Show simple item record

dc.contributor.advisorRyu, Youngha
dc.contributor.authorBernal-Perez, Lina Fernandaen_US
dc.date.accessioned2014-07-22T18:48:25Z
dc.date.available2014-07-22T18:48:25Z
dc.date.created2012en_US
dc.date.issued2012en_US
dc.identifieretd-12062012-095056en_US
dc.identifierumi-10346en_US
dc.identifiercat-001902369en_US
dc.identifier.urihttps://repository.tcu.edu/handle/116099117/4373
dc.description.abstractN-terminal (Na) protein acetylation, one of the most common post-translational modifications in eukaryotes, plays a pivotal role in the stability, activity and targeting of certain proteins (Chapter 1). This protein modification is significantly less frequent in prokaryotes. In Escherichia coli, the only Na-acetyltransferases identified are RimI, RimJ, and RimL, which acetylate the ribosomal proteins S18, S5 and L7/L12, respectively. Although most eukaryotic proteins are not acetylated when ectopically expressed in E. coli, partial or complete Na-acetylation has been reported for several recombinant proteins. Just recently, it was demonstrated that Na-acetylation of the thymosin a1 fusion proteins is catalyzed by RimJ. For most other proteins, however, the underlying mechanism of Na-acetylation remains unknown. We recently observed that the Z-domain protein, a small three-helix bundle protein derived from the Staphylococcal protein A, is Na-acetylated only under certain conditions. We decided to use the Z-domain as a model protein to study the Na-acetylation in E. coli. We revealed that the Na-acetylation of the Z-domain depends on the E. coli strains, expression vectors and amino acid residues near the N-terminus, and is enhanced by high cellular levels of RimJ (Chapter 2). In order to systematically study the sequence dependence of the N-terminal methionine cleavage and RimJ-mediated Na-acetylation in E. coli, the Z-domain variants differing by the second or third amino acid residue were expressed and analyzed by mass spectrometry (Chapter 3). The initiating methionine residue of the Z-domain was removed only when a small and uncharged amino acid residue was in the second position.
dc.description.abstractOnly subsequent to the cleavage of the initiating methionine residue, the RimJ-catalyzed N-terminal acetylation mainly occurred at the N-terminal serine and threonine residues and was significantly enhanced by a hydrophobic or negatively charged residue in the penultimate position. Although primarily used for analysis of N-terminal acetylation, mass spectrometry often requires careful sample preparation and expensive instrumentation. Therefore, in order to find a simple and sensitive method to analyze the acetylation status of proteins, we developed a fluorogenic derivatization method using 4-chloro-7-nitrobenzofurazan (NBD-Cl) (Chapter 4). The unacetylated protein selectively reacted with NBD-Cl at neutral pH to provide high fluorescence. In contrast, the Na-acetylated protein was essentially non-fluorescent under the same conditions despite the presence of many internal lysine residues. This method should be particularly useful for a large scale high-throughput proteomic analysis of protein Na-acetylation.
dc.format.mediumFormat: Onlineen_US
dc.language.isoengen_US
dc.publisher[Fort Worth, Tex.] : Texas Christian University,en_US
dc.relation.ispartofTexas Christian University dissertationen_US
dc.relation.ispartofUMI thesis.en_US
dc.relation.ispartofTexas Christian University dissertation.en_US
dc.relation.requiresMode of access: World Wide Web.en_US
dc.relation.requiresSystem requirements: Adobe Acrobat reader.en_US
dc.subject.lcshProteins.en_US
dc.subject.lcshAcetylation.en_US
dc.subject.lcshBacteria.en_US
dc.titleStudies on protein N-terminal acetylation in bacteriaen_US
dc.typeTexten_US
etd.degree.departmentDepartment of Chemistry
etd.degree.levelDoctoral
local.collegeCollege of Science and Engineering
local.departmentChemistry and Biochemistry
local.academicunitDepartment of Chemistry and Biochemistry
dc.type.genreDissertation
local.subjectareaChemistry and Biochemistry
etd.degree.nameDoctor of Philosophy
etd.degree.grantorTexas Christian University


Files in this item

Thumbnail
This item appears in the following Collection(s)

Show simple item record