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Abstract: Diffusiophoresis is the isothermal migration of a colloidal particle through a liquid caused
by a cosolute concentration gradient. Although diffusiophoresis was originally introduced using
hydrodynamics, it can also be described by employing the framework of multicomponent diffusion.
This not only enables the extraction of diffusiophoresis coefficients from measured multicomponent-
diffusion coefficients but also their theoretical interpretation using fundamental thermodynamic
and transport parameters. This review discusses the connection of diffusiophoresis with the 2 × 2
diffusion-coefficient matrix of ternary liquid mixtures. Specifically, diffusiophoresis is linked to the
cross-term diffusion coefficient characterizing diffusion of colloidal particles due to cosolute concen-
tration gradient. The other cross-term, which describes cosolute diffusion due to the concentration
gradient of colloidal particles, is denoted as osmotic diffusion. Representative experimental results
on diffusiophoresis and osmotic diffusion for polyethylene glycol and lysozyme in the presence
of aqueous salts and osmolytes are described. These data were extracted from ternary diffusion
coefficients measured using precision Rayleigh interferometry at 25 ◦C. The preferential-hydration
and electrophoretic mechanisms responsible for diffusiophoresis are examined. The connection of
diffusiophoresis and osmotic diffusion to preferential-interaction coefficients, Onsager reciprocal
relations, Donnan equilibrium and Nernst–Planck equations are also discussed.

Keywords: preferential hydration; Onsager reciprocal relations; Donnan equilibrium; Nernst–Planck
equations; electrophoresis; polyethylene glycol; lysozyme

1. Introduction

A wide range of colloidal particles, such as inorganic nanoparticles, proteins, synthetic
polymers and micelles, are subject to diffusion-based transport in complex liquids in a
variety of biochemical, biotechnological, geochemical and industrial processes. These
include centrifugation [1], dialysis [2], adsorption [3], crystallization [4], transport in mi-
crofluidics [5], living systems [6], gel media [7], insertion into dead-end pores [8], controlled
release [9], reaction kinetics and pattern formation [10,11]. Since concentration gradients
of colloidal particles and related additives such as salts, osmolytes and buffer compo-
nents are normally encountered in these mass-transfer processes, diffusion coefficients
play a crucial role in modeling the kinetic evolution of spatial concentration profiles of
mixture constituents.

In recent years, a mass transport process known as diffusiophoresis has attracted
considerable attention [12–14]. This is the net diffusive migration of a colloidal particle
through a liquid induced by a directional concentration gradient of a cosolute at constant
temperature and pressure. Although diffusiophoresis may occur in any liquid, this trans-
port phenomenon is typically considered in the context of aqueous mixtures, in which the
cosolute responsible for the migration of a water-soluble colloidal particle is a salt [14]
or even a nonionic additive [15] such as an osmolyte [15,16]. As illustrated in Figure 1,
diffusiophoresis is analogous to the well-known electrophoresis [15,17] of charged particles,
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which is caused by an external electric field, i.e., a gradient of electric potential. Corre-
spondingly, diffusiophoresis is driven by a gradient of cosolute chemical potential. In
other words, we can say that the diffusiophoresis of a colloidal particle is driven by the
“chemical” field generated by the concentration gradients of a salt or osmolyte in water.
Although most studies have focused on diffusiophoresis of charged colloidal particles in
the presence of salt gradients [18–22], it is important to note that diffusiophoresis can also
be observed for neutral colloidal particles [23–25]. Furthermore, the underlying mechanism
responsible for diffusiophoresis is not unique as in the case of electrophoresis (electric field),
but it can be varied by changing the chemical nature of the cosolute. This increases the
complexity of diffusiophoresis as more than one mechanism can concur with the overall
diffusiophoresis experienced by a colloidal particle. In this paper, the main mechanisms
responsible for particle diffusiophoresis of macromolecules will be discussed.
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Figure 1. (A) Electrophoresis is particle migration in response to an electric field. If a particle is
positively charged, migration occurs from high (+) to low (−) electric potential. (B) Diffusiophoresis
(right) is particle migration caused by a gradient of cosolute chemical potential (chemical field). This
is established by a concentration gradient of cosolute. The colloidal particle is explicitly shown, while
cosolute and solvent molecules are described as a uniform background for simplicity, with the color
gradient representing the cosolute gradient.

Diffusiophoresis of a colloidal particle is characterized by the diffusiophoretic mobility,
DPS, which is typically introduced by employing the following linear relation [13,19]:

vPS = − DPS ∇ ln CS (1)

where vPS is particle diffusiophoretic velocity, and CS is cosolute concentration. Note that
DPS has the units of a diffusion coefficient (e.g., m2·s−1).

The term “diffusiophoresis” was originally introduced by Derjaguin in 1947 to de-
scribe the motion of large colloidal particles in the presence of concentration gradients of
small ions and molecules [15]. It was then investigated by Andersen and Prieve [15,16,26],
especially in connection with deposition rates of latex particles onto porous membranes.
They also derived mathematical expressions for diffusiophoretic mobilities by employing
hydrodynamic models [20,27,28]. These are the same types of models that were previously
employed for describing electrophoretic mobilities (Henry’s equation) [17] and also the fric-
tion encountered by Brownian particles (Stokes’ law) [29]. With the advent of microfluidic
technologies, many more diffusiophoresis studies were reported, showing the value of this
transport phenomenon in manipulating the motion of colloidal particles. In the chemistry
field, the term “chemotaxis” sometimes replaces “diffusiophoresis”, emphasizing similari-
ties between the migration of colloidal particles and the movement of living organisms in
response to gradients of nutrient or toxic molecules [5,30,31].

Experimental studies have demonstrated that diffusiophoresis promotes particle mix-
ing, focusing and separation in microfluidics [18,19,32–34], particle entrainment in dead-
end pores [8,18], particle deposition on porous membranes [20,35]. Moreover, diffusiophore-
sis was employed to achieve membraneless water filtration [22] and remove staining agents
from fibrous materials [36]. The reader should, for example, consult two recent review
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articles by Shim [13] and Velegol [12] describing the various applications of diffusiophoresis
in mass-transfer problems.

An expert in the field of transport phenomena may realize that diffusiophoresis
should be associated with the phenomenon of cross-diffusion encountered in multicompo-
nent mixtures [37–46]. Cross-diffusion is described by employing the framework of non-
equilibrium thermodynamics [47,48], which was derived primarily from the statistical me-
chanical investigations of Onsager in 1931 [49,50]. It has been investigated by several scien-
tists in the fields of physical chemistry [37,39,51–55] and chemical engineering [45,46,56,57].
Cross-diffusion coefficients are typically defined by writing Fickian relations [58] in which
the flux of a solute not only depends on its concentration gradient (main-term diffusion
coefficients) but also on the concentration gradient of other solutes (cross-term diffusion co-
efficients) [41]. Thus, multicomponent diffusion in a ternary system is described by a 2 × 2
diffusion-coefficient matrix. The two main terms describe the diffusion of the two solutes
due to their own concentration gradients, while the two cross-terms describe the diffusion
of a solute due to the concentration gradient of the other solute. Thus, a diffusiophoretic
mobility should be closely related to the cross-term diffusion coefficient describing flux of a
large solute due to the concentration gradient of the relatively small solute.

Multicomponent-diffusion coefficients can be experimentally determined. The well-
established Taylor dispersion method [38,43,59,60] and interferometric techniques [37,40,61,62]
have been successfully employed for the measurements of these transport parameters.
Thus, the connection of diffusiophoresis to multicomponent diffusion is important be-
cause it provides the basis for determining diffusiophoretic mobilities from measurements
of multicomponent-diffusion coefficients. This was first highlighted by Shaeiwitz and
Lechnick in 1983 [63]. It is surprising that previous studies on diffusiophoresis were dis-
connected from work on multicomponent diffusion. This is even more striking considering
that the theoretical electrokinetic models describing diffusiophoresis [13,15] of charged
particles are fundamentally the same as those at the heart of Nernst–Planck and related
Nernst–Hartley equations [52,64–66], which are employed for modeling multicomponent
diffusion in dilute electrolyte mixtures. Presumably, diffusiophoresis has been regarded
as a transport phenomenon separated from cross-diffusion because it pertains to large
colloidal particles and, consequently, was originally introduced within the framework of
hydrodynamics. On the other hand, the phenomenon of multicomponent diffusion, which
covers the case of solutes of various sizes, is described by employing non-equilibrium ther-
modynamics. It is worth mentioning that a similar separation existed in the past between
multicomponent diffusion coefficients and the collective diffusion coefficient determined by
dynamic light scattering (DLS) [67,68]. The extension of multicomponent-diffusion studies
to mixtures containing macromolecules [69] or micelles [70] then prompted more attention
to the connection between DLS and multicomponent diffusion. It is now well known
that the DLS diffusion coefficient represents the lower eigenvalue of the 2×2 diffusion-
coefficient matrix of ternary liquid mixtures of colloidal particles and a cosolute of low
molar weight [69–71].

We know that diffusiophoresis should be regarded as a special case of cross-
diffusion [71,72]. It describes the cross-diffusion of a solute that 1) is large compared
to the other components of the mixture and 2) is present at low concentration in the mixture.
There is some gray area when it comes to considering the size and concentration scales rele-
vant to diffusiophoresis. In relation to size, the same type of uncertainty is encountered in
the application of the Stokes–Einstein equation with no-slip boundary condition [73]. Since
this is typically applied to particles with a radius of ≈1 nm and larger, it is reasonable to as-
sume that this size range also pertains to diffusiophoresis. In other words, diffusiophoresis
is a phenomenon that is relevant to proteins, polymers, micelles and other nanoparticles
of comparable (1–10 nm) or lager (≈100 nm) size. In relation to concentration, one could
readily enunciate that diffusiophoresis represents cross-diffusion in the limit of zero solute
concentration. However, while this definition is conceptually correct, it is possible that
the infinite-dilute limit is difficult to attain experimentally due to the complex nature of
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colloidal particles [23,74]. For example, there is a range of supramolecular aggregates, such
as micelles, that disassemble into free units as solute concentration approaches zero [75].
From a practical point of view, it is convenient to identify sufficiently low concentrations
at which cross-term diffusion coefficients can be successfully measured and verify that
the extracted diffusiophoretic mobility is independent of particle concentration within the
experimental error. Fortunately, as it will be discussed later, non-equilibrium thermody-
namics shows that the cross-term diffusion coefficient associated with diffusiophoresis does
not explicitly depend on the thermodynamic non-ideality of colloidal particles. In contrast,
thermodynamic non-ideality is known to cause a significant concentration dependence of
the DLS diffusion coefficient [23,68,76,77]. Note that diffusiophoresis of a colloidal particle
is explicitly related to how particle chemical potential depends on the concentration of
the cosolute [25]. Indeed, a gradient of cosolute concentration causes a chemical-potential
gradient of the colloidal particle, which may be then responsible for its migration from
high to low chemical potential.

The thermodynamic effect of cosolutes on colloidal particles has been extensively
investigated in the case of proteins by introducing thermodynamic parameters known as
preferential-interaction coefficients [78–84]. These quantify the thermodynamic affinity of a
protein for either the solvent (water) or the cosolute (salt or osmolyte). Related experimental
and theoretical studies have played a crucial role in understanding equilibrium dialysis [85],
protein solubility and crystallization [86–88], conformational stability [89], Hofmeister
series [90,91] and modulation of biochemical reactions [79]. The connection of preferential-
interaction coefficients to diffusiophoresis will also be discussed in this paper.

As previously mentioned, two cross-term diffusion coefficients are needed to describe
a ternary system, with one of them describing diffusiophoresis. The other cross-term, which
describes cosolute diffusion due to the concentration gradient of colloidal particles, will
be denoted as cosolute “osmotic diffusion” [25,72,92]. This term was first introduced by
Toor in 1957 as an alternative name for cross-diffusion in multicomponent mixtures [93].
Using different names (“diffusiophoresis” and “osmotic diffusion”) facilitates distinction
between the two related cross-diffusion processes. Interestingly, as will be discussed below,
cosolute osmotic diffusion is more closely related to preferential-interaction coefficients
than particle diffusiophoresis [25,72,92]. Thus, it plays an important role in understanding
the thermodynamic component of particle diffusiophoresis and identifying the underlying
mechanisms responsible for this transport process [25,92].

The following sections of this paper intend to provide a formulation of diffusiophoresis
by employing the formalism of multicomponent diffusion and non-equilibrium thermody-
namics. Representative experimental diffusiophoresis data previously obtained on two dif-
ferent macromolecules, polyethylene glycol (PEG) [25,92,94] and lysozyme [66,71,72,95],
will also be reviewed. These sections will be organized in the following way. In Section 2,
the theoretical background of non-equilibrium thermodynamics that is relevant to multi-
component diffusion in ternary systems is reviewed. In Sections 3 and 4, the formulation
of non-equilibrium thermodynamics is used to describe both diffusiophoresis and os-
motic diffusion. Specifically, reduced diffusiophoresis and osmotic diffusion coefficients
will be introduced. Their connection to preferential-interaction coefficients will also be
discussed. In Section 5, the connection of preferential-interaction coefficients to the mecha-
nisms of preferential solvation of colloidal particles and Donnan equilibrium [71,73] for
charged particles will be discussed. In Section 6, the Nernst–Planck equations for ternary
electrolyte mixtures [52,64,71] are revisited to derive mathematical expressions for diffu-
siophoresis and osmotic diffusion coefficients. In Section 7, the determination of these
two transport parameters from measurements of multicomponent-diffusion coefficients
by employing the Gosting diffusiometer operating in the Rayleigh interferometry method
will be discussed. In Section 8, representative experimental results on diffusiophoresis of
PEG [25,92,94], a neutral hydrophilic macromolecule in the presence of salts and osmolytes
will be presented. In Section 9, a useful model [25] based on preferential hydration will
be discussed. This has been employed to describe the experimental results of PEG. In
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Section 10, the experimental results on diffusiophoresis of lysozyme [66,71,72,95], a pos-
itively charged protein, in the presence of salts will be presented. In Sections 11 and 12,
the experimental results on lysozyme will be discussed by considering both the elec-
trophoretic (Section 11) and preferential-hydration (Section 12) mechanisms responsible
for salt-induced protein diffusiophoresis.

2. Diffusion, Onsager Transport Coefficients and Reference Frames

In this section, the words “colloidal particle” or simply “particle” will be used to gen-
erally indicate macromolecules (proteins, polymers), supramolecular aggregates (micelles,
vesicles) and nanoparticles (silica, polystyrene latex), with characteristic sizes ranging from
1 nm to 1 mm. The symbols “P” for colloidal particle, “S” for cosolute (e.g., salt or osmolyte)
and “W” for solvent (e.g., water) will be employed.

In the absence of advection and chemical reactions, isothermal and isobaric diffusion in
a ternary particle–cosolute–solvent liquid mixture is described by two linear laws relating
the fluxes of the two solutes (P and S) to the two independent thermodynamic driving forces,
the gradients of particle and cosolute chemical potentials. We have the following [51,96]:

−JP = LPP ∇ µP + LPS ∇ µS (2a)

−JS = LSP ∇ µP + LSS ∇ µS (2b)

where JP and JS are the molar fluxes of particle and cosolute, and µP and µS the correspond-
ing chemical potentials. The matrix of the four Lijs (with i,j = P,S) is the Onsager transport
coefficient [51,53]. Main-term coefficients, LPP and LSS, describe the flux of solutes due to
their own concentration gradients, while cross-term coefficients, LPS and LSP, describe the
flux of a solute due to the concentration gradient of the other solute.

In Equation (2a,b), molar fluxes can also be rewritten as JP = CP·vP and JS =
CS·vS [39,96], where CP and CS are the molar concentrations of particle and cosolute, while
vP and vs. are the corresponding diffusion velocities, which must be defined with respect
to a reference frame. In the volume-fixed reference frame, vP and vs. are defined relative to
the center of volume of the ternary mixture, which corresponds to the external laboratory
coordinate if mixing can be assumed to occur in isochoric conditions (i.e., the volume of
mixing is negligible). In the solvent-fixed reference frame, vP and vs. are defined relative
to solvent diffusion, i.e., solvent diffusion velocity is set to be zero [39,96]. Both reference
frames are qualitatively described in Figure 2 in the case of a binary mixture for simplicity.
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Figure 2. Diffusion of a solute inside a cell (rectangular boxes) occurring from high to low solute
concentration. Solute particles are explicitly shown (blue particles), while solvent molecules are
described as a uniform background for simplicity. The three boxes (A–C) indicate three representative
times during the diffusion process. Box (A) represents the initial state of the solute–solvent mixture,
while box (C) indicates its final equilibrium state (homogeneous mixture). The vertical dashed line
indicates the position of the center of volume. This remains unchanged if the mixing volume is zero
(i.e., if isobaric mixing is also isochoric). In the solvent-fixed reference frame, diffusion of cosolute is
evaluated with respect to the solvent center of mass, which is indicated by the evolving position of the
arrows. The solvent center of mass shifts from right to left during diffusion. The difference between
solvent- and volume-fixed reference frames increases with solute volume fraction and vanishes in
the limit of zero solute concentration. In this limit, both reference frames yield the same diffusion
coefficient, which is also known as the tracer-diffusion coefficient of solute particles.
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According to non-equilibrium thermodynamics, the matrix of the four Lijs becomes
symmetric in the solvent-fixed reference frame, with

LPS = LSP (3)

representing the Onsager reciprocal relation (ORR) [51,53]. Thus, Equation (2a,b) are usually
employed to describe diffusion in the solvent-fixed reference frame. Note that diffusive
transport in ternary mixtures is characterized by three independent transport coefficients.

For completeness, it is important to note that diffusion can be equivalently described
by inverting Equation (2a,b). In this description, the particle thermodynamic driving
force,5µP, is written as a linear combination of the velocity differences, vP-vW and vP-vS,
while cosolute thermodynamic driving force,5µS, is a linear combination of the velocity
differences, vS-vW and vS-vP [97]. In the field of chemical engineering, this description cor-
responds to the well-known Stefan–Maxwell equations [45,46,57,72,98]. The convenience
of this formalism is that the coefficients of these linear combinations can be interpreted as
frictional coefficients, which are also independent of the reference frame [97,99]. There are
three independent friction coefficients characterizing particle–solvent, cosolute–solvent
and particle–cosolute frictional interaction. These could be, in principle, experimentally
determined from measurements on the three corresponding binary mixtures and assumed
to be the same in the ternary mixture. However, since the particle–cosolute binary system
is not accessible experimentally, Stefan–Maxwell equations are not particularly valuable for
diffusiophoresis. Moreover, multicomponent-diffusion experiments on aqueous PEG in the
presence of several cosolutes (osmolytes and salts) show that the PEG–cosolute frictional
coefficient in water is negative [25,92,99]. This implies that its physical interpretation as an
actual friction between PEG and cosolute components is misleading. Thus, Stefan–Maxwell
equations do not seem to provide noteworthy benefits over Equation (2a,b) and will not be
further considered below.

According to Equation (2a,b), molar fluxes, JP and JS, are related to the gradient
of chemical potentials, 5µP and 5µS. Although these are the actual thermodynamic
driving forces of diffusion, it is practically convenient to describe diffusion as caused by
concentration gradients,5CP and5CS. This description is just a generalization of the well-
known Fick’s law [58,100], normally encountered when describing binary mixtures [51].
The 2 × 2 matrix of Fickian diffusion coefficients is introduced by the following:

−JP = DPP ∇ CP + DPS ∇ CS (4a)

−JS = DSP ∇ CP + DSS ∇ CS (4b)

where the four Dijs (with I,j = P,S) are denoted as multicomponent-diffusion coefficients
(or ternary diffusion coefficients in this case). Main-term diffusion coefficients, DPP and
DSS, describe the flux of solutes due to their own concentration gradients, while cross-term
diffusion coefficients, DPS and DSP, describe the flux of a solute due to the concentration
gradient of the other solute. Note that DPS in Equation (4a) is directly proportional to
CP with DPS = 0 at CP = 0 [72]. Thus, it is more appropriate to consider the ratio DPS/CP
when examining particle diffusiophoresis. Indeed, the value of this ratio becomes virtually
independent of CP in dilute colloidal solutions [72].

We can write Equation (4a,b) with respect to any reference frame, but it is conve-
nient to define them with respect to solvent-fixed reference frame so that we can more
directly connect Equation (4a,b) with a symmetric matrix of Onsager transport coefficients.
Comparison of Equation (2a,b) with Equation (4a,b) yields the following [53]:

DPP = LPPµPP + LPSµSP (5a)

DPS = LPPµPS + LPSµSS (5b)
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DSP = LSPµPP + LSSµSP (5c)

DSS = LSPµPS + LSSµSS (5d)

where µij ≡ (∂µi/∂Cj)Ck,k 6=j and the partial-derivative subscripts denoting temperature and
pressure are omitted to alleviate notation. The four µijs in Equation (5a–d) are thermody-
namically linked by the following [53,101]:

µSP(1− CPVP) + µPPCPVS = µPS(1− CSVS) + µSSCSVP (6)

where VP and VS are particle and cosolute partial molar volumes, respectively.
The limit of CP→0 is particularly important for particle diffusiophoresis. In this limit,

DPP becomes the particle tracer-diffusion coefficient, DP(CS), while DSS is the cosolute
diffusion coefficient of the binary cosolute–solvent system in the solvent-fixed reference
frame, DS(CS). We have the following:

DP ≡ lim
CP→0

DPP = lim
CP→0

(LPPµPP) = lim
CP→0

RTLPP

CP
(7a)

DS ≡ lim
CP→0

DSS = lim
CP→0

(LSSµSS) (7b)

where T is the absolute temperature, R is the ideal gas constant, and we have also used
µPP→ RT/CP. Note that LPP→0 and LPS→0 while LPP/CP and LPS/LPP remain finite in
the limit of CP→0.

Multicomponent-diffusion coefficients are typically measured in the volume-fixed
frame [39,53,96]. The solvent-fixed diffusion coefficients, Dij, can then be calculated from
the corresponding volume-fixed diffusion coefficients, DV

ij , by the following [39,51,102]:

DPP − DV
PP

CP
=

DSP − DV
SP

CS
=

VPDV
PP + VSDV

SP

1− CPVP − CSVS
(8a)

DSS − DV
SS

CS
=

DPS − DV
PS

CP
=

VPDV
PS + VSDV

SS

1− CPVP − CSVS
(8b)

In the limit of CP→0, Equation (8a,b) yield the following:

lim
CP→0

DV
PP = lim

CP→0
DPP = DP (9a)

lim
CP→0

DV
SS = DS(1− CSVS) (9b)

lim
CP→0

DPS

CP
− lim

CP→0

DV
PS

CP
= VSDS (9c)

lim
CP→0

DSP

DSS
− lim

CP→0

DV
SP

DV
SS

=
VPDP

(1− CSVS)DS
(9d)

The conversion terms between the two reference frames are typically small and may
be comparable with experimental error in the case of cross-term diffusion coefficients.

3. Particle Diffusiophoresis from Non-Equilibrium Thermodynamics

In this section, particle diffusiophoresis is described using the framework of non-
equilibrium thermodynamics in the solvent-fixed reference frame. Since the actual ther-
modynamic driving force of this transport process is the gradient of cosolute chemical
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potential, we need to replace5lnCS in Equation (1) with5µS. In the limit of CP→0, we
can write the following:

∇ µS

RT
= νSyS ∇ ln CS (10)

where νS is the number of cosolute particles (e.g., νS = 1 for non-electrolytes, νS = 2 for sym-
metric electrolytes such as NaCl or MgSO4 and νS = 3 for asymmetric electrolytes such as
MgCl2 or Na2SO4) and yS is a thermodynamic factor (known for many cosolutes [103–107])
characterizing thermodynamic non-ideality of the binary cosolute–water system, with
yS = 1 in the limit of CS→0. Since DPS has the units of a diffusion coefficient, it is also con-
venient to consider the unitless ratio, DPS/DP, which describes the magnitude of diffusio-
phoresis compared to particle Brownian mobility. Note that this ratio is also independent of
fluid viscosity because both DPS and DP are inversely proportional [15,27,30,73,108] to the
fluid viscosity coefficient. We, therefore, describe diffusiophoresis by writing the following:

vP = −DP

(
∇ ln CP + D̂PS

∇ µS

RT

)
(11)

where the second term in parenthesis characterizes particle diffusiophoresis with D̂PS
being the reduced diffusiophoresis coefficient [25,39,102]. The first term in Equation (11)
represents the restoring Brownian entropic force. The reduced coefficient, D̂PS, is related to
DPS by the following:

DPS = DPνSyS D̂PS (12)

where νSyS represents the conversion factor from ∇lnCS to ∇µS/RT (see Equation (10)).
Thus, the convenience of D̂PS compared to DPS is that it does not explicitly depend on the
stoichiometry and thermodynamic non-ideality of cosolute. Henceforth, diffusiophoresis
will be described using D̂PS, recognizing that it can be readily converted into DPS by
employing Equation (12).

There is a simple case in which values of D̂PS have a direct physical interpretation.
Specifically, we may consider a steady-state diffusion process that is appropriate for col-
loidal particles in the presence of relatively small ions and molecules of cosolute and solvent
components [92]. We shall neglect cosolute thermodynamic non-ideality (yS = 1) and small
corrections due to changes in the reference frame for simplicity. As illustrated in Figure 3, a
horizontal tube positioned between x = 0 and x = l is sandwiched between two reservoirs
consisting of two different binary cosolute−solvent solutions, with cosolute concentrations,
CS

(L) (left compartment, x ≤ 0) and CS
(R) > CS

(L) (right compartment, x ≥ l), respectively.
Two membranes, not permeable to colloidal particles, seal the two tube extremities. This
type of geometries, which is needed to establish steady-state concentration gradients of
cosolutes, has been indeed implemented in “H-type” microfluidic devices to investigate
bacterial chemotaxis [109,110] and particle diffusiophoresis [111].
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Figure 3. Schematic diagrams showing a horizontal tube connected to two cosolute–solvent reservoirs
with constant cosolute concentrations, CS

(L) and CS
(R), through two semipermeable membranes.

(A) The tube is initially at uniform particle concentration. (B) After reaching the steady-state condition
(right diagram), diffusiophoresis causes a difference in particle concentration at the tube extremities
(CP

(L) and CP
(R)). Colloidal particles are explicitly shown, while cosolute and solvent molecules

are described as a uniform background for simplicity, with the color gradient representing the
cosolute gradient.
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In steady-state conditions, we must have vP = 0 throughout the tube because of the
semipermeable membranes. Hence, Equation (11) becomes the following:

d ln CP

d(νSCS)
= − D̂PS

CS
(13)

where νSCS is cosolute osmolarity. This steady-state process is analogous to equilibrium sed-
imentation in which sedimentation due to external gravitational field is counter-balanced
by the restoring entropic force associated with Brownian diffusion.

As we shall see later, D̂PS/CS is essentially a constant for neutral particles [92]. In
this case, integration of Equation (13) shows that ln[CP

(L)/CP
(R)] ≈ (D̂PS/C–)·νSCP

(L) −
CP

(R)]. For example, when we set the difference in cosolute osmolari–y tνS[CP
(L) − CP

(R)]
= 1 M, we obtain CP

(L)/CP
(R) ≈ 2.7 if D̂PS/CS ≈ 1 M−1 and CP

(L)/CP
(R) ≈ 150 if D̂PS/CS

≈ 5 M−1. For charged particles, at salt concentrations of the order of 1 mM, we can
approximately assume that D̂PS is a constant. In this second case, integration shows that
ln[CP

(L)/CP
(R)] ≈ D̂PS· ln[CS

(L)/CS
(R)]νS. When we then set the ratio in salt concentration

to CS
(L)/CS

(R) = 100 (e.g., CS
(L) = 0.1 mM and CS

(R) = 10 mM) with νS = 2, we obtain
CP

(L)/CP
(R)≈100 if D̂PS ≈ 0.5.

We now turn our attention to the link between the diffusiophoresis coefficient, D̂PS,
and Onsager transport coefficients. In the limit of CP→0, Equation (7a) and JP = CP·vP can
be used to rewrite Equation (4a) in the following way [23]:

vP = −DP

(
∇µP

RT
− λ
∇µS

RT

)
(14)

where λ is a reduced hydrodynamic coefficient defined by the following:

λ ≡ − lim
CP→0

LPS

LPP
(15)

In Equation (14), λ describes particle migration in response to the gradient of cosolute
chemical potential when5µP = 0. As it will be shown below, this does not correspond to
5lnCP = 0. Note that the negative sign in Equation (15) is just a convention, justified by λ
being a positive hydrodynamic coefficient for colloidal particles that preferentially interact
with solvent [92]. To link D̂PS to λ, we need to relate5µP to5lnCP. This is achieved by
considering the differential of µP(CP, µS):

∇µP

RT
= ∇ ln CP + γ

∇µS

RT
(16)

where

γ ≡ lim
CP→0

(
∂µP

∂µS

)
CP

= lim
CP→0

µPS

µSS
(17)

is a preferential-interaction coefficient. If the expression of5µP given by Equation (16) is
inserted into Equation (14), we can finally deduce the following [71,95]:

D̂PS = γ− λ (18)

In summary, non-equilibrium thermodynamics is used to write particle diffusiophore-
sis coefficient, D̂PS, as the difference between a thermodynamic component (γ) and a
transport component (λ). It has been experimentally shown that the magnitude of λ
is typically comparable with that of γ [92]. This implies that both thermodynamic and
hydrodynamic interactions are equally important in shaping the behavior of D̂PS.
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4. Cosolute Osmotic Diffusion from Non-Equilibrium Thermodynamics

Cosolute osmotic diffusion describes cosolute diffusion induced by a concentration
gradient of colloidal particles. As in the case of diffusiophoresis, a reduced coefficient is
introduced for osmotic diffusion. Since the diffusion of colloidal particles is slow com-
pared to that of cosolute, it is also convenient to consider the hypothetical limit in which
particle mobility is negligible compared to cosolute mobility [71]. In this case, a particle
concentration gradient will dissipate after a time that is infinitely long compared to that
needed for cosolute diffusion to reach a quasi-equilibrium condition. This condition is
achieved when the osmotic diffusion rate, DSP∇CP, is counter-balanced by the cosolute
diffusion rate, DSS∇CS, in Equation (4b). Thus, the ratio DSP/DSS essentially describes the
equilibrium distribution of cosolute along a quasi-static concentration gradient of particles.
This ratio is analogous to an equilibrium constant of a reversible reaction, which is the
ratio of forward and backward kinetic constants. Cosolute osmotic diffusion is illustrated
in Figure 4. Here, we can also appreciate that this transport process is also related to
cosolute partitioning occurring in equilibrium dialysis. Specifically, we can consider two
compartments containing a ternary particle–cosolute–solvent system and a binary cosolute–
solvent system in chemical equilibrium with respect to the cosolute component through
a membrane that is not permeable to particles. The difference in particle concentration
between the two compartments is responsible for cosolute osmotic diffusion across the
membrane, thereby leading to a difference in cosolute concentration between the two
compartments at equilibrium. The connection of equilibrium dialysis to cosolute osmotic
diffusion emerges from the fact that cosolute partitioning between the two compartments
can also be achieved in the absence of a membrane, provided that the Brownian mobility of
the colloidal particles is negligible compared to cosolute mobility.
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Figure 4. (A) Cosolute osmotic diffusion induced from high to low concentration of colloidal particles.
(B) Equilibrium dialysis setup (bottom diagrams). Here, two compartments containing a ternary
particle–cosolute–solvent system (left side) and a binary cosolute–solvent system (right side) are
separated by a membrane (dashed line) not permeable to particles. Due to cosolute osmotic diffusion,
a difference in cosolute concentration is established between the two compartments. Colloidal
particles are explicitly shown, while cosolute and solvent molecules are described as a uniform
background for simplicity, with the color gradient representing the cosolute gradient. Note that
solvent chemical potential, not pressure, is constant across the membrane in equilibrium dialysis,
while cosolute osmotic diffusion is defined for constant pressure. There is a small difference between
the two cases, which is ignored in our qualitative comparison for simplicity.

Since the ratio DSP/DSS is closely connected to cosolute partitioning at equilibrium, it
is convenient to define the unitless osmotic diffusion coefficient [25,71]:

D̂SP ≡ lim
CP→0

DSP

DSS
(19)
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We can use non-equilibrium thermodynamics to rigorously relate this coefficient
to cosolute partitioning. Specifically, we first take the ratio of the expressions of DSP
(Equation (5c)) and DSS (Equation (5d)). We then consider that we have: DSS→LSSµSS in the
limit of CP→0 (see Equation (7b)). This allows us to write DSP/DSS→(LSPµPP)/(LSSµSS)+
µSP/µSS. As will be further discussed below, it is the thermodynamic ratio, µSP/µSS, that
describes cosolute partitioning. The product, LSPµPP, can be rewritten as (LPPµPP)(LPS/LPP),
where we have also used the ORR (Equation (3)). According to Equation (7a,b), we can
then write (LPPµPP)/(LSSµSS)→DP/DS. We finally obtain the following:

D̂SP = CSP − αλ (20)

where

CSP ≡ − lim
CP→0

(
∂CS

∂CP

)
µS

= lim
CP→0

µSP

µSS
(21)

and we have also used (∂µS/∂CP)CS = −(∂µS/∂CS)CP(∂CS/∂CP)µS. The thermodynamic
factor, CSP, characterizes the effect of particle concentration on cosolute concentration at
equilibrium. The negative sign in the definition of CSP is just a convention. It ensures that
this parameter assumes positive values for colloidal particles that preferentially interact
with solvent. Integration of CSP with respect to CP characterizes cosolute partitioning. In
Equation (20), we have also defined the following:

α ≡ DP

DS
(22)

as the particle-to-salt diffusion ratio, with typically α ≈ 0.1 or less. In Equation (22), αλ is
small compared to CSP, and D̂SP ≈ CSP is a suitable approximation, which is consistent with
our previous discussion. Indeed, we can state that D̂SP→CSP in the limit of α→0. Note
that Equation (3) allows us to introduce λ not only in Equation (18) for D̂PS but also in
Equation (20) for D̂SP. In other words, the ORR connects D̂SP with D̂PS. However, the
validity ORR is not critical because αλ in Equation (23) is small. To fully link D̂SP and
D̂SP, we also need to relate CSP in Equation (20) to g in Equation (18). This is achieved by
determining the expression of µSP/µSS from Equation (6) in the limit of CP→0. We obtain
the following [53,71,80,101,102]:

CSP = (1− CSVS) γ + CSṼP (23)

where ṼP ≡ VP − (νSyS)−1VS. Note that ṼP = VP is an excellent approximation because
VS is significantly smaller than VP. It is Equation (23) that critically connects D̂PS with
D̂SP. Since both coefficients are related to γ and λ, measurements of D̂PS and D̂SP can be
used to extract these two fundamental parameters. Although γ and λ can be rigorously
calculated by combining Equations (18), (20) and (23), it is important to appreciate that
D̂SP ≈ CSP alone can be used to approximately extract the preferential-interaction coeffi-
cient, γ, from Equation (23). Its insertion into Equation (18) then allows the calculation of
the hydrodynamic coefficient, λ.

5. Interpretation of Preferential-Interaction Coefficients

In Section 4, two preferential-interaction coefficients, γ and CSP, were introduced. They
appear in the expressions of particle diffusiophoresis (Equation (18)) and cosolute osmotic
diffusion (Equation (20)) and are linked to each other by Equation (23). In this section, the
behavior of these thermodynamic parameters is discussed by first examining the case of
a neutral colloidal particle and then considering the case of charged particles sharing a
common ion with an ionic cosolute. According to the Kirkwood–Buff theory [112–115], we
can write the following:

CSP = (ΓSP − ΓSW)CS (24)
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where

ΓSP ≡ 4πNA

∞∫
0

[1− gSP(r)] r2dr (25a)

ΓSW ≡ 4πNA

∞∫
0

[1− gSW(r)] r2dr (25b)

and NA is the Avogadros’s number. The functions, gSP(r) and gSW(r), are angularly averaged
and normalized distribution functions of cosolute as a function of distance, r, from the
center of mass of the colloidal particle and solvent molecule, respectively. Note that
gSP(∞) = gSW(∞) = 1 (bulk value). In the limit of CP→0, gSP(r) characterizes cosolute
radial distribution around one colloidal particle. This distribution is the net result of
multiple types of interactions occurring between the colloidal particles, cosolute and
solvent molecules. For example, it is shaped not only by the specific binding of solvent
and/or cosolute to the particle but also by particle–cosolute excluded-volume interactions.
On the other hand, gSW(r) characterizes cosolute–solvent interactions in the binary cosolute–
solvent system.

The integrals, ΓSP and ΓSW, have the units of a molar volume. According to Equation (25a),
the steric presence of the colloidal particle itself yields ΓSP = VP. This allows us to appreciate
that the magnitude of ΓSP is of the order of VP, while ΓSW is small because its magnitude
is comparable with cosolute and solvent molar volumes. Indeed, it can be shown that
ΓSW ≈ VS at low cosolute concentration. To understand the physical meaning of CSP and γ,
we assume that ΓSW << ΓSP in Equation (24) and VS << VP in Equation (23). Both GSP and
ṼP = VP are regarded as constant. In this case, we can write the following:

CSP = ΓSPCS (26a)

γ =
ΓSP −VP

1− CSVS
CS (26b)

where Equation (26a) shows that CSP is directly proportional to cosolute concentration,
CS, with CSP = 0 at CS = 0. Note that Equation (26b) is obtained from Equation (26a) by
using Equation (23). The preferential-interaction coefficient, g, is also approximately pro-
portional to CS because CSVS in the denominator of Equation (26b) is usually less than
10%. The proportionality constant, ΓSP, represents the net excluded volume experienced by
cosolute, with ΓSP = VP as the reference case in which the steric presence of the colloidal
particle is the sole contribution to particle–cosolute interactions. As described in Figure 5,
we have ΓSP > VP when cosolute is depleted in the proximity of the particle (preferen-
tial solvation) and ΓSP < VP when cosolute is enriched in the proximity of the particle
(preferential binding).

Clearly, the preferential-interaction coefficient, γ, directly quantifies cosolute depletion
or enrichment in the particle proximity because γ is directly proportional to ΓSP − VP,
i.e., γ > 0 and γ < 0 correspond to preferential solvation and preferential binding, respec-
tively. It is then convenient to rewrite Equation (26b) in the following way [25,79]:

γ = νW
CS

CW
(27)

where we have used CWVW + CSVS = 1, with CW and VW being solvent concentration
and partial molar volume, respectively. Note that CW ≈ 1/VW because CSVS is small. In
Equation (27), we have also introduced the solvent thermodynamic excess, νW, through the
following equation:

ΓSP = VP + νWVW (28)
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Figure 5. Radial concentration profile of cosolute around a spherical particle of radius RP in the case of
preferential solvation (A) and preferential binding (B). Cosolute and solvent molecules are described
as a uniform background for simplicity, with the color gradient representing the cosolute gradient.
The corresponding plots of the radial distribution function, gSP(r), are also shown. Integration of
1 − gSP(r) between r = 0 and r = RP yields particle volume. Integration of 1 − gSP(r) between r = RP

and r = ∞ yields a positive volume in the case of preferential solvation and a negative volume in the
case of preferential binding.

This thermodynamic parameter, which can be approximated as a constant, represents
the number of solvent molecules near the colloidal particle in excess with respect to bulk in
the case of preferential solvation, and it becomes negative in the case of preferential binding.
Although νW increases with particle solvation, it should not be confused [79] with the actual
number of solvent molecules bound to the colloidal particles. The solvent thermodynamic
excess, νW, is introduced by considering the case of a spherical colloidal particle for the
sake of simplicity. It is, however, important to note that this thermodynamic formalism
is rather general and can be extended to non-spherical particles, including polymer coils.
In Section 8, the values of νW extracted for PEG in the presence of osmolytes and salts
will be reported.

Preferential-interaction coefficients have been extensively investigated in connection to
equilibrium dialysis [78,116]. Here, a well-stirred ternary particle–cosolute–solvent solution
is in contact with a well-stirred binary cosolute–solvent reservoir through a membrane
that is permeable to solvent and cosolute but not to the colloidal particles. At equilibrium,
a difference in cosolute concentration between the two solutions (cosolute partitioning)
emerges due to preferential solvation or preferential binding. This difference can be
explained by observing that the bulk cosolute concentration in the ternary particle–cosolute–
solvent compartment is the same as that in the binary cosolute–solvent compartment. This
is further described in Figure 6.

Equilibrium dialysis can also be used to determine the expression of CSP in the case
of a charged colloidal particle in the presence of an ionic cosolute with the membrane
permeable to both ions (e.g., Na+ and Cl− in NaCl) [72,73]. For simplicity, we shall focus on
the case of 1:1 symmetric electrolytes. The ion with a charge that is opposite to that of the
particle is denoted as a counterion, while the ion with the same charge is denoted as a coion.
This case of equilibrium dialysis corresponds to the well-known Donnan equilibrium and has
usually been discussed for proteins in the presence of a supporting electrolyte [71,73,81].
To ensure electroneutrality, the concentrations of the two salt ions must be the same in the
binary cosolute–solvent compartment. However, there must be an excess of counterions in
the ternary particle–cosolute–solvent compartment due to particle charge. If the particle
charge is ZP, the difference in concentration between counterion and coion is |ZP|CP.
Since the product of the concentrations of the two ions in the ternary compartment must be
the same as that in the binary compartment at equilibrium, the excess of counterions in the
ternary compartment must be invariably accompanied by a depletion of coions. This leads
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to a net depression of cosolute concentration in the ternary compartment relative to the
binary compartment. Donnan equilibrium is further described in Figure 7. Here, cosolute
concentration is assumed to be sufficiently low, so the excluded-volume effect previously
illustrated in Figure 6 can be ignored for simplicity.
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solvent system (left side) at particle concentration CP and cosolute concentration, CS

(L) and a binary
cosolute–solvent system (right side) at cosolute concentration, CS

(R). The two compartments are
separated by a membrane (dashed line) that is not permeable to particles. Colloidal particles are
explicitly shown (blue circles), while cosolute and solvent molecules are described as a uniform
background for simplicity. The layer surrounding each particle represents solvent excess near the
particle (case of preferential solvation). The bulk cosolute concentration in the left compartment
is equal to that of the right compartment, CS

(R). The volume fraction of the left compartment
occupied by the particles is (VP + νWVW)CP, where VP characterizes the volume occupied by the
particles themselves and νWVW their surrounding layers. Since this volume is excluded from the
bulk solution, the overall cosolute concentration in the left compartment, CS

(L), is lower than CS
(R).

We have CS
(L) = [1 − (VP + νWVW)CP]CS

(R). This equilibrium condition can be used to derive
CSP = −limCP→0(∂CS/∂CP)µS = limCP→0[(CS

(L) − CS
(R))/CP] = (VP + νWVW)CS, which corresponds

to Equations (26a) and (28).
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Figure 7. Equilibrium dialysis setup with two compartments containing a ternary particle–cosolute–
solvent system (left side) at particle concentration CP and cosolute concentration, CS

(L) and a binary
cosolute–solvent system (right side) at cosolute concentration, CS

(R), separated by a membrane
(dashed line) not permeable to particles. Positively charged colloidal particles and counterions
(−) and coions (+) of a 1:1 electrolyte (e.g., NaCl) are explicitly shown, while solvent molecules
are described as a uniform background for simplicity. Concentrations of counterion and coion
are both equal to CS

(R) in the right compartment, while only the coion concentration is equal to
CS

(L) in the left compartment. Here, the counterion concentration is |ZP|CP + CS
(L) > CS

(L) to
ensure electroneutrality. At low salt concentration, we have (|ZP|CP + CS

(L)) CS
(L) = (CS

(R))2.
This equilibrium condition can be used to derive CSP = −limCP→0(∂CS/∂CP)µS = limCP→0[(CS

(L) −
CS

(R))/CP] = |ZP|/2, which leads to the Donnan term in Equations (29) and (30).



Molecules 2024, 29, 1367 15 of 37

To take into account the Donnan effect, the expression of the preferential-interaction
coefficient, CSP, is generalized in the following way:

CSP =
|ZP|

2
+ (VP + νWVW)CS (29)

where the residual positive value of CSP at CS = 0 characterizes the Donnan effect, be-
coming zero for neutral particles. The preferential-interaction coefficient, γ, is modified
in the same way because there is no difference between CSP and γ in the limit of CS→0
(see Equation (23)):

γ =
|ZP|

2
+ νW

CS

CW
(30)

6. Nernst–Planck Equations for Diffusiophoresis and Osmotic Diffusion

For aqueous mixtures containing two (or more) salt components, there exist math-
ematical expressions straightforwardly linking multicomponent-diffusion coefficients to
tracer-diffusion coefficients and the charges of the ions, which are rigorously valid at infinite
dilution. These expressions, also known as Nernst–Hartley equations, are derived by apply-
ing the electroneutrality conditions to Nernst–Planck equations for single ions [64,71,117].
Clearly, Nernst–Planck equations are also relevant to charged colloidal particles in the
presence of a supporting electrolyte. Indeed, there are several multicomponent-diffusion
studies on protein–salt–water systems, which have examined the application and validity
of Nernst–Planck equations in the case of protein–salt–water systems [37,52,53,117]. In this
section, these equations are revisited in order to derive the mathematical expressions of
the particle diffusiophoresis coefficient, D̂PS, and salt osmotic diffusion coefficient, D̂PS, at
CS = 0. For simplicity, the case of a positively charged particle in the presence of a 1:1 elec-
trolyte will be considered. In this case, salt anions and cations represent particle counterions
and coions, respectively. It is also important to bear in mind that we are also operating
within the limit of CP/CS→0, i.e., we are considering one colloidal particle surrounded by
a diluted sea of salt ions.

We start by considering Equation (11) in the limit of CS→0. We have the following:

vP = −DP
(
∇ ln CP + 2D̂PS∇ ln CS

)
(31)

According to Nernst–Planck equations, the migration of a charged particle can be
induced by gradients of chemical and electrical potentials [71]:

vP = −DP

(
∇ ln CP + ZP

F ∇Ψ
RT

)
(32)

where F is Faraday’s constant, 5lnCP, which is the same term shown in Equation (31),
represents particle chemical-potential gradient in the limit of CP→0 and5Ψ represents the
gradient of electrical potential, Ψ. Clearly, Equation (32) is also used to describe particle
electrophoresis in response to externally imposed electrical-potential gradients. Migration
of salt cations and anions can also be described by Nernst–Plank equations:

−J+ = C+D0
+

(
∇ ln C+ +

F ∇Ψ
RT

)
(33a)

−J− = C−D0
−

(
∇ ln C− −

F ∇Ψ
RT

)
(33b)

where D0
+ and D0

− are the tracer-diffusion coefficients of cation and anion, J+ and J− are the
corresponding molar fluxes, and C+ and C− are the corresponding concentrations. Note
that the sign change from Equation (33a) to Equation (33b) describes the corresponding
change in ion charge.
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In a purely diffusive process, there is no external electric field, and the gradient of
electrical-potential gradients is internally produced by the gradient of ions (remembering
that CP/CS→0). In this case, the electrical potential is known as diffusion potential and, as
it will be shown below, is directly proportional to the difference in mobility between the
two ions; note that this potential is also responsible for the liquid junction potential in
electrochemical cells. In the absence of external electric fields, the electroneutrality condition
holds. This implies that cation and anion must have the same concentration (C+ = C−).
Moreover, to ensure that electroneutrality is maintained during diffusion, cation and anion
must also diffuse at the same diffusion rate even if the two ions have different mobility
(J+ = J−). The observed salt diffusion coefficient can be determined by first applying
CS = C+ = C− and JS = J+ = J− to Equation (33a,b). We then multiply Equation (33a) by D0

−
and Equation (33b) by D0

+. Finally, we add the two resulting equations to eliminate the
electric term and obtain the Nernst–Hartley equation of the salt diffusion coefficient, D0

S,
(DS in the limit of CS→0):

D0
S =

2D0
+D0
−

D0
+ + D0

−
(34)

According to Equation (34), the salt diffusion coefficient is such that (D0
S)−1 is the

average between (D0
+)−1 and (D0

−)−1. The expression of5Ψ is similarly obtained by taking
the difference between Equation (33a) and Equation (33b). This yields the following:

F ∇Ψ
RT

=
D0
− − D0

+

D0
− + D0

+

∇ ln CS = ∆τ ∇ ln CS (35)

where ∆τ = τ− − τ+, τ+ = D0
+/(D0

+ + D0
−) and τ− = D0

−/(D0
+ + D0

−) are cation and anion
transference numbers, respectively, with τ− = 1 − τ+ [105]. Tracer-diffusion coefficients
are available [118] for several ions in water at 25 ◦C and can be used to evaluate ∆τ. For
example, ∆τ = 0.21 for NaCl and ∆τ = 0.02 for KCl. Each charged species, including the
colloidal particle, will experience this internal electric field. If we insert Equation (35) into
Equation (32) and compare it with Equation (31), we obtain the following:

D̂PS =
|ZP|

2
∆τ (36)

where we have replaced ZP with |ZP| so that we can readily compare Equation (36) with
the Donnan term, |ZP|/2 (see Equations (29) and (30) with CS = 0). For negatively charged
particles, τ+ and τ− must be inverted. Alternatively, we can directly apply Equation (36)
to negative particles provided that we remember that ∆τ = τC − τS is defined as the
difference between the transference number of counterion (τC) and coion (τS). Since
particle diffusiophoresis is induced by an internal electric field, Equation (36) characterizes
the mechanism of electrophoretic diffusiophoresis in the limit of CS→0. Nearly all studies
on diffusiophoresis are based on mathematical expressions of diffusiophoresis coefficients
that are generalizations of Equation (36) [12,13,16,19,20,72].

The corresponding expression of the hydrodynamic coefficient, λ, can be obtained
from Equation (18). If we subtract Equation (36) to g = |ZP|/2, we obtain the following:

λ =|ZP| τS (37)

where |ZP| represents the number of counterions and τS is the transference number of the
coion (τ+ if ZP > 0 and τ− if ZP < 0).

We can readily obtain also the expression of the salt osmotic diffusion coefficient. If
we insert CSP = |ZP|/2 and Equation (37) for λ in Equation (20), we obtain the following:

D̂SP =
|ZP|

2
(1− 2ατS) (38)



Molecules 2024, 29, 1367 17 of 37

where D0
S in α = DP/D0

S is evaluated using Equation (34). Note that D̂SP ≈ |ZP|/2 is a
suitable approximation. Since salt osmotic diffusion is approximately described by the
Donnan term, |ZP|/2, Equation (38) characterizes the mechanism of Donnan diffusion.
The applicability and limitations of Equations (36)–(38) will be discussed in Section 11.

7. Extraction of D̂PS(CS) and D̂SP(CS) from Ternary Diffusion Coefficients

As previously mentioned, multicomponent-diffusion coefficients in the volume-fixed
reference, DV

i,j, can be determined using Taylor’s dispersion or interferometric methods. The
experimental results that are discussed in the following sections were obtained using the Gost-
ing diffusiometer operating in the Rayleigh interferometry method at 25 ◦C [37,62,119–122].
This instrument, which is located at Texas Christian University in Fort Worth, Texas (USA),
yields diffusion coefficients at the highest precision [37,123,124]. This instrument was ini-
tially built by Louis J. Gosting at the University of Winsconsin-Madison and then optimized
by Donald G. Miller at Lawrence Livermore National Laboratory and John G. Albright
at Texas Christian University [125]. Although experiments on the Gosting diffusiometer
typically require specialized user training and may be time consuming, the precision of the
Rayleigh interferometry method was found to be particularly important for successfully
characterizing the dependence of diffusiophoresis and osmotic diffusion coefficients (D̂PS
and D̂SP) on cosolute concentration, CS [23,25,72,74,92,94,95,126].

As illustrated in Figure 8, the Gosting diffusiometer consists of a ≈9 m optical bench
(5000 kg) with vibration isolation and several components [120]. The light source for
generating the Rayleigh interference pattern is a He-Ne laser (543.5 nm, 5 mW). The lens
components are the main lens (two-element air-spaced achromat, focal length 145 cm)
and the cylinder lens (two plano-convex lenses, focal length 68 cm). A cell holder is
located between these two lens components inside a water bath. The temperature of the
bath was regulated at 25.00 ◦C with a model PTC-41 Tronac temperature controller to a
precision of (0.001 ◦C). The cell holder has the function of supporting a Tiselius cell (where
macroscopic-gradient diffusion occurs) and a mask, which consists of a double window.
Here, the laser beam is split into two parts: one going through the diffusion channel of the
Tiselius cell and one passing through the water bath (reference channel). The cylinder lens
focuses the diffusion channel at the detector, where the Rayleigh interference pattern is
observed [62]. Data from the Rayleigh interference patterns are collected with a linear CCD
array (6000 pixels, 10 µm × 10 µm pixels) mounted vertically on a precision stage [37,119].
The stage with this vertical array is stepped horizontally through the 2D interference pattern
to collect the data necessary to calculate the diffusion coefficients. The magnification factor
is measured using a precision ruled quartz scale (100 lines/cm, accuracy 0.25 µm; Photo
Sciences Inc., Torrance, CA, USA).

A typical diffusion experiment begins by preparing a sharp boundary between two so-
lutions of different solute concentrations in the vertical diffusion channel (cell) located
inside the thermostated water bath. The measured ternary diffusion coefficients correspond
to the average concentrations of the two interfaced solutions. Rayleigh interferometric
fringes shift horizontally as the refractive index inside the diffusion channel changes along
the channel’s vertical position. This shift is directly proportional to the medium refractive
index. The total number of fringes is directly proportional to the difference in refractive
index between the two initial solutions and the channel width and inversely proportional
to the laser wavelength. The differences in concentrations between the two interfaced
solutions are typically chosen to obtain ≈50 fringes. Refractive-index profiles are typically
determined at 50 different values of time during the course of each experiment. These
are then rearranged as anti-symmetric and normalized sigmoidal functions, which are
theoretically described as linear combinations of two error functions. A minimum of
two experiments is required to determine the four diffusion coefficients at a given set
of average concentrations. These two experiments must have different combinations of
solute concentration differences across the diffusion boundary. To verify reproducibility,
two other duplicate experiments are performed. The four ternary diffusion coefficients in
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the volume-fixed reference frame are then extracted by applying a method of the non-linear
least squares to all normalized refractive-index profiles [127,128].
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The reduced particle diffusiophoresis, D̂PS(CS), is obtained from the cross-term, DV
PS,

by using the following [25]:

D̂PS =

(
1

DP
lim

CP→0

DV
PS

CP
+

VS

α

)
CS

νSyS
(39)

where CS/(νSyS) represents the conversion factor from ∇µS/RT to ∇CS (see Equation (10))
and the term VS/α represents a small correction (from Equation (9c)), accounting for the
change from solvent- to volume-fixed reference frame. Cosolute partial molar volumes, VS,
and thermodynamic factors, yS, are typically available from the literature.

The reduced cosolute osmotic diffusion coefficient, D̂SP(CS), is obtained from the
cross-term, DV

SP, by using the following [25]:

D̂SP ≡ lim
CP→0

DV
SP

DV
SS

+ α
CSVP

1− CSVS
(40)
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where the term αCSVP/(1 − CSVS) also represents a small correction (from Equation (9c)),
accounting for the change from solvent- to volume-fixed reference frame.

According to Equations (39) and (40), D̂PS and D̂SP should be extracted by measur-
ing DV

PS/CP, DV
SP/DV

SS as a function of CP at a given CS and then extrapolating these
two quantities to CP→0. However, we find that this extrapolation is not needed as long
as the particle concentrations are less than ≈1% (w/w) [23,72]. In other words, DV

PS/CP,
DV

SP/DV
SS are found to be independent of CP within the experimental error at low particle

concentration. Furthermore, measurements of cross-term diffusion coefficients at very
low particle concentrations yield relatively large errors. Specifically, the relative error of
DV

PS/CP increases as CP decreases because DV
PS is directly proportional to CP. Moreover, the

error on the other cross-term, DV
SP, also increases as CP decreases. This occurs because the

difference in particle concentration between the two solutions in a diffusion experiment is
also limited by CP.

We now discuss why thermodynamic non-ideality associated with particle–particle in-
teractions is not expected to significantly affect DV

PS/CP and DV
SP/DV

SS. The thermodynamic
factor, CPµPP/RT, characterizes this non-ideality effect, with CPµPP/RT→1 in the limit of
CP→0. It is important to note that this parameter can show appreciable dependence on
CP even at low particle concentrations (≈1%), especially in the proximity of a spinodal
boundary [23]. Inspection of Equation (5a–d) shows that only DPP and DSP depend on µPP.
This implies that DV

PS/CP is independent of CPµPP/RT. On the other hand, the cross-term,
DSP, does depend on µPP. However, its contribution to D̂SP is limited to the al term in
Equation (20). Since this is small compared to CSP, we deduce that the effect of CPµPP/RT
on DV

SP/DV
SS is also negligible.

The values of DP as a function of CS are also needed in Equation (39). According to
Equation (9a), this could be extracted, at any given CS, by measuring DV

PP as a function
of CP and then extrapolating to CP→0. However, a more rapid and versatile strategy to
determine DP is by extrapolation of DLS diffusion coefficients as a function of CP [23].

8. The PEG–Osmolyte–Water and PEG–Salt–Water Systems

In this section, representative D̂PS(CS) and D̂SP(CS) data extracted from ternary diffu-
sion coefficients at 25 ◦C using Rayleigh interferometry on aqueous PEG (nominal molecular
weight, 20 kg/mol) in the presence of osmolytes and salts will be discussed [25,92,94]. PEG
is a nonionic hydrophilic polymer found in many aqueous formulations relevant to phar-
maceutical and biotechnological applications [129–131]. Furthermore, an important class
of water-soluble colloidal particles is represented by neutral particles whose interfacial
properties are modified or governed by PEG. Indeed, this polymer has been employed
to coat the surface of inorganic nanoparticles [132,133], proteins [134], micelles [135] and
vesicles [136,137]. Since diffusiophoresis is mostly an interfacial phenomenon, under-
standing diffusiophoresis of PEG coils is of fundamental importance for understanding
diffusiophoresis of PEG-based colloidal particles [23,74].

We start by considering the effect of three osmolytes, trimethyl-N-oxide (TMAO),
diethylene glycol (DEG) and urea, on PEG diffusiophoresis. Osmolytes are small or-
ganic compounds that are neutral and water soluble. They have been extensively inves-
tigated in connection with proteins because they are known to significantly affect the
thermodynamic stability of the protein native state through the mechanism of preferen-
tial hydration [79,138,139]. The same type of mechanism is observed also in the case of
hydrophilic macromolecules such as PEG [25].

Due to its more direct connection with the preferential-interaction coefficient, it is con-
venient to examine osmolyte osmotic diffusion prior to PEG diffusiophoresis. In Figure 9,
the osmolyte (TMAO, DEG and urea) osmotic diffusion coefficient, D̂SP, as a function
of osmolyte concentration, CS, is shown. As we can see, D̂SP data are positive, thereby
implying that osmolyte diffuses from high to low PEG concentration. We can also see
that D̂SP linearly increases with CS starting from D̂SP(0) = 0, consistent with D̂SP ≈ CSP =
(VP + νWVW)·CS (see Equation (29) with ZP = 0). For comparison, the reference line, VPCS
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(with VP = 16.7 dm3·mol−1) [92], is included in the same figure. Positive deviations from
this line correspond to positive values of water thermodynamic excess, νW. We can then
deduce that PEG is preferentially hydrated in the presence of TMAO and DEG. Indeed, the
application of Equations (18), (20) and (23) to D̂PS(CS) and D̂SP(CS) data, which confirms
that D̂SP ≈ CSP is a suitable approximation, rigorously yields γ(CS). We can then write
γ = νWCS/CW and determine the thermodynamic excess of water molecules near PEG.
This is higher for TMAO (νW = 1870; 4.1 per ethoxy group) than for DEG (νW = 970; 2.1 per
ethoxy group). On the other hand, urea is preferentially binding to PEG because D̂SP data
are below the reference line. In this case, the water thermodynamic excess is negative
(νW = −520; −1.1 per ethoxy group). It is interesting to observe that the effect of osmolytes
on PEG follows the same type of trend observed in the case of protein. Indeed, the TMAO
preferential-hydration effect on proteins is known to stabilize the protein native state. In
contrast, urea preferentially binds to peptide chains. This is known to destabilize the
protein native state, leading to unfolding [138].
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Figure 9. Osmotic diffusion of osmolyte occurs from high to low concentration of PEG coils. Osmolyte
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In Figure 10, the PEG diffusiophoresis coefficient, D̂PS, as a function of osmolyte
concentration, CS, is shown. As we can see, D̂PS data are also positive, thereby implying
that PEG diffusiophoresis occurs from high to low osmolyte concentration in all three cases.
Moreover, as in the case of osmotic diffusion data, D̂PS linearly increases with CS starting
from D̂PS(0) = 0. The slope trend of diffusiophoresis data is the same as that of osmotic
diffusion data in Figure 9, with PEG diffusiophoresis being the largest in the TMAO
case. In the urea case, D̂PS values are small compared to those observed for the other
two osmolytes. Interestingly, although PEG prefers to interact more with urea than water,
PEG diffusiophoresis still occurs from high to low urea concentration.

According to Equation (18), D̂PS is the difference between the preferential-interaction
coefficient, γ, and the hydrodynamic coefficient, λ. Since both D̂PS and γ are directly
proportional to CS, the ratio, D̂PS/γ, is a constant with D̂PS/γ = 1 when λ = 0. In gen-
eral, the value of this ratio can be used to assess the significance of the hydrodynamic
coefficient, λ. Examination of our experimental data using Equations (18), (20) and (23)
yields D̂PS/γ = 0.14, 0.19 and −0.10 in the TMAO, DEG and urea case, respectively [25].
This implies that λ significantly contributes to the value of D̂PS, with λ/γ = 0.86, 0.81 and
1.10, respectively. We can also appreciate that l has the same sign as γ (e.g., positive in the
presence of preferential hydration) and is directly proportional to CS, with λ(0) = 0.

Similar results are obtained for PEG in the presence of salts [92,94]. In Figure 11, the
salt osmotic diffusion coefficient, D̂SP, as a function of salt concentration, CS, is shown. As
previously mentioned, the salts are NaCl, KCl, NaSCN, KSCN and Na2SO4. All D̂SP data
are positive as in the osmolyte case, with D̂SP(0) = 0, as expected for neutral macromolecules.
As in the case of osmolytes, the increase in D̂SP with CS is consistent with D̂SP ≈ CSP =
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(VP + νWVW)CS. Comparison with the reference line, VPCS, shows that PEG is preferentially
hydrated in the presence of NaCl, KCl and Na2SO4. Combination of D̂PS(CS) and D̂SP(CS)
data yield a water thermodynamic excess that is significantly higher for Na2SO4 (νW = 3500;
7.7 per ethoxy group) than for NaCl (νW = 1100; 2.4 per ethoxy group) and KCl (νW = 990;
2.2 per ethoxy group) [92]. On the other hand, D̂SP(CS) data exhibit negative deviations from
the reference line in the case of thiocyanate salts, thereby implying preferential binding with
negative nW values for NaSCN (νW =−550; −1.2 per ethoxy group) and KSCN (νW = −690;
−1.5 per ethoxy group) [94]. This is attributed to the preferential binding of thiocyanate
anions on the PEG polymer chain. Clearly, changing anion nature has an effect on salt
osmotic diffusion that is large compared to the effect observed by changing cation from
sodium to potassium.
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Figure 10. Diffusiophoresis of PEG occurs from high to low osmolyte concentration. PEG diffusio-
phoresis coefficient, D̂PS, as a function of osmolyte concentration, CS, in the TMAO (•), DEG (�) and
urea (3) cases [25]. Diagram on the right describes.
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Figure 11. Osmotic diffusion of salt occurs from high to low concentrations of PEG coils. Salt osmotic
diffusion coefficient, D̂SP, as a function of salt concentration, CS, in the Na2SO4 (©), NaCl (•), KCl (�),
NaSCN (×) and KSCN (3) cases [94,95]. Dashed line has zero intercept and slope equal to VP.

The observed effect of salts on PEG also follows the same type of trend observed in
the case of proteins, with sulfate salts known to stabilize the protein native state while
thiocyanate salts favor protein unfolding [78]. Moreover, inorganic ions have been ranked
according to their effectiveness in precipitating proteins and synthetic polymers (salting-out
strength), leading to the well-known Hofmeister series [140]. In this series, the sulfate
anion displays a great salting-out strength, whereas chloride is approximately at the
midpoint of the Hofmeister series, separating salting-out from salting-in anions such as
thiocyanate, which increase the solubility of macromolecules in water. Compared to anions,
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the Hofmeister series for cations is significantly less pronounced, and the cation ranking
can depend on the chemical nature of the macromolecule investigated, with sodium and
potassium cations exhibiting similar salting-out strength. Thus, salt osmotic diffusion data
are consistent with the Hofmeister series.

In Figure 12, the PEG diffusiophoresis coefficient, D̂PS, as a function of salt concen-
tration, CS, is shown, with D̂PS(0) = 0. As we can see, D̂PS data are positive, thereby
implying that PEG diffusiophoresis occurs from high to low salt concentrations. Except
for thiocyanate salts, D̂PS linearly increases with CS. This is the same behavior previously
shown for PEG in the presence of osmolytes. Moreover, the slope trend of diffusiophoresis
data is the same as that of osmotic diffusion data in Figure 9, with PEG diffusiophoresis
being the largest in the Na2SO4 case. In other words, D̂PS appears to be approximately
proportional to γ. As in the osmolyte case, D̂PS(CS) and D̂PS(CS) data can be combined to
determine D̂PS/γ. We obtain D̂PS/γ = 0.14, 0.13 and 0.12 in the NaCl, KCl and Na2SO4
cases, respectively. This implies that l significantly contributes to the observed value of D̂PS
also in the salt cases, with λ/γ = 0.86, 0.87 and 0.88, respectively [92]. Moreover, even if the
value increases more than three-fold when going from NaCl and KCl to Na2SO4, the value
of D̂PS/γ is approximately the same not only among these salts but also when comparing
salts and osmolytes.
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Figure 12. Diffusiophoresis of PEG occurs from high to low salt concentration. PEG diffusiophoresis
coefficient, D̂PS, as a function of salt concentration, CS, in the Na2SO4 (©), NaCl (•), KCl (�), NaSCN
(×) and KSCN (3) cases [94,95].

For the two thiocyanate cases, D̂PS values are relatively small. However, D̂PS(CS)
is appreciably larger for KSCN than for NaSCN, especially at low salt concentrations.
The difference between the two salt cases can be explained by considering the actual
binding of thiocyanate anions to PEG [94]. This process induces a negative charge on the
polymer chain, making PEG feel the diffusion potential generated by the salt gradient. The
contribution of electrophoretic diffusiophoresis to total diffusiophoresis has been evaluated
using Equation (36) and removed from experimental values of D̂PS(CS) [94]. However,
detailed calculation of electrophoretic diffusiophoresis will not be discussed here. Instead,
for simplicity, we shall just focus on the difference, ∆τ, between counterion (Na+ or K +) and
coion (SCN−) transference numbers, which is ∆τ = −0.14 for NaSCN and ∆τ = +0.05 for
KSCN [104,118,141]. According to Equation (36), NaSCN causes a negative electrophoretic
diffusiophoresis, while KSCN causes a small positive electrophoretic diffusiophoresis. Thus,
the difference between the two salt cases in Figure 11 can be explained by considering that
electrophoretic diffusiophoresis reduces the value of D̂PS in the NaSCN case relative to the
KSCN case.

In summary, experimental values of D̂PS and D̂SP as a function of cosolute concentra-
tion, CS, show that both D̂PS(CS) and D̂SP(CS) are positive quantities for neutral PEG. In
other words, PEG diffusiophoresis (cosolute osmotic diffusion) occurs from high to low



Molecules 2024, 29, 1367 23 of 37

cosolute (PEG) concentrations. Furthermore, these two coefficients are proportional to CS,
with D̂PS(0) = D̂SP(0) = 0. It was also verified that D̂SP ≈ CSP is approximately a thermo-
dynamic quantity directly related to the preferential-interaction coefficient, γ = νWCS/CW.
The thermodynamic excess of water molecules near PEG coils, νW, was determined for
selected osmolytes and salts and was found to follow the same trend observed for pro-
teins. In the presence of preferential hydration (νW > 0), PEG diffusiophoresis, which is
approximately proportional to νW, occurs in the direction in which PEG chemical potential
is lowered as expected. According to data analysis, the ratios, λ/γ and D̂PS/γ = 1 − λ/γ,
can be regarded as constants because the hydrodynamic coefficient, λ, is also proportional
to CS, with λ(0) = 0. In these cosolute cases (TMAO, DEG, sulfate and chloride salts), it was
found that D̂PS/γ = 0.10–0.20. This implies that D̂PS ≈ γ is not a suitable approximation.
In other words, D̂PS cannot be approximated as a thermodynamic quantity as in the case
of D̂SP. Interestingly, values of λ/γ for different cosolutes tend to cluster together even
if νW changes significantly. Another interesting result is that diffusiophoresis remains
positive in the presence of cosolutes that preferentially bind to PEG, i.e., with negative νW
(thiocyanates and urea). In other words, PEG diffusiophoresis still occurs from high to low
cosolute concentrations even if PEG chemical potential tends to increase in this direction.
However, the magnitude of D̂PS is relatively small compared to the cases in which νW is
positive. In the following section, a model that can explain these experimental findings will
be introduced.

9. Local-Domain Model

The observed behavior of diffusiophoresis can be examined by reconsidering a local-
domain model, which was previously introduced to describe preferential-interaction
coefficients [25,81]. The case of a spherical colloidal particle will be considered for sim-
plicity. However, it is important to remark that relevant equations do not rely on particle
shape and are also valid for polymer coils such as PEG. According to this model, the
region surrounding a colloidal particle has a composition that is different from bulk, con-
sistent with Kirkwood–Buff theory (see Figure 5). This region, which is assumed to have
a fictitious boundary, is denoted as a local domain. The remaining solution, which is a
binary cosolute–solvent reservoir, represents the bulk domain. The composition of the local
domain can be linked to the composition of the bulk domain by formally introducing a
two-phase partitioning coefficient, K, with NS/NW = K CS/CW, where NS and NW are the
cosolute and water number of molecules in the local domain. For salts, NS should be taken
as the average of cation and anion numbers in the local domain. The absence of prefer-
ential interaction corresponds to K = 1. Preferential hydration corresponds to K < 1, with
full depletion of cosolute achieved in the local domain when K→0. Cosolute preferential
binding corresponds to K > 1, with full depletion of solvent achieved when K→∞. Within
the framework of this model, the solvent thermodynamic excess is νW = NW(1 − K), with
νW = NW corresponding to the full depletion of cosolute. It is impossible to determine NW
and K separately as νW is the only experimentally accessible parameter. Furthermore, this
model does not explicitly consider the actual binding of cosolute or solvent to the particle
and excluded-volume interactions. For example, the concentration of cosolute molecules
near the particle surface may be different from bulk because their size is different from that
of solvent molecules [113]. If cosolute is larger than solvent, a depletion of cosolute occurs
in the local domain without the need to consider other physical or chemical interactions.
Nonetheless, as will be shown below, this model provides a useful conceptual picture for
understanding how preferential hydration affects diffusiophoresis.

In the case of diffusiophoresis, it becomes important to distinguish between molecules
(or ions) that are actually bound to the colloidal particle and those that are not bound but
still contribute to the local domain [25]. Bound molecules move together with the particle
during transport processes in liquids. To distinguish between these two cases, the local
domain is split into an inner local domain (I), in which molecules move together with the
particle, and an outer local domain (II), enclosing molecules that are still thermodynamically
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affected by the particle but moving together with bulk fluid. Note that a well-defined
separation into two domains is a model assumption. Indeed, it is expected that there are
many fluid molecules moving with intermediate velocities, consistent with hydrodynamic
models. Furthermore, the division into an inner domain with bound molecules and an outer
domain with non-bound molecules is certainly reasonable but not general. For example,
excluded-volume interactions invariably start at the particle surface, but they are formally
attributed to the outer domain [142].

The splitting of the local domain is illustrated in Figure 13 for a spherical particle.
Cosolute and solvent in the inner and outer local domains are in chemical equilibrium with
the binary cosolute–solvent bulk domain. As discussed below, it is only the outer domain
that is responsible for diffusiophoresis.
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Figure 13. Radial concentration profile of cosolute around a spherical particle of radius RP in the case
of preferential hydration. The outer dashed circle separates the local domain from the bulk domain.
The inner dashed circle separates the inner domain (I) from the outer domain (II). Cosolute and solvent
molecules are described as a uniform background for simplicity, with the color gradient representing
the cosolute gradient. The corresponding plot of the radial distribution function, gSP(r), is also shown,
with r = δ representing the location of the boundary between the inner and outer domains.

As in the case of the original local-domain model, the composition of the inner (I) and
outer (II) local domains are linked to the composition of the bulk domain by formally intro-
ducing partitioning coefficients, K(I) and K(II), with N(I)

S /N(I)
W = K(I)CS/CW and N(II)

S /N(II)
W

= K(II)CS/CW, where N(I)
S and N(I)

W , and N(II)
S and N(II)

W are the cosolute and water number
of molecules in domains I and II, respectively. The absence of preferential interaction
in domains (I) and (II) corresponds to K(I) = 1 and K(II) = 1, respectively. Preferential
hydration in the inner and outer domain corresponds to K(I) < 1 and K(II) < 1, with full
depletion of cosolute achieved in the domains in the limits of K(I)→0 and K(II)→0. On
the other hand, cosolute preferential binding corresponds to K(I) > 1 and K(II) > 1, with
full depletion of solvent achieved in the limits of K(I)→∞ and K(II)→∞. It is expected that
|1 − K(II)| < |1 − K(I)| as interactions with the particle are relatively weak in the outer
local domain. Although |1 − K(II)| and |1 − K(I)| may significantly depend on cosolute
nature, it is expected that the ratio, |1 − K(II)|/|1 − K(I)|, which describes the relative
change in interaction strength between (I) and (II) domains, is a weak function of cosolute
nature. Within the framework of this model, the solvent thermodynamic excesses in the
inner and outer local domains are νW

(I) = N(I)
W (1− K(I)) and νW

(II) = N(I)
W (1 − K(I)), respec-

tively, with νW
(I) = N(I)

W and νW
(II) = N(I)

W corresponding to the full depletion of cosolute
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in the two domains. The preferential-interaction coefficient considers cosolute–solvent
partitioning in both domains. Consistent with Equation (27), we have the following:

γ =
(

ν
(I)
W + ν

(II)
W

) CS

CW
(41)

Although νW
(I) and νW

(II) may significantly depend on cosolute nature, the ratio,
νW

(II)/νW
(I), which describes the relative change in interaction strength between (I) and (II)

domains may be a weak function of cosolute nature.
Now that we have incorporated splitting of the local domain in the expression of the

preferential-interaction coefficient, we can turn our attention to particle diffusiophoresis. It
is expected that the actual particle [30] undergoing diffusion, {P}, consists of the bare particle,
P, and inner local domain, with N(I)

S and N(I)
W cosolute (S) and solvent (W) molecules,

respectively. We then assume that the transport of {P} is described by a simple diffusion
equation [108]:

vP = −DP
∇µ{P}
RT

(42)

where µ{P} is the chemical potential of {P}. Note that it is assumed that no explicit depen-
dence of vP on5µS is considered in Equation (42). Based on {P} composition, we express
5µ{P} in the following way:

∇µ{P} = ∇µP + N(I)
W ∇µW + N(I)

S ∇µS (43)

In other words, 5µ{P} will depend on 5µW and 5µS because solvent and cosolute
molecules are present in the inner local domain. Since 5µW and 5µS are linked by
the Gibbs–Duhem equation, CS5µS + CW5µW = 0, we can rewrite Equation (42) in the
following way:

vP = −DP

(
∇µP

RT
− ν

(I)
W

CS

CW

∇µS

RT

)
(44)

where we have also used νW
(I) = N(I)

W (1 − K(I)) with K(I) = (N(I)
S /N(I)

W )/(CS/CW). Finally, a
comparison with Equation (14) shows that the hydrodynamic coefficient is as follows:

λ = ν
(I)
W

CS

CW
(45)

This model correctly predicts that λ is proportional to CS. Furthermore, it is positive
when there is an excess of solvent molecules binding to the particle, consistent with
preferential hydration. On the other hand, λ is negative when cosolute binds to the particle.
Within the framework of this model, λ/γ and D̂PS/γ are essentially constants representing
the inner and outer domains, respectively. Specifically, they are two complementary
fractions of water thermodynamic excess:

λ

γ
=

ν
(I)
W

ν
(I)
W + ν

(II)
W

(46a)

D̂PS

γ
=

ν
(II)
W

ν
(I)
W + ν

(II)
W

(46b)

Experimental results on PEG in the preferential-hydration cases can be explained
using this model. For example, νW = 1100 and D̂PS/γ = 0.14 in the NaCl case corresponds
to νW

(I) = 945 and νW
(II) = 155. The obtained values of D̂PS/γ = 0.10–0.20 represent the

fraction of solvent thermodynamic excess in the outer domain. If νW
(II)/νW

(I) is a weak
function of cosolute type, then D̂PS/γ for different cosolutes tend to be close to each other
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even if νW
(II) + νW

(I) vary significantly from cosolute to cosolute. This is consistent with
experimental findings.

In the presence of cosolute preferential binding, experimental results show that γ < 0
and D̂PS/γ < 0. As discussed for PEG, in the presence of thiocyanate salts, actual cosolute
binding occurs. This leads to negative values of νW

(I). If we then assume that νW
(II) of the

outer domain is also negative, then we obtain D̂PS < 0 and D̂PS/γ > 0, in disagreement with
experimental results. Indeed, experimental findings can be explained only by assuming
that νW

(II) is positive even for urea and thiocyanate salts. For example, νW = −520 and
D̂PS/γ = −0.10 in the urea case leads to νW

(I) = −570 and νW
(II) = +50. This interesting

result may be explained by considering that overall PEG–urea interactions are the result
of an actual PEG–urea binding process (inner domain, νW

(I) < 0) and residual excluded-
volume interactions, which are associated with the outer domain and are responsible
for νW

(II) > 0 [142].

10. The lysozyme–Salt–Water System

Salt-induced protein diffusiophoresis, D̂PS, and salt osmotic diffusion, D̂SP, have been
reported for lysozyme at pH 4.5 and 25 ◦C as a function of NaCl and KCl concentra-
tion, CS [66,71,95]. Lysozyme is a globular protein with a molecular weight of 14.3 kDa that
is chemically stable and commercially available at high purity. Due to these properties, this
protein has been extensively studied. It is widely recognized as a model protein in the fields
of biophysics and structural biology [130,143–145]. Since the lysozyme isoelectric point
is 11, this protein is normally found to be positively charged. Indeed, lysozyme structural
charge is known to be +10 at pH 4.5 [71,145], with chloride anions acting as counterions
when NaCl or KCl are employed as supporting electrolytes.

The experimental behavior of salt osmotic diffusion, D̂SP(CS), is shown in Figure 14.
Here, we can see that D̂SP linearly increases with CS. As in the case of PEG (see Figure 11),
changing NaCl with KCl has essentially no appreciable effect on D̂SP. However, D̂SP
extrapolated at CS = 0 is not zero but remains positive. This residual intercept is attributed
to protein charge. Specifically, we have D̂SP ≈ |ZP|/2 + (VP + νWVW)CS from D̂SP ≈ CSP
and Equation (29).
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Figure 14. Osmotic diffusion of salt occurs from high to low lysozyme concentrations. Salt os-
motic diffusion coefficient, D̂SP, as a function of salt concentration, CS, in the NaCl (•) and KCl (�)
cases [66,71]. Dashed line has same intercept as D̂SP data and slope equal to VP.

In Figure 14, all D̂SP(CS) data are above the baseline |ZP|/2 + VPCS, thereby implying
that lysozyme preferential hydration occurs in the presence of both salts. Application of
Equations (18), (20) and (23) to D̂PS(CS) and D̂SP(CS) data, which confirms that D̂SP≈CSP is
a suitable approximation, rigorously yields γ(CS). For both salt cases, the values of ZP = 7.5
and νW = 150 are extracted. This charge value is somewhat lower than the protein structural
charge of ZP = 10 [145]. The observed difference is consistent with the presence of a Stern
layer surrounding the charged protein with about three counterions bound to this globular
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macroion. Thus, the value of ZP = 7.5 should be taken as an effective, renormalized charge,
incorporating the contribution of the Stern layer [71].

The experimental behavior of lysozyme diffusiophoresis coefficient, D̂PS(CS), is shown
in Figure 15 for both salt cases [95]. Contrary to salt osmotic diffusion, there is a marked
difference between the two D̂PS(CS) curves. In the KCl case, D̂PS linearly increases with
CS, with a small negative intercept, which will be further discussed later. This behavior
is approximately the same as that shown for PEG with the same salt (see Figure 11). In
contrast, D̂PS in the NaCl case is relatively large, with an evident positive intercept.
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Figure 15. Diffusiophoresis of lysozyme occurs from high to low salt concentration. Lysozyme
diffusiophoresis coefficient, D̂PS, as a function of salt concentration, CS, in the NaCl (•) and KCl (�)
cases [95]. Difference in counterion (Cl−) and coion (Na+ or K+) transference number, ∆τ, is reported
for both salts.

The difference between the two salt cases can be explained by considering Nernst–
Planck equations. According to Equation (36), D̂PS is directly proportional to the difference
between counterion (Cl−) and coion (Na+ or K+) transference numbers, ∆τ. Since ∆τ = 0.21
for NaCl and ∆τ = 0.02 for KCl [104,105,118], the diffusion potential (internal electric field)
produced by salt gradient is significant only in the NaCl case. Thus, the difference between
the two D̂PS(CS) curves in Figure 15 is essentially attributed to the positive contribution of
electrophoretic diffusiophoresis in the NaCl case.

11. Electrophoretic and Residual Diffusiophoresis

For lysozymes with NaCl, it is possible to determine ZP by extrapolating 2D̂PS/∆τ
to CS = 0 according to Equation (36). In Figure 16, 2D̂PS/∆τ is plotted as a function of CS.
In the same figure, the plot of 2D̂SP/(1 − 2ατS)≈2CSP, which also becomes ZP at CS = 0
according to Equation (38), is included for comparison. This latter plot yields ZP = 7.5 at
CS = 0, as already discussed in Section 10. Interestingly, extrapolation of 2D̂PS/∆τ yields a
value of ZP = 1.8, in substantial disagreement with osmotic diffusion data [71]. It will be
now shown that this apparently low charge is mostly related to the electrical-double-layer
effect, which is predicted to give rise to a significant electrophoretic effect even at salt
concentrations of the order of 1–10 mM. In other words, the value of D̂PS significantly
deviates from Equation (36) even at salt concentrations as low as CS = 1 mM.

The effect of diffusion potential on diffusiophoresis of charged particles at low salt concen-
tration can be described by applying the type of models employed in electrophoresis [17,146].
According to the electrical-double-layer (EDL) theory [147,148], the electrophoretic mobility
of a particle is expected to drop dramatically as solution ionic strength increases. This effect
is related to the diffuse layer surrounding charged particles in electrolyte solutions. Since an
electric field tends to move the ion cloud in the opposite direction, a viscous drag applies to
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the macroion, thereby slowing down its motion. This electrophoretic effect can be incorporated
into Equation (36) by writing the following:

D̂PS = σ
|ZP|

2
∆τ (47)

where s is an electrokinetic coefficient, with σ→1 in the limit of CS = 0, consistent with
Equation (36) [71]. Note that ZP in Equation (47) represents the charge of the particle at
its slip boundary. It can be approximately assumed to be the same as ZP = 7.5 extracted
from salt osmotic diffusion data because it takes into account the contribution of small
ions located within the hydrodynamic volume of the diffusion particle. As CS increases, s
sharply decreases, making s |ZP| become a small fraction of |ZP| at salt concentrations of
the order of 0.1 M [71].
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Figure 16. Plots of 2D̂PS/∆τ (©) and 2D̂SP/(1 − 2ατS) (•) as a function of salt concentration, CS, in
the NaCl case. According to Equations (36) and (38), both intercept values represent |ZP|.

It is important to observe that the introduction of σ in the Nernst–Planck equation for
D̂PS does not require a modification of the Donnan expression of CSP= |ZP|/2 as long as
the electrical potential on the macroion surface at the slip boundary, which is known as zeta
potential, ζ, is weak [71]. This approximation is suitable for proteins because they have
relatively low charge density on their surface. The presence of the electrophoretic effect may
still be formally described using Nernst–Planck equations. However, the neutral protein
component of the ternary mixture needs to be redefined. In its original description, the
protein component consists of a macroion with charge, ZP, and |ZP| counterions. These
counterions also act as common ions because they are shared with the salt component. To
incorporate σ, the macroion needs to be redefined so that it has an effective charge, σZP,
consistent with Equation (47). The newly defined macroion must formally contain the
macroion itself (with charge ZP) and a contiguous fraction of the diffuse layer, such that
the net macroion charge reduces from ZP to σZP. In other words, the charge of the inner
fraction of the diffuse layer must be −(1 − σ)ZP [71]. As further described in Figure 17, the
inner fraction of the diffuse layer contains an excess of counterions, (1 − σ)|ZP|/2, and
a corresponding depletion of coions, −(1 − σ)|ZP|/2. Thus, the redefined macroion is
formally composed by the original macroion to which (1− σ)|ZP|/2 counterions are added
and (1 − σ)|ZP|/2 coions are removed. The common ions stoichiometrically balancing
this macroion must consist of (1 + σ)|ZP|/2 counterions and (1 − σ)|ZP|/2 coions. In
other words, the common ion is redefined as a combination of counterions and coions. This
combination ensures that the total number of common ions is still |ZP| and CSP = |ZP|/2
remains valid.
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Figure 17. Coion (+) and counterion (−) density distributions (left), ρ+(r) and ρ−(r), as a function of
the radial distance, r, starting from r = RP, the location of the slip surface of the spherical particle
with positive charge, ZP. The common-ion effect is due to ZP counterions. As r increases, ρ+ and ρ−
both approach the value of the bulk salt concentration, ρ+(∞) = ρ−(∞) = CS. Density distributions are
assumed to respect symmetry conditions applicable to weakly charged globular macromolecules:
CS − ρ+(r) =ρ−(r) − CS. The radial distance, r = δ, delineates the boundary of the redefined macroion,
with net charge, σZP (right). The fluid domain enclosed by this boundary contains an excess of
(1− σ)ZP/2 counterions and a depletion of (1-σ)ZP/2 coions. The common-ion effect is then described
by ZP − [(1 − σ)ZP/2] = (1 + σ)ZP/2 counterions and 0 − [−(1 − σ)ZP/2] = (1 − σ)ZP/2, with the
total number of common ions being still ZP.

The incorporation of σ in Equation (37) also has an impact on the expression of λ
given by Equation (37). After inserting the expression of D̂PS given by Equation (47) in
Equation (18) and setting γ = CSP = |ZP|/2, we obtain the following [71]:

λ = |ZP|
(1 + σ)τS + (1− σ)τC

2
(48)

where (1 + σ)|ZP|τS/2 and (1 − σ)|ZP|τC/2 terms in Equation (48) replace |ZP|τS in
Equation (37) as a direct consequence of the redefinition of the protein component.

The electrophoretic effect is described by the function σ(CS) starting from σ = 1 at
CS = 0. As CS increases, σ sharply decreases, making σZP become just a small fraction of ZP.
To appreciate the significance of this electrokinetic factor for proteins and globular colloidal
particles in general, the following expression may be considered [71]:

σ =
f (κRP)

1 + κRP
(49)

where RP is the particle hydrodynamic radius (radius at the slip boundary), κ ≡ (8000pNAλBI)1/2

is the Debye constant, with I being the salt ionic strength, NA the Avogadro’s number and
λB the Bjerrum length (0.7151 nm for water at 25 ◦C), and f (κRP) is a corrective function. In
Equation (49), 1/(1 + κRP) is the dominant factor describing the electrophoretic effect. This
factor also describes the effect of ionic strength on zeta potential, ζ, according to Fζ/RT =
ZP(λB/RP)/(1 + κRP).

One of the most employed expression of f (κRP) is Henry’s function [17]:

f (x) =
3
2
− ex

[
15
2

E7(x)− 3E5(x)
]

(50)

where En(x) ≡
∫ ∞

1 t−ne−xtdt. This takes into accounts the curvature of spherical particles
with f (0) = 1 (Debye–Huckel limit) and f (∞) = 3/2 for a planar surface (Smoluckowski limit).
For lysozyme, the electrophoretic factor can be evaluated as a function of salt concentration
at 25 ◦C using Equations (49) and (50) and lysozyme hydrodynamic radius, RP = 1.863 nm.
Related data are reported in Table 1.
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Table 1. Electrokinetic factor, σ, as a function of salt concentration, CS.

CS/M κRP f (κRP) σ CS/M κRP f (κRP) σ

0.001 0.194 1.002 0.8392 0.30 3.357 1.113 0.2554

0.002 0.274 1.006 0.7895 0.40 3.876 1.129 0.2315

0.005 0.433 1.010 0.7045 0.50 4.334 1.142 0.2141

0.010 0.613 1.013 0.6280 0.60 4.747 1.153 0.2006

0.020 0.867 1.022 0.5476 0.70 5.128 1.163 0.1898

0.050 1.370 1.039 0.4385 0.80 5.482 1.171 0.1807

0.10 1.938 1.063 0.3617 0.90 5.814 1.179 0.1730

0.20 2.741 1.092 0.2919 1.00 6.129 1.186 0.1664

Note that EDL theory is expected to be accurate at relatively low salt concentrations
(≈0.1 M or less) due to ion–ion steric effects and related ion–ion correlation. Nonethe-
less, Table 1 allows us to appreciate that the most significant change in s occurs within
the reliable low salt concentration range. The 2D̂PS/∆τ data in Figure 16 refer to salt
concentrations above 0.1 M. According to Table 1, we have σ ≈ 0.2 in this concentration
range. Thus, the extrapolation of these data at CS = 0 is predicted to yield a charge that
is about 20% of the value extracted from 2D̂SP/(1 − 2ατS) data. This is consistent with
the discrepancy observed in Figure 16. Thus, the introduction of the electrophoretic factor
in Equation (47) represents a critical correction to Nernst–Planck equations so that these
equations can accurately describe the limiting behavior of experimental data obtained at
salt concentrations of ≈0.1 M and higher.

We are now in a position to quantitatively examine the experimental behavior of
D̂PS(CS) in Figure 15. It is convenient to write the following:

D̂PS = D̂ e
PS + D̂ r

PS (51)

where D̂ e
PS is the electrophoretic contribution to diffusiophoresis, which is evaluated using

ZP = 7.5 in Equation (47). The second term in Equation (51), D̂ r
PS, is a residual contribution,

which is calculated from D̂PS–D̂ e
PS [71,95]. The corresponding plots of D̂ r

PS(CS) are shown
in Figure 18 for both salts. Here, we can see that D̂ r

PS linearly increases with CS for both salt
cases. Moreover, changing NaCl with KCl now has a small effect on D̂PS. This analysis
confirms that the difference between the two salt cases shown in Figure 14 is due to
electrophoretic diffusiophoresis. Interestingly, D̂ r

PS retains a residual negative intercept,
which is virtually the same for both salts, i.e., D̂ r

PS(0) = −0.07 ± 0.01. This result, which
is not observed in the PEG case, hardly depends on the accuracy of D̂ e

PS determination
because its contribution is invariably very small in the KCl case. This negative intercept can
be attributed [95] to another small EDL effect known as the chemiphoresis [15] mechanism.
Specifically, a salt concentration gradient is responsible for a corresponding gradient of ionic
strength within the EDL of a spherical particle, which causes particle diffusiophoresis from
low to high salt concentrations. Chemiphoresis negatively contributes to diffusiophoresis
and is predicted to be the same for both salts. Since it is typically small, it will be ignored in
the analysis below.

The slope of D̂ r
PS(CS) in Figure 18 can be described within the framework of the

preferential-hydration mechanism and the local-domain model already employed for PEG.
As in the diffusiophoresis coefficient, we split the preferential-interaction coefficient, g, into
two terms:

γ = γe + γr (52)

where γe = |ZP|/2 and γr = νWVWCS. We can then determine the ratio, D̂ r
PS/γr, for

both salt cases. The obtained values of D̂ r
PS/γr = 0.23 (NaCl) and D̂ r

PS/γr = 0.25 (KCl)
for lysozyme [108] are somewhat higher than those shown earlier for PEG. Nonetheless,
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they are still a small fraction of one, consistent with the local-domain model. If we use
Equation (46b) with νW = 150 and D̂ r

PS/γr = 0.24 for both salts, we obtain νW
(I) = 115 and

νW
(II) = 35.
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12. Concluding Remarks

There is a growing number of experimental observations, applications and future op-
portunities related to diffusiophoresis [13]. This review has focused on the use of Rayleigh
interferometry as a precise experimental technique for measuring multicomponent-diffusion
coefficients on ternary aqueous mixtures of macromolecules (PEG or lysozyme) in the pres-
ence of cosolutes (salts or osmolytes). These data are employed to characterize the behavior
of the diffusiophoresis coefficient, D̂PS, as a function of cosolute concentration, CS. These
data are also used to determine the corresponding cosolute osmotic diffusion coefficient,
D̂SP. Examination of diffusiophoresis within the framework of non-equilibrium thermo-
dynamics allows us to relate D̂PS = γ − λ to the preferential-interaction coefficient, γ, and
the Onsager transport coefficient, λ. The combination of D̂PS and D̂SP data enables the
characterization of γ and λ. PEG diffusiophoresis in response to salt or osmolyte gradi-
ents is driven by a preferential-hydration mechanism, while lysozyme diffusiophoresis
in response to salt gradients is driven by both preferential-hydration and electrophoretic
mechanisms, the latter being the mechanism extensively described in the diffusiophoresis
literature [12,13,19,20]. While the same effective charge (ZP = 7.5) successfully explains
both D̂PS and D̂SP data for lysozyme, it is not clear whether this agreement remains valid
for other charged particles. Since proteins are weakly charged macromolecules, future
multicomponent-diffusion studies should compare salt-induced diffusiophoresis with salt
osmotic diffusion for strongly charged macromolecules such as nucleic acids, micelles
and vesicles. It would also be interesting to explore diffusiophoresis for charged macro-
molecules in which the electrophoretic mechanism drives diffusiophoresis from low to
high salt concentration while the preferential-hydration mechanism drives diffusiophoresis
in the opposite direction. In this case, one can predict that there is a salt concentration at
which the sign of D̂PS changes from negative to positive. This implies that a steady salt
concentration gradient would focus macromolecules at a specific location, corresponding
to the salt concentration where D̂PS = 0. This situation is analogous to isoelectric focusing
in electrophoresis. It is also important to examine diffusiophoresis for neutral globular
nanoparticles possessing interfacial PEG moieties. This is important for assessing the extent
to which the values of preferential-hydration parameters, νW (per ethoxy group) and D̂PS/γ
extracted for PEG, are applicable to PEG-based nanoparticles. Finally, future studies should
also systematically investigate diffusiophoresis in the proximity of liquid–liquid phase
separation (or cloud point). It is known that proteins [149,150], PEG [151] and micellar
systems [152] are susceptible to phase separation in the presence of certain salts. Recent
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studies on tyloxapol micelles [23] indicate that salt-induced diffusiophoresis of colloidal
particles dominates over their Brownian motion near phase-separation conditions due
to a large osmotic compressibility. These studies would be useful for understanding the
diffusiophoresis of nanoparticles in the presence of salt brines, with potential applications
of diffusiophoresis to enhanced oil recovery [35].
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