides for stronger generalization of ML models and their 

ability to predict EDCA across a diverse range of populations. Through the results of our study 

on ML models’ ability to provide predictive evidence of patients at risk of EDCA, we hope to 

provide evidence to support their implementation in the EMR system as a healthcare tool in the 

ED for resource allocation, triage, management, as well as risk stratification for patients at risk of 

IHCA events in the ED.  

Comparison From Initial Study  

Our aim of this cross-country study was to build off our initial study and further provide 

evidence of validity to the utility of our ML Models ability to predict EDCA. In our initial study 

we compared the predictive ability of our ML models to that of the NEWS 2 score. In the initial 

study, 3 ML models were constructed (ET, GBM, and RF).26 Similarly, the previous study also 

showed non-statistically significant differences between the 3 constructed models but all models 

showed excellent performance in prediction of EDCA based on the AUC (ET 0.915, GBM, 

0.930, and RF of 0.931).26  In addition, our initial study ML models also significantly 

outperformed the NEWS 2 scoring system based on the AUC (AUC of 0.678).26 In addition, we 



built off of our initial parameters for ML models by re-defining the features selected for by 

setting the P value to less than 0.1. By doing so, we accounted for a total of 41 features versus 

the initial 54 clinical features. With the application of SMOTE to our data, we identified that the 

topmost important features in prediction of EDCA events were respiratory rate, consciousness, 

triage level, oxygen saturation, age, pulse rate, blood pressure, temperature, dyspnea, and pain 

severity. This highlights one of the most interesting aspects of the utility of supervised learning 

with ML models, the ability to draw associations and levels of importance to input data on the 

output or outcome of interest. In the setting of acute events such as cardiac arrest the importance 

of a strong predictive model is not only on its effectiveness of prediction but also on 

understanding how it is able to make the predictions that it does. In previous studies of ML 

models and artificial intelligence, a common limitation brought up is lack of understanding of 

how ML models can make their prediction. To provide strong understanding of the ML models 

rationale, we employed the SHAP method; To avoid the need to under-sample the majority 

population of each cohort (non-EDCA patients) we utilized the SMOTE method.  

 

Model Interpretation and Explainability 

- Shapley Additive explanation (SHAP) 

When constructing a ML model, the importance of not only the outcome but also on 

how each feature correlates to the predictions made is of the utmost importance and cannot 

be overstated. Not only is it necessary for a ML model to utilize inputs to draw a connection 

to the outputs of interest (EDCA events), but also how each feature plays a part in the 

conclusion drawn. For that reason, we utilized the SHAP method. The SHAP is a formula 

which can provide a formula to assign each feature a value of importance or contribution to 

the sum or outcome of interest.44 Prior research has identified that SHAP uses an additive 

contribution method which creates a linear model of the importance of feature.45 By utilizing 

SHAP we gain understanding not only in the interpretation of the prediction but the 

significance of each individual feature in making the predictions of EDCA. The utility of 

SHAP for our data on showing the importance of each feature selection provides for further 

evidence and opportunity for refinement of our current ML models to increase their 

predictive power. As previously mentioned, we refined our initial studies 54 clinical features 



through a P value of 0.1 to 41 features in our external validation study and created a heat map 

(Figure 3A and 3B) to give a representation of the importance of each feature. In addition to 

the utility SHAP offered our data to assign feature importance in a quantitative approach, we 

employed the SMOTE method to account for the limitations of our studies EDCA 

population.  

- Synthetic Minority Oversampling Technique (SMOTE)  

SMOTE is a statistical analysis tool that allows for the evaluation of non-uniform 

data. The method of SMOTE allows for the creation of synthetic data for the minority 

population (EDCA patients) without the need for under-sampling of the majority 

population (non-EDCA patients). In the setting of our data it allows for better 

classification and predictive performance.37 We utilized a SMOTE with an oversampling 

ratio of 0.6 times the majority population; at this rate our assumption is that the EDCA 

population would be as representative of the true normal in the general population for the 

purposes of external validation. At this rate there was an increase in the sensitivity of 

each of the ML models noted with SMOTE in the predictive ability of each respective 

ML model. For example, LGBM sensitivity both without and with SMOTE was 0.03 and 

0.211 in the testing cohort with k-fold cross-validation of 7.  

Limitations 

A limitation of our study can be identified in the lack of satisfactory sensitivity and 

positive predictive value (PPV). We attribute these findings to the question and study at hand of 

creation and external validation of ML models for the prediction of EDCA events. Additionally, 

it was noted that with the use of SMOTE there was a noticeable improvement in the model’s 

sensitivity and predictive power. A follow up to this limitation may be further studies with larger 

cross-country ED populations to continue to prove utility of the ML models as a predictive tool 

within the ED.  

Another concern or limitation of our study may be the variability of data and concern for 

biases in the multi-country dataset. To address this in the future, follow-up study using data sets 

from multiple EDs across the country for normalization may be appropriate. In addition, 

sensitivity (recall) of the models was noted to have varied significantly between our initial study 

and the current cross-country study. In our initial study, sensitivity at a k-fold cross-validation of 



9 for RF, GB, and ET was noted to be 0.748, 0.736, and 0.761 within the testing cohort 

respectively.26 In our current study at the same cross-validation value the sensitivity for ML 

models RF, GB, and ET were noted to be  0.114, 0.102, and 0.096 respectively. The concern for 

causes of the decline in sensitivity may be to the differences within the populations sampled as 

well as the change in features selected for training and testing of our 6 ML models in the external 

validation population. To address these changes, follow up study with additional demographics, 

triage data, as well as laboratory values may be appropriate for increasing the predictive power 

of our ML models. In addition, through the application of SHAP at that stage, more refinement 

can be made for follow up studies in terms of feature selection as deemed best fit.  

Clinical Application 

 The goal of our cross-country external validation study was to identify the utility, 

predictive power, and effectiveness of our ML models as a clinical tool to be implemented in 

EDs globally as a predictive tool to offer advancement in patient care and risk stratification for 

patients at risk of EDCA. Through our previous study, we identified that in comparison to 

NEWS 2 score, our ML models were much more effective in predicting the risk of EDCA. We 

believe by offering a stronger predictive tool to EDs for patients at risk of EDCA we can support 

healthcare workers in multiple different ways.  

Patients at risk of EDCA are vulnerable due to long boarding times, the variance of 

recognition and observation of vital signs as well as high patient volumes.46–50  Without the 

appropriate recognition and management, patients who show signs of vital sign instability remain 

at risk of EDCA.46 Previous research has discussed the importance of earlier identification of 

patients at risk of EDCA events for the rapid facilitation of appropriate interventions.46 

We hope that our ML models and their predictive performance shows strength as a useful 

tool for implementation within emergency departments globally to increase efficiency, allocation 

of resources, and prevent adverse events from occurring through early identification of vital sign 

instability. Through implementation in the clinical setting, our ML models can not only provide 

for early identification, but also learn simultaneously from the constant data how to better predict 

EDCA events.  

Clinical limitations for our ML models and their implementation include a possible 

learning curve for health care personnel. The most important aspect of incorporating a new 



system within a hospital system would be the training of health care personnel on how to best 

utilize it. The initial learning would be on understanding how to identify warning scores or 

patient EDCA risk stratification based on the ML models. The following learning would be on 

designating resource allocation to patients who the ML models identify at greatest risk of having 

EDCA events. The goal would be for all patients who present to the ED to have the ML 

algorithms processing the inputted data from triage in conjunction with demographics, laboratory 

results, and chief concerns while they are undergoing their initial work up in the ED. In addition, 

there may be concerns of over-sensitivity which could lead to fatigue from alerts being prompted 

in the ED from the ML models. One way we feel this may be mitigated again reflects on the 

design of supervised learning.  

Through constant data entry and processing, the ML models can learn and become more 

able to stratify patients at risk of EDCA events. The ability of artificial intelligence to grow from 

larger data processing provides ample utility in their predictive modeling learning and usefulness 

as a clinical tool. This leads into the discussion of the innovation of not only our own research on 

ML algorithms in prediction of EDCA, but the use of ML as a clinical tool for risk stratification 

across different disease processes in the healthcare setting.  

 

Innovation  

 The innovation of our research not only stems from its ability to provide predictive risk 

stratification to a subset patient population within the ED at risk of IHCA events (EDCA). Our 

initial study comparing 3 ML models to the predictive power of the NEWS 2 score showed 

strong discriminatory strength in assessing patients at risk and not at risk of EDCA events based 

on statistically significant AUC’s in comparison to one of the current EWS systems (NEWS 2). 

Our goal of our current research was to build off our previous findings through study of the ML 

models in a diverse population outside of that which we utilized in our initial study (NTUH).  

 Through our findings we have established that our ML models continue to show strong 

discriminatory strength in risk stratification and prediction of EDCA events in a cross-country 

approach using a different population from our initial study. In addition, the utility of ML models 

as an application in healthcare is highlighted as a modality for possible incorporation into the 

EMR system of hospitals on a global setting. In the past few years, machine learning and 



artificial intelligence has gained significant interest in both the healthcare industry as well as 

others. Through its ability of supervised learning, these models are not only able to provide 

prediction, but also draw conclusions from inputs to results through their processing of large data 

volumes. As new studies continue to explore the utility of ML models in the hospital setting, we 

hope to add to the current data and provide evidence of their possible future within the EMR 

systems of hospitals on a global scale.  

 

Future Directions 

 

 Our external validation study has provided evidence in support of the ML models and 

their ability to predict patients at risk of EDCA events based on triage data and clinical features 

selected for. Our hope for future studies lies in how to further improve their ability to identify 

patients at risk of EDCA. Possible future studies would include incorporation of more data 

features to the training and testing cohort such as laboratory data, triage data, and other vital 

signs with hope of increasing their sensitivity to EDCA events. In addition, our current study for 

external validation took place at a tertiary teaching hospital within North Texas. We hope 

through utilization of a possible multi-center approach with much more significant ED data, we 

would provide the best fit population for testing of our ML models to provide ample evidence of 

their predictive properties as an ED tool for EDCA evaluation.  

 Other areas for future research would be the real-time usage of our ML models in an ED 

to evaluate their clinical amplitude and response times to EDCA events. By providing and testing 

our model through a longitudinal study, we can focus on parameters such as hospital stay, 

mortality, resource utilization, STEMI alerts, and rapid response times both pre-ML model 

implementation and post-implementation. This would build off the validation study we have 

provided and give evidence of its real-time effect on the efficiency and effectiveness as a triage 

tool in the hospital setting.  

 Through evidence of our ML models predictive abilities in the setting the EDCA, future 

directions of study may be on other disease processes and avenues of enhancing patient care 

through use of supervised learning algorithms. Beginning with EDCA, future avenues for ML 

models and their utility could be in the prediction of other disease processes with current 

warning systems in place such as ICU admission risk stratification, sepsis risk stratification, or 



cerebrovascular event stratification. The field of ML with the use of large data amounts to draw 

conclusions from initial inputs based on patient features provides for room for enhancing the 

current field of medicine through supervised learning in real-time of patients who require higher 

level of care. We hope that our initial project provides evidence of its utility and room for 

improvement and further innovation in its application in the healthcare setting.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusions  

The purpose of our research study was to build off our previous study validating the use 

of ML models trained and tested within a hospital setting at the National Taiwan University 

Hospital to predict patients at risk of EDCA. We sought to train and test our ML models utilizing 

triage features and clinical data provided from an emergency department within the US at Baylor 

All Saints in Fort Worth Texas. After data analysis, our 6 ML models showed excellent 

predictive performance in AUC, specificity, and NPV as can be identified in the results section 

above. By providing for external validation, we offer more reliability of our ML models to be 

adopted and utilized as a clinical tool in the prediction and risk stratification of patients who 

present to the ED with concerns of possible EDCA events. The cross-country approach provided 

an ample opportunity to demonstrate the ML models predictive ability in a diverse population 

outside of our initial population in Taiwan.  

 Through our external validation study, we hope to provide an example of how predictive 

modeling with use of supervised ML models can not only improve patient outcomes but 

workflow within the emergency department. With implementation of ML models for their 

predictive abilities, we can offer an efficient and reliable tool to improve resource utilization, 

triage mechanisms, and alert systems for health care providers to identify and respond to most 

effectively.  

 Using the SHAP method, we are also able to provide evidence of the significance of each 

feature selected for to construct our ML models and their predictions of EDCA events. Our hope 

for future research would be to increase the features used to train and test our cohorts to further 

improve their predictive ability of EDCA events. Such features to include for future research 

may include imaging findings and impressions, laboratory data values, as well as EKG 

impressions, and other demographics.  

 Our final goal for future research based on the external validation study we have 

conducted would be to implement the use of ML models in a healthcare setting and provide 

longitudinal evidence of its utility and rationale in predictive modeling of EDCA events. Our 

hope would be that through evidence of its utility in the ED to predict at-risk patients, we can 

create more efficient hospital protocols in place to respond accordingly with adequate personnel 

and resources to provide the best care for patients at risk of cardiac arrest.  



Compliance  

All adult patients who presented to the BAS ED during the time listed were identified in 

the study. The study was approved by the Institutional Review Board of NTUH 

(201606072RINA) and BAS (reference number: 344143) and waived the requirements for 

informed consent.  
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