dc.creator Pinky, Lubna dc.creator González-Parra, Gilberto dc.creator Dobrovolny, Hana M. dc.date.accessioned 2019-07-11T15:17:10Z dc.date.available 2019-07-11T15:17:10Z dc.date.issued 2019-04-16 dc.identifier.uri https://doi.org/10.1186/s12859-019-2793-6 dc.identifier.uri https://repository.tcu.edu/handle/116099117/26383 dc.identifier.uri https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2793-6 dc.description.abstract Background: Respiratory viral infections are a leading cause of mortality worldwide. As many as 40% of patients hospitalized with influenza-like illness are reported to be infected with more than one type of virus. However, it is not clear whether these infections are more severe than single viral infections. Mathematical models can be used to help us understand the dynamics of respiratory viral coinfections and their impact on the severity of the illness. Most models of viral infections use ordinary differential equations (ODE) that reproduce the average behavior of the infection, however, they might be inaccurate in predicting certain events because of the stochastic nature of viral replication cycle. Stochastic simulations of single virus infections have shown that there is an extinction probability that depends on the size of the initial viral inoculum and parameters that describe virus-cell interactions. Thus the coinfection dynamics predicted by the ODE might be difficult to observe in reality. Results: In this work, a continuous-time Markov chain (CTMC) model is formulated to investigate probabilistic outcomes of coinfections. This CTMC model is based on our previous coinfection model, expressed in terms of a system of ordinary differential equations. Using the Gillespie method for stochastic simulation, we examine whether stochastic effects early in the infection can alter which virus dominates the infection. Conclusions: We derive extinction probabilities for each virus individually as well as for the infection as a whole. We find that unlike the prediction of the ODE model, for similar initial growth rates stochasticity allows for a slower growing virus to out-compete a faster growing virus. en_US dc.language.iso en en_US dc.publisher BioMed Central dc.rights.uri https://creativecommons.org/licenses/by/4.0/ dc.source BMC Bioinformatics dc.subject Viral coinfection en_US dc.subject Respiratory virus en_US dc.subject Within-host model en_US dc.subject Continuous-time en_US dc.subject Markov chain en_US dc.subject Multi-type branching process en_US dc.subject Extinction probability en_US dc.title Effect of stochasticity on coinfection dynamics of respiratory viruses dc.type Article en_US dc.rights.holder Pinky et al. dc.rights.license CC BY 4.0 local.college College of Science and Engineering local.department Physics and Astronomy local.persons Pinky, Dobrovolny (PHYS)
﻿