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Abstract
Suppose that an informant (test, expert, device, perceptual system, etc.) is unlikely 
to err when pronouncing on a particular subject matter. When this is so, it might be 
tempting to defer to that informant when forming beliefs about that subject matter. 
How is such an inferential process expected to fare in terms of truth (leading to true 
beliefs) and evidential fit (leading to beliefs that fit one’s total evidence)? Using a 
medical diagnostic test as an example, we set out a formal framework to investigate 
this question. We establish seven results and make one conjecture. The first four 
results show that when the test’s error probabilities are low, the process of deferring 
to the test can score well in terms of (i) both truth and evidential fit, (ii) truth but 
not evidential fit, (iii) evidential fit but not truth, or (iv) neither truth nor eviden-
tial fit. Anything is possible. The remaining results and conjecture generalize these 
results in certain ways. These results are interesting in themselves—especially given 
that the diagnostic test is not sensitive to the target disease’s base rate—but also 
have broader implications for the more general process of deferring to an inform-
ant. Additionally, our framework and diagnostic example can be used to create test 
cases for various reliabilist theories of inferential justification. We show, for exam-
ple, that they can be used to motivate evidentialist process reliabilism over process 
reliabilism.
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1  Introduction

Consider a doctor (“Doc”) who follows test T when determining whether his 
patients have disease D. If T says of a given patient S that she has D, then Doc infers 
that she has D. If T says of a given patient S that she does not have D, then Doc 
infers that she does not have D. Call this process “Follow-T”. Suppose that T’s error 
probabilities are low in that:

These probabilities entail that T is both “highly sensitive”—rarely leading to false 
negatives—and “highly specific”—rarely leading to false positives. However, do 
these probabilities make it probable that Follow-T will have a high truth-ratio (i.e., a 
high ratio of true beliefs produced to total beliefs produced)? And, given those prob-
abilities, how will Follow-T fare in terms of evidential fit (leading to beliefs that fit 
the total evidence)?

Because Follow-T is an inferential (or “belief-dependent”) process, the truth-
ratios at issue are conditional truth-ratios. A process’s conditional truth-ratio is its 
truth-ratio restricted to cases where all the input beliefs are true.1 For ease of pres-
entation, however, we shall suppress this detail in what follows and speak simply of 
“truth-ratios”.

Two virtues of Follow-T are apparent. First, when Doc uses Follow-T, his diag-
nostic judgments are based on evidence—evidence about what T says. Second, that 
evidence always discriminates between the hypothesis that S has D and the hypoth-
esis that S does not have D in that:

Things would be quite different if Doc used, for example, random guessing or crys-
tal ball gazing. If he used the former, then his diagnostic judgments would not be 
based on evidence (or anything else). If he used the latter, then though his diagnos-
tic judgments would be based on evidence—evidence about what his crystal ball 
says—that evidence would be worthless in that it would never discriminate between 
the hypothesis that S has D and the hypothesis that S does not have D.2

Doc’s process is not beyond reproach, however. For Follow-T can lead Doc to 
form beliefs that fail to fit his total evidence. Let “S” be one of Doc’s patients, let 
“Has” be the claim that S has D, and let “Says” be the claim that T says that S has D. 

(1.1)Pr (T says that S does not have D | S has D) = 0.05

(1.2)Pr (T says that S has D | S does not have D) = 0.05

(1.3)
Pr (T says that S has D | S has D) = 0.95 >

0.05 = Pr (T says that S has D | S does not have D)

(1.4)
Pr (T says that S does not have D | S has D) = 0.05 <

0.95 = Pr (T says that S does not have D | S does not have D)

1  See Goldman (1979) on conditional reliability versus unconditional reliability.
2  For discussion of discrimination, favoring, and how to measure them, see, for example, Edwards 
(1992), Hacking (1965), Roche and Sober (2019), Royall (1997) and Sober (2008, 2009).
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Suppose that S is a random member of the population from Doc’s perspective, and 
that Doc knows that D’s base rate in the population is 0.0001 (and has no additional 
evidence relevant to the matter). Given all this, Doc’s prior probability for Has is (or 
should be) 0.0001. It follows by Bayes’s theorem that Pr(Has | Says) roughly equals 
0.002.3 Thus, if and when Doc learns Says and uses Follow-T to infer Has, Follow-
T leads him to form a belief that fails to fit his total evidence, for the probability of 
Has given his total evidence is equal to Pr(Has | Says) and thus is very close to 0.4

This is closely related to the base-rate fallacy. This probabilistic fallacy can 
be formulated as follows (where “E” is some piece of evidence and “H” is some 
hypothesis):

 Thus

This is a fallacy in that there can be cases where the premises are true and the con-
clusion is false.5 The case of Doc is a case in point. Pr(~Says | Has) and Pr(Says | 
~Has) are both low—these are the error probabilities from (1.1) and (1.2)—but so 
too is Pr(Has | Says).6

It is far from clear, then, how Follow-T fares in terms of truth and evidential fit. 
When Doc uses Follow-T (and the error probabilities and base rate are as specified 
above), he takes into account evidence that discriminates between the hypothesis 
that S has D and the hypothesis that S does not have D. This is some reason to think 
that Follow-T is likely to have a high truth-ratio. Yet, when doing so, he fails to take 
into account prior probabilities and can therefore be led to form beliefs that do not 
fit his total evidence. This is some reason to think that Follow-T scores poorly in 
terms of evidential fit.7

Pr (∼ E | H) is low.

Pr (E | ∼ H) is low.

Pr (H | E) is high.

3  Pr(Has | Says) = [Pr(Has)Pr(Says | Has)] / Pr(Says) = [(0.0001)(0.95)] / 0.05009 ≈ 0.002. Here, 
Pr(Says) = Pr(Has)Pr(Says | Has) + Pr(~Has)Pr(Says | ~Has).
4  We assume that a belief that H fits one’s total evidence if and only if the probability of H given one’s 
total evidence is high. Note, however, that we do not assume that if a belief fails to fit one’s total evi-
dence, then that belief is unjustified. That is a separate issue. We shall focus on justification in Sec-
tion 4.2. See Feldman and Conee (1985) for defense of a theory of justification on which a certain notion 
of “fittingness” plays a central role.
5  Our characterization of the base-rate fallacy is similar to the characterizations in Howson and Urbach 
(2006, p. 24) and Psillos (2007, pp 17–18).
6  We are assuming that 0.05 is a low value. But there is nothing essential in this. For any value v such 
that 0.05 > v > 0, there are cases where (a) Pr(~Says | Has) and Pr(Says | ~Has) are both equal to v 
and (b) Pr(Has | Says) is less than or equal to 0.5 and thus is not high. For example, when Pr(~Says | 
Has) and Pr(Says | ~Has) are both equal to 0.0005 and Pr(Has) is equal to 0.0000001, Pr(Has | Says) is 
roughly equal to 0.0002.
7  Isaacs (2021) makes a similar point about “calibrationism” (or “calibrationism schema”), where this 
is the view that “[i]f the expected reliability of an agent’s judgment regarding p is r, then if that agent 
judges that p the agent’s credence in p should be r” (p. 248). He argues in particular that calibrationism 
relies on the base-rate fallacy.
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Our interest in Follow-T is due to our interest in the following belief-forming 
strategy, of which Follow-T is an instance:

Follow-Informant: For any proposition P in domain M, if informant INF says that 
P is true, then believe that P is true.

This should be understood broadly so that INF can be a person (e.g., a physicist), a 
test (e.g., T), a device (e.g., a fuel gauge), and even a perceptual system (e.g., a vis-
ual system). What should we make of Follow-Informant? If you want to have belief-
forming processes that score well in terms of truth and/or evidential fit, should you 
use Follow-Informant? We shall see, in Section 4.1, that the answer to this question 
is “not necessarily”, for even when INF’s error probabilities are low, it need not be 
the case that Follow-Informant will score well in terms of truth or evidential fit. 
Since Follow-T is an instance of Follow-Informant, the same can be said of it.

The issues here are not of mere theoretical interest. For it is not uncommon to 
find ourselves relying on the pronouncements of informants. Although we shall 
focus mostly on Follow-T in the next two sections, bear in mind that what we say 
about it bears more generally on Follow-Informant and other instances thereof.

Follow-Informant is not the only way to make use of an informant’s pronounce-
ments. In Section 4.1, we describe a Bayesian strategy, which we return to briefly at 
the end of Section 4.2. The latter is not our focus in what follows, but not because 
we take it to be inferior to or less interesting than Follow-Informant. Quite the oppo-
site. We focus on Follow-Informant in part due to the fact that it has been underex-
plored in comparison to Bayesian strategies.

The question of how Follow-T scores, or is likely to score, in terms of truth 
and evidential fit is underspecified at this point. We shall remedy this by setting 
out, in Section  2, a framework called “Constant” and reformulating the ques-
tion in terms of it. We shall then show, in Section 3, that the situation is mixed. 
There are instances of Constant in which Follow-T scores well in terms of both 
truth and evidential fit. But there are also instances in which Follow-T scores 
well in terms of truth but not evidential fit, instances in which it scores well in 
terms of evidential fit but not truth, and instances in which it does not score well 
in terms of either evidential fit or truth. We shall also show that some of these 
results can be generalized in various respects by relaxing certain constraints in 
Constant.

Though these results are interesting in themselves, they are also interesting 
because of how they can be brought to bear on various issues in epistemology 
and philosophy of science. In Section  4.1, we show how these results bear on 
the viability of Follow-Informant. In Section 4.2, we show how these results can 
be used to construct test cases for various reliabilist theories of justification. In 
particular, we show that some such cases suggest that “process reliabilism” is 
inferior to “evidentialist process reliabilism”, and that others suggest that the 
latter is inferior to “indicator reliabilism”.
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2 � Questions

We mentioned above the need to introduce a framework for making precise our tar-
get question. That framework is as follows:

Constant: (i) Doc will use T on each member of a random sample of (finite) size 
n of a given population; (ii) Pr(Has) is constant across all uses of T; (iii) Pr(~Says 
| Has) and Pr(Says | ~Has) are constant across all uses of T; and (iv) Pr(Has), 
Pr(~Says | Has), and Pr(Says | ~Has) are greater than 0 and less than 1.

This is a natural place to start, given its simplicity. In reality, of course, T’s error 
probabilities could vary across time, and thus across uses of T, and, similarly, 
Pr(Has) could vary from one test subject to another.

Constant is a general framework for generating specific sets of conditions. When 
values for n, Pr(Has), Pr(~Says | Has), and Pr(Says | ~Has) are specified, the result 
is a specific set of conditions, and that set is an instance of Constant.

We can now state our four main target questions:

Question 1: Are there instances of Constant such that T’s error probabilities are 
low, it is highly probable that Follow-T will have a high truth-ratio, and Follow-T 
cannot lead Doc to form beliefs that fail to fit his total evidence?

Question 2: Are there instances of Constant such that T’s error probabilities are 
low, it is highly probable that Follow-T will have a high truth-ratio, and Follow-T 
can lead Doc to form beliefs that fail to fit his total evidence?

Question 3: Are there instances of Constant such that T’s error probabilities are 
low, it is not highly probable that Follow-T will have a high truth-ratio, and Fol-
low-T cannot lead Doc to form beliefs that fail to fit his total evidence?

Question 4: Are there instances of Constant such that T’s error probabilities are 
low, it is not highly probable that Follow-T will have a high truth-ratio, and Fol-
low-T can lead Doc to form beliefs that fail to fit his total evidence?

The first and last of these questions ask about pure cases, where Follow-T fares well 
(or poorly) in terms of both truth and evidential-fit. The other two questions ask 
about mixed cases, where Follow-T fares well in terms of truth but not evidential-fit 
or vice versa.

We shall assume, for simplicity, that the threshold for a high probability equals 
the threshold for a high truth-ratio. We call this “t” and stipulate that 0.5 ≤ t < 1. We 
shall also assume that this threshold determines the threshold for a low error proba-
bility in that the latter equals 1 – t.8 Finally, we shall assume for now, that t = 0.95. 

8  This assumption is fairly natural, for “high probability” is a measure of closeness to 1 and “low prob-
ability” is a measure of closeness to 0. If one regards, say, 0.85 to be a reasonable threshold for high 
probability, it is natural to regard 0.15 to be a reasonable threshold for low probability; after all, each is 
the same distance from 1 and 0, respectively.
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Consequently, a high probability is greater than 0.95, a high truth-ratio is greater than 
0.95, and a low error probability is less than 0.05. Note, however, that we consider 
alternative values for t at the end of Section 3.

Our context of interest differs importantly from contexts in which the aim is to try 
to estimate an instrument’s error probabilities by repeated usages of it. We are assum-
ing specific values for T’s error probabilities, and considering some “downstream” 
questions based on that assumption. We think that estimation contexts are interesting 
and important, but require separate treatment (see Osimani & Landes, 2023 for recent 
discussion).

The questions above are framed in terms of high probabilities of high truth-ratios 
as opposed to just high truth-ratios. The reason for this can be seen by returning 
to random guessing. There are clearly cases in which random guessing happens to 
have a high truth-ratio. After all, a random guess can be true by luck, and so too 
can all random guesses. However, random guessing nonetheless has no viability 
when it comes to the goal of truth. The situation would be different, we take it, if it 
was highly probable in a given case for random guessing to have a high truth-ratio. 
Hence, though there are clearly instances of Constant in which Follow-T has a high 
truth-ratio, we want to set aside this fact as rather uninformative with respect to its 
viability, and focus on whether it is highly probable that Follow-T will have a high 
truth-ratio. If, say, all instances of Constant were such that it is highly probable that 
Follow-T will have a high truth-ratio, then this would give Follow-T a significant leg 
up on random guessing.

There is no mention of “reliability” in the four questions above. But for each of 
those questions, and for each of the three reliabilist theories noted above in Sec-
tion 1, there is a corresponding reliability question about Follow-T. We shall return 
to this in Section 4.2.

Our next task is to answer Question 1 - Question 4.

3 � Results

We establish seven results in this section. We also make one conjecture. The first 
four results are answers to Question 1 - Question 4. The remaining results and the 
conjecture are in some ways more general than those results.

Constant specifies that Doc uses Follow-T on each member of a random sample 
of n people. This means that he runs T on each member of the sample, notes what 
T says in each case, and comes to believe whatever it is that T says. He thus uses 
Follow-T n times to form n beliefs. We can think of each usage as a “trial”, where 
successes are true beliefs and failures are false beliefs. The probability of a success 
in a given trial is given by:

(3.1)
p = Pr (Has&Says) + Pr (∼ Has& ∼ Says)

= Pr (Has)Pr (Says | Has) + Pr (∼ Has)Pr (∼ Says | ∼ Has)

= Pr (Has)
[
1– Pr (∼ Says | Has)

]
+ [1– Pr (Has)]

[
1– Pr (Says | ∼ Has)

]
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 Constant also specifies that Pr(Has), Pr(~Says | Has), and Pr(Says | ~Has) are con-
stant across trials. It follows that this is a binomial experiment in which p is fully 
determined by these three probabilities.9

The probability of exactly x successes in a binomial experiment is given by:

 Here “nCx” is the number of ways in which there can be exactly x successes in n tri-
als, where this equals:

 Given (3.2), it follows that the probability of more than x successes in a binomial 
experiment is given by:

 In the case of Follow-T, we are interested in the probability of its having a high (> 
t) truth-ratio. Thus, the probability at issue is given by:

 Since this probability is fully determined by the values for n and p, and since, as 
noted above, p is fully determined by Pr(Has), Pr(~Says | Has), and Pr(Says | ~Has), 
it follows that whether it is highly probable that Follow-T will have a high truth-
ratio is fully determined by the values for n, Pr(Has), Pr(~Says | Has), and Pr(Says | 
~Has).

We mentioned at the end of the previous section that we would consider four 
instances of Constant. These instances are set out in Table 1. Table 2 lays out, for 
each of these instances of Constant, values for Pr(> t), Pr(Has | Says), and Pr(~Has 

(3.2)Pr (= x) =
(
nCx

)
(p)x(1–p)n–x

(3.3)n!∕x!(n–x)!

(3.4)Pr (> x) =

i=n∑

i=x+1

(
nCi

)(
pi
)
(1–p)n−i

(3.5)Pr (> t) =

i=n∑

i=nt+1

(
nCi

)(
pi
)
(1–p)n−i

9  Binomial experiments have four essential characteristics. First, there is a fixed number of trials: “n”. 
Second, each trial has the same two possible outcomes: “success” and “failure”. Third, the probability 
of a success in any given trial is probabilistically independent of the outcomes in the other trials. Fourth, 
the probability of a success is the same for every trial: “p”. See any standard text book on statistics for an 
introduction to binomial experiments.

Table 1   Constant1, Constant2, Constant3, and Constant4
Constant1 Constant2 Constant3 Constant4

n 10,000 10,000 10,000 10,000
Pr(Has) = 0.5 = 0.001 = 0.5 = 0.001
Pr(~Says | Has) = 0.025 = 0.025 = 0.04999999 = 0.04999999
Pr(Says | ~Has) = 0.025 = 0.025 = 0.04999999 = 0.04999999
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| ~Says). Recall that we are assuming (for now) that t = 0.95. This is the threshold 
for both a high probability and a high truth-ratio. Recall as well that we assume 
that this implies that the threshold for a low probability is 1 – t = 0.05. Given these 
assumptions, Follow-T’s error probabilities are low in all four instances of Constant. 
Yet while it is highly probable that Follow-T will have a high truth-ratio in Constant1 
and Constant2, it is not highly probable that Follow-T will have a high truth-ratio in 
Constant3 and Constant4. (The first row of Table 2 shows this.) And while Follow-
T cannot lead Doc to form beliefs that fail to fit his total evidence in Constant1 and 
Constant3, Follow-T can lead Doc to form beliefs that fail to fit his total evidence in 
Constant2 and Constant4. (The second and third rows of Table 2 show this.)10

This all suffices to show:

Result 1: There are instances of Constant such that T’s error probabilities are low, 
it is highly probable that Follow-T will have a high truth-ratio, and Follow-T can-
not lead Doc to form beliefs that fail to fit his total evidence.

Result 2: There are instances of Constant such that T’s error probabilities are low, 
it is highly probable that Follow-T will have a high truth-ratio, and Follow-T can 
lead Doc to form beliefs that fail to fit his total evidence.

Result 3: There are instances of Constant such that T’s error probabilities are low, 
it is not highly probable that Follow-T will have a high truth-ratio, and Follow-T 
cannot lead Doc to form beliefs that fail to fit his total evidence.

Result 4: There are instances of Constant such that T’s error probabilities are low, 
it is not highly probable that Follow-T will have a high truth-ratio, and Follow-T 
can lead Doc to form beliefs that fail to fit his total evidence.

Hence the answer to each of our four main target questions is affirmative.
It is crucial to bear in mind that we are using the expressions “highly probable” 

and “high” in a stipulative sense, not an everyday sense. (See the end of Section 2.) 
Consider Result 3, for example. It claims that there are instances of Constant such 
that T’s error probabilities are less than 0.05, the probability that Follow-T will have 

10  Recall that we understand fit such that S’s belief that H fits her total evidence if and only if the prob-
ability of H given her total evidence is high.

Table 2   Pr(> t), Pr(Has | Says), and Pr(~Has | ~Says) in Constant1 – Constant4

1 Appendix A provides details for calculating the values of Pr(> t) across the four cases. The values for 
Pr(Has | Says) and Pr(~Has | ~Says) can be calculated using Bayes’s theorem from footnote 3 from Sec-
tion 1. This note applies to Table 3 (below) as well.

Constant1 Constant2 Constant3 Constant4

Pr(> t) ≈ 1.000 ≈ 1.000 ≈ 0.494 ≈ 0.494
Pr(Has | Says) = 0.975 ≈ 0.038 ≈ 0.95000001 ≈ 0.019
Pr(~Has | ~Says) = 0.975 ≈ 0.99997 ≈ 0.95000001 ≈ 0.99995
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a truth-ratio greater than 0.95 is not greater than 0.95, and Follow-T cannot lead 
Doc to form beliefs that fail to fit his total evidence. This leaves it open that in the 
instances in question, the probability that Follow-T will have a truth-ratio greater 
than 0.94, say, is greater than 0.95. If this were the case, it would be natural in an 
everyday setting to say that it is highly probable that Follow-T will have a high truth-
ratio. But this would not be problematic for Result 3, properly understood. (We shall 
consider some alternative values for t at the end of this section.)

It might seem odd that there are instances of Constant such that it is highly prob-
able that Follow-T will have a high truth-ratio even though Doc ignores Pr(Has) 
when he uses it. It turns out, however, that Pr(Has) sometimes plays no role in deter-
mining whether it is highly probable that Follow-T will have a high truth-ratio. Sup-
pose, as in the four instances of Constant above, that Pr(~Says | Has) and Pr(Says | 
~Has) are equal to each other. Let their value be “e”. It follows that:

Given this, and given that whether it is highly probable that Follow-T will have a 
high truth-ratio is fully determined by the values for n and p, it follows that when T’s 
two error probabilities are equal to each other, Pr(Has) plays no role in determining 
whether it is highly probable that Follow-T will have a high truth-ratio.

This leads to two supplementary results:

Result 5: For all values for Pr(Has), there are instances of Constant such that T’s 
error probabilities are low and it is highly probable that Follow-T will have a high 
truth-ratio.
Result 6: For all values for Pr(Has), there are instances of Constant such that T’s 
error probabilities are low and it is not highly probable that Follow-T will have a 
high truth-ratio.

First, take Constant1 and modify it in terms of any alternative value for Pr(Has). 
Given that T’s two error probabilities are equal to each other, it follows that Pr(> 
0.95) remains unchanged. Hence it is highly probable that Follow-T will have a high 
truth-ratio. This suffices to establish Result 5. Second, take Constant3 and modify it 
in terms of any alternative value for Pr(Has). Given that T’s two error probabilities 
are equal to each other, it follows that Pr(> 0.95) remains unchanged. Hence it is not 
highly probable that Follow-T will have a high truth-ratio. This suffices to establish 
Result 6.

(3.6)

p = Pr (Has&Says) + Pr (∼ Has& ∼ Says)

= Pr (Has)Pr (Says | Has) + Pr (∼ Has)Pr (∼ Says | ∼ Has)

= Pr (Has)(1–e) + Pr (∼ Has)(1–e)

= (1–e)[Pr (Has) + Pr (∼ Has)]

= 1–e
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The situation is quite different when it comes to whether Follow-T can lead Doc 
to form beliefs that fail to fit his total evidence. Consider Constant1 and Constant2, 
for example. Follow-T can lead Doc to form beliefs that fail to fit his total evi-
dence in the latter but not in the former. This is because Pr(Has | Says) is close to 
0 in Constant2, whereas both Pr(Has | Says) and Pr(~Has | ~Says) are close to 1 
in Constant1. This, in turn, is because Pr(Has) equals 0.001 in Constant2, whereas 
it equals 0.5 in Constant1. So, though, in these cases, the value for Pr(Has) plays 
no role in determining whether it is highly probable that Follow-T will have a high 
truth-ratio, it plays a significant role in determining whether Follow-T can lead Doc 
to form beliefs that fail to fit his total evidence.

Result 5 and Result 6 are like the first four results in that they should be under-
stood so that t = 0.95, and thus the threshold for low probabilities equals 0.05. They 
are also like the first four in that they are established by appeal to instances of Con-
stant in which n equals 10,000. What about other values for t and n?

It turns out that Result 5 generalizes to all values for t and n such that 1 > t ≥ 0.5 
and ∞ > n > 0:

Result 7: For all values for Pr(Has), all values for t such that 1 > t ≥ 0.5, and all 
values for n such that ∞ > n > 0, there are instances of Constant such that T’s 
error probabilities are low and it is highly probable that Follow-T will have a high 
truth-ratio.11

This is proven in Appendix B.
Now what about Result 6? Does it generalize in the way that Result 5 does? 

We are not sure at this point. But here is a conjecture:

Conjecture: For all values for Pr(Has), all values for t such that 1 > t ≥ 0.5, and 
all values for n such that ∞ > n > 0, there are instances of Constant such that T’s 
error probabilities are low and it is not highly probable that Follow-T will have a 
high truth-ratio.

Consider Table 3. There are in effect nine general cases  in it. The value for t is 
very high (0.99) in three, middling (0.75) in three, and very low (0.5) in three—
recall the constraint that 0.5 ≤ t < 1. The value for n is very high (10,000,000) 
in three, middling (1,000) in three, and very low (100) in three. In each case, 
Pr(~Says | Has) is equal to Pr(Says | ~Has), and thus the value for Pr(Has) has no 
impact on the value for Pr(> t); this is why that value is left indeterminate. Since 
in all such cases, T’s error probabilities are low given the specified value for t, 
but Pr(> t) is not greater than t given that specified value, this (along with the 
fact that we have not found any counterexamples in our searches) is at least sug-
gestive that Conjecture is true.

11  In fact, this result holds for all values for t less than 1 but greater than 0. We formulate Result 7 as we 
do since t is the threshold for a high probability and a high truth-ratio, and since 1 – t is the threshold for 
a low probability. So defined, it would be quite odd to set t below 0.5.
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A brief summary is in order. First, it follows from Result 1, Result 2, Result 3, 
and Result 4 that the answer to each of the target questions set out in Section 2 
is affirmative. Second, Result 5 and Result 6 show that the truth-ratio parts of 
Result 1, Result 2, Result 3, and Result 4 generalize to all values for Pr(Has). 
Third, Result 7 shows that Result 5 generalizes to all values for t and n (given 
certain minor constraints). Fourth, Result 6 generalizes in the same way if Con-
jecture is true. There is some reason to think that it is in fact true, but, as its name 
indicates, it is just a conjecture at this point.

We have ignored the issue of whether the evidential-fit parts of Result 1, Result 
2, Result 3, and Result 4 generalize to all values for Pr(Has), t, and n. But this is 
worth exploring in the future.

4 � Discussion

We set out several results in the previous section concerning Follow-T, truth-ratios, 
and evidential fit. Those results are interesting in themselves. But they are also inter-
esting in terms of how they bear on the viability of Follow-Informant and reliabilist 
theories of justification. In this section, we discuss these matters in turn.

4.1 � Follow Informant

Recall Follow-Informant (from Section 1):

Follow-Informant: For any proposition P in domain M, if informant INF says that 
P is true, then believe that P is true.

Because Follow-T is an instance of Follow-Informant, the results from Section  3 
bear on the viability of Follow-Informant.

Result 3 shows that there are instances of Follow Informant such that INF’s error 
probabilities are low, but it is not highly probable that that instance will have a high 
truth-ratio. Result 2 and Result 4 show that there are instances of Follow Informant 

Table 3   Test cases for Conjecture

t n Pr(Has) Pr(~Says | Has) Pr(Says | ~Has) Pr(> t)

0.99 10,000,000 0 ≤ 1 0.00999999 0.00999999 ≈ 0.49997
1,000 ≈ 0.458
100 ≈ 0.366

0.75 10,000,000 0 ≤ 1 0.24999999 0.24999999 ≈ 0.4999
1,000 ≈ 0.488
100 ≈ 0.462

0.5 10,000,000 0 ≤ 1 0.49999999 0.49999999 ≈ 0.4999
1,000 ≈ 0.488
100 ≈ 0.462
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such that INF’s error probabilities are low, but that instance can lead a subject to 
form beliefs that fail to fit her total evidence. Consequently, if you want a high prob-
ability of attaining a high truth-ratio, or if you want to avoid beliefs that do not fit 
your total evidence, then whether you should use Follow-Informant depends on 
more than just whether INF’s error probabilities are low. Whether you should want a 
high probability of attaining a high truth-ratio, or whether you should want to avoid 
beliefs that do not fit your total evidence, is not something we shall weigh in on here.

Let Follow-Informant’s “fit-ratio” be the number of beliefs that it outputs that fit 
the total evidence divided by the number of beliefs that it outputs in total. When 
Follow-Informant can lead you to form beliefs that fail to fit your total evidence, its 
fit-ratio can be less than 1. This leaves it open, though, that its fit-ratio is high. It also 
leaves it open that it is highly probable that its fit-ratio is high. Do low error prob-
abilities for INF guarantee that it is highly probable that Follow-Informant’s fit-ratio 
is high?

The answer is no. Let us stipulate that the threshold for high probability and high 
fit-ratio is 0.95. And let a “success” in a given trial be a belief that fits the total 
evidence. Consider Constant4. Here, Pr(Has | Says) is roughly equal to 0.019 and 
Pr(~Has | ~Says) is roughly equal to 0.99995. This implies that there is a success 
in a given trial precisely when ~Says is true. Hence the probability of a success in a 
given trial is equal to the probability of ~Says. This probability is slightly less than 
0.9492. But when the probability of a success in a given trial in a binomial experi-
ment with 10,000 trials equals 0.9492, the probability of more than 9,500 successes 
is roughly equal to 0.352 and thus fails to be high. Hence, though T has low error 
probabilities, it is not highly probable that Follow-T’s fit-ratio is high. Regardless, 
then, of whether INF’s error probabilities are low, if you care about high fit-ratios, it 
could be that you should look for an alternative process.

It is worth emphasizing that Follow-Informant is not the only way for you to 
make use of what INF says. If INF says P, then you could use Bayes’s theorem along 
with P’s prior probability and INF’s error probabilities to determine Pr(P | INF says 
P), and infer P if and only if this probability is sufficiently high.12 This Bayesian 
strategy requires that you know how to use Bayes’s theorem, and that you have val-
ues for Pr(P) and INF’s error probabilities. But it has the advantage that it is guaran-
teed to have a fit-ratio of 1.

The moral of this section is worth emphasizing. If you care about high truth-
ratios and/or high fit-ratios, the fact that INF’s error probabilities are low is insuf-
ficient to establish that you ought to use Follow-Informant, for (i) even when INF’s 
error probabilities are low, it need not be highly probable that Follow-Informant will 
have a high truth-ratio; and (ii) even when INF’s error probabilities are low, it need 
not be the case that Follow-Informant will have a high fit-ratio.

12  This should be understood such that “P” stands for any pronouncement from INF. Thus, if INF is T, 
the above conditional covers both positive (Says) and negative (~Says) cases.
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4.2 � Reliabilist Theories of Inferential Justification

Because some theories of inferential justification are reliabilist, and because reli-
ability is often understood in terms of truth-ratios, the foregoing discussion can be 
brought to bear on debates about reliabilist theories of inferential justification.

There are many different reliabilist theories of justification in logical space. Here 
is a simple version of process reliabilism restricted to inferential justification (since 
Follow-T is an inferential process):

Process Reliabilism: If S infers H via process P, then S’s belief in H is justified if 
and only if (i) P is reliable and (ii) all the input beliefs to P are justified.13

There are different ways of understanding the reliability condition here. We shall 
suppose, for definiteness, that the reliability at issue is reliability in the world in 
which S infers H, where P is reliable in that world if and only if P has a high truth-
ratio in that world and nearby possible worlds. If, for example, S infers H via P in 
some world W, then condition (i) is satisfied if and only if P has a high truth-ratio 
in W and nearby possible worlds. This understanding of the reliability condition is 
fairly standard, though, again, there are others.14

For any given use, Follow-T has just one input belief, either a belief in Says or 
a belief in ~Says. We shall assume, for ease of presentation (and because this is 
allowed by all the theories discussed in this section), that whenever Doc uses Fol-
low-T, the input belief is justified.

The four instances of Constant set out in Section 3 are not specified in enough 
detail so that Process Reliabilism issues verdicts on whether Doc’s beliefs, formed 
via Follow-T, are justified. Each of them, though, has a “cousin” case. Constant1’s 
cousin case, for example, is:

Constant*1:

(a)	 Follow-T is used 10,000 times in world W and nearby possible worlds, where 
each usage is such that Pr(Has) = 0.5, Pr(~Says | Has) = 0.025, and Pr(Says | 
~Has) = 0.025.

(b)	 Pr(Has | Says) = 0.975 and Pr(~Has | ~Says) = 0.975.
(c)	 Follow-T sometimes leads Doc to infer Has, and sometimes leads him to infer 

~Has.
(d)	 Follow-T’s truth-ratio in W and nearby possible worlds is high.15

(e)	 Each of Doc’s beliefs formed by Follow-T fits his total evidence.16

13  Goldman (1979, 1986, 2009) defends versions of Process Reliabilism. See also Lyons (2009).
14  See Comesaña (2009) and Goldman and Beddor (2021) for helpful discussion. See Frise (2018) for 
complications and challenges.
15  This is the analogue of the fact in Constant1 that it is highly probable that Follow-T has a high truth-
ratio.
16  This is the analogue of the fact in Constant1 that Follow-T cannot lead Doc to form beliefs that fail to 
fit his total evidence.
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Given (d), Process Reliabilism issues the verdict that all of Doc’s beliefs produced 
by Follow-T are justified. This verdict has some prima facie plausibility, for each 
belief is formed via a process that has a high truth-ratio in W and nearby possible 
worlds, and, moreover, each belief fits Doc’s total evidence.

But now consider:
Constant*2:

(f)	 Follow-T is used 10,000 times in W and nearby possible worlds, where each 
usage is such that Pr(Has) = 0.001, Pr(~Says | Has) = 0.025, and Pr(Says | ~Has) 
= 0.025.

(g)	 Pr(Has | Says) ≈ 0.038 and Pr(~Has | ~Says) ≈ 0.99997.
(h)	 Follow-T sometimes leads Doc to infer Has, and sometimes leads him to infer 

~Has.
(i)	 Follow-T’s truth-ratio in W and nearby possible worlds is high.
(j)	 Some of Doc’s beliefs formed by Follow-T, namely, his beliefs in Has, fail to fit 

his total evidence.

Given (i), Process Reliabilism issues the verdict that all of Doc’s beliefs produced 
by Follow-T are justified. This is prima facie very implausible when it comes to his 
beliefs in Has, for Has’s probability given his total evidence is very close to 0.

There is an obvious fix, however. Consider the following evidentialist variant of 
Process Reliabilism:

Evidentialist Process Reliabilism: If S infers H via process P, then S’s belief in H 
is justified if and only if (i) P is reliable, (ii) all the input beliefs to P are justified, 
and (iii) H is highly probable given S’s total evidence.17

Because Follow-T is reliable in W and Doc’s beliefs in ~Has fit his total evidence 
but his beliefs in Has do not, Evidentialist Process Reliabilism issues the verdict that 
Doc’s beliefs in ~Has are justified but his beliefs in Has are not. Evidentialist Pro-
cess Reliabilism is thus more discerning than Process Reliabilism. Constant*2 can 
thus be used to motivate the former view over the latter.

Indeed, such motivation can be more straightforward than alternative motiva-
tions. Consider, for example, Goldman’s (2011) attempt to motivate a view similar 
to Evidentialist Process Reliabilism over “single-component” views such as Process 
Reliabilism and purely evidentialist theories. His argument begins with a case (pp. 
263-264): Shirley and Madeleine assign the same degree of belief to a proposition, 
H. But whereas Shirley does so via a random guess, Madeleine does so by careful 
and accurate calculation. He then argues as follows:

Now, on one dimension of justifiedness—the fittingness dimension—Shirley 
and Madeleine’s doxastic attitudes vis-à-vis H deserve the same rating. 
Equally clearly, however, there is another dimension of justifiedness—call it 

17  Comesaña (2009, 2020) and Goldman (2011) defend versions of Evidentialist Process Reliabilism.
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the process dimension—on which their doxastic attitudes merit different rat-
ings. Madeleine’s degree of belief is much more aptly, or competently, chosen 
than Shirley’s—despite the fact that they arrive at the same result. On this sec-
ond dimension of justifiedness, Shirley’s degree is not at all justified or well-
founded, whereas Madeleine’s degree of belief is very well-founded. A two-
factor theory handles this case nicely. But no single-factor theory, of either the 
purely evidentialist or purely reliabilist sort, can do so. That’s a good reason to 
promote a synthesis of the two. (Goldman, 2011, p. 264)

Goldman’s case concerns degrees of belief as opposed to binary beliefs. But it can 
be modified in terms of binary beliefs. When so modified, does it favor Evidentialist 
Process Reliabilism over Process Reliabilism?

No. These theories issue the same verdict: Madeleine’s belief is justified but 
Shirley’s belief is not. It is clear, however, from an earlier work (see Goldman, 2009, 
p. 249) that Goldman means for his “two-component” theory to be understood so 
that if a belief meets the fittingness condition but not the reliability condition, then 
it is partly justified but not fully justified, and that if a belief meets both conditions, 
then it is fully justified and not just partly justified. His theory thus issues the verdict 
that whereas Madeleine’s belief is fully justified, Shirley’s belief is partly but not 
fully justified.

We want to remain neutral on the merits of Goldman’s appeal to partial versus 
full justification. What we wish to point out is that he could bypass this whole issue 
and simply use a case like Constant*2 to motivate views like Evidentialist Process 
Reliabilism over views like Process Reliabilism.

Constant*2, it should be noted, is similar in some respects to BonJour’s case 
of Norman the Clairvoyant (1980, pp. 62-65) and Lehrer’s case of Mr. TrueTemp 
(1990, pp. 163-164). Each of the three cases is a case in which a belief is formed 
by a reliable process but that belief fails to fit the subject’s total evidence. There 
is an important dissimilarity, however. Norman’s process and Truetemp’s process 
are perception-like and thus non-inferential. Neither of them infers his beliefs from 
evidence. Follow-T, in contrast, is inferential. Doc forms his beliefs by reasoning 
from his beliefs about T’s pronouncements. Constant*2, but not BonJour’s case or 
Lehrer’s case, thus shows how reasoning that is conducive to attaining a high truth-
ratio can come apart from reasoning that leads to beliefs that fit the total evidence.

Now consider a simple version of indicator reliabilism:

Indicator Reliabilism: If S infers H via process P from his belief in E, then S’s 
belief in H is justified if and only if (i) his belief in E is justified and (ii) E is a 
reliable indicator of H in that Pr(H | E) is high.18, 19

18  Alston (1988) and Swain (1981) defend versions of Indicator Reliabilism. See Sturgeon (2000) for 
discussion.
19  Indicator Reliabilism should be understood so that Pr(H | E) is “externalist” in that it can be high for 
one subject in one context and not high for another subject in another context even though the two sub-
jects are identical mentally. Indicator Reliabilism is thus not a mentalist theory as understood by Feld-
man and Conee (2001).



	 M. Roche, W. Roche 

1 3

Since Pr(Has | Says) is low in Constant*2 whereas Pr(~Has | ~Says) is high, Indi-
cator Reliabilism agrees with Evidentialist Process Reliabilism that whereas Doc’s 
beliefs in ~Has are justified, his beliefs in Has are unjustified.

Are there cases in which Indicator Reliabilism disagrees with Evidentialist Pro-
cess Reliabilism? Yes. Consider:

Constant*3:

(k)	 Follow-T is used 10,000 times in W and nearby possible worlds, where each 
usage is such that Pr(Has) = 0.5, Pr(~Says | Has) = 0.04999999, and Pr(Says | 
~Has) = 0.04999999.

(l)	 Pr(Has | Says) ≈ 0.95000001 and Pr(~Has | ~Says) ≈ 0.95000001.
(m)	 Follow-T sometimes leads Doc to infer Has, and sometimes leads him to infer 

~Has.
(n)	 Follow-T’s truth-ratio in W and nearby possible worlds is not high.
(o)	 Each of Doc’s beliefs formed by Follow-T fits his total evidence.

Given (n), Evidentialist Process Reliabilism implies that all of Doc’s beliefs pro-
duced by Follow-T are unjustified (because the reliability condition is not met), even 
those that are highly probable given Doc’s total evidence. But given (l), Indicator 
Reliabilism implies that all of Doc’s beliefs produced by Follow-T are justified.

We will not try to adjudicate this disagreement between Evidentialist Process 
Reliabilism and Indicator Reliabilism. This would take us too far afield. Our point 
is merely to show how the foregoing discussion can be brought to bear on debates 
about reliabilist theories of justification.

Recall, though, that we noted at the end of Section 4.1 that Follow-Informant is 
not the only way for you to make use of what INF says. You could use INF and 
Bayes’s theorem: if INF says P, believe that P if and only if Pr(P | INF says P) is 
sufficiently high. If you followed this Bayesian strategy in Constant*3, then you 
would infer exactly what Doc infers via Follow-T.20 Evidentialist Process Reliabi-
lism implies that all such beliefs would be unjustified whereas Indicator Reliabilism 
implies that all such beliefs would be justified. Those sympathetic to the Bayesian 
strategy could perhaps use this fact to argue in favor of Indicator Reliabilism over 
Evidentialist Process Reliabilism.

5 � Conclusion

When T has low error probabilities, how well is Follow-T likely to fare in terms of 
truth (leading to true beliefs) and evidential fit (leading to beliefs that fit the total evi-
dence)? We have argued that the situation is mixed (see Section 3). There are condi-
tions in which T has low error probabilities, Follow-T has a high probability of having 

20  This is because the probabilities in (l) are just the probabilities that Bayes’s theorem would output 
given Pr(Has), Pr(~Says | Has), and Pr(Says | ~Has). Since these probabilities are sufficiently high, you 
would infer Has whenever Says is true, and you would infer ~Has whenever ~Says is true.
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a high truth-ratio, and Follow-T cannot lead Doc to form beliefs that fail to fit his 
total evidence. This is the good news for Follow-T. But there is bad news as well. For 
there are also conditions in which T has low error probabilities, but Follow-T does not 
have a high probability of having a high truth-ratio or can lead Doc to form beliefs 
that fail to fit his total evidence. This calls into question the viability of Follow-T and 
other instances of Follow-Informant, even when the informant in question has low error 
probabilities (see Section 4.1). This, in turn, is potentially problematic for certain relia-
bilist theories of justification (see Section 4.2).

We want to close by briefly noting three issues for future investigation. The first con-
cerns the extent to which the results in Section 3 can be generalized. Consider Result 
7, for example. Can this result be generalized to all low values for T’s error probabili-
ties? The second concerns the fact that the results in Section 3 are existential. They 
say in effect that there exist instances of Constant with such and such features. They 
do not say, though, how “frequent” such instances are. This is worth exploring. Third, 
and finally, there is the issue of the extent to which the results in Section 3, and poten-
tial generalizations of them, can be extended beyond the applications in Section 4. For 
example, do they have application in evolutionary biology on the issue of whether 
“fallacious” belief-forming processes can be adaptive, and in philosophy of mind on 
debates over theories of introspection?

Appendix A

We used Mathematica (by Wolfram) to determine the values of Pr(> t) in Table  2. 
When something of the form “Probability[x > v, nt ≈ BinomialDistribution[n, p]]” is 
inputted in Mathematica, the output produced is the probability of more than nt suc-
cesses in a binomial distribution in which the number of trials is n and the probability 
of success on a given trial is p. In Constant1 and Constant2, since n = 10000, t = 0.95, 
and the probability of success on a given trial is 1 – 0.025, we determined Pr(> t) by 
inputting “Probability[x > 9500, x ≈ BinomialDistribution[10000, 1 – 0.025]]”. The 
output was:

In Constant3 and Constant4, since n = 10000, t = 0.95, and the probability of suc-
cess on a given trial is 1 – 0.04999999, we changed the input to “Probability[x > 
9500, x ≈ BinomialDistribution[10000, 1 – 0.04999999]]”. The output was:

For instances of Constant in which n is not equal to 10,000, t is not equal to 0.95, or 
p is something other than 1 – 0.025 and 1 – 0.04999999, inputs to Mathematica can 
be changed accordingly. (These points apply, mutatis mutandis, to the calculations in 
Table 3 as well.)

0.99999999999999999999999999999999999999999999839491532074

0.49359519448
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Appendix B

Take any values for Pr(Has), t, and n such that 1 > t ≥ 0.5 and ∞ > n > 0. Follow-
T’s truth-ratio equals 1 precisely when x = n (where x, recall, is the number of suc-
cesses). Hence the probability that Follow-T’s truth-ratio equals 1 is given by:

There is only one way for Follow-T to have exactly n successes (in n trials). So:

Given that Pr(Says | ~ Has) > 0 and Pr(~Says | Has) > 0, p is less than 1. Hence  
1 – p is positive and so:

(B1), (B2), and (B3) together imply:

Now suppose that Pr(Says | ~ Has) and Pr(~Says | Has) are both equal to e. As 
shown in (3.6), this supposition entails that:

(B4) and (B5) imply:

The right-hand side of (B6) is less than 1 when e is greater than 0, but it approaches 
1 as e approaches 0:

Hence when Pr(Says | ~ Has) and Pr(~Says | Has) are both positive and equal to e, 
the probability that Follow-T’s truth-ratio equals 1 approaches 1 as e approaches 0. 
Hence, as t is less than 1, there is a value for e such that the probability that Follow-
T’s truth-ratio will be greater than t is greater than t. QED
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