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Abstract

The most common viral dynamics models for analyzing viral infections as-

sume even spatial distribution between virus particles and uninfected target cells.

However, throughout an infection, the spatial distribution of virus and cells

changes. Initially, virus and infected cells are localized so that a target cell in an

area with lower virus presence will be less likely to be infected than a cell close

to a location of viral production. A density-dependent infection rate has the

potential to improve models that treat cellular infection probability as constant.

Saturated Incidence, Beddington-DeAngelis, and Crowley Martin models were

used to understand how density dependent parameters could impact the severity

of an influenza infection. Parameter values were varied to understand impli-

cations of density constraints. For low density dependence, a steeper increase

in virus and greater viral peak was predicted. Initial localization of infected

cells likely slows the progression of infection. The model demonstrates that ac-

counting for density dependence when analyzing influenza infection severity can

result in an altered expectation for viral progression. A density-dependent infec-

tion rate provides a more complete view of the interaction between infected and

uninfected cells.
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1 Introduction

Influenza is a serious disease that affects many people worldwide every year with substantial

illness and financial burden. Each flu season, approximately 8 percent of the United States

population suffers from the flu (1). The total yearly economic impact of influenza on the

US economy is upwards of 10 billion dollars (2). Globally, influenza is estimated to account

for 650,000 deaths annually (2). Given the severity of medical and economic impacts from

influenza, increasing understanding of viral progression is essential in order to reduce the

extent of symptoms associated with infection and to improve clinical outcomes.

Mathematical modeling provides a cost-effective method for analyzing, predicting, and

understanding viral kinetics. Models are frequently developed to account for a wide range

of viruses, antiviral drugs, immune response modifications (3) , and age differentiated out-

comes (4). By employing mathematical models, clinicians and researchers can be better

equipped to understand how untreated disease will progress as well as provide a foundation

for testing treatment options theoretically before exploring more resource intensive actions

including animal and human laboratory testing. Biophysical models contribute to increased

understanding of progressions of disease and can result in better estimations of predicted

infection severity (5). Enabled by a better understanding of viral kinetics, drug efficacy and

the effect of treatments can be estimated (5).

Work done by Baccam et al. (6) laid a foundation for applying mathematical models to

H1N1 influenza progression. A system of four differential equations that accounts for changes

in populations of uninfected target cells, cells in a noncontagious phase of intracellular viral

replication, infected cells, and virus was used. Through data fitting, accounting for an

eclipse phase was found to provide an effective method for accounting for the delay between

an uninfected cell’s contact with virus and time of the cell becoming infected. However,

the model assumes equal spatial contact between all cell types, which is inconsistent with

biophysical understanding of viral progression. Early on in an infection, virus is highly

localized and does not have equal surface area contact with all uninfected cells.

Attempts have been made at quantifying and analyzing the impact of biophysical under-

standing of viral kinetics on projected disease progression. One approach involved modifying

clearance rates of infected cells to account for changes in spatial distribution between unin-

fected cells, infected cells, eclipsed cells, and virus (7). In addition to a well-mixed assump-

tion, most viruses do not have a complete set of genome sequences resulting in a combination
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of semi-infectious and fully infected particles. Work done on evaluating the impact of Semi-

Infectious Particles (SIPS) and heterogeneity throughout the course of infection (8) found

that modifications in spatial arrangement were essential to accurately represent experimental

data. Density-dependent contact rates have been frequently explored in epidemiology (9) as

a means of understanding how disease spreads between infected and uninfected populations

as a result of human to human contact rates. Mathematical models exploring density-

dependent constraints have also been explored in an attempt to better understand HIV

disease dynamics using a Beddington-DeAngelis function (10).The Beddington De-Angelis

model and Crowley-Martin Incidence model have been used in modeling viruses across a

variety of contexts (11),(12). Here, we investigate three models of density-dependent infec-

tion to assess their impact on the time course of influenza infection. In order to quantify

the impact of changes in spatial distribution on aspects of virus progression, parameters

constraining uninfected target cell growth based on changes in uninfected target cells and

virus may provide increased accuracy to a system of differential equations modeling viral

progression. By varying density dependent constraints, the impact of spatial heterogeneity

on infection severity and duration can be analyzed. Measurements of the viral titer curve

and fixed points of the system are measured in the context of a range of density dependent

values in an attempt to align biophysical understanding with mathematical modifications.

2 Methods

2.1 Density Dependent Incident Functions

The most common viral dynamics models for analyzing viral infections assume even spatial

distribution between virus particles and target cells. However, throughout an infection

spatial distribution of virus and cells changes. A standard viral kinetics model was developed

using four differential equations describing change in uninfected target cells as proportional

to interaction between uninfected target cells and virus particles by Baccam et al. (6).

Uninfected target cells that come in contact with virus particles enter an eclipse phase

where virus is replicating within the cell and then becomes infectious at a rate 1
k . Once

infectious, cells produce virus at rate, p. All infectious cells are assumed to die after a time

of 1
δ , while virus is cleared at a rate of c, as demonstrated in the standard viral kinetics

model (6). Model parameter values are shown in Table 1.,
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dT

dt
= −βV T

dE

dt
= βV T − kE

dI

dt
= kE − δI

dV

dt
= pI − cV.

In order to account for density dependence, parameters were analyzed through three den-

sity dependent mathematical functions for constrained viral progression. Models considered

were a Saturated Incidence function, Beddington De-Angelis function, and Crowley-Martin

Incidence model. Both the Beddington De-Angelis model and Crowley-Martin Incidence

model are based on systems of differential equations commonly used to assess predator-prey

interactions (13). The Crowley-Martin model has also been frequently used to fit epidemi-

ological conditions (14).

• Saturated Incidence Model:

dT

dt
=

−βV T

1 + αV
dE

dt
=

−βV T

1 + αV
− kE

dI

dt
= kE − δI

dV

dt
= pI − cV

• Beddington De-Angelis Model:

dT

dt
=

−βV T

1 + γT + αV

dE

dt
=

−βV T

1 + γT + αV
− kE

dI

dt
= kE − δI

dV

dt
= pI − cV
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Table 1: Model parameters, taken from Baccam et al. (6).

Variable Value Unit
β Infection Rate 3.2× 10−5 (TCID50/mL ·d)−1

p Viral Production Rate 4.6× 10−2 TCID50/mL ·d
k (Transition Time to Infectious Cell)−1 4.0 /d
δ (Infected Cell Life Span) −1 5.2 /d
c Viral Clearance Rate 5.2 /d
V0 Initial Viral Titer 7.5× 10−2 TCID50/mL
T0 Target Cells 4× 108 cells

• Crowley-Martin Incidence Model:

dT

dt
=

−βV T

(1 + γT )(1 + αV )

dE

dt
=

−βV T

(1 + γT )(1 + αV )
− kE

dI

dt
= kE − δI

dV

dt
= pI − cV

2.2 Model Parameters

Parameter values for the H1N1 flu virus (6) were used (Table 1), and α and γ were varied

across a range to see how parameter variations affected measures of viral severity. In the

Saturated Incidence model, α was varied from 10−3 to 103 with 100 steps on a log scale.

In the Beddington De-Angelis and Crowley-Martin Incidence models, α was simulated from

10−3 to 103 with 100 steps on a log scale and γ was simulated from 10−15 to 10−7 in 100

steps on a log scale to mimic possible physiological ranges. Other model parameters were

taken from fits of the standard model to patient data from Baccam et al. (6) and are given in

Table 1. Systems of differential equations for each model were solved using scipy.odeint,

and stored in array form to be used for calculating measures of the curve.

2.3 Calculations for Measures of the Curve

Several measures of the viral titer curve were calculated to characterize how the infection

changes with changes in density dependence ( Fig. 1). Viral peak was determined by locating

the maximum value of the curve given an initial amount of virus as 7.5× 10−2 TCID50/mL
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Figure 1: Measured aspects of the viral titer curve as related to changes in density depen-
dence

and 4 ×108 initial uninfected target cells within the ranges for both α and γ. The time

at which this maximum occurred was found by locating the correlated time value to the

maximum value, which serves as a measure of time to peak and provides insight into how

fast the infection is progressing.

The slope of the viral titer curve was found by plotting virus concentration vs. time and

using a linear least squares fit over the the primary time points of ascent or descent of the

viral titer curve. For each function, selected ranges varied slightly. Ranges were selected

by identifying initial substantial increase in virus as a starting point and stopped where the

slope of ascent began to approach zero. Downslope ranges were started where the viral titer

curve was past maximum and began to experience descent as compared to immediately post

peak and ended where slope was approaching zero. These ranges were selected to allow for

a linear fit of the viral titer curve. The duration of infection for each model was found by

subtracting the final time point from which virus was above a threshold of 10 TCID50/ml

from the time that the viral titer initially rose to the threshold value. The area under the

curve (AUC) was found using 300 trapezoidal approximations and verified with Simpson’s

rule,

AUC =
b− a

2n
(V0 + Vf + 2

∑
(V1:n−1)),

where n is the number of steps used to simulate time - 1, b and a are the final and initial
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time values, and V represents virus.

The basic reproduction number, R0, describes how many target cells an infected cell will

infect. R0 was calculated using the Next Generation Matrix method where each system

was split into infected and non infected states (15). Equations dE
dt ,

dI
dt , and

dV
dt for each

model were split into F and V matrices, where F and V were partial derivative matrices. F

represents the rate at which cells become infected and V represents transfer between or out

of the infected state. F matrices were then multiplied by the inverse of V . The dominant

eigenvalues of each matrix were then calculated to find the R0.

3 Results

Systems of differential equations that assume well-mixed spatial distributions were modified

by varying parameters that constrain viral growth to understand how changes in spatial con-

tact affect viral progression. Three different density dependent ordinary differential equation

systems were used. Key aspects of the viral titer curve were measured to understand possible

outcomes of viral kinetics when density dependence is accounted for in models. Peak viral

load, timing of peak viral load, viral upslope, viral downslope, area under the curve, and

infection duration were measured on the viral titer curve across varied ranges of α and γ. In

addition, practical applications were explored by assessing the minimum effectiveness nec-

essary for a drug to successfully eliminate infection for each model across ranges of density

dependence. Drug efficacy was determined from analyzing the steady states of the system

which were calculated using a next generation matrix method. Increasing values of density

dependence generally slowed progression and severity of virus.

3.1 Saturated Incidence Model

Changes in viral titer characteristics for the Saturated Incidence model are shown in Fig. 2.

As α increases, the viral maximum decreases, but time to maximum increases before reach-

ing a point where density dependence is so high that the infection does not occur. Viral

upslope generally decreases with greater density dependence. At higher density dependence,

the downslope becomes rapidly less steep before leveling off towards zero. Infection dura-

tion occurs in a two-phase manner that rapidly drops to zero for higher density dependent

values. Area under the curve was lower for greater density dependence. Results suggest
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that predicted measures of infection severity for higher density dependence in the saturated

Incidence model result in a less severe infection with lower maximum viral load and slower

viral growth compared to the model in (6).

Figure 2: Measurements of the (top left) maximum viral load (log scaled), (top center)
time of maximum, (top right) viral upslope, (bottom left) viral downslope, (bottom center)
infection duration, and (bottom right) area under the curve (log scaled) of the Saturated
Incidence Model when varying the parameter α from 10−3 to 103 on a log scale.

3.2 Beddington De-Angelis Model

Figure 3 shows predicted trends in viral titer curve measurements based on variations in α

and γ. For the Beddington De-Angelis Model, viral peak predicted values are higher for lower

density dependence. Time of peak shows minimal variation related to density dependence

until a maximum α or γ value occurs that results in no infection. As a maximum γ value

that allows for infection to occur is approached, a time delay in viral peak is observed. As α

gets larger, no time delay is observed. This indicates higher density dependence is associated

with reduced ability of the infection to spread. The predicted viral upslope is steeper for

lower density dependence and viral downslope rapidly descends towards zero excluding high

density dependence values of γ. Duration of infection distinctly levels off to zero for higher
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Figure 3: Heatmaps of the (top left) maximum viral load (log scaled), (top center) time at
maximum, (top right) viral upslope, (bottom left) viral downslope, (bottom center) infection
duration, and (bottom right) area under the curve (log scaled) of the Beddington DeAngelis
model based on varying density dependent parameters (α and γ) on a log scale.

α values in an abrupt manner rather than a gradual decline. Area under the curve appears

to be lower for greater density dependence values of α with no infection occurring beyond

a maximum value of γ. The Beddington-DeAngelis model demonstrates that increases in

density dependence slow viral progression and decrease the maximum total amount of virus

by limiting the ability of infection to spread.

3.3 Crowley-Martin Incidence Function Results

The Crowley-Martin Incidence function demonstrates similar predicted trends to the Bed-

dington De-Angelis Model, as shown in Fig. 4. For lower density dependence, viral maximum

is greater. Timing of the peak remains consistent despite varied density dependence values

until reaching a maximum value of α or γ where the infection no longer occurs. As this value

is approached for γ, a delayed time to viral peak is briefly seen for higher γ values but this

tendency is not observed as α values approach the boundary. For lower density dependence,

viral upslope to maximum is greater indicating a faster progression of infection. Downslope
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rapidly approaches zero regardless of density variation. Very high levels of density depen-

dence for γ indicate a minor extension in downslope but the same is not observed for α.

At high α values, predicted values for infection duration experience an abrupt drop to zero.

For high γ values, there is a brief shortening in infection duration as values approach a

maximum value beyond which no infection occurs. This indicates that infection duration

remains fairly constant despite density variation until a point is reached where the virus

cannot spread to produce an infection. Area under the curve was lower for greater density

dependence values for α. For γ variation, changes in simulated area under the curve were

not observed until γ values reach a maximum value inhibiting infection occurrence. These

trends predict a less severe overall infection for greater density dependence.

Figure 4: Heatmaps of the (top left) maximum viral load (log scaled), (top center) time at
maximum, (top right) viral upslope, (bottom left) viral downslope, (bottom center) infec-
tion duration, and (bottom right) area under the curve (log scaled) of the Crowley Martin
Incidence Model based on varying density dependent parameters (α and γ) on a log scale.

3.4 Basic Reproduction Number

The basic reproduction number, R0, of the infection was calculated using the next generation

matrix method and indicates the number of cells a single infectious cell will infect (16). For
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R0 values greater than one, viral load will continue to increase and the infection will become

more severe. For R0 values below one, the viral load will continue to decrease and the

infection will regress. As as result, R0 is crucial for understanding how the infection will

continue to develop and for developing effective treatment options. The next generation

matrix method splits each differential equation system into F and V matrices representing

new infections and transitions between or away from infected states. F and V matrices used

in R0 calculations are given below. The R0 is the largest eigenvalue of the next generation

matrix.

• Saturated Incidence model:

F =


0 0 βT0(1+αV0)−α(βT0V0)

(1+αV0)2

0 0 0

0 0 0

 V =


k 0 0

−k δ 0

0 −p c



FV −1 =
βT0(1 + αV0)− α(βT0V0)

(1 + αV0)2


p
δc

p
δc

1
c

0 0 0

0 0 0


Using cofactor expansion along the the first column, the resulting characteristic

equation is

F (λ) =

(
βpT0(1 + αV0)− αβpT0V0

(1 + αV0)2δc
− λ

)
(0− λ)(0− λ)

.

• Beddington De-Angelis model:

F =


0 0 βT0(1+γT0+αV0)−α(βT0V0)

(1+γT0+αV0)2

0 0 0

0 0 0

 V =


k 0 0

−k δ 0

0 −p c



FV −1 =
βT0(1 + γT0 + αV0)− α(βT0V0)

(1 + γT0 + αV0)2


p
δc

p
δc

1
c

0 0 0

0 0 0


Using cofactor expansion along the the first column, the resulting characteristic
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equation is

F (λ) =

(
βpT0(1 + γT0 + αV0)− αβpT0V0

(1 + γT0 + αV0)2δc
− λ

)
(0− λ)(0− λ)

.

• Crowley Martin model:

F =


0 0 βT0(1+αV0)(1+γT0)−BT0V0(α+αγT0)

(1+γT0)(1+αV0)2

0 0 0

0 0 0

 V =


k 0 0

−k δ 0

0 −p c



FV −1 =
βT0(1 + αV0)(1 + γT0)− βT0V0(α+ αγT0)

(1 + γT0)(1 + αV0)2


p
δc

p
δc

1
c

0 0 0

0 0 0


Using cofactor expansion along the the first column, the resulting characteristic equa-

tion is

F (λ) =

(
βpT0(1 + αV0)(1 + γT0)− αβpT0V0(1 + γT0)

(1 + γT0)(1 + αV0)2δc
− λ

)
(0− λ)(0− λ)

.

R0 values are substantially lower for simulations of greater density dependence than

higher density dependence (Fig. 5). Lower R0 values indicate a less extensive spread of virus

within the body which supports minimized contact between target cells and virus particles.

As a result, spatially localized mixtures predict a less rapid progression of influenza than

well-mixed particle distribution.

3.5 Infecting Time

Measures of infecting time were also calculated in order to determine the time required for

a virus that has been produced to leave a cell and infect another cell. This provides similar

insight to the R0 of the system by increasing understanding of the effect of speed of viral

spread. Steps for calculations were followed from González-Parra et al (17).

Virus is produced at rate ρ and cells going from uninfected states to an eclipsed state as

a result of newly produced virus is described by dE
dt . To find the infecting time (tinf), time
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Figure 5: R0 for different density-dependent models. (top) R0 for saturated Incidence,
(middle) R0 for BDA model, and (bottom) R0 for CM model. R0 = 1 is labeled in red and
R0 calculated from the model not accounting for density dependence is in green (6).
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between virus production and infection of an uninfected cell is being analyzed so the rate

at which cells leave the eclipsed phase for the infected phase is not considered. We assume

that viral clearance during this time is negligible, therefore,

dV

dt
= p

and

dE

dt
=

βV T0

1 + αV
.

for the saturated Incidence model. Integrating both equations,

V (t) = pt∫ 1

0

dE =

∫ tinf

0

βT0pt

1 + αpt
dt

1 = βT0p

∫ tinf

0

(
1

αp
− 1

αp(αpt+ 1)

)
dt

1 = βT0

(
tinf
αp

− 1

α2p

∫ tinf

0

1

αpt+ 1
dt

)
1 =

βT0(αptinf − ln |αptinf + 1|)
α2p

. (1)

Following the same logic as above, the infecting time relationship for the Beddington De-

Angelis Model can be integrated from:

dV

dt
= p

and

dE

dt
=

βT0V

1 + αV + γT0
.

Integrating gives

∫ 1

0

dE =

∫ tinf

0

βT0pt

1 + αpt+ γT0
dt

1 = βT0p

∫ tinf

0

(
1

αp
+

−γT0 − 1

αp(αpt+ γT0 + 1)

)
dt

Following long division and integration, the infecting time relationship becomes:
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1 =
βT0

α2p

(
αptinf + (γT0 + 1) ln

∣∣∣∣ 1 + γT0

αptinf + γT0 + 1

∣∣∣∣) . (2)

For the Crowley Martin model,

V = pt∫ 1

0

dE =

∫ tinf

0

βT0pt

(1 + αpt)(γT0 + 1)
dt

1 =
βT0p

γT0 + 1

∫ tinf

0

(
1

αp
− 1

αp(αpt+ 1)

)
dt

1 =
βT0

γT0 + 1

(
tinf
α

− 1

α2p

∫ tinf

0

1

αpt+ 1
dt

)
1 =

βT0

α2p(1 + γT0)

(
αptinf − ln

∣∣∣∣ 1 + γT0

(αptinf + 1)(1 + γT0)

∣∣∣∣) . (3)

For all three models, greater density dependence was associated with longer infecting

times (Fig. 6), indicating that increased heterogeneity impedes the virus’ predicted ability

to infect other cells.

3.6 Drug Efficacy Measures

Based on the R0, the minimal drug efficacy needed to cure an infection can be found. We

define the efficacy of a drug, ϵ, as the fractional reduction in a particular viral replication

process. When modeling the effect of a drug, we multiply the affected parameter by (1− ε)

where ϵ is a number between 0 and 1. This results in the R0 value also being reduced by

(1−ϵ). Recall that when R0 is below 1, the infection’s growth experiences decline ((18)). As

a result, the minimal efficacy of a drug is the effectiveness required to reduce the infection’s

R0 below one and can be found by the following relationship,

ϵ = 1− 1

R0
.

The minimal drug efficacies needed to cure are shown as functions of density dependence

in Figure 7. For the Saturated Incidence Model as values of α increase, the minimal effective

dose of a drug to send the infection into remission declines, but only at high values of α.

This indicates that a lower dose of a drug may be effective when density dependence is

considered. For the Beddington De-Angelis model, minimal effective dose remains constant
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Figure 6: Infecting times for for varied density dependence. Saturated Incidence (top),
Beddington De-Angelis (middle), and Crowley-Martin (bottom), where both the Beddington
De-Angelis and Crowley-Martin models are graphed on a log scale.
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and high regardless of density dependence until a threshold value of α and γ are reached

in which case minimal effectiveness substantially decreases. This indicates that density

dependence does not noticeably affect minimal efficacy until a threshold parameter value

is reached where necessary effectiveness decreases rapidly. For the Crowley-Martin model,

a similar effect of reaching a threshold value that results in subsequent decline in minimal

effective dose required to eliminate infection is observed for high density dependent values

of γ but not for α.

4 Discussion

Because the Saturated Incidence model only analyzes changes in α, trends in infection

progression within the model can directly be tied to changes within the range of one density

dependence value. The Beddington De-Angelis model and Crowley-Martin Incidence model

both rely on changes in multiple measures of density dependence. The Beddington De-

Angelis model primarily experiences density dependence associated changes with changes in

α. In the Crowley-Martin Incidence model, γ has a slightly greater constraining effect on

virus than it does in the Beddington De-Angelis model. Changes in density dependence are

impacted by changes in both variables.

Results for incorporation of density dependence alter the predicted progression of virus

when compared to the basic model (6). Predicted measures of the influenza viral titer curve

vary based on variations in parameterized constraints that represent density dependence. A

general trend for viral progression as observed by all three considered Incidence functions

suggests a decrease in maximum infection severity as a result of density considerations.

Measured aspects of the viral titer curve demonstrate a slowed viral progression. The slowed

initial progression of virus with higher density dependence supports spatial heterogeneity in

the initial stages of infection.

For greater density dependence, viral peak values decrease which indicates a less severe

infection at the peak of the infection. Time at which the viral peak occurs indicates a

maximum density dependence beyond which no infection occurs. This is also reflected in

the slope leading from initial infection to viral maximum. Since virus progresses by contact

between uninfected target cells and virus particles, when virus particles have access to more

uninfected target cells, the rate of infection progression is materially greater.

Mathematical modeling provides enhanced ability to gain insight into biophysical phe-
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Figure 7: Minimal Drug efficacy required to send infection into decline for different models
as a function of varied density dependent parameters. Minimal efficacy for varied density de-
pendence Saturated Incidence (top), Beddington De-Angelis (middle), and Crowley-Martin
(bottom).
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nomena. Systems of ordinary differential equations are used to model the dynamics of viral

progression in epidemiology (9) and within host to provide insight into disease progression

while requiring relatively low input of financial resources. Proposed models of how biological

understanding of infections maps to mathematical quantification allow for enhanced thought

surrounding treatment development and preventative measures. Understanding key aspects

of viral progression including the rate of increase of infection, timing of key infection mea-

sures, viral stability, and equilibrium points at which virus will continue to grow or diminish

allows for optimal medical practice for influenza treatment.

The purpose of this paper is to modify an existing, frequently used, set of differential

equations (6) that analyze H1N1 progression. The original model assumes virus and cells are

well-mixed and spatially heterogeneous; we explored density-dependent infection rates that

are consistent with biological understanding of the spatial distribution between uninfected

cells and virus throughout the course of infection. Experimental evidence supports spatial

heterogeneity throughout influenza progression (19). Attempts have been made at modi-

fying commonly used ordinary differential equation based viral kinetics models to improve

accurate mathematical representation of disease (20), (7), (21). Results in this paper for

simulated viruses using ODE systems that represent a spatially heterogeneous distribution

across a variance of physiological ranges indicate lower infection severity with increasing

density dependence. Increasing density dependence reduces probability of contact between

uninfected cells and virus especially early in an infection. Due to the localization of virus,

surface area contact is lower than the well-mixed assumption for an equal quantity of virus.

This results in a lower simulated value for expected viral peak because the rate of infection

of target cells is reduced while the rate of clearance and death of infected cells is not expe-

riencing the same reduction as a result of density dependence. Indications of changing viral

dynamic predictions as a result of altered density dependence highlight the need for fur-

ther exploration of factors affecting current quantitative understanding of influenza disease

progression.

While mathematical models are commonly relied upon by experts in epidemiology to un-

derstand, predict, and modify aspects of the spread of disease, measurement error is a key

challenge when modeling viral progression within the body (3). Numerical measures and

initial conditions for influenza experience nontrivial error margins and variability among

individuals. Data fitting to specific variations is challenging to collect for internal virus dy-
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namics and constants used are often relative (3). As a result of challenges in measurement,

modifying mathematical models to be consistent with improved quantitative biological un-

derstanding of virus progression has the potential to minimize error in model analysis and

increase accuracy in understanding of future outcomes (5), (4).

Extending mathematical models to provide more insight into specific clinical context

may allow for more strategic treatment development for patients. Minimal necessary ef-

fective doses of drugs for viral clearance as predicted by simulated viruses may serve as a

valuable benchmark into drug development. Better understanding of viral dynamics may

also provide enhanced insight into treatment options. While this work indicates a more

rapid increase in virus, increasing viral max, greater area under the curve, and a larger R0

value for lower density dependence, there are many other factors that contribute to infec-

tion severity and change the viral titer curve. Patient physiological conditions, initial virus

concentration, immune response differences, comorbidities, and environmental factors all

alter disease progression (21). As a result, a one-model fits all approach to influenza disease

progression in treatment decisions lacks specificity to the individual.

Simulated viruses offer a window into how biophysical understanding aligns with pre-

dicted alteration in virus progression. Further work should include combining density depen-

dent models with other constraints to improve accuracy for specified biological understanding

including viral clearance rates, effectiveness of infection variation between infected particles,

potential comorbidities, and medical treatment intervention. Implementing mathematical

models that quantitatively include analysis of the immune response, which is often ignored

due to the relatively short time duration of influenza progression, may improve biophysical

understanding over target-cell limited models (3). Further, accuracy could be improved by

fitting clinical data from human studies with measured viral titer curves to the model as a

means of understanding which density dependent models most accurately represent influenza

dynamics (5), (4).
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