Assessing Corrosion Effects on the Electrical Performance of Wearable Photovoltaic Cells: A Comparative Analysis of Current Consistency and Resistance
Soloist
Composer
Publisher
MDPI AG
Date
1/9/2025
Additional date(s)
Abstract
Wearable photovoltaic (PV) cells offer a sustainable and lightweight solution for energy-harvesting applications, including safety gear and protective textiles. Despite their growing adoption, the application of PV cells in marine environments is limited due to the corrosive conditions that can degrade performance. This study evaluates the impact of corrosion on commercially sourced PV cells by analyzing maximum current and electrical resistance. This study used eight samples of two types of PV panel cells and tested them in corrosion conditions, and current and electrical resistance values were recorded. A paired sample t-test was used to assess variations in current and electrical resistance, while a repeated MANOVA compared the performance of two sample types during corrosion. The results reveal that corrosion significantly reduced current values and increased electrical resistance in Sample Type (1), while Sample Type (2) remained relatively stable. The MANOVA findings show a significant decrease in current for both samples, though the magnitude of reduction is similar between types. However, when combining both sample types, corrosion has no significant effect on electrical resistance. These results highlight the need for developing more durable, corrosion-resistant PV cells suitable for marine applications, emphasizing their potential for sustainable and practical use in harsh environments.
Contents
Subject
Subject(s)
Research Projects
Organizational Units
Journal Issue
Genre
Description
Format
Department
Fashion Merchandising