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inward to bring substances into the cell.

• Host cell. A living cell invaded by or capable of being invaded by an infectious
agent (as a bacterium or a virus).
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Chapter 1

Introduction

Respiratory virus infections are a leading cause of mortality world-wide (1). Treating

these infections can be difficult since there are no known effective antivirals for many

of the viruses, and for infections where antivirals have been developed, the virus can

develop a drug-resistant mutation. For these reasons, different compounds are tested,

in a constant search for antiviral activity against respiratory viruses. Most modern

drugs were developed using large-scale random screening of compounds. For example,

all the current approved drugs against human immunodeficiency virus (HIV) and the

first generation of antibiotics (2) were discovered in this way. The disadvantage of this

method is that the mechanism of action by which the antiviral blocks viral activity is

unkown. This paper explores whether currently used experimental assay techniques can

help discover the part of the life cycle targeted by an antiviral.
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1.1 Antiviral drugs

Antivirals are chemical compounds developed to treat viral infections, equivalent to the

function of antibiotics in bacterial infections. The development of antivirals is of high

importance because drug therapy is one of our primary defenses against many infectious

diseases. Around 40 antiviral drugs are permitted for human use, half of them just for

human immunodeficiency virus (HIV). Most antivirals are effective against just one or a

few viruses (3).

The development of antiviral drugs is difficult. One problem is that the therapeutic

effect of antivirals is small; when the symptoms and clinical signs appear usually viral

production has reached its peak. Sometimes it is better to treat people before they are

infected, for example to prevent epidemics. Another problem with antiviral drugs is that

viruses use the host cell, and cellular processes, to replicate, so the antivirals have to

interfere with the virus without harming the host cells. Most powerful antiviral drugs,

however, cannot discriminate between cellular or virus activity (3, 4).

1.1.1 Development of antiviral drugs

There are currently two primary methods for development of antivirals: rational design

and random screening of compounds (5).

In the rational design of antiviral drugs, a drug is known to interfere with a particular

virus activity. For example, drug designers choose a target protein (and a target site on

this protein), such as a viral enzyme. The compounds are designed to bind to the target

site and inhibit the activity of the protein. Examples of drugs developed in this way
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are inhibitors for the enzyme protease in HIV (2, 6, 7) and inhibitors for the enzyme

neuraminidase in the influenza virus (8, 9).

Random screening of compounds is a more traditional approach to develop an antivi-

ral, this is done by screening compounds looking for antiviral activity. Here dissolutions

of compounds are tested against a range of viruses growing in cell cultures (2). For each

potentially useful compound, the half maximal inhibitory concentration, IC50, is deter-

mined. To calculate IC50, it is necessary to construct a dose-response curve and scan the

effect of different concentrations of drugs on reversing the viral activity, (Fig. 1.1). IC50,

the half maximal inhibitory concentration is used for in vitro experiments, while for in

vivo experiments researchers use EC50, half maximal effective concentration, which is the

plasma concentration required for obtaining 50% of maximum effect.

Figure 1.1: Dose response curve used to calculate IC50 (4).

Many compounds are tested as antivirals using cell culture experiments, known as

assays. The disadvantages of this method are that it is very time consuming and it
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does not provide an explanation of how the antiviral works or its possible side effects.

Also, it is not enough that a drug is proved to be useful with one assay; potential drugs

have to be validated with alternative assays and also be improved in their efficacy and

pharmacological properties (for example cytotoxicity) (5). Computational work is helpful

in this method (10). Through computational tools it is possible to: manage the data

acquired from the different assays, analyze this data, identify patterns, and present these

patterns in a form that can be used to create a hypothesis about the mechanism of action.

1.1.2 Infectivity assays

Infectivity assays measure the concentration of infectious virus in a specimen. In virology

experiments, this is important because this information can help determine: the virus

pathogenicity, the activity of chemotherapeutic agents, or the neutralization of virus

infectivity (4, 11). Some common terms in virology, which will help us understand the

assays:

• MOI: Multiplicity of infection is the number of viruses added per cell to initiate

an infection.

• PFU: Plaque forming units, in plaque assays, is the amount of virus needed to

form one plaque (”hole” or dead cells) in a monolayer of susceptible cells. If in a

plaque assay a virus is 100% successful then the number of PFU will be equal to

the quantity of virus particles.

• TCID50: This is defined as the necessary quantity of virus to infect 50% of the

susceptible population in the assay.
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1.2 Viral replication

The viral life cycle consists of several key steps.

1. Attachment: The first stage of the viral replication cycle is attachment. Viruses

attach to cells through attachment proteins located on the surface of the virus

(3, 4). These attachment proteins bind to cellular receptors on the surface of host

cells. Attachment is an electrostatic phenomenon and it does not need cellular en-

ergy (12). Factors that can affect the efficiency of viral attachment are: density of

attachment proteins or receptors, temperature and pH (12, 13). Viruses show pref-

erence for a particular cell type or species by binding only to specific cell receptors,

a phenomenon known as tropism.

2. Entry: After attachment, the virus crosses the lipid bilayer of the plasma mem-

brane or nuclear membrane (the type of membrane depends on the kind of virus or

host cell). The modes of virus entry are:

• Ligand-mediated fusion. This is a fusion between the cellular and viral mem-

branes. The nucleocapsid material of the virus is deposited into the cell and

the viral membrane is left as a patch in the cell membrane.

• Receptor-mediated endocytosis. After the virus is attached to the membrane,

the cell is stimulated to engulf the entire virus and forms an endocytotic vesicle.

The mechanism of entry depends on the type of virus. For enveloped viruses, a type

of virus that possesses an external envelope around the capsid (protein coat), the

mechanism can be either ligand-mediated fusion or receptor-mediated endocytosis
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(4, 12). For naked viruses, studies suggest that the mechanism of entry is via

receptor-mediated endocytotis (12, 14).

3. Uncoating: Once the virus is inside the host cell the capsid is removed and the

genetic material of the virus is released inside the cell. After uncoating, infectious

particles cannot be detected in experiments, this is the beginning of the so-called

eclipse phase.

4. Genome replication: In this stage of the viral replication cycle two events occur:

• Replication of the viral genome, which is different for each type of genome.

The genome of a virus is composed of single or double strands of DNA or

RNA.

• Production of the enzymes and protein structures that will be needed for the

new virus particles.

5. Assembly: In this step, the components of the new virus particles are assembled

to create a stable structure. Assembly is possible when the necessary viral proteins

and genomic material are produced and localized at specific sites (this depends on

the type of virus) inside of the infected cell.

6. Maturation: This is when the capsid proteins go through specific proteolytic

cleavage. Proteolytic cleavage is a process where proteins are synthesized to become

more stable.

7. Release: The newly matured virus particles are released to the outside of the

infected cell. Possible mechanisms of release are through lysis, via budding, or via
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secretion (12). This is the end of the eclipse phase and the start of the infectious

phase.

1.3 Mechanism of action

A compound is considered an antiviral drug if it inhibits any stage of the virus replication

cycle. Figure 1.2 is a schematic of the following antiviral mechanisms of action that can

be observed (4, 15):

Figure 1.2: Examples of virus activities that are potential drug targets (4).

• Preventing cell attachment: Antivirals can inhibit the entry of virus into the

cell using agents that bind to the cellular receptors or to the virus-associated protein

(VAP) (fig. 1.2). Examples of these drugs are anti-Vap antibodies, receptor anti-

idiotypic antibodies, extraneous receptor, and synthetic receptor mimics (16, 17).
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• Inhibiting entry: Drugs developed to block the entry of virus into the cell. For ex-

ample, a commercial drug named Fuzeon, used in treatment of HIV or TMC353121

which is a new RSV fusion inhibitor (18–21).

• Uncoating Inhibitors: These drugs inhibit the uncoating of viruses inside of the

host cell. Examples of these drugs are Amantadine and Rimantadine used against

influenza virus (22–24).

• Inhibiting reverse transcriptase: These drugs are analogues to the nucleotide

or nucleoside; these analogues deactivate the enzymes that synthesize the RNA or

DNA. Examples of these drugs are Acyclovir used against herpesvirus infections

and Zidovudine for HIV (22, 25, 26).

• Blocking integrase: Integrase inhibitors are drugs designed to block integrase,

which is an enzyme that inserts the DNA synthesized by the virus into the host cell

genome. An example is the drug Fomivirsen, which is used to treat cytomegalovirus

which causes eye infections in AIDS patients (22, 27).

• Preventing transcription: Blocking the action of transcription factors, which

are the proteins responsible for the production of mRNA.

• Preventing translation: These are antisense molecules, segments of DNA and

RNA, which attach to viral genomes and block their activity. Translation based

antivirals have been designed to deal with Hepatitis C and HIV (28).
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• Blocking protease: Some viruses have an enzyme known as a protease. Blocking

protease inhibits cutting viral proteins to the configuration necessary for assembly.

These drugs are being developed to treat and control HIV infection (29).

• Impeding assembly: Some antivirals interfere in the assembly phase of new

virions. For example Rifampcin, which is an antibiotic, is used against vaccinia

virus in this way (30).

• Preventing release: Blocking neuramidase activity, which is an enzyme that

catalyzes the substance that gives mobility to the new virions. Examples of these

drugs are Zanamivir (22, 31), named commercially as Relenza, and Oseltamivir,

also known as Tamiflu, that treat influenza (22, 23).

• Immune stimulants: These are substances (drugs and nutrients) that stimulate

the immune system, adaptive or innate responses, by producing an activation or

increasing activity of any of its components. Immune response has an important

role in how severe can an infection be (32).

Our aim is to determine if experimental assays can be used to help determine the mech-

anism of action of respiratory viral infections antiviral. Previously, Heldt et al (33) used

a computational model, where they took into account intra- and extra-cellular processes

of an influenza infection, to show which steps of viral replication are more susceptible to

drugs. They found dynamical differences in the infection as drugs with different mech-

anisms were modeled. We would like to know whether these dynamical differences can

be exploited to determine an unknown mechanism of action of potential antivirals. We
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start with a model limited to virus-cell interactions during the infection, one that does

not capture all the intra-cellular processe, but which can still be used to model different

mechanisms of action. For example to model blocking of assembly, we reduce the pro-

duction of virions in the mathematical model or by increasing the time where the virus

is not infectious, we can model the mechanism of preventing release.

1.4 Respiratory Infections

This study focuses on a particular respiratory virus: influenza.

1.4.1 Influenza

Influenza is an infectious disease caused by influenza virus. In the last century, there have

been three major pandemics caused by influenza: the 1918 Spanish Flu, the 1957 Asian

Flu, and the 1968 Hong Kong Flu. These pandemics caused approximately 50 million, 2

million and 1 million deaths. Also, annual epidemics of influenza A viruses and influenza

B virus affect 5–20% of the world’s population and result in 250,000–500,000 deaths each

year. It was estimated that the accumulated outcome of the annual influenza epidemics

in the 20th century exceeded those of three great world pandemics of plague recorded

(Justinian Plague in 521 AD, Black Death in 1347 AD and Modern Plague 1894 AD)

(4, 34).

Influenza viruses are RNA viruses and belong to the family of Orthomyxoviridae

virus. There are three types of influenza viruses:
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• Influenza A: This influenza virus causes influenza in birds and mammals. The

main variants of this type of virus are bird flu, human flu, swine influenza, equine

influenza, and canine influenza. This type is the most virulent and has caused

devastating pandemics: Spanish Flu, Swine Flu (18500 deaths), Asian Flu, and

Hong Kong Flu.

• Influenza B: Less common than influenza A, influenza B infects humans, seals,

and ferrets. Its mutation rate is slower than the mutation rate for influenza A,

which makes it less genetically diverse. Consequently, humans develop a degree of

immunity to influenza B.

• Influenza C: Less common than the other types, this can infect pigs and humans,

but still can be dangerous and cause local epidemics. Influenza C causes mortality

mainly in kids, but after an individual is infected once, they develop antibodies

against this type of influenza.

The structure of the viral particle is similar for must types of influenza. Their viral

particles are 80–120 nm in diameter with spherical shape, although influenza C can have

a filamentous form. The particles possess a lipid membrane envelope that contains the

glycoproteins hemagglutinin (HA) and neuraminidase (NA). These proteins are respon-

sible for attachment and release of the virus and determine the type of influenza A virus.

These viruses exhibit a cell tropism for epithelial respiratory cells and are transmitted

through host-virus interaction: in mammals via respiratory, in birds fecal-oral route from

drinking contaminated water and in zoonosis in general through animal contact.
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Influenza viruses have high mutation rates and frequently experience genetic reassort-

ment, which causes a variability in HA and NA antigens. The mechanisms used by the

virus to evade the host immune response are called antigenic variation. There are two

types of antigenic variation (35, 36):

• Antigenic drift: Results from a change in a few amino acids. In this case, the

virus changes slowly over time, which means antibodies stop recognizing the virus

resulting in a loss of immunity against the virus. This is one reason that we need

flu vaccines each year.

• Antigenic shift: It is the outcome of the acquisition of new proteins. This occurs

when two different influenza strains infect the same cell and combine their genetic

material. As a result of antigenic shift, new influenza subtypes are created, these

viruses can cause epidemics as there is no immunity for them.

The antiviral drugs used against influenza include:

• Amantadine, Rimantadine: These are inhibitors of M2 ion channels and prevent

the uncoating of influenza A virus (2).

• Zanamivir, Oseltamivir, Peramivir: These are neuraminidase inhibitors and

prevent escape of new virions from the host cell prevent infections of other cells

(Fig. 1.3) (22, 23, 31). These drugs are used for Influenza A and B.

• Favipiravir: It is an experimental drug used to inhibit viral replication and tran-

scription of RNA virus (37).
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Figure 1.3: Influenza viral replication cycle. In this figure you can observe the mecha-
nisms of action of Amantadine and Neuraminidase Inhibitors.

1.5 Background of Mathematical Models

Mathematical models have been used as a tool against epidemics, they can be used to

compare strategies to plan for an anticipated epidemic or to deal with an actual disease

outbreak. The first epidemic model was established by Daniel Bernoulli in 1766 (38).

His model was used for the spread of smallpox in the 18th century. He considered two

outcomes to the infection: death or recovery with immunity. As a result of his model,

he estimated that three quarters of all the persons alive in the 18th century had been

infected with smallpox.

The implementation of a mathematical model describing the infection cycle requires

a detailed specification of the biological processes, for example:

• Infections have been observed to be a Poisson processes where the rate of infection

is proportional to the virus concentration.
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• Virus production by infectious cells can be assumed to be a constant rate.

• The infectivity of free virus is known to decrease exponentially in time.

• The distribution of the times between the states of the infection have a delay.

• Description of other factors, such as the environment where the infections spread,

the kind of populations infected, and the dynamics between these populations.

To study respiratory infections we use compartmental models. Compartmental mod-

els are deterministic models, where it is assumed that the population is homogeneous

and the subjects in the population pass through different compartments (states) (39).

To derive the compartmental models, first we define the compartments based on assump-

tions about the nature and time rate of change from one compartment to other. Then

the models are formulated in terms of the derivatives of the members within each com-

partment, where the time t is considered as an independent variable. In this way, models

are formulated as differential equations.

To perform computational simulations with these models, it is necessary to get pa-

rameter values from data or literature. We can also analyze these models mathematically

to some extent: we can evaluate their equilibrium points and stability of these points;

we can derive threshold conditions (for example the Basic Reproduction Number R0);

and we can perform bifurcation analysis. From the mathematical analysis and numerical

simulations, we can get information about the properties that make the pathogen spread

and manipulate the outcome of an infection.
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1.5.1 Basic Viral Replication Model

The basic viral replication model is used to study the dynamics of viral infections. To

represent the dynamics of these infections, we take into account the biological processes

mentioned before (infectivity rate, viral production rate, etc.). The virus replication

model (depicted in Fig. 1.4) starts with healthy target cells, T , which are infected by

virions, V , and enter the eclipse phase, E. During the eclipse phase, the cell’s replication

machinery produces all the viral proteins and packages them into new virions. When

the new virions are ready, the cell transitions to the infectious state, I, when virions are

released from the cells to infect other cells. Eventually the infectious cells will die. To

reproduce this cycle, the following system of differential equations was proposed in (40):

Ṫ = −βTV (1.1)

Ė = βTV − E

τE
(1.2)

İ =
E

τE
− I

τI
(1.3)

V̇ = pI − cV. (1.4)

Where these are the parameters in the model:

• β: the rate at which virions infect target cells get infected.

• p: the production rate of virions by infected cells.

• c: the rate at which virions lose infectivity.

• τE: Time in the eclipse phase.
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Figure 1.4: Virus replication model.

• τI: Time in the infectious phase.

Note that in respiratory infections virus replication is faster than the recovering time for

respiratory tissue, so there is no target cell replacement in this model.

1.6 Questions

In this paper, we will use mathematical models to investigate antiviral treatment of

respiratory viruses. Specifically, we will address the following questions:

• What experiments can help us determine the mechanism of action?

• How do model parameters affect our predictions about the mechanism of action?

• Can mechanism of action be determined from dose-response curves?
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Chapter 2

Methods

2.1 Mathematical Model

The model presented earlier assumes cells leave the eclipse and infectious compartments

at a rate proportional to the number of cells in the compartment. This supposition

produces an exponential distribution for the times spent in the eclipse and infectious

phases. This is not biologically accurate, and leads to a large variance between the

average period in the eclipse and infectious compartments meaning that cells produce

virus immediately after getting infected and they are likely to die long before or after the

mean life span τI (41). In Figure 2.1, we see different possible delay distributions in the

evolution between states. To model the infection more accurately, we use a mathematical

device known as “The Method of Stages”, where a single compartment in the model is

replaced by a set of n subcompartments. The time spent in each subcompartment is

exponentially distributed, so the life span of the cells is described by the sum of n
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Figure 2.1: Examples of delay distributions. The function plotted, P (t), is the probability
that after a time t the cell remains in a current state (42).

exponential distributions. This leads to a gamma distribution in the times for these

stages (42, 43).

To apply “The Method of Stages” in the basic viral infection model, the eclipse and

infectious compartments are divided into n subcompartments (nE and nI), with nE/τE

and nI/τI giving the rates of sequential progression through the subcompartments. The

advantage of this method is that when nE and nI are equal to one we are back to the

exponentially distributed model (Fig. 2.2), while for nE →∞ we get a normal distribution

(41).
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Figure 2.2: Effects of gamma distributed infectious period on the epidemic curve (43).
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When implementing the stages,we use a system of differential equations for the

gamma-distributed viral infection model:

Ṫ = −βTV (2.1)

Ė1 = βTV − nE
τE
E1 (2.2)

Ėj =
nE
τE
Ej−1 −

nE
τE
Ej for j = 2, ..., nE (2.3)

İ1 =
nE
τE
EnE
− nI
τI
I1 (2.4)

İj =
nI
τI
Ij−1 −

nI
τI
Ij for j = 2, ..., nI (2.5)

V̇ = p

nI∑
j=1

Ij − cV, (2.6)

where the target cells T are infected by the virus V at an infectivity rate β. Then

the infected cells enter in a eclipse phase E and pass through all the compartments Ej

before become infectious. Next all the cells in the infectious compartments, Ij, produce

new virus particles at a rate p and at the same time the virus loses infectivity at a rate

c. We will use the gamma-distributed model for our studies of mechanism of action of

antivirals. In this study, we specifically examine the effect of antivirals on influenza.

The parameters used to describe the infection are given in Table 2.1, which are the only

parameters available from the literature that model influenza infectios using the gamma

model.
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Table 2.1: Influenza parameters. Parameters for influenza taken from (44).
Parameter Flu Parameter

T0 106 cells
β 4.26× 10−4 (h ·TCID/mL)−1

p 176 (TCID/mL) · h−1

c 0.13 /h
τI 49.0 h
τE 6.6 h
nE 30
nI 100

Figure 2.3: Multiple Cycle Assay (MCA)

2.2 Experimental Assays

Experimental assays are used for the titration of virus, which measures the number of

infectious units per milliliter. The titers are determined by making dilutions of virus

suspensions in cell culture or growth medium. There are two kind of in vitro assays for

viral infections:

• Multiple Cycle Assay (MCA): In the MCA a small quantity of virus, low MOI,

is applied to a cell culture. In this way just a few cells get infected and will produce

more virus to infect more cells. The viral cycle is repeated until all the cells get

infected.

• Single Cycle Assay (SCA): In the SCA a large quantity of virus, high MOI,

is applied to a cell culture to infect all the cells in the culture at the same time.

Therefore all the cells will be synchronized in one viral cycle.

21



Figure 2.4: Single Cycle Assay (SCA)

To simulate the MCA and SCA using the model, it is necessary to apply the proper

initial conditions when solving the differential equations. In the MCA to simulate a low

MOI, we set a small ratio of the total cells to initially be in the eclipse phase. For a SCA,

we set all the cells to initially be in the eclipse phase.

2.3 Modeling the drug effect

To simulate different possible mechanisms of action, we apply the effect of a drug to

different parameters in the model. The effect of a drug is modeled using the efficacy, ε.

The efficacy is the ratio of successful responses of a drug, so this can vary between 0 and

1.

The mechanism of action for antiviral drugs that we modeled are:

• Reducing the infection rate of new cells and allowing large amount of

virus to enter cells before infection. This is modeled by applying the efficacy

to the parameter β:

Ṫ = −β
(
1− ε

)
TV (2.7)

Ė1 = β
(
1− ε

)
TV − nE

τE
E1. (2.8)
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In this way, the infection rate decreases as efficacy increases, this means that the

number of target cells decreases slowly and the number of cells in the eclipse phase

increases also slowly.

• Reducing the infection rate of new cells without allowing large amounts

of virus to enter the cells. To do this we place the efficacy on the parameter β,

but only in the equation of the first compartment in the eclipse phase:

Ṫ = −βTV (2.9)

Ė1 = β
(
1− ε

)
TV − nE

τE
E1. (2.10)

Here the infection rate just decreases for the eclipse phase equation, so we have

that the cells entering in the eclipse are less than the loss of target cells.

• Reducing the production of new virions. For this mechanism, we put the

efficacy on p:

V̇ = p
(
1− ε

) nI∑
j=1

Ij − cV. (2.11)

This means that the production rate will decreases as the efficacy of the drug

increases.
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• Increasing the rate of loss of virion infectivity. In this case, the efficacy is

applied to c:

V̇ = p

nI∑
j=1

Ij −
c

1− ε
V. (2.12)

The virions become less infectious as the efficacy increases.

• Increasing the length of the eclipse phase. The parameter τE is affected by

the efficacy.:

Ė1 = βTV − nE
τE
1−ε

E1 (2.13)

Ėj =
nE
τE
1−ε

Ej−1 −
nE
τE
1−ε

Ej (2.14)

İ1 =
nE
τE
1−ε

EnE
− nI
τI
I1. (2.15)

This represents an antiviral that blocks release of the virus.

• Decreasing the lifespan of infectious cells. The parameter τI is modified by

the efficacy in the following way.

İ1 =
nE
τE
EnE
− nI

τI
(
1− ε

)I1 (2.16)

İj =
nI

τI
(
1− ε

)Ij−1 −
nI

τI
(
1− ε

)Ij for j = 2, ..., nI (2.17)

This could represent the effect of an immune stimulant that causes the immune

response to kill infected cells more rapidly.
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For each theoretical drug, we assume the drug concentration remains constant from

the beginning of the experiment. Then we examine the time course of the virus and the

time course of dead cells as the concentration of drug is varied.

2.4 Measurements

Experimentally, the viral titer and sometimes also the number of dead cells are measured

over time. In this way, the viral titer and dead cell time course data is determined, Fig.

2.5. From the time course data is possible get quantities that are interesting:

• Viral peak: The maximum amount of virus produced. This represent how critical

is an infection, higher viral peak harde symptoms.

• Time peak: Time when the viral peak is reached. It is related with the duration

of the infection.

• AUC: Area under the viral titer curve, which assesses the severity of the infection

and how infectious is.

• Viral slopes: Upslope for the growth rate of the viral titer and downslope for the

viral decay rate.

• Maximum amount of dead cells: Used also to assess the efficacy of a drug.
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Figure 2.5: Examples of Viral titer and dead cells time courses curves for different infec-
tions, left curve is for Respiratory Syncytial Virus infection (RSV) and right curve for
Influenza infection. Also are shown the measurements that can be extracted from these
curves.

2.5 Latin hypercube sampling

After numerical simulations are performed, it is necessary to assess the results using a

sensitivity analysis. Sensitivity analysis is the study of how the uncertainty in the inputs

of the models can affect the output. To perform our analysis, we used Latin Hyercube

Sampling.

Latin Hypercube Sampling (LHS) is a statistical method to produce a sample of

probable collections of parameter values from a multidimensional distribution. This

method is used to construct computer experiments where it is desired that the data

of each simulation is constrained to match the input distribution very closely. To do

this, the Latin Hypercube method takes random parameters within some fraction of the

standard error and uses these parameters to produce data.

In this work, we examined how the changes in the parameters can change the course of

the infection for the different theoretical drugs. The parameters that we want to analyze
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are: β, p, c, τI and τE. We took a random value, for each parameter, from a distribution

constrained between:

Experimental value ±10% Experimental value (2.18)

Where the best fit value comes from the experimental data available. We redid this 300

times, in this way we got a collection of different outputs. Then we plot these outputs

to compare them.

2.6 Fitting data curve

Curve fitting is a procedure to construct a curve, or function, that has the best fit to a

group of data points. This is a very useful tool in virology, because experimental data

points are limited. To help us extract some of the measurements described in Section

2.4, we use the function,

V =
2Vp

eλg(t−tp) + e−λd(t−tp)
, (2.19)

where Vp is the viral peak, tp is the time of peak, λg is the growth rate and λd is the decay

rate. This function is used because it shows two characteristics found in the experimental

data; an exponential growth of the viral titer (after the eclipse phase) followed by an

exponential decrease after the viral peak is reached (42).

To evaluate our fitting we use the “Reduced Chi-Square Goodness of Fit test”. This

test measures how close the fitted values are to the expected values. The test involves
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calculating the chi-square statistic of the fitting,

χ̃2 =
n∑
k=1

(
(Fk − Ek)

σk

)2

, (2.20)

where Fk are the fitted values and Ek are the expected value, the experimental data, and

σk are the Gaussian errors. The chi-square values will be one if there is no deviation

(perfect fit).
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Chapter 3

Results

3.1 Quantifying the effect of a drug

Experimentally, virologists use values of measurable quantities, like the viral peak, as a

function of drug dose to determine the effect of a drug. For our models, we use efficacy,

rather than drug dose, although we can relate efficacy to dose through the Emax model,

ε = εmax
D

IC50 +D
(3.1)

where D is the drug dose, IC50 is the drug concentration at which we have 50% of the

maximum effect and εmax is the maximum effect of the drug. We generate efficacy curves

with our model as follows. First, it is necessary get the time course curves for the amount

of virus and dead cells for each value of the efficacy. Second, we got the values of different

measurements (viral peak, time peak, AUC, viral slopes, and maximum amount of dead

cells), as described in Section 2.4.
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For example, in Fig. 3.1 we can observe the viral time courses for the MCA of influenza

under the influence of drugs with different mechanisms, each figure showing the effect

for several values of efficacy. For example, drugs with mechanisms Protecting target cells

and p have the same effect: they keep the shape of the curve but the viral peak decreases

as function of the efficacy. In drugs with mechanism Slowing infection, we don’t observe

effect of the drug in the viral course until the efficacy is 100%. For mechanisms Increasing

the length of the eclipse phase and Decreasing the lifespan of infectious cells the viral

peak is the same but the shape of the curve changes, for Increasing the length of the

eclipse phase the time for viral peak increases as a function of the efficacy, while for

Decreasing the lifespan of infectious cells, it decreases. For the mechanism Increasing the

rate of loss of virion infectivity, the viral peak, the time when the viral peak is reached

and the shape of the curve change as a function of the efficacy. in this way, if we study the

effect of a drug by measuring different quantities, we would expect to get different types

of curves for each mechanism. For example, measuring the drug effect on peak viral titer

would yield a different result than measuring drug effect on viral decay rate. From these

time courses, we can extract quantities that are possible to measure experimentally, such

as viral peak, AUC, or amount of virus at different times post infection.

We plot the extracted quantities as a function of the drug efficacy to produce efficacy

curves. In Fig. 3.2, we have plotted Vmax and AUC as functions of the efficacy for different

theoretical drugs. For Vmax, viral peak, we found that for mechanisms: Protecting target

cells, Reducing the production of new virions and Increasing the rate of loss of virion

infectivity the viral peak decreases linearly with the efficacy. For Slowing infection, the

viral peak is independent of the efficacy and for Increasing the length of the eclipse phase
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Figure 3.1: Viral time course for different mechanisms of action during the MCA for
influenza infection. The top left figure shows the effect of a drug on Slowing infection, for
this figure all the curves for efficacy values less than 1 follow the same trend; top right
figure shows drug on Protecting target cells ; center left figure shows drug on Reducing
the production of new virions ; center right drug on Increasing the rate of loss of virion
infectivity ; bottom left figure shows drug on Increasing the length of the eclipse phase
and bottom right shows drug on Decreasing the lifespan of infectious cells.

and Decreasing the lifespan of infectious cells the viral peak decreases in a concave curve.

For AUC, all the drugs are independent of the efficacy except Protecting target cells, which
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decreases linearly as function of efficacy, and Increasing the length of the eclipse phase

which has sigmoidal curve.
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Figure 3.2: Efficacy curves for different mechanisms of action under the MCA for influenza
infection. Top figure shows the maximum amount of virus as a function of efficacy; Bot-
tom figure shows AUC as a function of efficacy. Black curve is for Slowing infection, red
is for Protecting target cells, purple is for Increasing the rate of loss of virion infectivity,
yellow is for Increasing the length of the eclipse phase and green is for Decreasing the
lifespan of infectious cells.

A similar procedure is used to extract measurable quantities from the time course of

dead cells, such as the maximum amount of dead cells. We do not examine eclipse or

infectious cells in this study because experimentally we cannot detect which cells are in
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the infectious or eclipse phase. We can detect the amount of virus in the dish, but it is

not possible recognize the cells which produce it.

3.2 Efficacy curves

We first examined the effect of different hypothetical drugs on influenza. The parameters

used to simulate a typical influenza infection are given in Table 2.1. We simulated both

MCA and SCA experiments and found drug efficacy curves for our hypothetical drugs

for the quantities described in Section 2.4.

The results for AUC are shown in Fig. 3.5 and Fig. 3.8. From the AUC graphs, we

can observe that the most effective drugs for reducing AUC of the MCA are the ones with

mechanisms acting on: Protecting target cells and Increasing the length of the eclipse

phase, while for SCA the most efficient mechanisms are Increasing the length of the

eclipse phase, Reducing the production of new virions and Increasing the rate of loss of

virion infectivity. The results for Viral Peak are shown in Fig. 3.3 and Fig. 3.6. From

the viral peak curve we can see that the mechanisms that do not affect peak viral titer

are Slowing infection for MCA and Slowing infection and Protecting target cells for SCA.

The results for maximum amount dead cells are shown in Fig. 3.4 and Fig. 3.7. For the

SCA, a drug that reduces infection rate is not expected to have any effect since all the

cells are already infected.
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Figure 3.3: Viral peak efficacy curves for drugs with different mechanisms of action for

influenza infection for MCA. Black curve is for Slowing infection, red is for Protecting

target cells, cyan is for Reducing the production of new virions, purple is for Increasing

the rate of loss of virion infectivity, yellow is for Increasing the length of the eclipse phase

and green is for Decreasing the lifespan of infectious cells.
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Figure 3.4: Maximum amount of dead cells efficacy curves for drugs with different mech-

anisms of action for influenza infection for MCA. Black curve is for Slowing infection, red

is for Protecting target cells, cyan is for Reducing the production of new virions, purple is

for Increasing the rate of loss of virion infectivity, yellow is for Increasing the length of

the eclipse phase and green is for Decreasing the lifespan of infectious cells.
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Figure 3.5: AUC efficacy curves for drugs with different mechanisms of action for in-

fluenza infection for MCA. Black curve is for Slowing infection, red is for Protecting

target cells, cyan is for Reducing the production of new virions, purple is for Increasing

the rate of loss of virion infectivity, yellow is for Increasing the length of the eclipse phase

and green is for Decreasing the lifespan of infectious cells.
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Figure 3.6: Viral peak efficacy curves for drugs with different mechanisms of action for

influenza infection for SCA. Black curve is for Slowing infection, red is for Protecting

target cells, cyan is for Reducing the production of new virions, purple is for Increasing

the rate of loss of virion infectivity, yellow is for Increasing the length of the eclipse phase

and green is for Decreasing the lifespan of infectious cells.
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Figure 3.7: Maximum amount of dead cells efficacy curves for drugs with different mech-

anisms of action for influenza infection for SCA. Black curve is for Slowing infection, red

is for Protecting target cells, cyan is for Reducing the production of new virions, purple is

for Increasing the rate of loss of virion infectivity, yellow is for Increasing the length of

the eclipse phase and green is for Decreasing the lifespan of infectious cells.
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Figure 3.8: AUC efficacy curves for drugs with different mechanisms of action for in-

fluenza infection for SCA. Black curve is for Slowing infection, red is for Protecting target

cells, cyan is for Reducing the production of new virions, purple is for Increasing the rate

of loss of virion infectivity, yellow is for Increasing the length of the eclipse phase and

green is for Decreasing the lifespan of infectious cells.

We note that some mechanisms of action had no effect on the time course of one of

the assays. These are summed up in Table 3.1. For influenza during the MCA, a drug
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inhibiting cell entry ( Slowing infection) didn’t have any effect on either viral or dead

cell time courses. For influenza during the SCA, both variations of the cell entry drug (

Slowing infection and Protecting target cells) had no impact on the time courses of either

virus or dead cells.

Table 3.1: Mechanisms where the viral and dead course are not affected by the efficacy.

Viral time course
MCA Slowing infection
SCA Slowing infection, Protecting target cells

Dead cell time course
MCA Slowing infection, Increasing the rate of loss of virion infectivity

Reducing the production of new virions
SCA Slowing infection, Protecting target cells

Increasing the rate of loss of virion infectivity
Reducing the production of new virions

We can identify most of the mechanisms of action through the measurements shown

here. This is summarized in Table 3.2 where each column describes the types of efficacy

curves expected for each mechanism of action. Note that there is a uniques combination

of curves for all mechanisms except drugs reducing production (Reducing the production

of new virions) and drugs increasing clearance (Increasing the rate of loss of virion infec-

tivity). For example, we can determine mechanisms of action by measuring a particular

property:

• Slowing infection: From the MCA if the viral peak is constant.

• Protecting target cells : From the MCA if AUC decreases linearly as the efficacy

increases.
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• Increasing the length of the eclipse phase: From the MCA if AUC curve has a

sigmoidal shape.

• Decreasing the lifespan of infectious cells : From the MCA and SCA if the viral

peak decreases as function of the efficacy, in a concave curve.

• Reducing the production of new virions and Increasing the rate of loss of virion

infectivity have the same efficacy curves for most of the measurements, except for

AUC in SCA where both decrease linearly but Increasing the rate of loss of virion

infectivity seems to have a bigger rate of change.

Table 3.2: Results of efficacy curves for MCA and SCA.
Measurement Slowing infection Protecting target cells Reducing the production
MCA Viral peak Constant Linear Linear
SCA Viral peak Constant Constant Linear
MCA Max dead cells Constant Linear Constant
SCA Max dead cells Constant Constant Linear
MCA AUC Constant Linear Constant
SCA AUC Constant Constant Constant
Measurement Increasing the loss of virion infectivity Increasing the eclipse phase Decreasing the lifespan of infectious cells
MCA Viral peak Linear Concave Concave
SCA Viral peak Linear Concave Concave
MCA Max dead cells Constant Sigmoid Constant
SCA Max dead cells Linear Concave Concave
MCA AUC Constant Constant Constant
SCA AUC Constant Concave Constant

While our results suggest that at least some mechanisms could be identified using the

SCA or MCA, in order for these results to be used experimentally, we need to ensure that

the shape of the curves does not depend on the chosen underlying model parameters.

3.3 Parameter dependence of efficacy curves

To test the dependence of efficacy curves on model parameters, we use Latin Hypercube

Sampling (LHS) as described in Methods. We use the LHS method to produce 300 efficacy
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curves each based on slightly different model parameters. This allows us to evaluate

how much the curves change when underlying parameters change. Results of our LHS

simulations are shown in Fig. 3.9 and Fig. 3.10 for peak viral titer, Fig. 3.11 and Fig.

3.12 for maximum number of dead cells. and Fig. 3.13 and Fig. 3.14 for AUC. For viral

peak, we observe that the change in parameters is irrelevant for the mechanisms: Slowing

infection, Protecting target cells, Reducing the production of new virions, and Increasing

the rate of loss of virion infectivity. For Increasing the length of the eclipse phase

and Decreasing the lifespan of infectious cells, we observe a dependence on parameter

selection, which for Decreasing the lifespan of infectious cells is more obvious for higher

efficacies. For the maximum number of dead cells, the effect is the same, just Increasing

the length of the eclipse phase and Decreasing the lifespan of infectious cells appear

to be dependent on infection parameters, but on this occasion the distribution of the

results appears to be bigger. For AUC curves, again the mechanisms Increasing the

length of the eclipse phase and Decreasing the lifespan of infectious cells are dependent

on the selected parameters, but we also see a parameter dependence in the mechanism

Increasing the rate of loss of virion infectivity for SCA.
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Figure 3.9: LHS for viral peak efficacy curves for influenza infection with different an-

tiviral mechanisms of action. Here we observe the three different results (constant viral

peak, linearly decreasing viral peak and sigmide curve). All the results can be found in

Fig. 5.2. Plots are for SCA: the effect of a drug on Slowing infection: drug on Decreasing

the lifespan of infectious cells ; and drug on Reducing the production of new virions.
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Figure 3.10: LHS for viral peak efficacy curves for influenza infection with different

antiviral mechanisms of action. Here we observe the three different results (constant

viral peak, linearly decreasing viral peak and sigmoide curve). All the results can be

found in Fig. 5.2. Plots are for MCA: the effect of a drug on Slowing infection; drug on

Protecting target cells ; drug on Increasing the length of the eclipse phase.
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Figure 3.11: Maximum dead cells amount for drugs with different mechanisms used

against of Influenza infection, the infection was modeled using parameters from the LHS.

Here we observe the three different results (constant viral peak, linearly decreasing viral

peak and sigmoide curve). All the results can be found in Fig. 5.4. Plots are for SCA.

Figure shows the effect of a drug on Protecting target cells ; drug Increasing the length

of the eclipse phase and drug Decreasing the lifespan of infectious cells.
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Figure 3.12: Maximum dead cells amount for drugs with different mechanisms used

against of Influenza infection, the infection was modeled using parameters from the LHS.

Here we observe the three different results (constant viral peak, linearly decreasing viral

peak and sigmoide curve). All the results can be found in Fig. 5.4. Plots are for MCA.

Figure shows the effect of a drug on Slowing infection; drug Protecting target cells ; and

drug Increasing the length of the eclipse phase.
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Figure 3.13: AUC for drugs with different mechanisms used against of Influenza infection,

the infection was modeled using parameters from the LHS. Here we observe the three

different results (constant viral peak, linearly decreasing viral peak and sigmoide curve).

All the results can be found in Fig. 5.6 Plots are for SCA. Figure shows the effect of

a drug on Slowing infection; drug Increasing the length of the eclipse phase; and drug

Reducing the production of new virions.
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Figure 3.14: AUC for drugs with different mechanisms used against of Influenza infection,

the infection was modeled using parameters from the LHS. Here we observe the three

different results (constant viral peak, linearly decreasing viral peak and sigmoide curve).

All the results can be found in Fig. 5.6 Plots are for MCA. Figure shows the effect of a

drug on Slowing infection; drug Protecting target cells ; drug Increasing the length of the

eclipse phase.
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3.4 Dose response curves

Most experiments do not measure complete time courses or plot the effect as a function

of efficacy. Instead, they use dose response curves, which show the effect of various doses

of a chemical. On the x-axis, we plot the drug dose, usually on a logarithmic scale and on

the y-axis, we plot some outcome (typically obtained from in vitro experiments). Note

that we can convert efficacy curves to dose-response curves using Eq. (3.1), as long as we

know εmax and IC50. These curves help us to understand the response to different levels

of exposure to a drug after diverse exposure time. In Fig. 3.15 and Fig. 3.16, we show

the viral peak for different mechanisms of action as function of the dose. But we can

observe that the shape of the curves is very similar, so the mechanism of action is difficult

to identify through these curves, since viral titer measurements tend to have large error

(45).
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Figure 3.15: Dose response for drugs with different mechanisms of action for influenza

infection. Figures are for MCA . The top row assumes an εmax of 1, while the bottom

row assumes an εmax of 0.5. Black curve is for Slowing infection, red is for Protecting

target cells, cyan is for Reducing the production of new virions, purple is for Increasing

the rate of loss of virion infectivity, yellow is for Increasing the length of the eclipse phase

and green is for Decreasing the lifespan of infectious cells.
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Figure 3.16: Dose response for drugs with different mechanisms of action for influenza

infection. Figures are for SCA. The top row assumes an εmax of 1, while the bottom row

assumes an εmax of 0.5. Black curve is for Slowing infection, red is for Protecting target

cells, cyan is for Reducing the production of new virions, purple is for Increasing the rate

of loss of virion infectivity, yellow is for Increasing the length of the eclipse phase and

green is for Decreasing the lifespan of infectious cells.
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3.5 Comparing to experimental data

We test our findings by examining experimental data for treated influenza infections.

The data used were obtained from MCA for influenza treated with amantadine (46),

and for MCA for influenza treated with oseltamivir (unpublished data). The data is

the only available data for viral courses of cells infected with influenza A treated with

amantadine and oseltamivir.

In this experiment, they used a hollow fiber (HF) system, which possesses a cartridge

where target cells are deposited. Pre-infected cells are added to initiate the viral infection.

To measure the dose effect, the authors of (46) performed several experiments with

different doses of oseltamivir or amantadine. Recall that amantadine is an antiviral

that blocks uncoating of the virus once it has entered the cell (47) while oseltamivir

is a neuraminidase inhibitor that blocks release of the virus (48, 49). The dose was

held constant throughout each experiment. The viral titer of each HF experiment was

measured at different times, 6 measurements for amantadine and 5 for oseltamivir.

We use the function described by Eq. (2.19) to perform the data fitting for different

doses of amantadine and oseltamivir, Fig. 3.17 and Fig. 3.18. This function gives us

measurements of different features of the viral time course as a function of drug concen-

tration. This allows us to generate different efficacy curves for the drugs oseltamivir and

amantadine.

We calculate “Reduced chi square” for each fitting. The chi square are shown in

Table 3.3 and Table 3.4. The ”reduced chi square” indicates that the fit has not fully

captured the properties of the data, especially for oseltamivir doses of 10ng/ml where
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χ̃2 = 8.16530, 1ng/ml where χ̃2 = 17.93972 , and 0ng/ml where χ̃2 = 5.008397. Using

Eq. 3.1 we can convert our doses in efficacies, in term of eficacies this means that the

data available for ε = 0.90, ε = 0.50 and ε = 0.0 are not precise. For amantadine in

dose 53.3uM we have χ̃2 = 3.86118 , this affects the data for efficacy ε = 0.98, but

as our efficacy curves are for values between 0 and 1 we can say that most of the data

to compare are correct. As it is mentioned in the Section 2.6, the equation Eq. 2.19

has been used before (42) to fit data, and reflects the main characteristics of the viral

course. So it might be due to the experimental error or the reduced chi square is not the

appropriate method to evaluate the fitting for non linear models (50). When compared

to our simulations for different possible mechanisms of action (Fig. 3.19, Fig. 3.20 and

Fig. 3.21), the efficacy curves for viral peak, AUC, growth and decay rates correspond to

the mechanism modeled as Slowing infection for oseltamivir and Increasing the length

of the eclipse phase for amantadine, both of which disagree with previous results.
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Figure 3.17: Fitting for different doses of amantadine
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Figure 3.18: Fitting for different doses of oseltamivir

In (46), both Slowing infection and Protecting target cells models were tested for

amantadine because amantadine prevents uncoating meaning that cells are not truly

infected, suggesting a reduced infection rate. Our work suggests that a better interpreta-

tion would be that the uncoating increases the eclipse phase because the cells are infected
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but viral replication is delayed, so the cells are infected as usual but become infectious

after a longer period of time.

χ̃2

53.3uM χ̃2 = 3.86118

16.0uM χ̃2 = 2.06818

5.3uM χ̃2 = 0.69293

0.5uM χ̃2 = 0.72771

0.05uM χ̃2 = 2.48006

0uM χ̃2 = 2.51936

Table 3.3: χ̃2 for fitting of diferent Amantadine dose

χ̃2

100ng/ml χ̃2 = 1.30031

10ng/ml χ̃2 = 8.16530

1ng/ml χ̃2 = 17.93972

0.1ng/ml χ̃2 = 0.81807

0.0ng/ml χ̃2 = 5.008397

Table 3.4: χ̃2 for fitting of diferent Oseltamivir dose

Oseltamivir was previously modeled as blocking production Reducing the production

of new virions in (40, 51, 52), but our results suggest that a more accurate model is

that it slows the infection by reducing the infection rate. This could be because our
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model just considers cell free transmission. Virus can infect a host trough cell free

transmission, virions moving freely in extracellular fluids until they enter in a host cell,

or directly between infected and uninfected cells. Cell to cell transmission is faster and

more efficient than cell free transmission, because it obviates early steps in the viral life

cycle (53), for example attachment. Oseltamivir obstructs the mobility of new virions,

hence affects cell free transmission only leaving cell to cell transmission as the primary

mode of infection. So the result of modeling it as decreasing the infection rate, Slowing

infection, makes sense.
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Figure 3.19: Efficacy curves for amantadine and oseltamivir, derived from experiment

(top) and from our simulations (bottom) for Viral peak. In the right figures: black

curve is for Slowing infection, red is for Protecting target cells, cyan is for Reducing the

production of new virions, purple is for Increasing the rate of loss of virion infectivity,

yellow is for Increasing the length of the eclipse phase and green is for Decreasing the

lifespan of infectious cells.
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Figure 3.20: Efficacy curves for amantadine and oseltamivir, derived from experiment

(top) and from our simulations (bottom) forAUC. In the right figures: black curve is for

Slowing infection, red is for Protecting target cells, cyan is for Reducing the production

of new virions, purple is for Increasing the rate of loss of virion infectivity, yellow is

for Increasing the length of the eclipse phase and green is for Decreasing the lifespan of

infectious cells.
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Figure 3.21: Efficacy curves for amantadine and oseltamivir, derived from experiment

(left) and from our simulations (right) for viral growth and viral decay. In the right

figures: black curve is for Slowing infection, red is for Protecting target cells, cyan is

for Reducing the production of new virions, purple is for Increasing the rate of loss of

virion infectivity, yellow is for Increasing the length of the eclipse phase and green is for

Decreasing the lifespan of infectious cells.
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Chapter 4

Discussion and Future Work

4.1 Questions Answered

What experiments can help us determine the mechanism of action?

We were able to identify possible measurements that could help identify, at least

broadly, the mechanism of action of a new antiviral. For influenza, viral peak in the

MCA can help us to identify the mechanism: Protecting target cells, which is a drug

inhibiting cell entry. AUC in the MCA can identify Protecting target cells, inhibiting

cell entry and Increasing the length of the eclipse phase, blocking release, while AUC

in the SCA can identify Reducing the production of new virions, blocking production,

Increasing the rate of loss of virion infectivity, increasing viral clearance, and Decreasing

the lifespan of infectious cells, decreasing cell lifespan.

In the case of influenza, our study of experiments with amantadine and oseltamivir

suggested alternative modeling mechanisms than those described in previous research

(40, 46, 51, 52). We found that oseltamivir should be modeled as reducing infection
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rate, Protecting target cells, as neuramidase inhibitor prevents cell-free transmission, but

not cell-to-cell transmission, overall decreasing the infection rate. For amantadine the

best modeling mechanism was found to be Increasing the length of the eclipse phase.

Amantadine is an uncoating inhibitor, this means that virus enters the cells but viral

production is not possible because the genetic material is not released to be copied, in

this way the cells are infected but they do not become infectious, thus lengthening the

eclipse phase.

How do model parameters affect our predictions about the mechanism of

action?

Our sensitivity analysis suggested different parameter sensitivities depending on which

model parameters were perturbed. For influenza, the most reliable results are for SCA,

since they show the least amount of parameter sensitivity (see Table 4.1). Dependence

on parameter values was seen most in Increasing the length of the eclipse phase and

Decreasing the lifespan of infectious cells, with some small dependence on Increasing the

rate of loss of virion infectivity.

Can mechanism of action be determined from dose-response curves?

No, the dose-response curves for different mechanisms have a very similar shape. This

makes it difficult to identify different mechanisms.
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Influenza

Vp:Protecting target cells,Protecting target cells
Increasing the rate of loss of virion infectivity

Reducing the production of new virions
MCA AUC:Protecting target cells,Protecting target cells

Increasing the rate of loss of virion infectivity
Reducing the production of new virions
Decreasing the lifespan of infectious cells

Dc: Protecting target cells,Protecting target cells
Increasing the rate of loss of virion infectivity

Reducing the production of new virions
Decreasing the lifespan of infectious cells

Vp:Protecting target cells,Protecting target cells,
Increasing the rate of loss of virion infectivity

Reducing the production of new virions
SCA AUC:Protecting target cells,Protecting target cells

Reducing the production of new virions
Dc: Protecting target cells,Protecting target cells
Increasing the rate of loss of virion infectivity

Reducing the production of new virions

Table 4.1: Mechanisms where results are independent of parameter selection in the LHS

4.2 Future Work

4.2.1 Towards an analytical solution

We would like to find an analytical expression which helps us predict the shapes of the

curves. For example for the SCA, all cells are infected at the beginning, there are no

target cells, and all the cells go through the viral cycle simultaneously. Since there are

no target cells being infected, the equation for the first eclipse phase reduces to

dE1

dt
= −nE

τE
E1, (4.1)
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which is a simple exponential and has a solution of

E1 = N exp

(
−nEt
τE

)
, (4.2)

where N is the total number of cells. To find the number of cells in any of the eclipse

phase compartments we have to solve the series of differential equations. This gives a

general solution

En =
1

(n− 1)!

(
nE
τE

)n−1

Ntn−1 exp

(
−nEt
τE

)
. (4.3)

Now, using the general solution we can solve for the compartments in the infectious

phase. Substituting the expression for the last compartment in the eclipse phase into the

differential equation for the first compartment of the infectious phase,

dI1
dt

=
1

(nE − 1)!

(
nE
τE

)nE

NtnE−1 exp

(
−nEt
τE

)
− nI
τI
I1. (4.4)

In this way, we can solve for all the infectious compartments. Since the number of

eclipse cells in the nth compartment is a series of exponentials and the transition from one

infectious compartment to another is exponential, the number of cells in any infectious

compartment will also be a series of exponentials. Notice that the number of infected

cells in any of the eclipse or infectious compartments is independent of the amount of

virus and independent of the infection rate.

To find the amount of virus as a function of time, we have to integrate the differential

equation for V . Using the results for the infectious compartments and assuming that in

the early times of the single cycle assay the viral clearance is negligible, the differential
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equation for virus becomes

dV

dt
= p

nI∑
j=1

Ij. (4.5)

Since the number of cells in any infectious compartment depends on time only, we can

simply integrate this equation to get an expression for the virus as a function of time,

V = p

∫ s=t

s=0

nI∑
j=1

Ij(s)ds. (4.6)

Here we find that the amount of virus is independent of the infection rate β, which

explains why we do not observe any effect in the SCA for the mechanisms Protecting

target cells and Protecting target cells in the viral course curves, viral peak and AUC.

Using this expression we can determine the shape of the curves for viral courses, and all

the measurements related with this.

For the number of dead cells we can integrate,

dD

dt
=
nI
τI
InI
. (4.7)

Again as InI
is a function of time we can integrate to get,

D =
nI
τI

∫ s=t

s=0

InI
(s)ds. (4.8)

In this way, we can get the prediction for the shape of the dead cells course curves, and

also for the maximum amount of dead cells.

65



Our next steps will be to derive expressions for experimentally measured quantities

during the SCA so that we can understand the model parameter dependence of different

efficacy curves. A similar analysis should also be feasible for the MCA by expanding

the techniques of Smith et al. (54) who found approximations for the viral time course

during an MCA using a simple exponential infection model.

We would also like to expand our analysis to examine combination therapy. Com-

bination therapy is a type of therapy used against viral infections characterized by the

use of more than one antiviral drug. Using the mathematical model and methods used

to identify the drug mechanism, we can assess which combination of antiviral is more

effective.

4.3 Conclusions

Using the gamma model we calculated the viral and dead cell time course curves for

two types of assays, MCA and SCA, for influenza infections. From these, we measured

drug efficacy curves for a variety of different drug mechanisms. These curves allow us to

quantify the effect of different drugs on influenza infections. Using the efficacy curves,

we were able to identify measurements that could identify the mechanism of action of

novel antiviral drugs. We then used LHS to estimate the parameter dependence of

the efficacy curves which helped us determine which measurements are most reliable.

Finally, we compared our results to experimental data of influenza infections treated

with amantadine and oseltamivir and found that the effects of these drugs are better

simulated with mechanisms of action different than those previously used.
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Chapter 5

Appendix: Parameter dependence of
efficacy curves
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Figure 5.1: LHS for viral peak efficacy curves for influenza infection with different an-
tiviral mechanisms of action. Plots for SCA, in the next order: The left figure shows the
effect of a drug on Slowing infection; right figure shows drug on Protecting target cells.
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Figure 5.2: LHS for viral peak efficacy curves for influenza infection with different antivi-
ral mechanisms of action. Plots for SCA, in the next order: The top right figure shows
drug on Increasing the length of the eclipse phase; top left figure shows drug on Decreas-
ing the lifespan of infectious cells ; bottom left shows drug on Reducing the production
of new virions ; bottom right drug on Increasing the rate of loss of virion infectivity.
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Figure 5.3: LHS for viral peak efficacy curves for influenza infection with different antivi-
ral mechanisms of action. Plots are for MCA, in the next order: The top left figure shows
the effect of a drug on Slowing infection; top right figure shows drug on Protecting target
cells ; middle left figure shows drug on Increasing the length of the eclipse phase;middle
right figure shows drug on Decreasing the lifespan of infectious cells ; bottom left shows
drug on Reducing the production of new virions ; bottom right drug on Increasing the
rate of loss of virion infectivity.
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Figure 5.4: Maximum dead cells curves for influenza infection with different antiviral
mechanisms of action. Plots are for MCA, in the next order: The top left figure shows
the effect of a drug on Slowing infection; top right figure shows drug on Protecting target
cells ; middle left figure shows drug on Increasing the length of the eclipse phase;middle
right figure shows drug on Decreasing the lifespan of infectious cells ; bottom left shows
drug on Reducing the production of new virions ; bottom right drug on Increasing the
rate of loss of virion infectivityy.
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Figure 5.5: Maximum dead cells curves for influenza infection with different antiviral
mechanisms of action. Plots are for MCA, in the next order: The top left figure shows
the effect of a drug on Slowing infection; top right figure shows drug on Protecting target
cells ; middle left figure shows drug on Increasing the length of the eclipse phase;middle
right figure shows drug on Decreasing the lifespan of infectious cells ; bottom left shows
drug on Reducing the production of new virions ; bottom right drug on Increasing the
rate of loss of virion infectivity.
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Figure 5.6: AUC curves for influenza infection with different antiviral mechanisms of
action. Plots are for MCA, in the next order: The top left figure shows the effect of a
drug on Slowing infection; top right figure shows drug on Protecting target cells ; middle
left figure shows drug on Increasing the length of the eclipse phase;middle right figure
shows drug on Decreasing the lifespan of infectious cells ; bottom left shows drug on
Reducing the production of new virions ; bottom right drug on Increasing the rate of loss
of virion infectivity.
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Figure 5.7: AUC curves for influenza infection with different antiviral mechanisms of
action. Plots are for MCA, in the next order: T The top left figure shows the effect
of a drug on Slowing infection; top right figure shows drug on Protecting target cells ;
middle left figure shows drug on Increasing the length of the eclipse phase;middle right
figure shows drug on Decreasing the lifespan of infectious cells ; bottom left shows drug
on Reducing the production of new virions ; bottom right drug on Increasing the rate of
loss of virion infectivity.
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Viral infections in the respiratory tract are common in humans and can cause serious

illness and death. Drug treatment is the principal line of protection against many of

these illnesses and many compounds are tested as antivirals. Often the efficacy of these

antivirals are determined before a mechanism of action is understood. We use mathe-

matical models to represent the evolution of influenza and establish which experiments

can help determine the mechanism of action of antivirals. We find that curves describing

the effect of a drug are dependent on the quantity being measured and that the predicted

shape of the curves is dependent on model parameters.


