

QUANTIFYING MULTI STAR SYSTEMS IN STELLAR GROUPS: CALIBRATION OF

BINOCS FOR THE GAIA ERA USING SYNTHETIC PHOTOMETRY

 OF BP/RP SPECTRA

by

John Nguyen

Submitted in partial fulfillment of the

requirements for Departmental Honors in

the Department of Physics and Astronomy

Texas Christian University

Fort Worth, Texas

May 6, 2024

ii

QUANTIFYING MULTI STAR SYSTEMS IN STELLAR GROUPS: CALIBRATION OF

BINOCS FOR THE GAIA ERA USING SYNTHETIC PHOTOMETRY

OF BP/RP SPECTRA

Project Approved:

Supervising Professor: Peter Frinchaboy, Ph.D.

Department of Physics and Astronomy

Kat Barger, Ph.D.

Department of Physics and Astronomy

Bingyang Wei, Ph.D.

Department of Computer Science

iii

ABSTRACT

 Precise assessment of binary star formation remains uncertain, yet it wields substantial

influence on our understanding of galaxies' concealed dark matter. As it stands now, there are

few methods to efficiently detect binary star systems in stellar groups, one of which is the Binary

Information from Open Clusters Using Spectral Energy Distributions (BINOCS) fitting

algorithm. With the launch of the European Space Agency Gaia spacecraft and its third data

release, spectral data is more widely accessible for use. This project’s endeavor involves

enhancing the BINOCS software with Gaia spectroscopic data, empowering the identification of

binary stars among one million celestial entities. We modified the BINOCS software to perform

online data collection, have a built-in Graphical User Interface (GUI), updated for Python3, and

implement modern software engineering principles while retaining algorithm accuracy. The

intention of this project serves as an interdisciplinary project between my major in computer

science and minor in astronomy, where I can leverage my knowledge in computer science and

apply it to a real-world problem.

iv

Table of Contents
ABSTRACT .. 3

INTRODUCTION .. 5

DATA COLLECTION AND VERIFICATION OF GAIAXPY.. 6

SOFTWARE ENHANCEMENT 1: DATA COLLECTION ACROSS CATALOGS 8

SOFTWARE ENHANCEMENT 2: INPUT/OUTPUT FILE FORMATS 9

SOFTWARE ENHANCEMENT 3: RELATIVE PATHS, PYTHON 3 & OOP 10

SOFTWARE ENHANCEMENT 4: GRAPHICAL USER INTERFACE 11

SOFTWARE ENHANCEMENT 5: COMMAND LINE OPTIONS ... 13

RESULTS: TESTING ACCURACY OF THE NEW SOFTWARE .. 13

ANALYSIS AND ERRORS... 15

FUTURE ITERATIONS .. 16

REFERENCES ... 17

v

INTRODUCTION

A binary star system is a system in which two stars are gravitationally bound and orbit a

common center of mass. Valuable information may be obtained from studying binary star

systems such as information about stellar masses, orbital dynamics. Detecting whether a star

system in stellar group is a binary system historically has been difficult and time-consuming.

This problem was addressed with one method introduced by Dr. Ben Thompson: the Binary

Information from Open Clusters using Spectral Energy Distributions (SEDS) or BINOCS

software algorithm (Thompson et al. 2021). The algorithm compares magnitudes from several

photometric filters to synthetic star spectral energy distributions to determine component masses

of binary and single star systems. It compares the observed flux over wavelength against a single

model and binary model. These models use several bands/filters, 5 optical, 3 near infrared, and 4

infrared which are UBVRI/ugriz, JHK, and B1-B4 respectively. The system is determined to be

binary or single based on how well the observed fluxes over wavelength match the models. For

each star in a cluster, the magnitude and magnitude uncertainty for each filter had to be obtained

manually and formatted for use in the software. This limited the number of clusters the software

could run on. The clusters that have been classified through BINOCS already are NGC 188,

NGC 1960, NGC 2099, NGC 2158, NGC 2420, NGC 2682, and NGC 6791. There are still

millions of star systems left unclassified due to the data collection limitation. The BINOCS

software, written in Python 2.7 remained untouched since 2015. However, with the launch of the

European Space Agency Gaia spacecraft (Gaia Collaboration 2016) in 2013 and its third data

release in 2022, blue and red photometer (BP/RP) spectra data for 219,224,825 sources have

been made easily accessible through an officially supported Python3 library: GaiaXPy (Ruz-

Mieres 2022). This data release opens the door for new classifications to be made through

vi

BINOCS. The BINOCS software will need to be enhanced to perform online queries to Gaia,

redesigned to work with the new data input, and refactored for Python3. Additionally, in this

project, software engineering principles will be applied to make the software maintainable and

extensible as well as more easily accessible to the public.

DATA COLLECTION AND VERIFICATION OF GAIAXPY

GaiaXPy is a Python library (Ruz-Mieres 2022) to facilitate handling Gaia BP/RP spectra

as distributed from the Gaia archive. It comes with features to query the archive for certain

photometric filter system and generates synthetic photometry which produces magnitude, flux,

and flux errors for each filter (Gaia Collaboration, Montegriffo et al. 2022). Since the third data

release arrived in 2022, this library is relatively new. Before using this library with BINOCS, its

synthetic photometry must be tested against real photometry to prove that the library

computations are reliable. To compare it against a known set of data, I used a .fits file

containing all the BINOCS cluster members that were tested before with their respective Gaia

source ID (Gaia Collaboration 2023). These Gaia source IDs were then passed to the GaiaXPy

generate function along with the Sloan Digital Sky Survey (SDSS) photometric system

parameter for ugriz filters (Fukugita et al. 1996). After receiving the magnitudes, flux, and flux

errors, the magnitude error had to be calculated through this formula:

Filter Magnitude Error = 2.5 log (flux error / flux)

I added this calculation along with the magnitude, flux and, flux errors into a single Python

Pandas data frame and merged it with another data frame containing the original data. I

computed the differences, the mean and standard and removed outliers. Outliers were considered

to be magnitude differences over 2 standard deviations. I repeated this outlier removal process

vii

for 10 iterations after recomputing each standard deviation for each iteration. I then plotted the

delta plot to compare if the data floated near a zero difference.

Figure 1: Delta Plot for Synthetic vs Real Slone ugriz Magnitudes

Here in Figure 1, we can see that the differences lie between -0.5 and 0.5. These differences are

expected since the data from Gaia comes from space whereas the data from SDSS is from the

ground. The atmosphere may influence the magnitude, amplifying this difference. I have

considered this sufficient in accuracy and deem the library reliable given our limited data set of

known magnitudes. However, it is still possible that for a different set of clusters, the magnitude

could widely vary, but I am not able to check it. With this assumption of reliability, we can

proceed to use this library with BINOCS.

viii

SOFTWARE ENHANCEMENT 1: DATA COLLECTION ACROSS CATALOGS

 Querying the Gaia archive has been made easy through GaiaXPy. However, a new

problem arises in which we need to query other astronomical catalogs for the remaining filter

sets: JHK and B1-B4. The catalogs we will need are the Two Micron All Mass Survey (Skrutskie

et al. 2006) denoted 2MASS and the from the Wide-field Infrared Survey Explorer (Wright et al.

2010) denoted AllWISE. 2MASS contains the JHK filters and AllWISE contains the B1-B4

bands as well as JHK data from 2MASS. We can query each catalog for the filters given each

star’s respective designation (id) in the catalog using the astroquery library (Ginsburg, A. et al.,

2017). The major problem is how do we combine this data and verify that it corresponds to the

same source object? Fortunately, the Gaia team has developed precomputed crossmatching

tables for Gaia to 2MASS and Gaia to AllWISE. Given a Gaia source id, we can cross match it

to its matching 2MASS designation (id) in the

gaiadr3.tmass_psc_xsc_best_neighbour table. This allows us to merge the optical

filters with near infrared filter data instantly. We can repeat this method using the

gaiadr3.allwise_best_neighbor table to crossmatch to AllWISE. Unfortunately, this

method turned out to be useless since the AllWISE database does not index its designation

making queries to this catalog based on designation extremely slow. A workaround had to be

done to accommodate the slow query. Luckily, each source object in AllWISE contained the

JHK attributes from 2MASS. This makes it possible to merge the 2MASS table with the

AllWISE table based on JHK magnitudes. This workaround is still not the best solution and leads

to possible mismatching errors if the JHK magnitudes can be matched to multiple objects or are

at different significant digits. The complete algorithm looks like this: 1) provide a list of n Gaia

source ids or 2MASS designations and perform 1 query to the crossmatching table 2) use the ids

ix

from the crossmatching table to do 1 query to Gaia or 2MASS to get their filters 3) For n source

objects, perform n nearest match within a 0.5 arcsecond radius queries to AllWISE 4) merge the

two catalog data with matching JHK data to the AllWISE. It is important to consider how

efficient this data collection query is. In computer science, algorithm efficiency is represented in

Big-O notation. This algorithm’s efficiency is O(n) meaning given n Gaia source ids or 2MASS

designations, there will be n queries. This is not that efficient, and it took roughly over an hour to

collect this data and build the data file for 944 source objects in NGC 2682. A faster algorithm is

worth implementing. I discovered that by inputting a different set of parameters, we can build a

data file much faster with a constant number of queries. Given parameters search radius and

cluster name or Right Ascension (RA) and Declination (DEC) coordinates, we can perform 1

huge radius query to AllWISE, 1 huge equal radius query to 2MASS, 1 query to the Gaia to

2MASS crossmatching table, and 1 query to GaiaXPy to get the filters. This is at most 4 queries

meaning the efficiency is O(4) = O(1), a constant operation. Using the cluster name m67, I was

able to build a data input file under 30 seconds. I believe this method is more likely to be used

given those parameters since most users won’t have a list of generic ids ready but are more likely

to classify a certain cluster name or the RA and DEC of an object with a certain search radius.

Now we are able to replace the manually collected data with a method to query online databases.

SOFTWARE ENHANCEMENT 2: INPUT/OUTPUT FILE FORMATS

 A single input data file contains multiple columns starting from Gaia source id, 2MASS

designation, all the filter magnitudes, and their errors. Originally, BINOCS took in data from a

pure .txt file with no column headers, thus making the file look like a list of random numbers.

Reading the input data was difficult for a user that is unfamiliar with the system. A solution to

this is to convert the data file from a .txt to a .csv or .fits file containing column headers.

x

Fortunately, the Python library, Pandas, makes reading in .csv files easy with DataFrame

objects. These objects represent tables with headers in the code. As we query data, we can write

it to a DataFrame object, and export it as a .csv. When BINOCS wants to read in data, it can

read in the same .csv file as a DataFrame object. Additionally, DataFrames are easy to convert

to .fits files, which are common database files that astronomers use, by converting them to

Astropy Tables and exporting to .fits. This supports ease of access to the user by giving them

their preference in data input/output file formats. DataFrames make accessing columns easy

through their name, eliminating the need to count the index of the column. This functionality can

be further extended to support more formats and makes it easier to add new filter columns if

support for them is added later.

SOFTWARE ENHANCEMENT 3: RELATIVE PATHS, PYTHON 3 & OOP

 The original code was written as a Python module which was set to be found in the local

machine’s environment variable. This treats the module like a standard library and can be

imported using the line “import binocs”. However, this requires advanced knowledge of

Python environment setup. Instead, I redesigned the module to be based on relative paths such

that anyone with the source code, would only need to install required packages and not worry

about environment variables. Attempting to run the existing code ran into errors. Since we are

leveraging a new Python 3 library, we will need to update the old functionality to support Python

3. Minor syntax bugs were addressed but the overall functionality remained the same. As I

refactored the code, I found that the modular designed could be wrapped in a single application

programming interface (API), reducing the imports to only one file. I developed a single API that

imports and wraps functions from submodules and allows the main software file to only import

the single API file. Programming to an interface is good practice because this allows changing

xi

the implementation without directly affecting the function call in the main software. As a

programmed to this interface, I felt the desire to rewrite the code in Object Oriented

Programming style, a style that I am more familiar with. This treats all modules as classes with

objects as instances of the class that behave with another object. While OOP is a programming

style choice, I found that this makes which class the imported functions derive from clearer.

SOFTWARE ENHANCEMENT 4: GRAPHICAL USER INTERFACE

The original code was a suite of Python routines that only ran in the terminal. With the single

API, we can develop a single file that utilizes this API. The average user does not perform day to

day actions in a terminal, thus making accessibility an issue. I’ve addressed this with the

introduction of the BINOCS Software Graphical User Interface (GUI). The BINOCS Software is

now configurable and runnable from a visible window on screen. This window has several tabs,

allowing you to configure several input parameters, build the data files, and format isochrones.

Each button is set to use the API to run their functions. The old software had to be configured

with an options (.opt) file containing its parameters. These parameters also included file paths

to the data file. Having things set in the .opt file doesn’t make the parameters transparent to the

user after writing it once. We can eliminate the use of the .opt file through the GUI and add

functionality to remove the need of knowing the data file path through a file picker dialog button.

With these changes, a public user is more inclined to use the software and will have less things to

worry about in regard to setting parameters and running separate Python files to build and format

the data. A single window can now perform all the necessary actions.

xii

Figure 2: BINOCS Software GUI SED Fit Tab

Figure 3: BINOCS Software GUI Build Data Tab

Figure 4: BINOCS Software GUI Isochrone Tab

xiii

SOFTWARE ENHANCEMENT 5: COMMAND LINE OPTIONS

 While adding the GUI was a great feature, more options are better than no options and a

good software engineer should not take away a useful feature. I assumed the need for a GUI for

average users, but for existing users and those who prefer using the command line, I did not want

to take away the command line use. Therefore, I have introduced command line options.

Launching the GUI is possible through -g or –gui. Likewise, there are more options to run the

binary fitting algorithm, format isochrones, and pass in the .opt file without the need to open the

GUI. Additionally, I added a -h and –help section to explain the usage steps and options for

the executable Python file and handle exceptions when the user supplies invalid options.

Figure 5: Command Line Usage and Options

RESULTS: TESTING ACCURACY OF THE NEW SOFTWARE

 Adding enhancements to a software is useless if it no longer performs its functions

properly. Therefore, I performed a test comparison for cluster NGC 2682 running a newly built

data file from the online databases against the old .txt data file through BINOCS. BINOCS

outputs a classification -1 for inconclusive, 1 for single system and 2 for binary system as well

as the primary mass, primary mass error, secondary mass (for binary systems), and secondary

mass error. I computed the differences in classifications based on the flags. First, I filtered out all

xiv

inconclusive data, leaving me with 269 source objects out of 958, to view how many sources

retained the same flag after running with the new dataset and how many changed from single to

binary or binary to single.

Cluster Number of
Sources

Number of
Same

Classification

Number of
Changed

Classification

Ratio for Same Ratio for
Changed

NGC 2682 269 218 51 81% 19%

Then I ran a test with all data regardless of if it was inconclusive to see how many inconclusive

sources became classified with the new data and how many old classifications were lost.

Cluster Number of
Sources

Number of
Same

Classification

Number of
Changed

Classification

Number of
New

Classifications

Number of
Lost

Classifications
NGC 2682 958 542 51 103 262

To further test accuracy, I created delta plots for the primary and secondary mass determinations

along with their errors for sources with the same classification. This was done on the filtered data

with no inconclusive data since mass is only determined for conclusive data.

Primary Mass Count Secondary Mass Count

269 114

Cluster Number of

Primary Mass

Delta >= 0.2

Number of

Primary Mass

Error Delta >=

0.2

Number of

Secondary Mass

Delta >= 0.2

Number of

Secondary Mass

Error Delta >=

0.2

NGC 2682 0 0 14 6

xv

Figure 6: Delta Plots for Primary & Secondary Mass and Errors

ANALYSIS AND ERRORS

 A matching ratio of 81% for the same flag is still relatively accurate. The mismatch is

likely because the data catalogs might have crossmatched the wrong AllWISE data to the source

object, affecting the delta. For the unfiltered data, we fortunately gained 103 classifications!

Unfortunately, we lost a significant number of classifications because if any of the online

databases is missing their respective set of filters, BINOCS will not be able to classify the object,

leaving it inconclusive. However, this is a fair tradeoff since BINOCS will be capable to

classifying millions of new objects and we still have the old classifications. The primary mass

and error deltas are relatively low at under a 0.2 difference. This implies that for the conclusive

data with the matching classification, the mass determination is relatively the same. These small

xvi

differences might be due to slight magnitude differences from the Gaia space data. You might

notice that the secondary masses and errors have a more varied delta plot. This is because if the

primary mass goes through a change, then the secondary mass must accommodate for the

change. It is important to remember that we are still under the assumption that the GaiaXPy

synthetic photometry is reliable, and if it is not, then there may be errors. With a high matching

ratio and minor differences in mass determination, I conclude that the new BINOCS software

still performs as the original.

FUTURE ITERATIONS

The BINOCS software has gone through several enhancements, but there is always more

room for improvement. Currently, no new classifications for clusters have been made.

Unfortunately, I have not been able to finish the formatting of isochrones, thus no new clusters

have been classified since they are dependent on a set of isochrones to be formatted. BINOCS

also needs to be updated to support a newer set of isochrone catalog versions from PARSEC.

The new software still utilizes the same old filter set; however, it is possible that GaiaXPy will

have more filter sets accessible that can be integrated into the fitting algorithm. Future work will

need to be done if a different set of filters would like to be used. A nice to have feature would be

to extend this project to a public web app for accessibility. To aid astronomers around the world,

I dream of this project being live on a website, with a backend supporting the API to query to

databases, build data files, and run the fitting algorithm. This way, users don’t have to deal with

installing the software and its packages. My hope is that this project is continued if I am no

longer supporting its feature development so that astronomers around the world can classify

binary star systems and obtain useful information for investigation of dark matter in nearby

dwarf galaxies.

xvii

REFERENCES

Fukugita M., Ichikawa T., Gunn J. E., Doi M., Shimasaku K., Schneider D. P., 1996, AJ, 111,

1748

Gaia Collaboration et al., 2016, A&A, 595, A1

Gaia Collaboration, 2023, VizieR Online Data Catalog, vol. 368, 2023. J/A+A/680/A35.

Gaia Collaboration, Montegriffo et al., 2022, VizieR On-line Data Catalog: J/A+A/674/A41

Ginsburg, A., Sipocz, B., Parikh, M., et al. 2017, astropy/astroquery: v0.4.7

Ruz-Mieres, GaiaXPy, 2022, DOI v2.1.0: 10.5281/zenodo.8239995

https://gaia-dpci.github.io/GaiaXPy-website/

Skrutskie M. F., et al., 2006, AJ, 131, 1163

Thompson, B., Frinchaboy, P. M., Spoo, T., & Donor, J. 2021, arXiv e-prints, arXiv:2101.07857.

https://arxiv.org/abs/2101.07857

Wright E. L., et al., 2010, AJ, 140, 1868

https://gaia-dpci.github.io/GaiaXPy-website/
https://arxiv.org/abs/2101.07857

	ABSTRACT
	INTRODUCTION
	DATA COLLECTION AND VERIFICATION OF GAIAXPY
	SOFTWARE ENHANCEMENT 1: DATA COLLECTION ACROSS CATALOGS
	SOFTWARE ENHANCEMENT 2: INPUT/OUTPUT FILE FORMATS
	SOFTWARE ENHANCEMENT 3: RELATIVE PATHS, PYTHON 3 & OOP
	SOFTWARE ENHANCEMENT 4: GRAPHICAL USER INTERFACE
	SOFTWARE ENHANCEMENT 5: COMMAND LINE OPTIONS
	RESULTS: TESTING ACCURACY OF THE NEW SOFTWARE
	ANALYSIS AND ERRORS
	FUTURE ITERATIONS
	REFERENCES

