FOURIER TRANSFORM INFRARED ISOTOPIC STUDIES ON NOVEL METAL-CARBON CLUSTERS TRAPPED IN Ar MATRIX ENVIRONMENTS by #### **SARAH ANNE BATES** Bachelor of Science, 2003 Texas Christian University Fort Worth, TX Submitted to the Graduate Faculty of the College of Science and Engineering Texas Christian University in partial fulfillment of the requirements for the degree of **Doctor of Philosophy** **May 2008** ## FOURIER TRANSFORM INFRARED ISOTOPIC STUDIES ON NOVEL METAL-CARBON CLUSTERS TRAPPED IN Ar MATRIX ENVIRONMENTS | Dissertation approved: | |--| | Marchael | | Major Professor | | | | | | Calquarler | | Mini Stylundy | | A Company of the Comp | | For the College of Science and Engineering | Copyright by Sarah Anne Bates 2008 | I would like to a child a | dedicate this disser
and who provided t | tation to my paren
unwavering suppo | ts who encourage
ort and love throug | d my inquisitive r
hout this process. | nature as | |---------------------------|--|--|---|--|-----------| #### **ACKNOWLEDGEMENTS** To my advisor, Dr. W. R. M. Graham, most sincere gratitude is expressed for his thoughtful guidance and for his continual support. Thanks also to Dr. C. M. L. Rittby for his *ab initio* calculations and for the insightful discussions. Thanks to M. Murdock, D. Yale, and G. Katchinska for their unending patience and help in building and upgrading the vacuum system. Thanks also to my father, William Bates, for his advice whenever chemistry questions arose. Support of this research by the Welch Foundation, the W. M. Keck Foundation, and the TCU Research and Creative Activities Fund (TCURCAF), and support of the candidate by a Barnett Scholarship, and the Texas Space Grant Consortium (TSGC) Graduate Fellowship is also gratefully acknowledged. ## TABLE OF CONTENTS | | | Page | |------------------------|---|----------| | ACKNOV | VLEDGEMENTS | iii | | LIST OF | FIGURES | viii | | LIST OF | TABLES | xiii | | СНАРТЕ | R I INTRODUCTION | 1 | | 1.1 | ASTROPHYSICAL MOTIVATION | 1 | | 1.2 | METALLOCARBOHEDRENES | 3 | | 1.3 | Previous Work | 6 | | | 1.3.1 Experimental Results | 6 | | | 1.3.2 Theoretical Results | 7 | | 1.4 | THE DISSERTATION RESEARCH | 7 | | СНАРТЕ | R II EXPERIMENTAL PROCEDURES AND TECHNIQUES | 10 | | 2.1 | EQUIPMENT CONSTRUCTION | 10 | | 2.2 | EXPERIMENTAL CONDITIONS | 13 | | 2.3 | ROD PREPARATION | 15 | | 2.4 | ISOTOPIC SHIFTS | 16 | | СНАРТЕ | R III FOURIER TRANSFORM INFRARED ISOTOPIC STUDY O | F LINEAR | | CrC ₃ : IDI | ENTIFICATION OF THE $v_1(\sigma)$ MODE | 19 | | 3.1. | Introduction | 19 | | 3.2. | THEORETICAL CALCULATIONS | 22 | | 3.3. | Experimental Procedures | 24 | | 3.4. | RESULTS AND DISCUSSION | 24 | |---------|--|----------------------------| | 3.5. | CONCLUSIONS | 30 | | СНАРТЕ | ER IV FOURIER TRANSFORM INFRARED OBSERVA | ATION OF THE $v_1(\sigma)$ | | MODE O | OF LINEAR CoC ₃ TRAPPED IN SOLID Ar | 31 | | 4.1 | Introduction | 31 | | 4.2 | THEORETICAL CALCULATIONS | 32 | | 4.3 | Experimental Procedures | 33 | | 4.4 | RESULTS AND DISCUSSION | 36 | | 4.5 | Conclusions | 45 | | СНАРТЕ | ER V FTIR OBSERVATION AND DFT STUDY OF THE | C AIC3 AND AIC3AI | | LINEAR | CHAINS TRAPPED IN SOLID Ar | 47 | | 5.1 | Introduction | 47 | | 5.2 | THEORETICAL PREDICTIONS | 51 | | 5.3 | Experimental Procedures | 51 | | 5.4 | RESULTS AND DISCUSSION | 55 | | | 5.4.1 Identification of AlC ₃ Al | 57 | | | 5.4.2 Identification of AlC ₃ | 64 | | 5.5 | Conclusions | 68 | | СНАРТЕ | ER VI THE VIBRATIONAL SPECTRUM OF CuC3: AN | FTIR ISOTOPIC | | AND DFT | T INVESTIGATION | 69 | | 6.1 | Introduction | 69 | | 6.2 | Experimental Procedures | 70 | | 6.3 | EXPERIMENTAL RESULTS AND DISCUSSION | 71 | | 6.4 | THE | DRY AND ANALYSIS | 76 | |---------|--------|--|-----------------| | 6.5 | Cond | CLUSIONS | 81 | | СНАРТЕР | R VII | OTHER METAL-CARBON SPECIES: CrC ₄ , AlC ₄ Al, and V _n C | _m 82 | | 7.1 | FANI | LIKE $(C_{2\nu})$ CrC ₄ | 82 | | | 7.1.1 | Introduction | 82 | | | 7.1.2 | Theoretical Calculations | 83 | | | 7.1.3 | Results and Discussion | 83 | | | 7.1.4 | Conclusions | 89 | | 7.2 | Line | AR AlC ₄ Al | 89 | | | 7.2.1 | Theoretical Calculations | 92 | | | 7.2.2 | Results and Discussion | 92 | | | 7.2.3 | Conclusions | 97 | | 7.3 | Unid | DENTIFIED $V_n C_m$ CANDIDATES | 100 | | | 7.3.1 | The 2000-2050 cm ⁻¹ Region | 104 | | | 7.3.2 | The 1450-1500 cm ⁻¹ Region | 106 | | | 7.3.3 | The 900-950 cm ⁻¹ Region | 108 | | CHAPTER | R VIII | CONCLUSIONS AND FUTURE WORK | 110 | | 8.1 | Cond | CLUSIONS | 110 | | | 8.1.1 | Linear CrC ₃ | 110 | | | 8.1.2 | Linear CoC ₃ | 111 | | | 8.1.3 | Linear AlC ₃ and AlC ₃ Al | 112 | | | 8.1.4 | Linear CuC ₃ | 113 | | | 8.1.5 | Fanlike (C2v) CrC4 | 114 | | REF | FEREN | ICES | | 121 | |-----|-------|--------|--|-----| | | | 8.2.4 | Rod Fabrication with Higher ¹³ C Enrichments | 119 | | | | 8.2.3 | Sintering Metal–Carbon Rods | 117 | | | | 8.2.2 | Metal–Carbon Clusters | 116 | | | | 8.2.1 | Continuing Work on CrC ₄ , AlC ₄ Al, and V _n C _m Species | 116 | | | 8.2 | Future | E WORK | 115 | | | | 8.1.7 | V _n C _m Candidates | 115 | | | | 8.1.6 | Linear AlC ₄ Al | 114 | ## VITA ## **ABSTRACT** ## LIST OF FIGURES | Figure | Page | |------------|---| | Figure 1.1 | List taken from the Cologne Database for Molecular Spectroscopy and Wootten's | | | Database, NRAO (Ref. 5). Last updated July 2007. The red arrows indicate | | | molecules containing two or more C atoms in a chain or ring | | Figure 1.2 | A list of molecules found as of 2006 in the late-type star IRC+10216 (Ref. 9) | | | Note the abundance of C_n clusters. In columns 2-4, all the molecules have at leas | | | two C atoms, with the exception of HCN. Also note the abundance of Si-bearing | | | species (column 5) and metal-bearing species (column 6), many of which also | | | contain one or more C atoms | | Figure 1.3 | Proposed M ₈ C ₁₂ structure, with MC ₂ building block highlighted. Metal and | | | carbon atoms are represented with red and blue, respectively. Metcar picture | | | from Ref. 16 | | Figure 2.1 | Schematic of the experimental apparatus | | Figure 2.2 | Schematic of the laser ablation chamber | | Figure 2.3 | Illustration of single ¹³ C isotopic substitutions in (a) centrosymmetric linear | | | molecules, e.g. C ₃ and MC ₃ M, and (b) in non-centrosymmetric linear molecules, | | | e.g. MC ₃ | | Figure 3.1 | (a) The 3B_1 fanlike $(C_{2\nu})$ and ${}^5\Pi$ linear isomers of CrC ₃ . DFT B3LYP/6- | | | 311+G(3df) predictions for their geometric parameters are given in Angstroms | | | (Å). The predicted principal nuclear displacements of the atoms for the $v_1(\sigma)$ | | | mode of ${}^5\Pi$ linear CrC ₃ are shown in (b)20 | | Figure 3.2 | FTIR spectra produced by (a) dual ablation of Cr and ¹² C rods and (b) a pure ¹² C | | | rod. for comparison. 25 | | Figure 3.3 | Comparison of the FTIR spectra of the $v_1(\sigma)$ mode of linear CrC ₃ and its ¹³ C | |------------|--| | | isotopic shifts produced by the simultaneous evaporation of a Cr rod and carbon | | | rods with (a) 30% and (b) 15% ¹³ C enrichments, with (c) a simulation derived | | | from DFT calculations at the B3LYP/6-311+G(3 df) level having 10% 13 C | | | enrichment. The letters
correspond to the single ¹³ C substituted and single ¹² C | | | substituted isotopomers listed in Table 3.2 | | Figure 4.1 | DFT B3LYP/6-311+G(3 <i>df</i>) predictions of bond lengths (Å) of the ${}^{2}B_{1}$ fanlike and | | | $^{2}\Delta$ linear isomers. The predicted principal nuclear displacements of the $v_{1}(\sigma)$ | | | mode of the $^2\Delta$ linear isomer of CoC ₃ are shown in (b)34 | | Figure 4.2 | FTIR spectra recorded after (a) dual ablation of cobalt and pure ¹² C rods and (b) | | | ablation of a pure ¹² C rod, for comparison. Note the 1918.2 cm ⁻¹ band in (a) that | | | does not appear in (b) | | Figure 4.3 | FTIR spectra of the $v_1(\sigma)$ mode of linear CoC ₃ in an experiment with (a) 30% | | | nominal ¹³ C enrichment, and (b) 20% nominal ¹³ C enrichment. The higher ¹³ C | | | enrichment in (a) eliminates most of the absorptions attributed to C_6^- and C_7 , | | | leaving only a weak C ₇ absorption at 1894.3 cm ⁻¹ , and thus shows the fully- and | | | doubly-substituted ¹³ C isotopomers more clearly | | Figure 4.4 | (a) An FTIR spectrum with 30% ¹³ C enrichment for comparison with DFT | | | simulations of a 30% ¹³ C enrichment spectrum using the (b) BPW91 and the (c) | | | B3LYP functionals with a $6-311+G(3df)$ basis set. The DFT simulations are | | | scaled to the main 1918.2 cm ⁻¹ band | | Figure 5.1 | DFT B3LYP/6-311+G(3 <i>df</i>) predictions of bond lengths (Å) of the (a) ${}^{2}\Pi$ linear, | | | (b) ${}^{2}A_{1}$ kite $(C_{2\nu})$, and (c) ${}^{2}B_{2}$ fanlike $(C_{2\nu})$ isomers of AlC ₃ . The predicted | | | principal nuclear displacements of the $v_2(\sigma)$ mode of ($^2\Pi$) linear AlC ₃ are shown | |------------|--| | | in (d) | | Figure 5.2 | (a) DFT B3LYP/6-311+G(3 <i>df</i>) predictions of bond lengths (Å) for the ${}^{3}\Sigma_{g}^{+}$ linear | | | isomer of AlC ₃ Al. The predicted principal nuclear displacements of the (b) $v_3(\sigma_u)$ | | | and (c) $v_4(\sigma_u)$ modes of $(^3\Sigma_g^+)$ AlC ₃ Al | | Figure 5.3 | FTIR spectra recorded after (a) dual ablation of Al and ¹² C rods and (b) ablation | | | of a ¹² C rod only, for comparison. Note the 1624.0, 1210.9, and 528.3 cm ⁻¹ bands | | | in the Al-C spectrum that are not in the ¹² C spectrum | | Figure 5.4 | FTIR spectra of the $v_3(\sigma_u)$ mode of linear AlC ₃ Al in experiments with (a) 30% and | | | (b) 20% nominal ¹³ C enrichments. (c) DFT simulation of an experiment with a | | | 20% enrichment. 58 | | Figure 5.5 | The $v_4(\sigma_u)$ mode of AlC ₃ Al in (a) an FTIR spectrum with a nominal 30% 13 C | | | enrichment compared with (b) a DFT simulation with 30% ¹³ C enrichment59 | | Figure 5.6 | The $v_2(\sigma)$ mode of linear AlC ₃ in (a) an FTIR spectrum with a nominal 30% 13 C | | | enrichment compared with DFT simulations of spectra with (b) 10% and (c) 30% | | | ¹³ C enrichments. 65 | | Figure 6.1 | FTIR spectra recorded after (a) dual ablation of Cu and ¹² C rods and (b) ablation | | | of a pure ¹² C rod, for comparison. Note the 1830.0 cm ⁻¹ band in (a) that is absent | | | from (b) | | Figure 6.2 | FTIR spectra from experiments with (a) 30% and (b) 20% nominal ¹³ C | | | enrichments for comparison with (c) a DFT simulation of the $v_1(\sigma)$ mode of ($^2\Pi$) | | | linear CuC ₃ having 30% ¹³ C enrichment | | Figure 6.3 | DFT B3LYP/6-311+ $G(3df)$ bond length (Å) and angle (°) predictions for the (a) | |------------|---| | | $^{2}\Pi$ linear and (b) $^{2}A'$ trans-bent isomers of CuC ₃ . The predicted principal nuclear | | | displacements of the $v_1(\sigma)$ mode of ($^2\Pi$) linear CuC ₃ are shown in (c)78 | | Figure 7.1 | Structures of (a) fanlike and (b) linear isomers of CrC ₄ and (c) linear CrC ₄ Cr, | | | which were investigated as possible candidates for the 1554.3 cm ⁻¹ band84 | | Figure 7.2 | FTIR spectra obtained from ablation of (a) a sintered Cr/12C rod for comparison | | | with (b) ablation of a 12 C rod only. Note the $v_1(\sigma)=1789.5$ cm ⁻¹ mode of linear | | | CrC ₃ and the 1554.3 cm ⁻¹ band in (a) that does not appear in (b)86 | | Figure 7.3 | (a) FTIR spectrum obtained from the ablation of a sintered 15% Cr/85% C rod | | | with a 15% nominal ¹³ C enrichment for comparison with a (b) DFT simulation of | | | the spectrum of the $v_1(a_1)$ mode of $(^3B_1)$ fanlike CrC ₄ with a 10% 13 C enrichment, | | | scaled to 1554.3 cm ⁻¹ | | Figure 7.4 | (a) DFT B3LYP/6-311+G(3 <i>df</i>) predictions of bond lengths (Å) for $(^3B_1)$ fanlike | | | CrC_4 . The α and β denote pairs of equivalent C atoms. The predicted principal | | | nuclear displacements of its $v_1(a_1)$ mode are shown in (b)91 | | Figure 7.5 | FTIR spectra obtained after (a) dual ablation of Al and ¹² C rods and (b) ablation | | | of a ¹² C rod only, for comparison. Note the 1987.3 cm ⁻¹ band in the Al–C | | | spectrum that is not in the pure ¹² C spectrum. Note also the identifications of | | | AlC ₂ Al, AlC ₃ , and AlC ₃ Al in the dual ablation spectrum94 | | Figure 7.6 | FTIR spectra obtained after dual ablation of an Al and a C rod with 15% nominal | | | ¹³ C enrichment annealed at (a) 32 K and (b) 29 K compared with a (c) DFT | | | simulation of the spectrum of the $v_4(\sigma_u)$ mode of linear AlC ₄ Al with a 10% ¹³ C | | | enrichment, scaled to 1987.3 cm ⁻¹ 95 | | Figure 7.7 | (a) DFT B3LYP/6-311+G(3 <i>df</i>) predictions for the bond lengths of linear (${}^{1}\Sigma_{g}^{+}$) | |-------------|---| | | AlC ₄ Al are given in Angstroms (Å). The predicted principal nuclear | | | displacements of the atoms for its $v_4(\sigma_u)$ mode are shown in (b)99 | | Figure 7.8 | FTIR spectra of the 2000-2050 cm ⁻¹ region recorded after laser ablation of a | | | single rod pressed from 20% V and 80% $^{12}\mathrm{C}$ powders annealed at (a) 24 K, (b) 20 | | | K, and (c) prior to annealing at 10 K for comparison with (d) an FTIR spectrum | | | obtained from ablation of a ¹² C rod105 | | Figure 7.9 | FTIR spectra of the 1450-1500 cm ⁻¹ region recorded after dual laser ablation of a | | | V rod and a $^{12}\mathrm{C}$ rod (a) annealed at 33 K and (b) prior to annealing at 10 K for | | | comparison with (c) a spectrum obtained from ablation of a ¹² C rod107 | | Figure 7.10 | FTIR spectra of the 900-950 cm ⁻¹ region recorded after laser ablation of a single | | | rod pressed from 20% V and 80% $^{12}\mathrm{C}$ powders annealed at (a) 24 K, (b) 20 K, | | | and (c) prior to annealing at 10 K for comparison with (d) an FTIR spectrum | | | obtained from ablation of a ¹² C rod | | Figure 8.1 | Spectrum obtained from 12 C ablation using a higher laser power, ~ 1.0 W, and | | | tighter laser beam focus, ~2.0 mm, which produces intense absorptions for a | | | number of of larger C_n molecules. 118 | | Figure 8.2 | Proposed schematic for the (a) top and (b) front views of the split die. Note the | | | bolts on the front are used to squeeze the carbide bushing together. Because of | | | the small gap between the carbide bushing and the die casing, the bushing will | | | easily slide out from the casing when the bolts are unscrewed. (c) An illustration | | | of how the carbide bushing would be opened to remove a C rod fabricated with | | | high ¹³ C enrichment without putting excessive stress on the rod | ## LIST OF TABLES | Table | Pa | g | |-------------------|--|----| | Table 3.1: DFT B | 3LYP/6-311+G(3 <i>df</i>) predicted vibrational frequencies (cm ⁻¹) and band | | | inte | ensities (km/mol) for the linear (${}^{5}\Pi$) and fanlike (${}^{3}B_{1}$) isomers of CrC ₃ | 23 | | Table 3.2: Compa | arison of observed vibrational frequencies (cm ⁻¹) of the $v_1(\sigma)$ mode for ¹³ C- | | | sub | estituted isotopomers of linear CrC ₃ with the predictions of B3LYP/6- | | | 311 | +G(3df) calculations. | 29 | | Table 4.1: DFT pr | redicted frequencies (cm ⁻¹) and band intensities (km/mol) for the vibrational | | | fun | damentals of the $(^2\Delta)$ linear and $(^2B_1)$ fanlike isomers of CoC ₃ using the | | | B31 | LYP and the BPW91 functionals with a 6-311+G(3 <i>df</i>) basis set | 35 | | Table 4.2: Compa | arison of the observed vibrational fundamental and all of the ¹³ C- substituted | | | isot | topomer frequencies (cm ⁻¹) of the $v_1(\sigma)$ mode of linear CoC ₃ with the | | | pre | dictions of DFT B3LYP/ and BPW91/6-311G+(3 <i>df</i>) calculations | 14 | | Table 5.1: DFT B | 3LYP/6-311+G(3df) predicted vibrational frequencies (cm ⁻¹) and intensities | | | (kn | n/mol) for linear (${}^{3}\Sigma_{g}^{+}$) AlC ₃ Al. | 52 | | Table 5.2: DFT B | 3LYP/6-311+G(3df) predicted vibrational frequencies (cm ⁻¹) and intensities | | | (kn | n/mol) for the linear (${}^{2}\Pi$), kite (${}^{2}A_{1}$), and fanlike (${}^{2}B_{2}$) isomers of AlC ₃ | 53 | | Table 5.3: Compa | arison of the observed isotopomer frequencies (cm ⁻¹) of the $v_3(\sigma_u)$ and $v_4(\sigma_u)$ | | | mo | des of linear ($^3\Sigma_g^+$) AlC ₃ Al and of the $v_5(b_2)$ mode of fanlike (2B_1) AlC ₃ with | l | | the | predictions of B3LYP/6-311+G(3 <i>df</i>) calculations | 53 | | Table 5.4: Compa | arison of observed vibrational frequencies (cm ⁻¹) of the $v_2(\sigma)$ mode for the | | | sing | gly- and fully-substituted 13 C isotopomers of linear ($^{2}\Pi$) AlC ₃ with the | | | pre | dictions of B3LYP/6-311+G(3 <i>df</i>) calculations | 57 | | Table 6.1: | DFT B3LYP/6-311+G(3 <i>df</i>) predicted frequencies (cm ⁻¹) and band intensities | | |------------
---|-----| | | (km/mol) for the vibrational fundamentals of the (${}^{2}\Pi$) linear and (${}^{2}A'$) trans-ben | ıt | | | isomers of CuC ₃ . | 77 | | Table 6.2: | Comparison of the observed vibrational fundamental and all of the ¹³ C- substituted | | | | isotopomer frequencies (cm ⁻¹) of the $v_1(\sigma)$ and the $v_1(a')$ modes of the ($^2\Pi$) lines | ar | | | and (² A') trans-bent isomers of CuC ₃ with the predictions of B3LYP/6- | | | | 311G+(3 <i>df</i>) calculations. | 79 | | Table 7.1: | DFT B3LYP/6-311+G(3df) predicted vibrational frequencies (cm ⁻¹) and band | | | | intensities (km/mol) for the 5B_2 and 3B_1 states of fanlike CrC ₄ and for (${}^5\Pi$) linear | ır | | | CrC ₄ | 35 | | Table 7.2: | Comparison of observed vibrational fundamental and single ¹³ C isotopomer | | | | frequencies (cm ⁻¹) of the $v_1(a_1)$ mode of (3B_1) fanlike CrC ₄ with the predictions | of | | | B3LYP/6-311+G(3 <i>df</i>) calculations. | 90 | | Table 7.3: | DFT B3LYP/6-311+G(3df) predicted vibrational frequencies (cm ⁻¹) and band | | | | intensities (km/mol) for $({}^{1}\Sigma_{g}^{+})$ linear AlC ₄ Al and $({}^{2}\Sigma)$ linear AlC ₄ | 93 | | Table 7.4: | Comparison of observed vibrational fundamental and single ¹³ C shift frequencies | | | | (cm ⁻¹) of the $v_4(\sigma_u)$ mode of $\binom{1}{\Sigma_g}^+$ linear AlC ₄ Al with the predictions of | | | | B3LYP/6-311+G(3 <i>df</i>) calculations. | 98 | | Table 7.5: | B3LYP/6-311+G(d) calculations of vibrational frequencies (cm ⁻¹) for linear VC _{n} | | | | (<i>n</i> =1-8) clusters (from Ref. 126). | 101 | | Table 7.6: | B3LYP/6-311+ $G(d)$ calculations of vibrational frequencies (cm ⁻¹) for fanlike VC _n | | | | (<i>n</i> =2-8) clusters (from Ref. 126). | 102 | | Table 7.7: | B3LYP/6-311+ $G(d)$ calculations of vibrational frequencies (cm ⁻¹) for cyclic VC _n | | | | (n=6-8) clusters (from Ref. 126) | 103 | #### **CHAPTER I** #### INTRODUCTION Studies on metal–carbon clusters are of interest because of their applications to diverse areas of physics including the detection of astrophysical species, understanding the bonding and creation of metallocarbohedrenes, and as catalysts in nanomaterial formation. Aside from diatomic clusters, MC, few studies have been done on triatomic or larger metal–carbon species. #### 1.1 Astrophysical Motivation To date, more than 140 molecules have been found in either the interstellar medium (ISM) or in circumstellar shells (Fig. 1.1).⁵ Carbon and carbon compounds are abundant in the circumstellar shells of stars that are advanced in evolution because of fusion in stellar cores, *i.e.* the "triple alpha" process, so it is not surprising that many of the observed circumstellar and interstellar molecules shown in Fig. 1.1 are composed of long carbon chain "backbones", noted with red arrows, with other elements like nitrogen or hydrogen bonded to the ends, *e.g.* $HC_{11}N$, 6 C_5N , 7 and C_6H . 8,9 Pure carbon chains, such as C_5 , have also been observed in the stellar envelope of IRC +10216. 8,9 Besides observing H or N atoms bonded to C_n species, mono-metal-carbon clusters have also been found in circumstellar shells and in the ISM. Metals such as vanadium (V), nickel (Ni), chromium (Cr), magnesium (Mg) and aluminum (Al), are cosmically abundant; hence, they are readily available to bond with interstellar or circumstellar carbon species to form M_nC_m molecules.¹⁰ For example, silicon (Si), while not a metal, is a cosmically abundant semi-metal or metalloid and SiC_n (n=1-4), SiN, and SiCN have all been detected in the circumstellar shell of IRC+10216, together with other metal-bearing species, such as MgNC, MgCN, NaCN, NaCl, Figure 1.1 List taken from the Cologne Database for Molecular Spectroscopy and Wootten's Database, NRAO (Ref. 5). Last updated July 2007. The red arrows indicate molecules containing two or more C atoms in a chain or ring. and AIF (see Fig. 1.2). 9,11 Note that many of these molecules include at least one C atom and either metals that are known to be cosmically abundant (e.g. Na, Mg, Al) or the semi-metal Si. It should be noted that although rotational spectra, observed at radio frequencies, has commonly been used to detect interstellar and circumstellar molecular species, C₃ (Ref. 12) and C₅ (Ref. 8) have been detected in IRC+10216 at infrared frequencies. Any molecule composed of a chain of like atoms has no permanent dipole moment, which is necessary for the observation of a rotational spectrum, and thus cannot be detected using radio observations. Consequently, molecules like C₃ and C₅ are concealed from radio astronomers. Very few telescopes have been sent into space that can observe in the infrared (IR) region of the spectrum, but the Spitzer Space Telescope, which can detect infrared vibrational spectra directly, was launched in August 2003. Thus its observations will complement existing data by enabling the detection of molecules without permanent dipole moments like C₃ and C₅. Since astronomers now have the observational tools, it is vital for infrared molecular spectra to be characterized in a laboratory setting to enable the identification of molecular species Spitzer (and its descendents) may detect. #### 1.2 Metallocarbohedrenes Besides their applications to astrophysics, observations of small M_nC_m species may aid in understanding the bonding and growth mechanisms of metallocarbohedrenes, or "metcars", which are cagelike structures that are composed of metal and carbon atoms. ^{14,15} Experimental studies^{2,3} on the growth mechanisms of Ti_nC_m and V_nC_m metcars have reported that these larger clusters appear to form from MC_2 "building blocks", which can be seen in the currently accepted structure^{16,17} for the M_8C_{12} metcar (Fig. 1.3). # Molecules in IRC +10216 | CO | CCH | H_2C_4 | CCS | SiO | NaCL | |--------------------|---------------------------------|-------------------|----------------|------------------|-------------| | CS | C_3H | $H_2^-C_6$ | C_3S | SiS | NaCN | | CN | C_4H | HCN | $C_3^{\circ}O$ | SiN | KCI | | CP | C_5H | HC_2N | C_3N | SiCN | KCN | | HNC | C_6H | HC_3N | C_5N | SiC | MgNC | | CH ₄ | C_7H | HC_4N | c - C_3H_2 | SiC ₂ | MgCN | | CH ₃ CN | C_8H | HC ₅ N | C_2 | SiC_3 | AINC | | NH_3 | HCCH | HC_7N | C_3 | SiC_4 | AIF | | H_2S | H ₂ CCH ₂ | HC_9^N | C_5 | SiH ₄ | AICI | | PN | _ | _ | - | • | | Figure 1.2 A list of molecules found as of 2006 in the late-type star IRC+10216 (Ref. 9) Note the abundance of C_n clusters. In columns 2-4, all the molecules have at least two C atoms, with the exception of HCN. Also note the abundance of Si-bearing species (column 5) and metal-bearing species (column 6), many of which also contain one or more C atoms. Figure 1.3 Proposed M_8C_{12} structure, with MC_2 building block highlighted. Metal and carbon atoms are represented with red and blue, respectively. Metcar picture from Ref. 16. #### 1.3 Previous Work #### 1.3.1 Experimental Results Despite the significance of M_nC_m species in astrophysics and cosmic evolution, so few of these species have been identified in extraterrestrial environments because they have not yet been observed in a laboratory. A March 2003 list of M_nC_m (n,m > 1) vibrational fundamental identifications, ¹⁸ most of which had been identified using photoelectron spectroscopy (PES), was limited to TiC_n (n = 2-5), ¹⁹ cyclic MC_3 (M = Sc, V - Ni), ²⁰ Co_2C_n (n = 2,3), V_2C_n (n = 2-4), ³ NbC_n (n = 2-7), ²¹ and MC_2 , (n = 8), n = 80. Clearly, additional vibrational fundamental measurements are needed. Wang and Li^{20,22} have used PES to characterize the electronic structures of first row transition metal—carbon clusters, MC_n, but only for *n* = 2 and 3. PES results, however, can only give vibrational frequencies within ±50 cm⁻¹, which is insufficient accuracy for spectroscopic identification in astrophysical sources. Unlike PES, Fourier transform infrared (FTIR) spectroscopy combined with matrix isolation in Ar, as used in the TCU Molecular Physics Lab, can give vibrational frequencies that are usually within 1% of the gas phase vibrational frequencies,²³ which can be sufficient for astrophysical detection. For example, the astrophysical detection¹ of C₄ has been made on the basis of FTIR measurements²⁴ performed in the TCU Molecular Physics Lab. Furthermore, PE spectra cannot always definitively determine molecular structures, *e.g.* NiC₃ and CoC₃. Although these species have been observed,²⁰ the PE spectra were too congested to resolve any vibrational features so molecular geometry determinations were impossible. To unambiguously identify vibrational fundamentals and determine structures of novel molecules, much more extensive infrared measurements are needed. #### 1.3.2 Theoretical Results Another reason for the importance of experimental measurements is the symbiotic relationship between experimental measurements and theoretical predictions. Theoretical models cannot always definitively determine the ground state structure of a molecule when two or more isomers are predicted to be close in energy. For example, close-lying fan and linear isomers have been predicted for CrC_3 , and three close-lying isomers: kite $(C_{2\nu})$, fanlike $(C_{2\nu})$ and linear have been predicted for AlC_3 . In both of these cases, the energy differences between the various isomers have been predicted to be within a few kcal/mol, which is insufficient for structure determination on the basis of current theoretical calculations alone. Despite problems in determining ground state structures when two or more isomers are predicted to be close in energy, theoretical predictions have been essential in band identifications when two or more molecules have symmetries
that can produce similar 13 C isotopic shift patterns, such as fanlike MC₃ and linear MC₃M species, which both have two equivalent C atoms and one unique C atom (see Chapter II, Section 2.4). A case in which theoretical calculations have been used to discriminate between two structures is presented in Chapter V, which details the observation of two Al_nC_m species. #### 1.4 The Dissertation Research Because of the complementary nature of theoretical predictions and experimental measurements, studies in the TCU Molecular Physics Lab use both theoretical methods and experimental techniques to unambiguously identify vibrational fundamentals and determine molecular structures. Previous investigations have focused on silicon-carbon (Si_nC_m), $^{27-30}$ germanium-carbon (Ge_nC_m), 31,32 and mixed germanium-carbon-silicon ($Ge_nC_mSi_l$) species, successfully employing FTIR spectroscopy, matrix isolation, and ^{13}C isotopic substitution techniques in conjunction with DFT calculations of vibrational fundamentals and isotopic shifts. It should be noted that all theoretical calculations presented in this dissertation were done by the author, except in a few marked cases, in which they were done by Rittby. Many of the same techniques that have been effectively used in the production of novel Group IV clusters have also been applied in the present investigation on metal–carbon clusters (see Chapter II); however, the current project has necessitated the design and construction of a new experimental apparatus and a new approach to the rod fabrication process. The design modifications and benefits of the new apparatus are discussed in Chapter II. The disadvantages of the existing sintering process for the preparation of ¹³C enriched rods that has been developed in the TCU Molecular Physics Lab³⁴ along with a new technique employing unsintered "soft rods", which has been developed as part of this dissertation research, is explained in Chapter II. The advantages of this new technique, in identifying novel chromium–, cobalt–, aluminum–, and copper–carbon clusters, respectively, are presented in Chapters III–VI. Although previous PES reports on transition metal—carbon clusters exist, ¹⁸ the FTIR matrix measurements presented in this dissertation are the first reported for transition metal—carbon species in general, and for chromium—, cobalt—, and copper—carbon species in particular. The first identification of a vibrational fundamental of CrC_3 and the determination of its molecular geometry is presented in Chapter III. In Chapter IV, an investigation of CoC_3 is discussed in which the structure has also been established and one of its vibrational modes has been identified for the first time. The theoretical investigation presented for CoC_3 is also the first for this species. Only one prior FTIR matrix study on Al_nC_m (n, m = 1,2) clusters has been published and until the present research, there had been no observation of Al_nC_m species for m > 2. Two novel Al_nC_m molecules, AlC_3 and AlC_3Al , have been detected and the results are presented in Chapter V. The geometries of both molecules have been clearly resolved, as well as the assignment of one mode of AlC₃ and two, of AlC₃Al. It should be noted that this is the first investigation, either theoretical or experimental, on the AlC₃Al molecule. The first experimental investigation on any Cu_nC_m species is presented in Chapter VI, in which vibrational spectrum of CuC_3 has been detected, resulting in the identification of one of its vibrational fundamentals, and its structure has also been established. Moreover, the theoretical investigation presented for CuC_3 is the first for this species. Additionally, tentative assignments of vibrational spectra for CrC_4 and AlC_4Al , along with preliminary results of studies on V_nC_m species, are discussed in Chapter VII. Finally, Chapter VIII summarizes the conclusions of the present research and proposes directions for future investigations on metal—carbon clusters. #### **CHAPTER II** #### EXPERIMENTAL PROCEDURES AND TECHNIQUES #### 2.1 Equipment Construction A new experimental apparatus for the preparation of matrix samples was constructed and tested before experiments on metal—carbon species were performed. The apparatus is comprised of two parts (see Fig. 2.1): (1) the Ar delivery system, which controls the Ar flow into the sample chamber during laser ablation; and (2) the sample chamber system, containing the closed-cycle refrigeration system (ARS, Displex) and the laser ablation chamber (Fig. 2.2). While some components for these systems could be purchased, many were custom-built in the TCU Machine Shop. Pieces of the apparatus were redesigned to provide smoother interior surfaces, fewer connections, reduce the volume that needed to be evacuated, and speed evacuation, resulting in shorter turnaround times between experiments. In addition, light-weight aluminum frames were built to support the Ar delivery and sample chamber systems, making the system more mobile and easier to level during optical alignment than were previous models. The experimental apparatus was tested by performing an experiment in which the products from graphite evaporation were trapped in Ar at \sim 10 K. This verified that (1) the vacuum pressure could reach the \leq 10⁻⁷ Torr required during experiments, (2) impurities, *e.g.* H₂O, in the system were minimized, (3) the closed-cycle refrigeration system was cooling the gold mirror in the laser ablation chamber to \sim 10 K, and (4) the systems were correctly leveled and the optics were properly aligned to maximize the incident light that passed through the system and reached the detector. Figure 2.1 Schematic of the experimental apparatus. Figure 2.2 Schematic of the laser ablation chamber. ### 2.2 Experimental Conditions Metal–carbon clusters were produced by the simultaneous ablation of carbon and metal rods, which were continually rotated and translated in order to provide clean surfaces for ablation using two 1064 nm Nd:YAG pulsed lasers (Spectra Physics). The vacuum system pressure was maintained at $\leq 10^{-7}$ Torr during experiments prior to deposition to minimize the amounts of impurities, *e.g.* H₂O, in the system. The evaporated products were condensed in solid Ar (99.995%, Matheson Tri-Gas) on a gold mirror held at ~10 K by a closed cycle refrigeration system (ARS, Displex) [see Figs. 2.1 and 2.2]. Experimental conditions such as the laser power, the laser focus, and the Ar flow rate, explained below, were adjusted to favor the production of small C_n chains, predominantly C_3 , which facilitated the formation of M_nC_3 species. The laser power that was used on the metal and carbon rods is a very important experimental condition that could be adjusted separately for each rod, which provided several benefits. (1) Using a low laser power³⁷ \leq 1.0 W on the C rod produces smaller carbon chains, e.g. C₃. (2) The C rods were fabricated in the lab and were not as durable during laser ablation as commercially produced rods, so using lower laser powers slowed their degradation. Moreover, as ¹³C enrichment in the C rods is increased, the durability of the rods decreases and it is necessary to decrease the laser power accordingly. (3) In addition to using the laser power on the C rod to control the size of the C_n clusters produced, the laser power on the metal rod could be used in an analogous way. The metal rods used in experiments were commercially produced (ESPI) and were very durable, requiring a high laser power, ~2.0-3.0 W, for ablation. Using a laser power beyond >3.0 W on the metal rod was detrimental to C_n cluster production, presumably because M_n clusters as opposed to single metal atoms were being ablated, which decreased the throughput and resulted in a poor signal-to-noise ratio. Keeping the laser power in the 2.0-3.0 W range balanced the C and metal ablation making it unlikely that more than one metal atom would attach to a C_n cluster. The exception to this, however, as will be discussed in Chapters V and VII, is Al ablation in which Al_2C_n (n=2-4) species were produced. - The **laser focus** refers to how tightly or loosely focused the laser beam is on the rod. When the laser beam is loosely focused (~3.0 mm diameter), the beam power is spread over a greater area and the laser does not bore as deeply into the rod. On the C rod, using a loosely focused as opposed to a tightly focused (~1.0-1.5 mm diameter) beam slowed its degradation and allowed for longer periods of ablation. Since the metal rods were more durable, a tight focus was used to concentrate the beam. - The Ar flow rate is defined as how quickly the Ar is allowed to flow into the sample chamber during laser ablation of the metal and C rods. Higher Ar flow rates yield a dilute matrix containing few clusters, while lower flow rates produce higher concentrations of clusters. The Ar flow also serves to sweep the ablated products onto the gold mirror. If the Ar flow rate is too low, only a small percentage of the ablated products may be swept onto the gold mirror as was seen in a few early experiments in which an Ar flow rate of <0.5mm/min was used and few clusters were observed. The Ar flow rate used in all of the experiments was ~1.0 mm/min. Unless otherwise noted, M_nC_m clusters were created by simultaneous ablation of a soft (i.e. unbaked) carbon rod and a metal rod. Three soft carbon rods were prepared: (1) a pure ^{12}C rod, (2) one with 20% and (3) one with 30% nominal ^{13}C enrichment. Typical total lengths of deposition were ~30-90 min. FTIR absorption spectra were recorded at a resolution of 0.2 cm⁻¹ over the range of 500–4000 cm⁻¹ using a Bomem DA 3.16 Fourier transform infrared (FTIR) spectrometer equipped with a KBr beamsplitter and a liquid nitrogen-cooled MCT (Hg–Cd–Te) detector. All reported frequencies were measured to ± 0.1
cm⁻¹. Additional details of the optical system have been reported previously.³⁸ #### 2.3 Rod Preparation In the TCU Molecular Physics Lab, carbon rods containing various ratios of 12 C and 13 C have been fabricated using a two-step sintering process in which the 12 C/ 13 C powder mixture is first pressed into a soft rod and then baked at ~2100 °C for 20-30 days. Unfortunately, only 12-15 sintered rods can be fabricated per year using this process, which hinders the performing of experiments. Since very few M_nC_m species have been studied and the experimental conditions for their production are unknown, a month-long investment to fabricate a carbon or metal–carbon rod that may or may not produce M_nC_m clusters is unappealing. Experimental conditions pertaining to rod fabrication, *e.g.* 13 C or metal enrichments, cannot be easily modified in sintered rods, so soft, *i.e.* unbaked, C rods have been used in the current research, which has facilitated the testing of various rod preparation conditions thus increasing the number of experiments that could be done. The new technique eliminates the need for baking the carbon rod, except in cases where contaminant species such as CO or CO₂ are noted in FTIR spectra and can be traced back to carbon rod evaporation. The soft rods are fabricated from various ratios of 12 C (99.9995%, Alfa Aesar) and 13 C (99.3%, Isotec) powders, which are ground together to form a homogeneous mixture and then pressed under a pressure of $\sim 4.5 \times 10^5$ kPa. Even when the powder is baked overnight, this new technique can fabricate a rod in less than one day. Another modification to the previous rod fabrication process is the use of a new, more compact press with smaller, lighter dies. The previously used press, housed on the second floor of the TCU Machine Shop, has a cube-shaped stainless steel die that is $\sim 5"\times 5"\times 5"$. The entire assembly weighs over 50 pounds, making it very difficult to maneuver and disassemble to remove the fragile soft rod without destroying it. The compact press that is currently being used fits on one corner of a lab table and has a cylindrical die, $\sim 2.75"$ tall and $\sim 3"$ in diameter, that can be held in one hand. The compact press can generate pressures that are equal or greater to the pressures of the TCU Machine Shop press, so the carbon rod strengths are comparable. The main disadvantage to the current technique is that the cylindrical die is one solid piece, limiting soft rods to $\leq 50\%$ ¹³C enrichment, but a solution to this problem is proposed in Chapter VIII. These soft rods can provide very consistent results if powder measuring and mixing is done carefully. Chapters III, IV, and VI, respectively, detail how these rods enabled identifications of one vibrational mode of each CrC₃, CoC₃, and CuC₃; Chapter V discusses the soft rods that were used to observe one mode of AlC₃ and two, of AlC₃Al. #### 2.4 Isotopic Shifts M_nC_m vibrational frequency assignments are facilitated by the comparison of fundamental frequency and 13 C shifts measurements in FTIR spectra with the results of DFT predictions. Isotopic shifts are crucial for unambiguous species identification and structure determination. Some simple molecules, detailed below, are shown in Fig. 2.3 to illustrate how 13 C isotopic shifts are useful. For example, using 10% ¹³C enrichment, the strongest band of C₃ will correspond to the vibrational frequency of the isotopomer containing three ¹²C atoms or ¹²C₃. Because of the symmetry of linear C₃, *i.e.* a 180° rotation about the center of the molecule leaves the molecule unchanged [see Fig. 2.3(a)], there is a unique C atom in the center and two equivalent C atoms on either end of the molecule. Two ¹³C shifts are therefore observed, one corresponding to a ¹³C substitution on the unique C atom and one corresponding to a substitution on the two equivalent (a) Centrosymmetric molecules (e.g. C₃, MC₃M) (b) Non-centrosymmetric molecules (e.g. MC₃) Figure 2.3 Illustration of single ¹³C isotopic substitutions in (a) centrosymmetric linear molecules, e.g. C₃ and MC₃M, and (b) in non-centrosymmetric linear molecules, e.g. MC₃. C atoms, with an intensity ratio of 1:2, assuming complete scrambling of the 12 C and 13 C atoms. With 10% 13 C enrichment, the absorptions of the 12-13-12 and 13-12-12 isotopomers will therefore be ~10% and ~20%, respectively, of the intensity of the 12 C₃ band. Adding a metal atom to one end of a C_n chain changes the symmetry of the molecule so it is no longer centrosymmetric. In this case, a rotation of 180° around the molecular center does not leave the molecule unchanged, thus each C atom is unique and produces a shift when substituted with 13 C [Fig. 2.3(b)]. A linear MC₃ species, therefore, would have three 13 C shift bands of equal intensity. In contrast, if a metal atom were attached to each end of a C_n chain, MC_nM , then the molecule becomes centrosymmetric again, similar to a linear C_n molecule [Fig. 2.3(a)]. In a linear $M-C_\alpha-C_\beta-C_\alpha-M$ species, for example, the leftmost and rightmost C atoms, C_α , are equivalent (just as for linear C_3), producing one isotopic shift that has twice the intensity of the shift produced by ^{13}C substitution on the unique central C atom, C_β . #### **CHAPTER III** # FOURIER TRANSFORM INFRARED ISOTOPIC STUDY OF LINEAR CrC₃: IDENTIFICATION OF THE $\nu_1(\sigma)$ MODE #### 3.1. Introduction This chapter reports an FTIR study of the vibrational spectrum and structure of CrC₃, the first results from investigations recently initiated by the TCU Molecular Physics Lab on small transition metal–carbon species. The spectroscopy and structures of small transition-metal carbon clusters are of considerable interest in the context of the properties of larger metallocarbohedrenes (metcars), the apparent catalytic effect of transition metals in the formation of nanotubes, and the potential for the formation of other novel transition metal-carbon nanomaterials. In the first systematic investigations of small-transition-metal carbon clusters, ^{20,22} the MC₂⁻ and MC₃⁻ anions (M=Sc, V–Ni) were studied using photoelectron spectroscopy (PES) and density functional theory (DFT), deriving information on their structures, electronic states, and M-C stretching vibrational frequencies. This seminal work was followed by a more detailed examination of the monochromium carbides, CrC_n⁻ and CrC_n (n=2-8).²⁵ The investigation of CrC_n^- and $\operatorname{CrC}_n(n=2-8)$ clusters²⁵ benefited from better resolved PES spectra than in earlier work²⁰ and a much more extensive theoretical study, including calculations with the Becke exchange, Perdew-Wang correlation (BPW91)³⁹ functional and a 6-311+G* basis set for a range of cluster sizes ($n \ge 3$). A particular focus of the work was the competition between fanlike ($C_{2\nu}$) and linear structures [see Fig. 3.1(a)]. In the case of CrC_3^- , DFT calculations predicted that the 4B_1 fanlike ($C_{2\nu}$) isomer and the linear ${}^4\Sigma^-$ isomer are nearly degenerate with the fanlike form lying only 0.05 eV lower in energy. It was argued that the Figure 3.1 (a) The 3B_1 fanlike $(C_{2\nu})$ and ${}^5\Pi$ linear isomers of CrC₃. DFT B3LYP/6-311+G(3*df*) predictions for their geometric parameters are given in Angstroms (Å). The predicted principal nuclear displacements of the atoms for the $v_1(\sigma)$ mode of ${}^5\Pi$ linear CrC₃ are shown in (b). calculated electron affinities of 1.69 and 1.94 eV for the fanlike and linear isomers, respectively, were in reasonable agreement with values of 1.474 and 1.936 eV measured for bands in the observed PE spectrum, and thus provided evidence of both isomers, although the authors noted that the agreement between the DFT results and the experimental spectra for the fanlike isomer was not as good as for the linear isomer. Observing that the abundance of the fanlike isomer increased for hotter source conditions, the authors concluded that the linear isomer is probably slightly more stable, contrasting with DFT predictions favoring the fanlike isomer. Observed structure in the PES bands corresponded to metal-carbon vibrational frequencies of 700 ± 30 and 540 ± 20 cm⁻¹ for the ground states of the fanlike and linear CrC_3^- isomers, respectively. In the case of neutral CrC_3 , the DFT calculations predicted that the 3B_1 fanlike structure ($C_{2\nu}$) lies 0.30 eV lower than the $^5\Pi$ linear structure. Previously the TCU Molecular Physics Lab has reported FTIR and DFT studies on Si_nC_m , $^{27-30,40-43}$ Ge_nC_m , 31,32 and GeC_nSi^{33} species produced by trapping the ablated products of Si and/or Ge with carbon in solid Ar. In these studies, comparison of measured and predicted isotopic shifts is crucial for species identification, assignment of vibrational fundamentals, and for structure determination. Similar techniques have been applied in the present study on chromium-carbon (Cr_nC_m) clusters. In the case of pure C_n chains and rings, earlier studies have shown that C_3 is the dominant C_n species produced by trapping the products of ^{12}C ablation at laser power levels <1.5 W in solid Ar. As a result, subsequent annealing of the matrix predominantly generates C_{3n} species, e.g. C_6 and C_9 , which are multiples of the C_3 unit. 44 Considering this preference for the production of C₃ clusters, and the successful earlier addition of Si and Ge to C₃ clusters to form SiC₃Si, ⁴³ GeC₃Ge, ³¹ and GeC₃Si, ³³ it might be expected that similar experimental conditions would enable reactions between Cr atoms and C₃ chains. The specific objective of the present work has been to look for vibrational fundamentals of CrC_3 in the infrared. Although as discussed, the previous DFT and PES studies indicated a preference for the $(C_{2\nu})$ fanlike structure for neutral CrC_3 , the
present study reports instead the observation of the linear species. The $v_1(\sigma)$ C-C stretching mode of linear CrC_3 has been detected at 1789.5 cm⁻¹, which is supported by measurements of ¹³C-substituted isotopic shifts together with DFT predictions. # 3.2. Theoretical Calculations DFT calculations carried out as part of earlier PES studies^{20,25} on CrC₃ have predicted a linear (${}^5\Pi$) isomer of CrC₃ lying within 0.3 eV of the energetically favored $C_{2\nu}$ (3B_1) structure, although the observed thermal behavior of the PES bands suggested that the linear structure might actually be the more stable of the two. In the present work, using the GAUSSIAN 03 program suite, 45 DFT calculations of the vibrational fundamentals and IR intensities for both the fanlike $C_{2\nu}$ (3B_1) and linear (${}^5\Pi$) structures of CrC₃ were done by Rittby. 46 The three parameter Becke exchange functional with the Lee, Yang, and Parr correlation (B3LYP)⁴⁷ was used in conjunction with the 6-311+G(3df) basis set. The frequencies for both the linear and $C_{2\nu}$ isomers of CrC₃ are shown in Table 3.1. The results for the vibrational fundamentals of $(C_{2\nu})$ CrC₃ are in good agreement with those published earlier.²⁰ Geometric parameters for the two isomers are given in Fig 3.1(a). In the case of the linear isomer, the predicted vibrational frequencies and IR intensities shown in Table 3.1 indicate the $v_1(\sigma)$ mode should be the most intense fundamental. The predicted nuclear displacements of the $v_1(\sigma)$ mode of linear CrC₃ are shown in Fig. 3.1(b). Since the isotopic shift pattern in the FTIR spectrum observed in the present study indicates that a linear structure is responsible, ¹³C isotopic shifts have been calculated for the linear ($^5\Pi$) CrC₃ isomer. Table 3.1: DFT B3LYP/6-311+G(3*df*) predicted vibrational frequencies (cm⁻¹) and band intensities (km/mol) for the linear (${}^5\Pi$) and fanlike (3B_1) isomers of CrC₃. | CrC ₃
Isomer | Vibrational
Mode | Frequency (cm ⁻¹) | IR intensity (km/mol) | |----------------------------|---------------------|-------------------------------|-----------------------| | 5П | $v_1(\sigma)$ | 1852 | 434 | | Linear | $v_2(\sigma)$ | 1284 | 13 | | | $v_3(\sigma)$ | 385 | 8 | | | $v_4(\sigma)$ | 310/395 ^a | 26/14 | | | $v_5(\pi)$ | 122/120 ^a | 4/~0 | | $^{3}B_{1}$ | $v_1(a_1)$ | 1306 | 8 | | Fanlike (C_{2v}) | $v_2(a_1)$ | 816 | 2 | | | $v_3(a_1)$ | 544 | 63 | | | $v_4(b_1)$ | 514 | 11 | | | $v_5(b_2)$ | 1473 | ~0 | | | $v_6(b_2)$ | 381 | 49 | $^{^{}a}$ For the bending modes of the $^{5}\Pi$ state both Renner-Teller components are reported. # 3.3. Experimental Procedures Cr_nC_m clusters were produced by the simultaneous ablation of Cr and C rods using two Nd:YAG pulsed lasers (Spectra Physics) operating in pulsed mode at 1064 nm. The products were condensed in solid Ar (Matheson, 99.9995%) on a gold mirror held at ~10 K by a closed cycle refrigeration system (ARS, Displex) in a vacuum of 10^{-7} Torr or better during experiments. The carbon rods were fabricated using various mixtures of ¹²C (Alfa Aesar, 99.9995%) and ¹³C (Isotec, 99.3%) powders, pressed into rods. The typical length of deposition was ~40 min. FTIR absorption spectra were recorded at a resolution of 0.2 cm⁻¹ over the range 400–4000 cm⁻¹ using a Bomem DA 3.16 Fourier transform spectrometer equipped with a KBr beamsplitter and a liquid nitrogen-cooled MCT detector. Details of the optical system have been reported previously.³⁸ In experiments done in the TCU Molecular Physics Lab, the successful identification of molecular species depends heavily on ¹³C isotopic shift measurements. Previously, ¹³C shifts have been used to identify a variety of C_n species bonded with Ge and Si such as SiC_7 , ³⁰ SiC_9 , ²⁹ GeC_3Ge , ³¹ GeC_3Si , ³³ GeC_7 and GeC_9 . ³² Isotopic shifts permit ready distinction between linear structures such as SiC_4Si (Ref. 28) and cyclic structures such as planar pentagonal Si_3C_2 . ²⁷ In the present work, isotopic experiments employed a C rod with various ¹³C enrichments to enhance particular isotopomers. ### 3.4. Results and Discussion In order to identify potential candidates for vibrational fundamentals of Cr_nC_m species, spectra were recorded for the simultaneous ablation of Cr and ^{12}C rods. Evaporation of the Cr rod produced no absorptions in the 400 - 4000 cm⁻¹ region, but as shown in Fig. 3.2(b), the ^{12}C rod gave a rich spectrum in which many of the absorptions have been previously identified. 48,49 Figure 3.2 FTIR spectra produced by (a) dual ablation of Cr and ¹²C rods and (b) a pure ¹²C rod, for comparison. Simultaneous ablation of Cr and ¹²C rods produced a new absorption at 1789.5 cm⁻¹ [Fig. 3.2(a)] that was absent from the ¹²C rod spectrum. Potential carriers for this band thus appear to be limited to either a Cr_nC_m species or a Cr-bearing contaminant such as CrCO, CrH₂, or CrCO₂. The latter possibility is unlikely, however, as the chromium-carbon spectrum exhibits only very weak absorptions of water and of the contaminants CO, and CO₂ arising from the graphite. Moreover, the vibrational frequencies of other potential Cr contaminant species are well known. CrOCO⁵⁰ has vibrational fundamentals at 1735.6, 721.0, and 716.1 cm⁻¹; OCrCO,⁵⁰ at 2014.4 and 866.3 cm⁻¹; CrCO,⁵¹ at 1975.3 cm⁻¹; HCrOH,⁵² at 1639.9, 674.1, and 433.8 cm⁻¹; and CrH₂,⁵³ at 1650.9, and 1614.9 cm⁻¹. While the OCrCO band at 866.3 and the CrOCO pair at 721.0 and 1735.6 cm⁻¹ appear in the Cr/C spectrum, they are very weak when compared to the feature at 1789.5 cm⁻¹. A pure Cr_nC_m molecule is therefore its most likely carrier although additional evidence suggests that it is a relatively small species. If the molecule responsible for the 1789.5 cm⁻¹ band involved Cr bonded to a larger C_n ($n \ge 6$) species, one might expect the absorption to become more intense during annealing as the monomer and small C_n units diffused through the matrix and combined to form larger species. Typically, annealing facilitates the reaction of small C_n clusters to form larger molecules, principally multiples of the C_3 unit, such as C_6 , C_9 , and C_{12} . As shown in Fig. 3.2(a) the $v_3(\sigma_u)=2038.9$ cm⁻¹ fundamental of C_3 is one of the strongest features. However, while annealing increased the intensities of the bands of longer C_n chains, it did not significantly increase the intensity of the 1789.5 cm⁻¹ band, so a relatively small species seems to be the likely carrier. Figure 3.3(b) shows the spectrum produced by simultaneously evaporating a Cr rod and a 15% ¹³C-enriched C rod. ¹³C isotopic shifts should appear to the low frequency side of the 1789.5 cm⁻¹ band, and at this enrichment, absorptions of single ¹³C-substituted isotopomers should be most prominent. Three bands appearing in this region are readily identified as CrOCO Figure 3.3 Comparison of the FTIR spectra of the $v_1(\sigma)$ mode of linear CrC₃ and its ¹³C isotopic shifts produced by the simultaneous evaporation of a Cr rod and carbon rods with (a) 30% and (b) 15% ¹³C enrichments, with (c) a simulation derived from DFT calculations at the B3LYP/6-311+G(3df) level having 10% ¹³C enrichment. The letters correspond to the single ¹³C substituted and single ¹²C substituted isotopomers listed in Table 3.2. at 1735.1,⁵⁰ C_3^- at 1721.8,⁵⁴ and an unidentified band at 1746.1 cm⁻¹, which results from the ablation of a carbon rod. The three remaining bands at 1779.7, 1777.8, and 1743.4 cm⁻¹, however, are likely isotopic shifts. Each of the absorptions is approximately 6% of the intensity of the 1789.5 cm⁻¹ band, and this relative intensity is maintained during annealing, with all four absorptions sharpening slightly. As discussed earlier, a small CrC_n species is probably responsible and the presence of three single ¹³C-substituted shifts of equal intensity points to linear CrC_3 as the most probable candidate. This tentative conclusion is consistent the DFT calculations predicting that the strongest infrared absorption of the linear isomer will be the $v_1(\sigma)$ mode at 1852 cm⁻¹. For further evidence, experiments with higher ¹³C enrichment were performed. In the case of small molecules, 50% ¹³C enrichment will show the full ¹²C species, the full ¹³C species and all of the isotopic shifts. Because the amorphous ¹³C powder used to make the rods evaporates more easily than the crystalline ¹²C material, the actual ¹³C enrichment observed in the spectrum is sometimes different from the nominal value. In Fig. 3.3(a), the spectrum obtained in an experiment with ~30% ¹³C enrichment in the C rod again shows the main Cr¹²C₃ band at 1789.5 cm⁻¹ with the three single ¹³C shifts at 1779.7, 1777.8, and 1743.4 cm⁻¹. In addition, on the low frequency side, a mirror spectrum with a strong band at 1720.6 cm⁻¹ belonging to Cr¹³C₃ and three weaker ¹³C shift bands to its right at 1731.4, 1733.5, and 1767.1 cm⁻¹, corresponding to isotopomers with a single ¹²C atom and two ¹³C atoms are also observed. The intensities of the latter three bands are ~27% of the 1720.6 cm⁻¹ band and this ratio is maintained during annealing. The two main bands at 1720.6 and 1789.5 cm⁻¹ corresponding, respectively, to the $v_1(\sigma)$ mode of the $Cr^{13}C_3$ and $Cr^{12}C_3$ isotopomers and the six bands between them comprise all of the possible isotopomers for a linear species with a chain of three inequivalent C atoms having a terminal Cr atom at one end. In Table 3.2 a detailed comparison Table 3.2: Comparison of observed vibrational frequencies (cm⁻¹) of the $v_1(\sigma)$ mode for ¹³C-substituted isotopomers of linear CrC₃ with the predictions of B3LYP/6-311+G(3*df*) calculations. | Isotopomer | | Observed DFT | | Scaled | Difference | |------------------------------|------|--------------|--------|-------------|-------------------------------------| | Cr-C-C-C | | $v_{ m obs}$ | v | $v_{ m sc}$ | $\Delta
v = v_{ m obs} - v_{ m sc}$ | | 52-12-12-12 | (A) | 1789.5 | 1851.7 | a | ••• | | 52 -13 -12-12 | (B) | 1777.8 | 1837.6 | 1775.9 | 1.9 | | 52-12- 13 -12 | (C) | 1743.4 | 1803.5 | 1742.9 | 0.5 | | 52-12-12 -13 | (D) | 1779.7 | 1842.6 | 1780.7 | -1.0 | | 52-13-13-13 | (A') | 1720.6 | 1778.8 | b | | | 52-12 -13 -13 | (B') | 1733.5 | 1794.5 | 1735.8 | -2.3 | | 52 -13 -12 -13 | (C') | 1767.1 | 1827.7 | 1767.9 | -0.8 | | 52-13-13-12 | (D') | 1731.4 | 1788.8 | 1730.3 | 1.1 | ^aResults of the calculation scaled by a factor of 1789.5/1851.7=0.96641. ^bResults of the calculation scaled by a factor of 1720.6/1778.8=0.96728. is shown between the observed 13 C shifts and the scaled (by the ratios 1789.5/1851.7=0.96641 and 1720.6/1778.8=0.96728 of the observed to predicted frequencies for the $Cr^{12}C_3$ and $Cr^{12}C_3$ isomers, respectively) DFT-B3LYP/6-311+G(3*df*) predictions for all of the 13 C isotopomers. The agreement is very good and supports the identification of the 1789.5 cm⁻¹ absorption as the $v_1(\sigma)$ mode of the linear isomer. As discussed earlier, the interpretation of the PE spectra²⁵ for CrC_3^- indicated that both the fanlike $(C_{2\nu})$ and linear isomers, which DFT predicts to be nearly isoenergetic, were present although the linear isomer appeared to be slightly more stable. In the present work on neutral CrC_3 , the FTIR isotopic shift measurements show the presence of the linear isomer, which DFT calculations predict to be less stable (+0.30 eV) than the $C_{2\nu}$ isomer. A pair of bands appearing weakly in the FTIR spectra at ~1305 cm⁻¹ are in the vicinity of the DFT predictions (see Table 3.1) for the $v_1(a_1)$ and $v_5(b_2)$ modes of the $C_{2\nu}$ isomer. However, no ¹³C isotopic shift evidence has been found to support the identification of these bands as modes of the fanlike isomer. ### 3.5. Conclusions This investigation on CrC_3 , which was produced by trapping the products from the dual evaporation of Cr and C rods in Ar at ~10 K, has resulted in the first assignment of a vibrational fundamental for the linear isomer. A prior PES study²⁵ had reported evidence of both linear and $(C_{2\nu})$ fanlike isomers, and the first measurement of a vibrational mode for the $C_{2\nu}$ structure. No evidence of the fanlike isomer was observed in the present study. The excellent agreement between ¹³C isotopic shift measurements coupled with DFT predictions has established that the ground state structure of CrC_3 is linear with a ⁵ Π electronic state, and its $\nu_1(\sigma)$ carbon stretching fundamental has been identified at 1789.5 cm⁻¹. ### **CHAPTER IV** # FOURIER TRANSFORM INFRARED OBSERVATION OF THE $\nu_1(\sigma)$ MODE OF LINEAR CoC₃ TRAPPED IN SOLID Ar ### 4.1 Introduction This study of the CoC_3 cluster continues the FTIR investigations of transition metal—carbon species which were initiated in the TCU Molecular Physics Lab with the CrC_3 molecule discussed in Chapter III and the TiC_3 molecule reported by Kinzer.⁵⁵ The first observations of small Co_nC_m species were made as part of two PES studies done by Wang and Li on electronic structure and bonding in the first row transition metal—carbon clusters MC_2 — $(M = Sc, V - Co)^{22}$ and MC_3 —(M = Sc, V - Ni).²⁰ A vibrational spacing of \sim 540(60) cm⁻¹ for CoC_2 was observed, presumably corresponding to a metal-carbon stretch,²² but no vibrational features could be resolved for CoC_3 .²⁰ The authors speculated that the unresolved spectra observed for CoC_3 —indicated a significant change in geometry between the anion and neutral species. Because the unresolved vibrational features made it impossible to determine the geometry, they did not include CoC_3 in their DFT investigation of MC_3 clusters. Calculations on all of the other MC_3 clusters in their study, however, suggested that they have $(C_{2\nu})$ fanlike ground state geometries.²⁰ DFT/B3LYP calculations on the dicarbide CoC_2 have predicted a cyclic $(C_{2\nu})$ ground state structure with an ionic Co^{2+} – C_2^{2-} bond. The ground state has been found to be a quartet, but its symmetry is still uncertain as the 4B_1 and 4B_2 states have been calculated to be nearly isoenergetic (± 0.26 kcal/mol). Recent DFT/B3LYP calculations on the $C_{2\nu}$, $D_{\infty h}$, and $C_{\infty \nu}$ isomers of MC₂ and MC₂⁻ (M = V, Cr, Fe, and Co) clusters have confirmed that both the neutral and the anion species have $C_{2\nu}$ ground state symmetries and propose assignments for previously published PE spectral features.²² A study on $Co_2C_n^-$ (n=2,3) clusters³ has reported PE spectra with DFT geometry predictions at the generalized gradient approximation (GGA) level, elucidating the growth mechanisms of small Co_nC_m clusters. Rather than forming a metal-carbon network composed of MC₂ "building blocks" as is the case with V_nC_m and Ti_nC_m clusters,² Co_nC_m species appear to first form carbon aggregates to which Co atoms attach. FTIR measurements in concert with DFT predictions of frequencies and 13 C isotopic shifts have been successfully used by the TCU Molecular Physics Lab to determine the structures and identify vibrational fundamentals for a variety of Si_nC_m , 29,30 Ge_nC_m , 58 and GeC_nSi (Ref. 33) clusters, which have been formed by trapping the laser ablated products of Si, Ge, and C rods in solid Ar. Recently FTIR and DFT isotopic investigations were initiated on transition metal–carbon clusters using the same laser ablation and matrix isolation techniques, and have reported vibrational fundamentals and ground state structures for the TiC_3 ($C_{2\nu}$ fanlike) 55 and CrC_3 (linear) 46 species. As presented in this chapter, the application of similar techniques to Co_nC_m clusters has resulted in the first optical detection of the $v_1(\sigma)$ mode of linear CoC_3 . ### 4.2 Theoretical Calculations As previously noted, prior theoretical investigations of Co_nC_m species have been limited to CoC_2 , CoC_2^- , and $Co_2C_n^-$ (n=2, 3). 3,56,57 The DFT investigation reported in this chapter on CoC_3 is thus the first for this species. The GAUSSIAN 03 program suite⁴⁵ with the B3LYP⁴⁷ and BPW91³⁹ functionals and the 6-311+G(3df) basis set were used for calculations on the two lowest energy isomers, the $^2\Delta$ linear and 2B_1 fanlike structures of CoC_3 . The possibility that a non-centrosymmetric Co_2C_3 species could be responsible for the spectrum in the present work has also been considered, but planar Co_2C_3 structures were eliminated because prior DFT calculations on Co_2C_3^- have shown that the lowest energy isomers have $C_{2\nu}$ symmetry with two equivalent C atoms, in agreement with PE spectra³ and two equivalent C atoms would not be consistent with the ¹³C isotopic shift pattern observed in the FTIR spectra and discussed in the following sections. A "Y-shaped" structure $(C_{2\nu})$ with two equivalent Co atoms at the end of a C₃ chain was investigated by Rittby,⁵⁹ but the ¹³C shifts are not in good agreement with the FTIR spectra. To rule out other linear CoC₃ or Co₂C₃ isomers, B3LYP/6-311+G(3*df*) calculations were also performed on CCoCC, CoCoCCC, CoCCoCC, and CoCCCoC, but none of these possibilities gave a stable minimum structure with a vibrational fundamental close in frequency to the observed FTIR spectrum. DFT calculations were done on CoC_3 using both the B3LYP and BPW91 functionals and predict that the 2B_1 fanlike [see Fig. 4.1(a)] and the ${}^2\Delta$ linear isomers are very close in energy. BPW91 calculations predict the 2B_1 fan is the ground state by 2.7 kcal/mol, whereas B3LYP calculations predict the ${}^2\Delta$ linear isomer is 3.7 kcal/mol lower than the fan. These calculations therefore do not provide any clear indication as to which state is the true ground state for CoC_3 . Geometric parameters for the two states are given in Fig 4.1(a). Vibrational frequencies and infrared intensities calculated using the B3LYP and BPW91 functionals are shown in Table 4.1. # 4.3 Experimental Procedures CoC₃ was produced from a pair of C (99.9995%, Alfa Aesar) and Co (99.95%, ESPI) rods, which were continually rotated and translated in order to provide clean surfaces for ablation using two 1064 nm Nd:YAG pulsed lasers (Spectra Physics). High purity Ar (99.995%, Matheson Tri-Gas) was introduced into the sample chamber, sweeping the ablated products onto a gold mirror maintained at ~10 K with a closed-cycle refrigeration system (ARS, Displex) under a vacuum pressure of $\leq 10^{-7}$ Torr. Details of the experimental apparatus have been published Figure 4.1 DFT B3LYP/6-311+G(3df) predictions of bond lengths (Å) of the 2B_1 fanlike and ${}^2\Delta$ linear isomers. The predicted principal nuclear displacements of the $v_1(\sigma)$ mode of the ${}^2\Delta$ linear isomer of CoC₃ are shown in (b). Table 4.1: DFT predicted frequencies (cm⁻¹) and band intensities (km/mol) for the vibrational fundamentals of the $(^2\Delta)$ linear and $(^2B_1)$ fanlike isomers of CoC₃ using the B3LYP and the BPW91 functionals with a 6-311+G(3*df*) basis set. | | | B3I | LYP | BPW91 | | | |----------------------------|---------------------|-------------------------------|-----------------------|-------------------------------|-----------------------|--| | CrC ₃
Isomer | Vibrational
Mode | Frequency (cm ⁻¹) | IR intensity (km/mol) | Frequency (cm ⁻¹) | IR intensity (km/mol) | | | $^2\Delta$ | $v_1(\sigma)$ | 2014 | 586 | 1986 | 663 | | | Linear | $v_2(\sigma)$ | 1358 | 3 | 1338 | 2 | | | | $v_3(\sigma)$ | 497 | 18 | 514 | 3 | | | | $v_4(\sigma)$ | 385 | 29 | 383 | 32 | | | | $v_5(\pi)$ | 142 | ~0 | 134 | ~0 | | | $^{2}B_{1}$ | $v_1(a_1)$ | 1240 | 9 | 1156 | 12 | | | Fanlike $(C_{2\nu})$ | $v_2(a_1)$ | 671 | 15 | 695 | 5 | | | | $v_3(a_1)$ | 458 | 15 | 505 | 4 | | | | $v_4(b_1)$ | 371 | 8 | 275 | ~0 | | | | $v_5(b_2)$ | 1563 |
79 | 1463 | 53 | | | | $v_6(b_2)$ | 373 | 22 | 474 | 19 | | previously.³⁸ Experimental conditions such as the laser power, the laser focus, and the Ar flow rate were adjusted to favor the production of small carbon chains, predominantly C_3 . Laser powers of ≤ 1.0 W with a loose focus and ~ 2.5 W with a tight focus were used on the C and Co rods, respectively. These conditions significantly enhanced the production of C_3 chains relative to other C_n species and facilitated CoC_3 formation. Carbon rods were fabricated with the 13 C enrichment required to produce the desired 13 C isotopic shifts. These rods were made from a mixture of 12 C (99.9995%, Alfa Aesar) and 13 C (99.3%, Isotec) powders, pressed under a pressure of $\sim 4.5 \times 10^5$ kPa. Three carbon rods were prepared, a pure 12 C rod and rods with $\sim 20\%$ 13 C and $\sim 30\%$ 13 C nominal enrichment. In previous studies, the comparison of 13 C isotopic shift measurements with DFT predictions has enabled various geometries, such as rhomboidal Si₃C, 42 planar pentagonal Si₃C, 27 and the more recently discovered "fan-shaped" TiC₃ (Ref. 55) to be easily distinguished from one another and from linear structures such as CrC₃ (Ref. 46) and GeC₅Ge. 58 # 4.4 Results and Discussion Absorptions of potential $Co_n C_m$ candidates were identified by comparing the spectrum obtained from the dual ablation of Co and C rods [Fig. 4.2(a)] with the spectrum produced by the ablation of a single ¹²C rod [Fig. 4.2(b)]. The spectrum from the ¹²C rod shows an abundance of C_n absorptions, most of which have been previously identified, ⁴⁹ and many of which also appear in the Co/C spectrum. In the dual ablation experiment, low laser power (<1.0 W) ablation of the C rod favored C_3 production, as is readily seen by the intense $v_3(\sigma_u)$ mode of C_3 that dwarfs most other features in the spectrum. Only trace amounts of CO impurities from the C rod appear in the spectra, and C_3 absorptions are negligible. Most importantly, a strong band which appears at 1918.2 cm⁻¹ in the Co/C spectrum in Fig. 4.2(a) is absent from the ¹²C spectrum in Fig. 4.2(b), Figure 4.2 FTIR spectra recorded after (a) dual ablation of cobalt and pure ¹²C rods and (b) ablation of a pure ¹²C rod, for comparison. Note the 1918.2 cm⁻¹ band in (a) that does not appear in (b). and is therefore a candidate for a Co_nC_m species. Additional absorption features appear in the spectrum in Fig. 4.2(a) resulting from the dual ablation of Co and C rods. Absorptions of C_n anions, such as C_3^- and C_6^- , 60 are more intense than in the pure 12 C spectrum, and absorptions arising from CO_2 impurities, which often appear during carbon evaporation, are also present. Baking the carbon rods usually eliminates CO_2 , but this has not been the case in the present work where weak CO_2 absorptions in the dual ablation spectra have been traced to the metal evaporation. However, a search using the NIST database 49 for the vibrational frequencies of potential contaminant species such as Co(CO), 61,62 $Co_2(CO)$, 62,63 CoH_2 , $CoCH_2$, and CH_3CoH , 64 HCoOH, 52 OCoCO, 65 Co_2O_2 , and several CoO_n $(n=2-4)^{66}$ species yielded no evidence of them in the spectra. fundamental and determine the geometry of the species responsible for the 1918.2 cm⁻¹ band. The spectra in Figs. 4.3(a) and (b) show the results of the dual evaporation of a Co rod with a carbon rod containing 30% 13 C and 20% 13 C isotopic enrichments, respectively. In searching for potential 13 C shifts a number of features appearing in the vicinity of the 1918.2 cm⁻¹ band, which are attributable to pure 12 C species or carbon-bearing contaminant species, can be eliminated from consideration. Weak absorptions at 1922.5 and 1863.5 cm⁻¹ belong to C₄O (Ref. 67) and CHO, 68 respectively. An intense absorption at 1936.7 cm⁻¹ (not shown) is identified as the $v_4(\sigma_u^+)$ fundamental of C_6^- and an absorption at 1914.5 cm⁻¹ [Fig. 4.3(b)], and two other absorptions at 1929.2 and 1928.6 cm⁻¹ (not shown) are its single 13 C-substituted shifts. 69 Finally, the $v_5(\sigma_u)$ mode of C_7 is at 1894.3 cm⁻¹ with relatively weak, singly-substituted 13 C isotopomer bands at 1886.4 and 1880.2 cm⁻¹. A third isotopomer band of C_7 lies within the envelope of the main, 1894.3 cm⁻¹ absorption and a fourth at 1870.4 cm⁻¹ is hidden by a prominent new band at 1870.8 cm⁻¹ which originates from a $Co_n C_m$ species. Figure 4.3 FTIR spectra of the $v_1(\sigma)$ mode of linear CoC₃ in an experiment with (a) 30% nominal ¹³C enrichment, and (b) 20% nominal ¹³C enrichment. The higher ¹³C enrichment in (a) eliminates most of the absorptions attributed to C₆⁻ and C₇, leaving only a weak C₇ absorption at 1894.3 cm⁻¹, and thus shows the fully- and doubly-substituted ¹³C isotopomers more clearly. The 1870.8 cm⁻¹ absorption together with the remaining spectral features at 1906.4, 1905.2, ~1858, and 1844.2 cm⁻¹ are thus all possible candidates for ¹³C shifts of the 1918.2 cm⁻¹ band. The spectrum in Fig. 4.3(b) suggests several points immediately: (1) The relatively high vibrational frequency is indicative of a C-C stretching mode for a linear molecule, in which there is little participation by the Co atom(s). (2) There are three possible candidates at 1906.4, 1905.2, and 1870.8 cm⁻¹ for the single ¹³C shifts which should be prominent in the spectrum at low ¹³C enrichment. (3) The approximately equal intensity of the three bands indicates that the molecule responsible has at least three unique C atoms, which would be the case if a single Co atom were bonded to one end of a C₃ chain. The third point is confirmed by the measured integrated intensities of the 1905.2 and 1906.4 cm⁻¹ bands. They are each ~9% of the main 1918.2 cm⁻¹ absorption, which is consistent with the ¹³C enrichment measured for the single ¹³C shifts for C_3 and other C_n species in the spectrum. The 1870.8 cm⁻¹ feature has a somewhat greater intensity of ~11% of the 1918.2 cm⁻¹ band, but if the contribution from the overlapping C₇ isotopomer band at 1870.4 cm⁻¹ is subtracted from the band envelope, the ratio with the 1918.2 cm⁻¹ main absorption is then ~9%, which is consistent with the two other isotopic shift bands. The integrated intensity ratios (\sim 9%) thus indicate that the three absorptions result from three unique ¹³C substitutions. The ¹³C isotopic shift pattern and integrated intensity ratios rule out the possibility of a $C_{2\nu}$ isomer of Co_2C_3 as well as any centrosymmetric linear configuration (e.g. CoCCCCo). Since other non-centrosymmetric linear configurations of CoC₃ and Co₂C₃ could be eliminated on the basis of their vibrational fundamental frequencies or IR intensities, the remaining candidate is linear CoCCC. The tentative conclusion is therefore supported that the molecule is most likely a single Co atom attached to one end of a C₃ chain. Assuming that the Co atom is not participating in the vibration, and using the harmonic oscillator approximation for pure carbon clusters, the frequency for the fully ¹³C-substituted molecule should scale as $$v_{13_C} \simeq \sqrt{\frac{m_{12_C}}{m_{13_C}}} \times v_{12_C} \simeq \sqrt{\frac{12.0}{13.00335}} \times v_{12_C}$$ (4.1) Setting $v_{^{12}C}$ =1918.2, gives $v_{^{13}C} \approx 1842.7 \text{ cm}^{-1}$, which is close to a band observed at 1844.2 cm⁻¹ in Fig. 4.3(b). Figure 4.3(a) shows the spectrum obtained when the 13 C isotopic enrichment in the C rod was increased to 30%. Again, as in Fig. 4.3(b) the 1918.2 cm⁻¹ principal band and the three single isotopic shifts at, 1906.4, 1905.2, and 1870.8 cm⁻¹ appear. However, in the Fig. 4.3(a) spectrum, only trace amounts of C_7 appear, thus eliminating contributions from overlapping isotopic shifts from the 1894.3 cm⁻¹ band of C_7 . In addition to the absorption for the full 13 C-substituted isotopomer at 1844.2 cm⁻¹, the absorptions of three more potential isotopomer bands now appear clearly: an absorption at 1892.9 cm⁻¹ that previously appeared as a shoulder to the low frequency side of the C_7 absorption, and the band at \sim 1858 cm⁻¹ that can now be resolved into two overlapping peaks at 1857.8 and 1858.8 cm⁻¹. Further evidence in support of the tentative conclusion that the 1918.2 cm⁻¹ absorption is the result of a Co atom attached to the end of a C_3 chain is found in the relative intensities of the isotopomer bands appearing in Fig. 4.3(a) for a 30% 13 C enrichment. Because the fabricated rod does not have a uniform mixture of carbon isotopes, the isotopic spectra do not exhibit the relative intensities expected for a complete randomization with 30% 13 C enrichment. This is also the case for the C_3 spectrum, and since the 1918.2 cm⁻¹ absorption is a candidate for CoC_3 , the intensity ratios observed for its 13 C shifts are compared with the 13 C isotopic intensity ratios observed for C_3 . In the C_3 spectrum, the integrated intensities of the single 13 C-substituted isotopomers are each \sim 10% of the integrated intensity of the main C_3 band. Similarly, the absorptions at 1906.4, 1905.2, and 1870.8 cm⁻¹, which are candidates for single 13 C shifts of CoC_3 , each have intensities that are \sim 9% of the main 1918.2 cm⁻¹ absorption. The doubly-substituted 13 C isotopomer bands of C_3 all have integrated intensities that are \sim 4% of the main C_3 band. Likewise, the ratios of the intensities of the bands at 1892.9, 1857.8, and 1858.8 cm⁻¹ to the main 1918.2 cm⁻¹ band are each ~4%, making them good candidates for double ¹³C shifts. The ratio of the intensity of the 1844.2 cm⁻¹ band to the 1918.2 cm⁻¹ band is ~9%, which is consistent with the observation for C₃ that the intensity of the fully-substituted ¹³C₃ band is 9.5% of the main ¹²C₃ band. The evidence from the isotopic shift pattern therefore indicates that the 1918.2 cm⁻¹ band results from a Co atom attached to the end of a linear C₃ chain
with single ¹³C-substituted isotopomers at 1906.4, 1905.2, and 1870.8 cm⁻¹, double ¹³C-substituted isotopomers at 1892.9, 1857.8, and 1858.8 cm⁻¹, and the full ¹³C-substituted isotopomer at 1844.2 cm⁻¹. Considering the evidence from the 13 C isotopic shift pattern for the 1918.2 cm $^{-1}$ band and comparing its frequency with those predicted in Table 4.1 for the $^2\Delta$ linear isomer of CoC₃, it is clear that the most probable assignment for the 1918.2 cm $^{-1}$ band is to the $v_1(\sigma)$ fundamental, which is predicted by both the B3LYP and BPW91 calculations to be the most intense mode at 2014 and 1986 cm $^{-1}$, respectively. The predicted principal nuclear displacements for the $v_1(\sigma)$ mode are given in Fig. 4.1(b) and show that this C–C stretching mode is similar to an asymmetric C₃ stretch with a stationary Co atom attached to one end. Figure 4.4 compares the FTIR spectrum with 30% ¹³C enrichment with DFT BPW91/ and B3LYP/6-311+G(3*df*) simulations, which are both scaled to the 1918.2 cm⁻¹ band. Table 4.2 compares the FTIR measured frequencies with the results of the DFT/B3LYP and /BPW91 calculations, respectively. The predicted frequencies for the Co¹²C₃ and the Co¹³C₃ isotopomers have been scaled to the observed frequencies (scale factors = 1918.2/2013.6=0.95262 and 1844.2/1934.4=0.95337, respectively, for the B3LYP predictions and 1918.2/1986.0=0.96586 and 1844.2/1907.9=0.96661, respectively, for the BPW91 calculations). Two scale factors have been used in order to eliminate anharmonic effects. The calculated, harmonic Co¹²C₃ and Co¹³C₃ Figure 4.4 (a) An FTIR spectrum with 30% ¹³C enrichment for comparison with DFT simulations of a 30% ¹³C enrichment spectrum using the (b) BPW91 and the (c) B3LYP functionals with a 6-311+G(3*df*) basis set. The DFT simulations are scaled to the main 1918.2 cm⁻¹ band. Table 4.2: Comparison of the observed vibrational fundamental and all of the 13 C- substituted isotopomer frequencies (cm⁻¹) of the $v_1(\sigma)$ mode of linear CoC₃ with the predictions of DFT B3LYP/ and BPW91/6-311G+(3df) calculations. | | | | B3LYP | | | | BPW91 | | | |------------------------------|------|----------|--------|--------|------------|--------|--------|------------|--| | Isotopome | er | Observed | Theory | Scaled | Difference | Theory | Scaled | Difference | | | Co-C-C-C | | v | v | v | Δv | v | v | Δv | | | 59-12-12-12 | (A) | 1918.2 | 2013.6 | a | | 1986.0 | c | | | | 59 -13 -12-12 | (B) | 1905.2 | 2000.5 | 1905.7 | -0.5 | 1972.6 | 1905.3 | -0.1 | | | 59-12 -13 -12 | (C) | 1870.8 | 1962.1 | 1869.1 | 1.7 | 1935.7 | 1869.6 | 1.2 | | | 59-12-12 -13 | (D) | 1906.4 | 2000.7 | 1905.9 | 0.5 | 1973.4 | 1906.0 | 0.4 | | | 59-13-13-13 | (A') | 1844.2 | 1934.4 | b | | 1907.9 | d | | | | 59-12 -13 -13 | (B') | 1858.8 | 1949.0 | 1858.1 | 0.7 | 1923.0 | 1858.8 | 0.0 | | | 59 -13 -12 -13 | (C') | 1892.9 | 1986.7 | 1894.1 | -1.2 | 1959.1 | 1893.7 | -0.8 | | | 59- 13-13 -12 | (D') | 1857.8 | 1948.5 | 1857.6 | 0.2 | 1921.6 | 1857.4 | 0.4 | | ^aResults of the calculation scaled by a factor of 1918.2/2013.6=0.95262. ^bResults of the calculation scaled by a factor of 1844.2/1934.4=0.95337. ^cResults of the calculation scaled by a factor of 1918.2/1986.0=0.96586. ^dResults of the calculation scaled by a factor of 1844.2/1907.9=0.96661. frequencies are related through Eq. (4.1), but the corresponding experimental frequencies are not (see Table 4.2), indicating that there is anharmonicity in the observed carbon stretch. In this situation, it is more appropriate to consider single 13 C and 12 C shifts as coming from the full 12 C species and 13 C species, respectively. The largest deviation occurs when a substitution is made on the middle C atom, which is expected, as it is the atom with the largest displacement in the vibration [see Fig. 4.1 (b)]. The very good agreement (± 1.7 cm⁻¹ for the B3LYP and ± 1.2 cm⁻¹ for the BPW91 functionals) between the scaled predictions and the observed frequencies confirms the assignment of the 1918.2 cm⁻¹ band to the $v_1(\sigma)$ mode of linear CoC₃ in its $^2\Delta$ state. As shown in Table 4.1, DFT calculations predict the $v_5(b_2)$ vibrational fundamental of the 2B_1 fanlike isomer of CoC₃ should lie in the 1400-1600 cm⁻¹ region and could have sufficient intensity to be observed. In other studies done in the TCU Molecular Physics Lab, the analogous vibration for fanlike TiC₃ (Ref. 55) and ScC₃ (Ref. 71) have been observed, however, a careful search of the region revealed no absorption that could be assigned to fanlike CoC₃. ## 4.5 Conclusions The first detection of the vibrational spectrum of CoC_3 has been reported accompanied by a DFT investigation of its two lowest-lying isomers. The earlier PE spectra²⁰ had broad, unresolved vibrational structure that made it impossible to determine the geometry of CoC_3 and led to its exclusion from the theoretical part of the investigation. In the present work, matrix isolation of the evaporated products of the dual laser ablation of Co and C rods has produced a band at 1918.2 cm⁻¹ and the signature isotopic shift pattern of a non-centrosymmetric linear molecule with three C atoms. The excellent agreement between the FTIR measured ¹³C shifts and the results of DFT BPW91/ and B3LYP/6-311+G(3*df*) calculations confirms the assignment of the 1918.2 cm⁻¹ absorption to the $v_1(\sigma)$ vibrational fundamental of linear CoC_3 . These results indicate that the ${}^2\Delta$ state of the linear isomer is the universal ground state (as predicted by DFT/B3LYP calculations), rather than the 2B_1 state of the fanlike isomer (as predicted by DFT/BPW91 calculations), lying only \sim 4 kcal/mol lower in energy. The linear structure found for CoC₃ in the present investigation contrasts with the recent report of the observation of (1A_1) fanlike TiC₃ which is, however, well separated energetically from competing linear and kite-shaped structures. The current findings, however, are similar to those presented in Chapter III for the ${}^5\Pi$ linear CrC₃ species for which close-lying fanlike and linear structures are also predicted. This study on CoC₃ both the first theoretical investigation on this molecule and the first optical detection of the linear isomer and measurement of a vibrational fundamental. # **CHAPTER V** # FTIR OBSERVATION AND DFT STUDY OF THE AIC $_3$ AND AIC $_3$ AI LINEAR CHAINS TRAPPED IN SOLID Ar ### 5.1 Introduction Studies on aluminum–carbon (Al_nC_m) clusters have been carried out as part of a project on the characterization of novel metal–carbon species. The study of the infrared spectra and structures of small Al_nC_m species is motivated in part by the astrophysical detection of small Al-bearing molecules⁹ and by the desire to understand the formation and bonding of metal carbides. Previous studies have shown Al_nC_m species may have novel chemical structures and bonding.⁷² The AIC molecule has been extensively studied both by theorists 35,73,74 and experimentalists. 35,74,75 Its ground state is predicted to be $^4\Sigma^-$ and its vibrational fundamental has been measured at 629.8 cm⁻¹. The only studies on the excited states of AIC and on the ground and excited states of AIC⁻ are theoretical investigations, 76 which have predicted a $^2\Pi$ first excited state for AIC and $^3\Pi$ ground and $^3\Sigma^-$ first excited states for AIC⁻. The Al₂C molecule has been observed in its 2A_1 ground state and its $v_3(b_2)=802.0$ cm⁻¹ mode has been identified. Aluminum dicarbides, AlC₂,^{74,77–79} Al₂C₂,^{35,72} and Al₃C₂,⁸⁰ have also been investigated. AlC₂ is predicted to have an ionic Al⁺C₂⁻ electronic structure⁷⁷ with T-shaped ($C_{2\nu}$) geometry and a 2A_1 ground state, $^{77-79}$ ~11–16 kcal/mol lower in energy than the $^2\Sigma^+$ linear AlCC isomer, which is supported by PE⁷⁹ and ESR⁷⁴ spectra. For the anion, AlC₂⁻, DFT predicts that the $^1\Sigma^+$ isomer is the ground state by 1.4 kcal/mol, which is supported by PES measurements, 79 but CCSD(T) calculations indicate the $C_{2\nu}$ isomer is ~2.1 kcal/mol lower in energy. The first detection of Al_2C_2 reported that the molecule is linear based on the agreement between the 13 C isotopic shifts observed for the $v_3(\sigma_u) = 605.1$ cm⁻¹ mode and predictions at the complete active space self-consistent field level of theory. A subsequent PES and theoretical investigation of Al_2C_2 and Al_2C_2 using DFT, second-order Møller-Plesset (MP2), and CCSD(T) calculations has revealed the presence of two isomers of the anion in PE spectra, a slightly *trans*-bent C_{2h} structure (quasilinear) with 2B_g symmetry and a rhombic D_{2h} ($^2B_{3g}$) structure with a transannular C–C bond 7.2 kcal/mol higher in energy. For neutral Al_2C_2 , only one minimum has been found corresponding to a quasilinear structure. FTIR measurements performed as part of the present work, support a linear ($^1\Sigma_g^+$) structure for AlC_2Al and the assignment of the $v_3(\sigma_u)$ mode at 605.1 cm⁻¹, as concluded earlier. In a combined theoretical and PES study⁸⁰ of the Al₃C₂ anion, the predicted fanlike $(C_{2\nu})$ structure with a 1A_1 electronic ground state has been confirmed by PE spectra. The neutral species has also been predicted to be fanlike, slightly distorted out of the plane, lowering its symmetry to C_2 , with a 2B ground state. Combined PES and DFT studies have been reported on the hyperaluminum–carbon molecules Al_3C , 81 Al_4C , 82 and Al_5C . 83 A theoretical investigation on Al_7C^{84} and a PES characterization of $Al_{12}C^-$ (Ref. 85) have been motivated by the discovery of the unusually stable and abundant Al_{13}^- cluster. 86 Until the present work, there have been many theoretical investigations, $^{26,77,87-90}$ but no experimental observation of AlC₃. The initial study⁷⁷ included the fanlike ($C_{2\nu}$) and the linear AlCCC and
CAlCC structures, and concluded, based on both DFT and MP2 calculations, that the 4B_1 state of the fanlike isomer is well separated energetically from the other structures and is the ground state. Subsequently, extensive calculations have been reported²⁶ on three low-lying isomers of AlC₃ [see Figs. 5.1(a)-(c)]: linear AlCCC, the ($C_{2\nu}$) fan, and a ($C_{2\nu}$) rhomboidal four- Figure 5.1 DFT B3LYP/6-311+G(3df) predictions of bond lengths (Å) of the (a) ${}^{2}\Pi$ linear, (b) ${}^{2}A_{1}$ kite $(C_{2\nu})$, and (c) ${}^{2}B_{2}$ fanlike $(C_{2\nu})$ isomers of AlC₃. The predicted principal nuclear displacements of the $v_{2}(\sigma)$ mode of (${}^{2}\Pi$) linear AlC₃ are shown in (d). membered ring structure, hereafter referred to as a "kite". Various theoretical methods including DFT, MP2, and CCSD(T), were employed to investigate both doublet and quartet spin states for each structure. Regardless of the method of calculation used, the doublet states of each structure were predicted to be 24-52 kcal/mol lower in energy than the quartet states. Moreover, the doublet kite and linear structures were predicted to be nearly isoenergetic with the doublet fan, always lying \sim 6-8 kcal/mol higher in energy. The authors concluded that the three isomers are close enough in energy that any or all of them could be observed, but asserted that the linear ($^2\Pi$) isomer is the most probable ground state. In their subsequent study of the AlC₃⁺ cation, 90 the authors found that the $^1\Sigma$ linear isomer is \sim 6-10 kcal/mol lower in energy than the 1A_1 ($C_{2\nu}$) kite isomer, but concluded that either or both of the isomers could be experimentally detected. Over the next few years, theoretical studies on the stabilities of AlC_n, AlC_n⁻, and AlC_n⁺ $(n=1-7)^{87,89}$ and $(n=1-10)^{88}$ clusters found that chains with odd-*n* are more stable than those with even-*n* in the neutral and cation species, but that the reverse is true in anion species. Linear chains were predicted to be more stable than the cyclic or fanlike structures, with the exceptions of AlC₂, AlC₂⁺, and AlC₆⁺. These results support the earlier conclusion that linear AlC₃ is probably more stable than the fanlike isomer and is thus the ground state structure. Previous FTIR and DFT investigations of M_nC_3 clusters in the TCU Molecular Physics Laboratory have resulted in the characterization of the vibrational spectra and structures of linear CrC_3 , 46 CoC_3 , 91 NiC_3Ni , 92 and fanlike $(C_{2\nu})$ TiC_3 , 55 all produced by trapping the laser ablated products of metal and carbon rods in solid Ar. Comparing measured fundamental frequencies and 13 C isotopic shifts with DFT predictions has confirmed vibrational frequency assignments and geometry determinations. In the present work, similar techniques have been used to identify the $v_3(\sigma_u)$ =1624.0 and $v_4(\sigma_u)$ =528.3cm⁻¹ modes of $(^3\Sigma_g^+)$ linear AlC₃Al as well as the $v_2(\sigma)$ =1210.9 cm⁻¹ fundamental of $(^2\Pi)$ linear AlC₃. ### **5.2** Theoretical Predictions The two most comprehensive investigations^{26,77} on AlC₃ reached different conclusions. Using MP2/6-311+G* calculations, Zheng *et al.*⁷⁷ predicted that the 4B_1 fanlike ($C_{2\nu}$) isomer is the ground state, well separated energetically from the linear AlCCC and CAlCC isomers. Barrientos *et al.*²⁶ using DFT, MP2, and CCSD(T) methods have found that the 2A_1 kite and the ${}^2\Pi$ linear isomers are nearly isoenergetic (±3 kcal/mol) but the 2B_2 fanlike isomer is ~6-8 kcal/mol higher in energy [Figs. 5.1 (a)-(c)]. In the case of AlC₃Al, the DFT calculations in the present work are apparently the first for this molecule. The DFT calculations on AlC₃ and AlC₃Al were performed with the GAUSSIAN 03 program suite, ⁴⁵ using the B3LYP functional ⁴⁷ and a 6-311+G(3*df*) basis set. Frequencies and IR intensities were calculated for the linear isomer of AlC₃Al (see Table 5.1) and for the linear, kite, and fanlike isomers of AlC₃ (see Table 5.2). Geometric parameters for AlC₃Al are given in Fig. 5.2(a) and for the three AlC₃ isomers in Fig. 5.1 (a)-(c). DFT calculations on the AlC₃Al cluster, done as part of the present work, yield a stable minimum linear structure in the ${}^3\Sigma_g^+$ state. For AlC₃, the present DFT calculations agree with the predictions made by Barrientos *et al.*²⁶ The quartet states are predicted to be much higher in energy for all three isomers investigated. Although the ${}^2\Pi$ linear isomer is predicted to be the lowest energy isomer, the 2A_1 kite and 2B_2 fanlike isomers are only 1.0 and 7.1 kcal/mol higher in energy, leaving the true ground state structure in question. # 5.3 Experimental Procedures AlC₃ and AlC₃Al were produced by the simultaneous ablation of Al (99.999%, ESPI) and C (99.9995%, Alfa Aesar) rods, which were continuously rotated and translated to provide clean surfaces for two 1064 nm pulsed Nd:YAG lasers (Spectra Physics). High purity Ar (99.995%, Table 5.1: DFT B3LYP/6-311+G(3*df*) predicted vibrational frequencies (cm⁻¹) and intensities (km/mol) for linear ($^3\Sigma_g^+$) AlC₃Al. | Vibrational
Mode | Frequency (cm ⁻¹) | IR intensity (km/mol) | |---------------------|-------------------------------|-----------------------| | $v_1(\sigma_g)$ | 1393 | 0 | | $v_2(\sigma_g)$ | 333 | 0 | | $v_3(\sigma_u)$ | 1710 | 388 | | $v_4(\sigma_u)$ | 541 | 710 | | $v_5(\pi_g)$ | 106 | 0 | | $v_1(\pi_u)$ | 45 | ~0 | Table 5.2: DFT B3LYP/6-311+G(3df) predicted vibrational frequencies (cm⁻¹) and intensities (km/mol) for the linear ($^{2}\Pi$), kite ($^{2}A_{1}$), and fanlike ($^{2}B_{2}$) isomers of AlC₃. | ² Π Linear | | | | $^{2}A_{1}$ Kite (C_{2v}) | | | $^{2}B_{2}$ Fanlike $(C_{2\nu})$ | | | |-----------------------|--|--------------------|------------|--|--------------------|------------|--|--------------------|--| | Mode | Frequency ^a (cm ⁻¹) | Intensity (km/mol) | Mode | Frequency ^a (cm ⁻¹) | Intensity (km/mol) | Mode | Frequency ^a (cm ⁻¹) | Intensity (km/mol) | | | $v_1(\sigma)$ | 1922 | 43 | $v_1(a_1)$ | 1585 | 45 | $v_1(a_1)$ | 1244 | 7 | | | $v_2(\sigma)$ | 1245 | 223 | $v_2(a_1)$ | 809 | 99 | $v_2(a_1)$ | 477 | 42 | | | $v_3(\sigma)$ | 414 | 163 | $v_3(a_1)$ | 395 | 56 | $v_3(a_1)$ | 295 | 71 | | | $v_4(\pi)$ | 396/259 ^b | 5/2 | $v_4(b_1)$ | 248 | 1 | $v_4(b_1)$ | 142 | 30 | | | $v_5(\pi)$ | 76/66 ^b | 1/7 | $v_5(b_2)$ | 1231 | 1 | $v_5(b_2)$ | 1678 | 127 | | | | | | $v_6(b_2)$ | 267 | 38 | $v_6(b_2)$ | 117 | 26 | | ^aFrequencies for all three isomers were initially published by Barrientos *et al.* in Ref. 26. Subsequent theoretical studies by the same group again reported the linear and kite frequencies (Refs. 87 and 89, respectively), but no IR intensities were given. These calculations are in good agreement with those previously published. ^bBoth Renner-Teller components are given. Figure 5.2 (a) DFT B3LYP/6-311+G(3*df*) predictions of bond lengths (Å) for the ${}^3\Sigma_g^+$ linear isomer of AlC₃Al. The predicted principal nuclear displacements of the (b) $v_3(\sigma_u)$ and (c) $v_4(\sigma_u)$ modes of $({}^3\Sigma_g^+)$ AlC₃Al. Matheson Tri-Gas), introduced through the rear of the sample chamber, swept the ablated material onto a gold mirror that was kept at ~10 K by a closed-cycle refrigeration system (ARS, Displex). The vacuum chamber was maintained at a pressure of $\leq 10^{-7}$ Torr. Spectra were then recorded with a resolution of 0.2 cm⁻¹ over the 400-4000 cm⁻¹ frequency range using a Bomem DA 3.16 FTIR spectrometer equipped with a liquid N₂-cooled MCT detector. All frequencies reported were measured to ± 0.1 cm⁻¹. Additional details of the experimental apparatus have been reported previously.³⁸ The production of small C_n clusters, predominantly C₃, was enhanced by adjusting experimental conditions such as laser power, laser focus, and Ar flow rate. The identification of molecular species and their vibrational spectra is dependent on obtaining 13 C isotopic shifts. The C rods were fabricated with various mixtures of 13 C (99.3%, Isotec) and 12 C (99.9995%, Alfa Aesar) powders, pressed under a pressure of $\sim 4.5 \times 10^5$ kPa. In the experiments with Al, three carbon rods were prepared, a 12 C rod, and two other rods with 20% and 30% 13 C enrichments. Measurements of 13 C shifts have previously enabled the TCU Molecular Physics Lab to determine various molecular geometries including planar pentagonal Si_3C_2 , 42 rhomboidal Si_3C , 40 fan-shaped ($C_{2\nu}$) TiC_3 , 55 non-centrosymmetric linear structures such as GeC_3Si , 33 and CoC_3 , 91 and the centrosymmetric linear NiC_3Ni molecule. 92 # 5.4 Results and Discussion In order to identify potential candidates for Al_nC_m absorptions, the spectrum obtained from the simultaneous ablation of Al and 12 C rods shown in Fig. 5.3(a) was compared with the spectrum in Fig. 5.3(b) obtained by ablating only a 12 C rod. In addition to absorptions previously assigned to C_n species, 49 a prominent feature in the Al/C spectrum at 605.1 cm $^{-1}$ was noted, which had earlier been identified as Al_2C_2 . Frequencies measured at 596.8 and 589.0 cm $^{-1}$ for the 13 C isotopomers, $Al^{12}C^{13}$ CAl and $Al^{13}C_2Al$, respectively, are identical to earlier results. 35 Figure 5.3 FTIR spectra recorded after (a) dual ablation of Al and ¹²C rods and (b) ablation of a ¹²C rod only, for comparison. Note the 1624.0, 1210.9, and 528.3 cm⁻¹ bands in the Al-C spectrum that are not in the ¹²C spectrum. The observation of Al₂C₂ indicates that Al_nC_m species have been created and that multiple Al atoms could be attached to a C_n species. Only trace amounts of CO and H₂O appear in the dual ablation spectrum, resulting in very weak absorptions of Al₂O at 992.8, ⁹³ HAlAlH at 1646.9, ⁹⁴ AlH₂ at 1769.6, ^{94,95} Al(CO) at 1867.7,
^{96,97} and Al(CO)₂ at 1907.9 cm⁻¹. ^{96,98} Otherwise, no absorptions in the spectra in Fig. 5.3(a) suggest the presence of species with combinations of O and H atoms bonded to Al_n or Al_nC_m clusters, such as HCCAl, HCCAlH, (C₂H₂)Al, or *c*-HC=CHAl, ^{35,99} HAlO or HAlOH, ¹⁰⁰ Al₂(CO)₂, ¹⁰¹ H(*c*-AlHAl), ^{94,102} AlH₃, ^{94,95} OAlOO or Al₂O₃, ⁹³ (AlO)₂, ^{93,103} AlO₂, ¹⁰⁴ or *c*-AlO₂. ^{93,103,105} It is therefore likely that unidentified absorptions result from pure Al_nC_m molecules rather than impurity species. In the dual ablation experiment, low laser powers (<1.0 W) were used with the C rod to favor the production of C₃. As a result, an intense absorption of the $v_3(\sigma_u)$ mode of C₃ dwarfs most other features in the spectrum. Under these conditions, several strong absorptions appear in the dual ablation spectrum at 1624.0, 1210.9, and 528.3 cm⁻¹ that are candidates for Al_nC_m species. To assign these bands and determine the geometry of the molecule or molecules responsible requires ¹³C isotopic shifts. The ¹³C shift patterns that have resulted from a dual ablation experiment using a C rod with a 30% ¹³C enrichment demonstrate that the 1624.0 and 528.3 cm⁻¹ bands result from a different molecule than the 1210.9 cm⁻¹ absorption. # 5.4.1 Identification of AlC₃Al The behavior of two absorptions at 1624.0 and 528.3 cm⁻¹ in the spectrum in Fig. 5.3(a) indicates that they could be two vibrational modes of the same molecule. In different experiments and after annealing, the intensity of the 528.3 cm⁻¹ absorption is consistently ~1.3 times the intensity of the 1624.0 cm⁻¹ band. The isotopic shift patterns for the 1624.0 and 528.3 cm⁻¹ bands observed for a C rod with 30% ¹³C enrichment are shown in Figs. 5.4(a) and 5.5(a), respectively. Further analysis confirms that the two bands result from the same carrier species. Figure 5.4 FTIR spectra of the $v_3(\sigma_u)$ mode of linear AlC₃Al in experiments with (a) 30% and (b) 20% nominal ¹³C enrichments. (c) DFT simulation of an experiment with a 20% enrichment. Figure 5.5 The $v_4(\sigma_u)$ mode of AlC₃Al in (a) an FTIR spectrum with a nominal 30% ¹³C enrichment compared with (b) a DFT simulation with 30% ¹³C enrichment. In the Fig. 5.4(a) spectrum, several features can be seen to the low frequency side of the 1624.0 cm^{-1} absorption. The band at 1607.9 cm^{-1} originates with H₂O contamination, while the broad feature at ~1574 cm⁻¹ results from an unidentified pure C_n species. Absorptions at 1583.3 and 1686.7 cm^{-1} (not shown) belong respectively, to the $v_7(\sigma_u)$ and $v_6(\sigma_u)$ fundamentals of C_9^{-} .^{60,106} The remaining bands at 1613.6, 1600.9, 1584.7, 1572.8, and 1561.0 cm⁻¹ appear to be good candidates for ¹³C shifts from the 1624.0 cm⁻¹ absorption. Since the $v_3(\sigma_u)$ =2038.9 cm⁻¹ mode of C₃ is the dominant absorption in Fig. 5.3(a), a molecule containing the C₃ unit is a strong contender for the carrier of the 1624.0 cm⁻¹ absorption. The isotopic shift pattern for the 1624.0 cm⁻¹ spectrum shown in Fig. 5.4(a) supports this tentative conclusion. In this experiment, the isotopic shift band intensities for single inequivalent ¹³C substitutions in C_n species are ~8% of the intensity of the ¹²C_n isotopomer band. Thus for C₃, two shifts of 8% and 16% are observed corresponding to one unique and two equivalent substitution sites. The ¹³C shift bands at 1613.6 and 1584.7 cm⁻¹ labeled (B) and (C) in Fig. 5.4(a) are ~16% and ~8% of the intensity of the main absorption at 1624.0 cm⁻¹, which suggests the possibility that the molecule contains at least two equivalent C atoms and one unique atom. A C₃ chain with a terminal Al atom is thus eliminated as a possible carrier of the 1624.0 cm⁻¹ band, but linear AlC₃Al [Fig. 5.2(a)] or an AlC₃ species with $C_{2\nu}$ symmetry, such as the kite or fanlike isomers [see Figs. 5.1(b) and (c)], are all possible candidates. The vibrational frequency of the fully-substituted $Al_n^{13}C_3$ species responsible for the 1624.0 cm^{-1} absorption can be estimated by assuming the Al atom(s) are not participating strongly in the vibration and using the harmonic oscillator approximation $$v_{^{13}C} \simeq \sqrt{\frac{m_{^{12}C}}{m_{^{13}C}}} \times v_{^{12}C} \simeq \sqrt{\frac{12.0}{13.00335}} \times v_{^{12}C}$$ (1) Assuming $v_{^{12}C} = 1624.0$, gives $v_{^{13}C} \approx 1560.1$ cm⁻¹, which is very near the 1561.0 cm⁻¹ absorption in Fig. 5.4(a), and suggests that it is the fully-substituted 13 C isotopomer band Al_n^{13} C₃. The measured intensity, which is ~9% of the main Al_n^{12} C₃ absorption intensity, reflects the absence of complete randomization in the 12 C/ 13 C mixture in the rod, which was fabricated with 30% 13 C. The 13 C shifts for the $v_3(\sigma_u)$ =2038.9 cm⁻¹ mode of C₃ show a similar intensity behavior. The intensity of the 13 C₃ isotopomer band is ~9% of the main 12 C₃ absorption, the same as for the 1561.0 cm⁻¹ band proposed for a fully 13 C-substituted Al_n^{13} C₃ species. Aside from the isotopomer bands proposed for the single and full ¹³C substitutions, the only remaining candidates for isotopic shifts are the absorptions at 1572.8 and 1600.9 cm⁻¹ that are labeled (B') and (C') in Fig. 5.4(a). The pattern of these two absorptions shifted from the 1561.0 cm^{-1} band proposed for $Al_n^{-13}C_3$ mirrors the shifts of the 1613.6 and 1584.7 cm⁻¹ bands shifted from the 1624.0 cm⁻¹ band proposed for an $Al_n^{12}C_3$ fundamental. Consequently, they are good candidates for the shifts corresponding to doubly-substituted ¹³C isotopomers. However, a comparison of the intensity ratio of the 1600.9 to the 1572.8 cm⁻¹ band in the spectrum shown in Fig. 5.4 (a) is not possible because the 1572.8 cm⁻¹ band is partially overlapped by the broad feature at \sim 1574 cm⁻¹ belonging to an unidentified C_n molecule. In addition, the 1600.9 cm⁻¹ band may have a contribution from the $v_7(\sigma_u)$ mode of C₉ at 1601.0 cm⁻¹. An experiment using a C rod with 20% ¹³C enrichment was done under conditions that allowed the band at 1572.8 cm⁻¹ to be better resolved and also eliminated C₉ as a product. In the resulting spectrum shown in Fig. 5.4(b), the intensity of the 1572.8 cm⁻¹ absorption (B') is approximately twice that of the 1600.9 cm⁻¹ absorption (C'), which would be consistent with the (B') band belonging to the isotopomer with ¹³C atoms substituted at the central and one end site and (C') belonging to the isotopomer with ¹³C substituted at both of the end sites. It should be noted that the additional broad feature at ~1591.1 cm⁻¹ in Fig. 5.4(b) also appears when Al is ablated in the absence of C and thus likely belongs to an Al_n or Al_n-bearing species. Linear AlC₃Al [Fig. 5.2(a)] or isomers of AlC₃ with $C_{2\nu}$ symmetry, such as the kite or fan [Figs. 5.1(b) and (c)], would thus be consistent with the observed ¹³C isotopic shift pattern for the 1624.0 cm⁻¹ band. It is worth noting that the analogous AlC₂Al chain is observed via its 605.1 cm⁻¹ band,³⁵ which is a prominent absorption in the spectra [see Fig. 5.3(a)]. The AlC₃ kite is unlikely as the carrier since the $v_1(a_1) \sim 1585$ cm⁻¹ mode frequency prediction is significantly lower than the observed 1624.0 cm⁻¹ band and its $v_2(a_1) \sim 809$ cm⁻¹ fundamental, predicted to be twice as intense as its $v_1(a_1)$ mode, is not observed in the spectra. However, as can be seen from Tables 5.1 and 5.2, respectively, the $v_3(\sigma_u) \sim 1710 \text{ cm}^{-1}$ mode predicted for linear AlC₃Al and the $v_5(b_2)$ ~1678 cm⁻¹ mode of fanlike AlC₃ are both possibilities for the observed 1624.0 cm⁻¹ band. In order to discriminate between the two, the observed ¹³C shifts are compared with the predicted shifts for the $v_3(\sigma_u)$ mode of $(^3\Sigma_g^+)$ AlC₃Al and for the $v_5(b_2)$ mode of fanlike $(^2B_2)$ AlC₃ in Table 5.3. It is readily seen that the agreement between the observed and predicted shifts for the $v_3(\sigma_u)$ mode of AlC₃Al is within ± 0.5 cm⁻¹ for all but one isotopomer. In contrast, discrepancies are ≥ 1 cm⁻¹ for all but one of the shifts of the $v_5(b_2)$ mode of fanlike (2B_2) AlC₃. Similarly, there are discrepancies of ± 5 cm⁻¹ with the already discounted $v_1(a_1)$ fundamental of the AlC₃ kite. Additional support for the identification of 1624.0 cm^{-1} as the $v_3(\sigma_u)$ mode of AlC₃Al is found in the analysis of the ¹³C shifts for the 528.3 cm⁻¹ absorption. The observation that its intensity in the Fig. 5.3(a) spectrum is ~1.3 times the intensity of the 1624.0 cm⁻¹ feature is consistent with the prediction shown in Table 5.1 that the $v_4(\sigma_u)$ fundamental of AlC₃Al should be ~1.8 times the intensity of its $v_3(\sigma_u)$ ~541.1 cm⁻¹ mode. Two ¹³C isotopic shifts are observed in the spectrum in Fig. 5.5(a) at 525.1 and 524.0 cm⁻¹ labeled (B) and (C) for a C rod with 30% ¹³C enrichment. The intensity of the 525.1 cm⁻¹ band is ~19% of the intensity of the main 528.3 Table 5.3: Comparison of the observed isotopomer frequencies (cm⁻¹) of the $v_3(\sigma_u)$ and $v_4(\sigma_u)$ modes of linear ($^3\Sigma_g^+$) AlC₃Al and of the $v_5(b_2)$ mode of fanlike (2B_1) AlC₃ with the predictions of B3LYP/6-311+G(3*df*) calculations. | Mode | Isotopomer | | Observed | DFT | Scaled | Difference | M 1 | Isotopomer | Observed | DFT | Scaled | Difference | |-----------------|--|------|----------|--------|--------|------------|------------|---|----------|--------|--------|------------| | 141040 | Al- C_{α} - C_{β} - C_{β} -Al | | v | v | ν | Δv | Mode | Al- C_{α} - C_{β} - C_{α} | v | ν | ν | Δv | | $v_3(\sigma_u)$ | 27-12-12-12-27 | (A) | 1624.0 | 1710.4 | a
 | | $v_5(b_2)$ | 27-12-12-12 | 1624.0 | 1678.4 | с | | | | 27 -13 -12-12-27 | (B) | 1613.6 | 1699.0 | 1613.2 |
0.4 | | 27 -13 -12-12 | 1613.6 | 1667.6 | 1613.5 | 0.1 | | | 27-12 -13 -12-27 | (C) | 1584.7 | 1668.6 | 1584.3 | 0.4 | | 27-12 -13 -12 | 1584.7 | 1635.7 | 1582.7 | 2.0 | | | 27-13-13-27 | (A') | 1561.0 | 1643.2 | 1560.2 | 0.8 | | 27-13-13-13 | 1561.0 | 1612.4 | 1560.1 | 0.9 | | | 27-12 -13-13- 27 | (B') | 1572.8 | 1657.0 | 1573.3 | -0.5 | | 27-12- 13-13 | 1572.8 | 1624.6 | 1571.9 | 0.9 | | | 27 -13 -12 -13 -27 | (C') | 1600.9 | 1685.8 | 1600.6 | 0.3 | | 27 -13 -12 -13 | 1600.9 | 1655.7 | 1602.0 | -1.1 | | $v_4(\sigma_u)$ | 27-12-12-12-27 | (A) | 528.3 | 541.1 | b | | | | | | | | | | 27 -13 -12-12-27 | (B) | 525.1 | 537.1 | 524.4 | 0.7 | | | | | | | | | 27-12- 13 -12-27 | (C) | 524.0 | 535.8 | 523.1 | 0.9 | | | | | | | ^aResults of the calculation are scaled by a factor of 1624.0/1710.4=0.94949. ^bScale factor is 528.3/541.1=0.9763. ^cScale factor is 1624.0/1678.4=0.96759. cm⁻¹ absorption, which is similar to the intensity of ~16% observed for the 1613.6 cm⁻¹ absorption compared to the 1624.0 cm⁻¹ band, suggesting that the 525.1 cm⁻¹ feature corresponds to a single 13 C substitution on either of the two equivalent C atoms. The intensity of the other tentative band at 524.0 cm⁻¹ could not be accurately measured because of the noise level. Although its identification as a 13 C shift is tentative, it is a recurrent feature in many spectra and the line shapes of the 524.0, 525.1, and 528.3 cm⁻¹ bands are similar. The observed FTIR spectrum is compared with a DFT simulation of the spectrum of the $v_4(\sigma_u)$ mode of AlC₃Al assuming a 30% 13 C enrichment in Fig. 5.5. A comparison between the observed 13 C shifts at 525.1 and 524.0 cm⁻¹ and scaled DFT predictions (scale factor = 528.3/541.1=0.9763) appears in Table 5.3 and shows good agreement (±0.9 cm⁻¹), which supports the assignment of the $v_4(\sigma_u)$ mode of linear AlC₃Al at 528.3 cm⁻¹. In summary, the identification of the $v_3(\sigma_u)$ =1624.0 cm⁻¹ and $v_4(\sigma_u)$ =528.3 cm⁻¹ modes of AlC₃Al has been confirmed on the basis of the good agreement between DFT predictions and the FTIR measurements of the ¹³C shifts (±0.9 cm⁻¹) and their relative intensity ratio, which is predicted to be v_4 : v_3 ~1.8 and is observed as ~1.3. The predicted principal nuclear displacements for these modes are shown in Figs. 5.2(b) and (c). # 5.4.2 Identification of AlC₃ Figure 5.6(a) shows the 13 C shift pattern obtained for the 1210.9 cm $^{-1}$ absorption when a C rod enriched with 30% 13 C is used. The observation of four features to the low frequency side at 1208.2, 1192.3, 1185.4, and 1164.0 cm $^{-1}$ with approximately equal intensities might suggest a molecule containing four unique C atoms. However, only a trace amount of the $v_3(\sigma_u)$ =1543.4 cm $^{-1}$ mode 108 of C₄ was produced in this experiment, while the $v_3(\sigma_u)$ =2038.9 cm $^{-1}$ mode of C₃ is the dominant C_n species in the FTIR spectrum shown in Fig. 5.3(a). Moreover, DFT predictions eliminate both linear ($^{2}\Sigma$) AlC₄ and linear ($^{1}\Sigma_{g}^{+}$) AlC₄Al, as the band carrier. For AlC₄, the only Figure 5.6 The $v_2(\sigma)$ mode of linear AlC₃ in (a) an FTIR spectrum with a nominal 30% ¹³C enrichment compared with DFT simulations of spectra with (b) 10% and (c) 30% ¹³C enrichments. mode predicted near 1210.9 cm⁻¹, $v_3(\sigma) \sim 1131$ cm⁻¹, is too low and has weak intensity ~ 30 km/mol. Furthermore, its most intense fundamental, $v_1(\sigma) \sim 2141$ cm⁻¹, has an intensity that is ~ 68 times the intensity of the v_3 mode, but no band is observed near this frequency. Centrosymmetric linear AlC₄Al has only two vibrational modes predicted to have significant IR intensity, $v_4(\sigma_u) \sim 2070$ and $v_5(\sigma_u) \sim 492$ cm⁻¹, but neither is close to the 1210.9 cm⁻¹ frequency. Additionally, because of the molecular symmetry, one would only expect to see two single ¹³C shifts, corresponding to the two pairs of equivalent C atoms, rather than the four shifts observed in the Fig. 5.6(a) spectrum. As indicated earlier, because of nonrandom mixing of 12 C and 13 C atoms, both the singly and fully-substituted 13 C isotopomer bands in the C_3 spectrum have intensities that are \sim 8% of the main 12 C₃ isotopomer band. Thus the observation of four shifts having approximately equal intensities of \sim 9% compared to the 1210.9 cm⁻¹ band could be indicative of three singly-substituted and the fully-substituted 13 C isotopomer bands of a non-centrosymmetric linear C_3 -bearing species, such as linear AlC₃. Estimating the frequency of the fully 13 C substituted isotopomer using Eq. (1), under the assumption that the Al atom(s) do not strongly participate in the vibration, gives a shift from $v_{^{12}C} = 1210.9$ to $v_{^{13}C} \approx 1163.2$ cm⁻¹, which is very close to the band observed at 1164.0 cm⁻¹. As discussed earlier in the Theoretical Calculations section, the lowest lying state for linear AlC₃ is predicted to be ${}^{2}\Pi$, and the prediction for its most intense mode, $v_{2}(\sigma)\sim1245$ cm⁻¹ (see Table 5.2), are close to the observed 1210.9 cm⁻¹ band, thereby making this mode the most probable assignment. The predicted principal nuclear displacements of the $v_{2}(\sigma)$ mode are shown in Fig. 5.1(d). Figure 5.6 compares the FTIR spectrum using a C rod enriched with 30% 13 C [Fig. 5.6(a)] with DFT B3LYP/6-311+G(3*df*) simulations of the $v_{2}(\sigma)$ mode of linear AlC₃ scaled to 1210.9 cm⁻¹ with 10% and 30% 13 C enrichments [Figs. 5.6(b) and (c)]. Table 5.4, in which the Table 5.4: Comparison of observed vibrational frequencies (cm⁻¹) of the $v_2(\sigma)$ mode for the singly- and fully-substituted ¹³C isotopomers of linear (² Π) AlC₃ with the predictions of B3LYP/6-311+G(3*df*) calculations. | Isotopom | er | Observed | B3LYP/
6-311+G(3 <i>df</i>) | Scaled | Difference | |------------------------------|----------|----------|---------------------------------|----------|------------| | Al-C-C-C | Al-C-C-C | | ν | v | Δv | | 27-12-12-12 | (A) | 1210.9 | 1245.0 | a
••• | | | 27 -13 -12-12 | (B) | 1192.3 | 1225.5 | 1191.9 | 0.4 | | 27-12 -13 -12 | (C) | 1208.2 | 1242.4 | 1208.4 | -0.2 | | 27-12-12 -13 | (D) | 1185.4 | 1217.7 | 1184.3 | 1.1 | | 27-13-13-13 | (A') | 1164.0 | 1196.2 | 1163.4 | 0.6 | | 27-12 -13 -13 | (B') | | 1214.5 | 1181.2 | ••• | | 27 -13 -12 -13 | (C') | ••• | 1198.5 | 1165.7 | | | 27 -13-13 -12 | (D') | | 1223.7 | 1190.1 | | ^aResults of the calculation are scaled by a factor of 1210.9/1245.0=0.97261. predicted frequency for the $A1^{12}C_3$ species is scaled to the observed frequency (scale factor = 1210.9/1245.0=0.97261), shows good agreement, ± 1.1 cm⁻¹, between the observed and DFT predicted frequencies for the singly- and fully-substituted ^{13}C isotopomers. No doubly-substituted ^{13}C isotopomers are observed because of the non-randomization of ^{12}C and ^{13}C atoms, which is also the case in the C_3 spectrum. Although the 2A_1 kite and 2B_2 fanlike isomers are predicted to be within a few kcal/mol of (${}^2\Pi$) linear AlC₃, a careful search of the spectra has revealed no evidence of either the $v_2(a_1)$ ~809 cm⁻¹ band, predicted to be the most intense mode of the kite, or the $v_5(b_2)$ ~1678 cm⁻¹ vibration, which is the strongest vibration of the fan. As discussed earlier, an absorption at 1624.0 cm⁻¹ has been identified as the $v_3(\sigma_u)$ mode of AlC₃Al. #### 5.5 Conclusions This is the first experimental or theoretical investigation of the AlC₃Al molecule. Linear AlC₃Al in its ${}^3\Sigma_g^+$ ground state has been identified and its $v_3(\sigma_u)$ =1624.0 and $v_4(\sigma_u)$ = 528.3 cm⁻¹ fundamentals, which are the only IR-active modes with significant intensity, have been assigned. The assignments are based on the excellent agreement between DFT B3LYP/6-311+G(3*df*) predictions and the observed 13 C isotopic shift pattern. Although theoretical investigations^{26,87–89} on AlC₃ have indicated that the ${}^2\Pi$ linear, 2A_1 kite, and 2B_2 fanlike isomers are close in energy,²⁶ in the present work the ${}^2\Pi$ linear isomer has been observed, and its $v_2(\sigma)$ =1210.9 cm⁻¹ mode has been identified based on the good agreement between DFT B3LYP/6-311+G(3df) calculations and the observed 13 C isotopic spectrum. No evidence of either the fanlike or kite isomers has been observed. The results reported here are similar to prior investigations on (${}^{5}\Pi$) CrC₃ (Ref. 46) and (${}^{2}\Delta$) CoC₃ (Ref. 91), presented in Chapters III and IV of this work, respectively, for which close-lying fanlike and linear structures have been predicted but only the linear isomers detected. #### **CHAPTER VI** # THE VIBRATIONAL SPECTRUM OF CuC₃: AN FTIR ISOTOPIC AND DFT INVESTIGATION #### 6.1 Introduction Transition metal—carbon clusters have recently received much attention because of their applications to modern materials science. Understanding the formation, bonding, and geometries of small transition metal—carbon species may reveal the growth mechanisms and bonding of metallocarbohedrenes, or metcars.^{2,3} Besides forming metcars, transition metals can be incorporated into fullerenes to form networked metallofullerenes, and late transition metals are also used as catalysts for carbon nanotube (CNT) formation.¹⁰⁹ CNTs filled with various materials have been found to have interesting structures, and metal nanowires encapsulated in CNTs have potential applications to data storage nanotechnology.¹¹⁰ Despite the strong interest in small transition metal—carbon cluster bonding and geometries, very few investigations have included the late transition metal, copper. Recently, however, as part of extensive theoretical investigations 109,111 of the linear, $(C_{2\nu})$ ring, and $(C_{2\nu})$ T-shaped isomers of MC₂ and MC₂⁺ (M=Sc-Zn) clusters, the
results of DFT B3LYP/6-311+G(3*df*) calculations on CuC₂ (Ref. 109) and CuC₂⁺ (Ref. 111) have been reported. In general, the $(C_{2\nu})$ T-shaped geometry, where the metal atom is bonded to the C₂ unit, is the preferred ground state structure. CuC₂, with a $(C_{2\nu})$ T-shaped structure and 2A_1 electronic state, 109 conforms to this pattern, but in contrast the CuC₂⁺ cation is predicted to be linear $(^3\Pi)$, and $C_{2\nu}$ (3B_1) ring isomer is predicted to 2.1 kcal/mol higher in energy. The authors note that the M-C bonds of the ring curve inward, approaching a T-shaped structure. Apparently no experimental investigations have been done on Cu_nC_m species prior to the present one. The scarcity of information on Cu_nC_m clusters and the recent success of the TCU Molecular Physics Laboratory in producing and characterizing the infrared spectra of M_nC_3 species, 46,55,91,92,112 has prompted the present investigation on CuC_3 . In prior reports, infrared fundamentals have been assigned for MC_3 (M=Ti, Co, Sc, Cr, Al) and MC_3M (M=Ni, Al) formed by trapping the ablated products of metal and carbon rods in solid Ar. In the case of MC_3 species, there is a competition between the linear and fanlike structures. Structure determinations and vibrational fundamental identifications are critically dependent on FTIR measurements of ^{13}C isotopic shifts coupled with the predictions of DFT calculations. A similar approach has been employed in the present work and has enabled the first identification of the $v_1(\sigma)$ =1830.0 cm $^{-1}$ mode of $(^2\Pi)$ linear CuC_3 . # **6.2** Experimental Procedures CuC₃ was produced using two 1064 nm pulsed Nd:YAG lasers (Spectra Physics), to ablate a pair of Cu (99.999%, ESPI) and C rods, which were continuously rotated and translated to provide clean surfaces for evaporation. High purity Ar gas (99.995%, Matheson Tri-Gas) swept the products toward condensation onto a gold mirror maintained at ~10 K by a closed-cycle refrigeration system (ARS, Displex). Experiments were conducted in a vacuum chamber with a pressure of $\leq 10^{-7}$ Torr prior to sample deposition. Experimental conditions, including laser power, laser focus, and Ar flow rate were initially set to maximize the production of C₃ as measured by the intensity of its $v_3(\sigma_u)$ =2038.9 cm⁻¹ mode and then adjusted to optimize absorptions of interest in the FTIR spectra. Spectra were recorded over the frequency range of 450-4000 cm⁻¹ at a resolution of 0.2 cm⁻¹ using a Bomem DA 3.16 FTIR spectrometer equipped with a liquid N₂-cooled MCT detector. All frequencies reported were measured to ±0.1 cm⁻¹. 13 C isotopic shifts are key to assigning vibrational fundamentals and determining the geometric structure of the molecular carrier. Various molecular structures, such as centrosymmetric linear GeC_5Ge , 58 non-centrosymmetric linear CoC_3 , 91 fanlike (C_{2v}) TiC_3 , 55 and cyclic (D_{6h}) C_6 (Ref. 113) have been identified by comparing 13 C isotopic shifts measured in FTIR spectra with those predicted by DFT calculations. In the present work in which Cu and C rods were simultaneously ablated, three carbon rods were prepared from 13 C (99.3%, Isotec) and 12 C (99.9995, Alfa Aesar) powders pressed under a pressure of $\sim 4.5 \times 10^5$ kPa: a 12 C rod with 1% natural 13 C abundance, and one rod each having 20% and 30% 13 C enrichments. # 6.3 Experimental Results and Discussion Potential candidates for Cu_nC_m absorptions have been identified by comparing a spectrum obtained from the dual ablation of Cu and ^{12}C rods [Fig. 6.1(a)] with one obtained from the ablation of a ^{12}C rod alone [Fig. 6.1(b)]. Many absorptions previously assigned to C_n species ⁴⁹ appear in both spectra; however, an intense absorption at 1830.0 cm⁻¹, observed in the dual ablation spectrum, is absent when only the ^{12}C rod is ablated, making it a potential candidate for a vibration of a Cu_nC_m species. Since only weak bands of CO_2 and H_2O are observed in FTIR spectra, it is unlikely that a Cu_nC_m molecule that also contains O or H atoms is responsible for the band at 1830.0 cm⁻¹. Moreover, the vibrational frequencies of species, such as Cu_nH_m , ¹¹⁴ $CuCH_2$, ¹¹⁵ CuO_nH_m , ^{52,116} Cu_nO_m , ¹¹⁷ and CuC_nO_m clusters, ^{65,118} are well known, and no evidence of any of these is observed in the spectra. The v(e')=1829.7 cm⁻¹ fundamental of $Cu(CO)_3$ has been identified ¹¹⁸ via its ¹³C isotopic shifts, and although its frequency is very close to the 1830.0 cm⁻¹ absorption, its ¹³C shifts do not match those observed in the present work for the 1830.0 cm⁻¹ band. The 1830.0 cm⁻¹ frequency is characteristic of a C–C stretch for a linear C_n molecule. Since 13 C isotopic shifts are necessary for assigning vibrational spectra and for determining Figure 6.1 FTIR spectra recorded after (a) dual ablation of Cu and ¹²C rods and (b) ablation of a pure ¹²C rod, for comparison. Note the 1830.0 cm⁻¹ band in (a) that is absent from (b). geometric structures, an experiment with a nominal 20% 13 C enrichment was conducted and the spectrum obtained is shown in Fig. 6.2(b). To the low frequency side of the main 1830.0 cm⁻¹ band, three absorptions can be seen at 1825.5, 1807.5, and 1788.2 cm⁻¹ with approximately equal intensity. They are labeled (D), (B), and (C), respectively in Fig. 2(b). These three bands, which are seen more clearly in the spectrum shown in Fig. 6.2(a) having a 30% 13 C enrichment, appear to be good candidates for the singly-substituted 13 C isotopomers that should be the most prominent at low 13 C enrichment levels. Since, as previously mentioned, the experimental conditions were chosen to optimize the yield of C_3 as monitored by the intensity of its $v_3(\sigma_u)$ =2038.9 cm⁻¹ fundamental, a non-centrosymmetric linear molecule containing a C_3 unit, such as CuC_3 , is the most likely carrier of the 1830.0 cm⁻¹ band. In order to observe to observe the doubly- and fully-substituted ¹³C isotopomers, which will appear to mirror the singly-substituted ¹³C and the full ¹²C isotopomers, an experiment was done in which the ¹³C enrichment was increased to 30% [Fig. 6.2(a)]. It can be readily seen in the Fig. 6.2(a) spectrum, that the full ¹²C_n isotopomer at 1830.0 cm⁻¹, labeled (A), and the proposed singly-substituted ¹³C isotopomer bands at 1825.5, 1807.5, and 1788.2 cm⁻¹, labeled (D), (B), and (C), respectively, are mirrored by the bands at 1759.4, 1764.5, 1783.9, and 1802.6 cm⁻¹, labeled (A'), (D'), (B'), and (C'), respectively. This suggests that the 1759.4 cm⁻¹ (A') band corresponds to the fully ¹³C substituted counterpart of the 1830.0 cm⁻¹ absorption (A). In the harmonic approximation an estimate of the frequency of the fully ¹³C substituted isotopomer absorption, assuming that the Cu atom is not strongly participating in the vibration, is given by $$v_{13_C} \simeq \sqrt{\frac{m_{12_C}}{m_{13_C}}} \times v_{12_C} \simeq \sqrt{\frac{12.0}{13.00335}} \times v_{12_C}$$ (1) If v_{12_C} =1830.0, then $v_{13_C} \approx 1758.0 \text{ cm}^{-1}$, which is close to the observed 1759.4 cm⁻¹ band and supports its assignment to the fully-substituted Cu¹³C₃ isotopomer. The remaining 1764.5 (D'), Figure 6.2 FTIR spectra from experiments with (a) 30% and (b) 20% nominal 13 C enrichments for comparison with (c) a DFT simulation of the $v_1(\sigma)$ mode of ($^2\Pi$) linear CuC₃ having 30% 13 C enrichment. 1783.9 (B'), and 1802.6 (C') cm⁻¹ bands are thus likely candidates for the three double ¹³C substituted isotopomers. The discrepancy between the nominal ~30% 13 C enrichment of the rod and the ~10% intensity of the single 13 C substituted isotopomer bands at 1825.5 (D), 1802.5 (B), and 1788.2 (C) cm $^{-1}$ relative to the 1830.0 cm $^{-1}$ absorption results from inhomogeneities in the 12 C/ 13 C mixture in the rod. In the spectrum from which Fig. 6.2(a) is extracted, the relative intensities of the shifts for single 13 C substitutions at inequivalent C sites are all similarly measured to be ~10% of the intensity of the 12 C_n absorptions. Since the molecular carrier of the $1830.0 \, \text{cm}^{-1}$ band is likely a C_3 unit with a terminal Cu atom and the spectrum of the $v_3(\sigma_u)$ =2038.9 cm⁻¹ mode of C_3 also exhibits anomalies in its ^{13}C isotopomer intensity ratios, it is useful to compare the singly-, doubly-, and fully-substituted isotopomer intensities observed in the $1830.0 \, \text{cm}^{-1}$ spectrum with their counterparts in the C_3 spectrum. The $1825.5 \, \text{(D)}$, $1807.5 \, \text{(B)}$, and $1788.2 \, \text{(C)} \, \text{cm}^{-1}$ bands, in Fig. $6.2 \, \text{(a)}$, respectively, are each ~9% of the main $1830.0 \, \text{cm}^{-1}$ band, similar to the singly-substituted isotopomer ratio of ~10% observed in the C_3 spectrum. Bands D, B, and C are thus confirmed as singly-substituted ^{13}C isotopomers. The candidates for the doubly-substituted ^{13}C isotopomers at $1764.5 \, \text{(D')}$, $1783.9 \, \text{(B')}$, and $1802.6 \, \text{cm}^{-1} \, \text{(C')}$, each have ~5% of the intensity of the main $1830.0 \, \text{cm}^{-1}$ absorption, identical to the relative intensity of the doubly-substituted ^{13}C isotopomer measured in the C_3 spectrum. Finally, the candidate at $1759.4 \, \text{cm}^{-1} \, \text{(A')}$, for the fully-substituted ^{13}C isotopomer band is ~15% of the intensity of the main $1830.0 \, \text{cm}^{-1}$ band, in good agreement with the ~13% intensity ratio of the $^{13}C_3$: $^{12}C_3$ bands in the C_3 spectrum. The pattern of the isotopic shift spectrum is thus consistent with the suggested molecular carrier, linear CuC_3 . # 6.4 Theory and Analysis As previously noted, prior theoretical investigations 109,111 of Cu_nC_m clusters have apparently been limited to CuC_2 and CuC_2^+ , making the present investigation the first for CuC_3 . All
calculations were done using DFT with a B3LYP functional 47 and a 6-311+G(3df) basis set in the Gaussian 03 program suite. 45 Since the isotopic shift pattern in Figs. 6.2(a) and (b) indicates a non-centrosymmetric linear species with three unique C atoms, DFT calculations were performed for linear and near linear CuC₃ geometries having multiple spin states. CuC₃ isomers with $C_{2\nu}$ symmetry and linear CuC₃Cu were also investigated, but these calculations are not included since these species do not produce isotopic shift patterns that are consistent with the FTIR spectra presented in Figs. 6.2(a) and (b) and thus cannot be responsible for the 1830.0 cm⁻¹ band. The ${}^2\Pi$ state of linear CuC₃ is predicted to lie much lower in energy (>36 kcal/mol), than the higher spin states, but as shown in Table 6.1, it is also predicted to have one imaginary frequency at ~168*i* cm⁻¹, indicating that at the B3LYP/6-311+G(3*df*) level of theory, this structure is a transition state, rather than the ground state. With one exception, subsequent calculations relaxing the condition of linearity have also yielded one imaginary frequency of approximately the same magnitude. The exception, a (${}^2A'$) *trans*-bent isomer [see Fig. 6.3(b)], has all real frequencies (Table 6.1) and is predicted to be nearly isoenergetic with the linear isomer (±0.7 kcal/mol). Geometric parameters for the (${}^2\Pi$) linear and (${}^2A'$) *trans*-bent isomers of CuC₃ are given, respectively, in Fig. 6.3. From Table 6.1, it can be seen that either the $v_1(\sigma) \sim 1895$ cm⁻¹ frequency predicted for the linear isomer or the corresponding $v_1(a') \sim 1902$ cm⁻¹ mode of the *trans*-bent isomer is consistent with the observed 1830.0 cm⁻¹ frequency. ¹³C isotopic shifts have therefore been calculated for the v_1 mode of each isomer and are compared with FTIR measurements in Table 6.2. The Table 6.1: DFT B3LYP/6-311+G(3*df*) predicted frequencies (cm⁻¹) and band intensities (km/mol) for the vibrational fundamentals of the ($^2\Pi$) linear and ($^2A'$) *trans*-bent isomers of CuC₃. | | ² Π Linear | | ² A' trans-bent | | | | | |------------------|--|--------------------|----------------------------|--|--------------------|--|--| | Vibrational mode | Frequency ^a (cm ⁻¹) | Intensity (km/mol) | Vibrational mode | Frequency ^a (cm ⁻¹) | Intensity (km/mol) | | | | $v_1(\sigma)$ | 1895 | 215 | $v_1(a')$ | 1902 | 132 | | | | $v_2(\sigma)$ | 1277 | 60 | $v_2(a')$ | 1274 | 9 | | | | $v_3(\sigma)$ | 410 | 9 | $v_3(a')$ | 453 | 20 | | | | $v_4(\pi)$ | 362/317 ^a | 22/~0 | $v_4(a')$ | 365 | 25 | | | | $v_5(\pi)$ | 130/168 <i>i</i> ^a | ~0/~0 | $v_5(a')$ | 117 | 16 | | | | | | | $v_6(a^{\prime\prime})$ | 226 | 9 | | | ^aBoth Renner-Teller components are reported. # (c) $v_1(\sigma)$ mode of ($^2\Pi$) linear CuC $_3$ Figure 6.3 DFT B3LYP/6-311+G(3df) bond length (Å) and angle (°) predictions for the (a) ${}^2\Pi$ linear and (b) ${}^2A'$ trans-bent isomers of CuC₃. The predicted principal nuclear displacements of the $v_1(\sigma)$ mode of (${}^2\Pi$) linear CuC₃ are shown in (c). Table 6.2: Comparison of the observed vibrational fundamental and all of the 13 C- substituted isotopomer frequencies (cm⁻¹) of the $v_1(\sigma)$ and the $v_1(a')$ modes of the $(^2\Pi)$ linear and $(^2A')$ trans-bent isomers of CuC₃ with the predictions of B3LYP/6-311G+(3df) calculations. | | | | | (² Π) Line | ear | (2 | $(^2A')$ Trans-bent | | | |------------------------------|------|----------|--------|------------------------|------------|--------|---------------------|------------|--| | | | | | $v_1(\sigma)$ mo | de | | $v_1(a')$ mode | | | | Isotopomer | | Observed | Theory | Scaled | Difference | Theory | Scaled | Difference | | | Cu-C-C-C | | v | v | v | Δv | v | v | Δv | | | 64-12-12-12 | (A) | 1830.0 | 1894.4 | a | | 1901.7 | c | | | | 64 -13 -12-12 | (B) | 1807.5 | 1870.2 | 1806.6 | 0.9 | 1881.1 | 1810.2 | -2.7 | | | 64-12 -13 -12 | (C) | 1788.2 | 1850.5 | 1787.6 | 0.6 | 1855.3 | 1785.3 | 2.9 | | | 64-12-12 -13 | (D) | 1825.5 | 1890.6 | 1826.3 | -0.8 | 1895.7 | 1824.2 | 1.3 | | | 64-13-13-13 | (A') | 1759.4 | 1820.2 | ^b | ••• | 1826.9 | d | | | | 64-12 -13-13 | (B') | 1783.9 | 1846.7 | 1785.0 | -1.1 | 1849.4 | 1781.1 | 2.8 | | | 64 -13 -12 -13 | (C') | 1802.6 | 1865.5 | 1803.2 | -0.6 | 1874.4 | 1805.1 | -2.5 | | | 64-13-13-12 | (D') | 1764.5 | 1824.7 | 1763.8 | 0.7 | 1833.6 | 1765.9 | -1.4 | | ^aResults of the calculation scaled by a factor of 1830.0/1894.4=0.96601. ^bScale factor = 1759.4/1820.2=0.96662. ^cResults of the calculation scaled by a factor of 1830.0/1901.7=0.96230. $^{^{}d}$ Scale factor = 1759.4/1826.9=0.96305. frequencies predicted for single 13 C-substituted isotopomers have been scaled by the ratio between the calculated and observed $Cu^{12}C_3$ frequencies (scale factors = 1830.0/1894.7=0.96601 and 1830.0/1901.7=0.96230 for the linear and *trans*-bent isomers, respectively). The double 13 C-substituted isotopomer frequencies have been similarly scaled by the ratio between the calculated and observed $Cu^{13}C_3$ frequencies (scale factors = 1759.4/1820.2=0.96662 and 1759.4/1826.9=0.96305 for the linear and *trans*-bent isomers, respectively). The two scale factors have been used in order to eliminate the effects of anharmonicity. The calculated harmonic frequencies for $Cu^{12}C_3$ and $Cu^{13}C_3$ are related through Eq. (1), however the corresponding experimental frequencies are not. It is therefore appropriate to consider the single ^{13}C and the double ^{13}C (or single ^{12}C) shifts as originating from the full ^{12}C and full ^{13}C species, respectively. As Table 6.2 shows, for the $v_1(a')$ mode of *trans*-bent CuC₃, the discrepancies between the observed and predicted ¹³C shifts are ≥ 2.5 cm⁻¹ in all cases except two, where the differences are still ~1.5 cm⁻¹, suggesting that although the linear isomer is predicted to have one imaginary frequency, it may actually be the ground state. It should be noted that there are examples in which popularly used *ab initio* calculations have predicted at least one imaginary frequency even when a molecule is known to have a specific ground state geometry, *e.g.* planar (D_{6h}) benzene. ¹¹⁹ For the $v_1(\sigma)$ mode of ($^2\Pi$) linear CuC₃, the discrepancies between the observed and predicted shifts are ~1 cm⁻¹ or less for all cases (see Table 6.2). Interestingly, the smallest discrepancy listed in Table 6.2 for the *trans*-bent isomer (1.3 cm⁻¹) is still greater than the largest difference reported for the linear structure (1.1 cm⁻¹). The excellent agreement (±1.1 cm⁻¹) between the observed and predicted ¹³C shifts indicates that although calculations point toward a bent or floppy geometry like the NiC₃Ni molecule, ⁹² CuC₃ behaves as if it were linear, and so the $v_1(\sigma)$ mode of ($^2\Pi$) linear CuC₃ can be assigned to 1830.0 cm⁻¹. Figure 6.2 compares a DFT B3LYP/6- 311+G(3df) simulation of the $v_1(\sigma)$ mode of linear CuC₃ that has been scaled to 1830.0 cm⁻¹ with FTIR spectra having 30% and 20% ¹³C enrichments. The predicted principle nuclear displacements of the $v_1(\sigma)$ mode of (² Π) linear CuC₃ are shown in Fig. 6.3(c). # 6.5 Conclusions There are no prior theoretical investigations on CuC_3 or experimental investigations on any Cu_nC_m cluster; therefore, this work is the first experimental and theoretical study of CuC_3 , resulting not only in the first assignment of a vibrational fundamental for CuC_3 , but also for any Cu_nC_m cluster. The CuC_3 molecule was created by the dual laser ablation of Cu and C rods and trapping the evaporated products in solid Ar at ~10 K, which produced the band at 1830.0 cm⁻¹ and the signature ¹³C isotopic shift pattern of a non-centrosymmetric linear molecule with three inequivalent carbon atoms. DFT calculations have predicted that a $(^2A')$ trans-bent geometry is the universal ground state, ~0.7 kcal/mol lower in energy than the $^2\Pi$ linear isomer; however, the predicted ^{13}C isotopic shift pattern is not in agreement with the observed spectra. The predicted ^{13}C shifts for the $(^2\Pi)$ linear isomer of CuC₃ is in very good agreement with FTIR spectra; however, this isomer is predicted to have one imaginary frequency at ~168i cm⁻¹, suggesting that the linear geometry is a transition state and not the true ground state at the DFT B3LYP/6-311+G(3df) level of theory. A similar situation occurred for NiC₃Ni, as reported by Kinzer *et al.*, 92 where the molecular geometry has been found to be slightly floppy. It should be noted that the vibrational spectrum of CuC₃ behaves as if the molecule were linear; thus the molecule can be considered as such and its $v_1(\sigma)$ mode is assigned to 1830.0 cm⁻¹. This is the first assignment of a vibrational fundamental for any Cu_nC_m molecule. #### **CHAPTER VII** # OTHER METAL-CARBON SPECIES: CrC4, AlC4Al, and VnCm # 7.1 Fanlike $(C_{2\nu})$ CrC₄ #### 7.1.1 Introduction A discussion on $\operatorname{Cr}_n \operatorname{C}_m$ clusters was presented in Chapter III, so only a few remarks pertinent to CrC_4 will be made. An earlier study²⁵ on CrC_n (n=2-8) clusters is the only prior investigation on either CrC_4 or CrC_4^- and included both theoretical calculations and PE spectra. DFT BPW91/6-311+G* calculations have predicted that CrC_4 is ($C_{2\nu}$) fanlike with a 5B_2 ground state, only 3.0 and 7.8 kcal/mol lower in energy, respectively, than the 3B_1 state and the ${}^5\Pi$ linear isomer. For CrC_4^- , the ${}^6\Sigma$ + linear isomer has been predicted to be the ground state, well-separated energetically from the 6A_1 , 4B_2 , and 2B_1 fanlike isomers. Besides the ${}^6\Sigma$ + linear isomer,
evidence of a nonlinear isomer has also been observed in PE spectra, which the authors have speculated to be small populations of the closest-lying 6A_1 fanlike isomer, predicted to be ~15 kcal/mol higher in energy. Comparisons between FTIR measurements and DFT predictions of vibrational frequencies and 13 C isotopic shifts have been successfully used by the TCU Molecular Physics Laboratory to determine the structures and identify vibrational fundamentals of novel molecules including ($C_{2\nu}$) fanlike MC₃ (M=Ti, Sc)^{55,71} linear MC₃ (M=Cr, Co, Al, Cu), 46,91,112,120 linear NiC₃Ni, 92 and linear AlC₃Al species. Results for the four linear MC₃ and the linear AlC₃Al clusters have been presented in this dissertation. The experimental techniques and procedures were explained in Chapters II-VI. The only difference between the experimental techniques that have been used to produce the species presented here and the molecules discussed in earlier chapters is that sintered Cr/C rods were used, rather than simultaneously evaporating Cr and C rods. Two sintered rods were prepared, one having an atomic composition of 15% Cr/85% 12 C, and the other having 15% Cr/85% C, where the carbon was 15% 13 C. #### 7.1.2 Theoretical Calculations Calculations on CrC_4 have predicted that the 5B_2 fanlike, 3B_1 fanlike, and ${}^5\Pi$ linear isomers are close in energy (± 8 kcal/mol), thus any of the isomers could be observed. A similar situation prevailed for CrC_3 in which the 3B_1 fanlike isomer has been observed in PE spectra and has been predicted to be the ground state structure, only ~ 7 kcal/mol lower in energy than the ${}^5\Pi$ linear isomer, which has been observed in FTIR spectra as reported in Chapter III. The analysis in the following section suggests a C_4 -bearing species is the band carrier, and thus DFT calculations have been done on linear and fanlike ($C_{2\nu}$) CrC₄ and linear CrC₄Cr (see Fig 7.1). All calculations used the GAUSSIAN 03 program suite⁴⁵ with the B3LYP⁴⁷ functional and the 6-311+G(3df) basis set. Multiple spin states were calculated for all molecules considered. The DFT calculations on CrC₄Cr are apparently the first, but calculations done on CrC₄ are in good agreement with those published previously²⁵ and predict the three lowest energy isomers are the 5B_2 and 3B_1 fanlike and the ${}^5\Pi$ linear isomers. Vibrational frequencies and (cm⁻¹) and IR intensities (km/mol) are listed in Table 7.1 for all three CrC₄ isomers. #### 7.1.3 Results and Discussion Potential $Cr_n C_m$ absorptions were identified by comparing the spectrum recorded after ablation of a sintered $Cr/^{12}C$ rod [Fig. 7.2(a)] with the spectrum produced by ablation of a ^{12}C rod alone [Fig. 7.2(b)]. Many previously identified C_n absorptions 49 are also apparent in the $Cr/^{12}C$ spectrum. Although trace amounts of CO and H_2O absorptions appear in the spectra, no Figure 7.1 Structures of (a) fanlike and (b) linear isomers of CrC₄ and (c) linear CrC₄Cr, which were investigated as possible candidates for the 1554.3 cm⁻¹ band. Table 7.1: DFT B3LYP/6-311+G(3*df*) predicted vibrational frequencies (cm⁻¹) and band intensities (km/mol) for the 5B_2 and 3B_1 states of fanlike CrC₄ and for (${}^5\Pi$) linear CrC₄. | CrC ₄
Isomer | Vibrational
Mode | Frequency (cm ⁻¹) | IR intensity (km/mol) | |----------------------------|---------------------|-------------------------------|-----------------------| | $^{5}B_{2}$ | $v_1(a_1)$ | 1968 | 2 | | Fanlike (C_{2v}) | $v_2(a_1)$ | 1046 | 2 | | | $v_3(a_1)$ | 423 | 39 | | | $v_4(a_1)$ | 392 | 23 | | | $v_5(a_2)$ | 431 | ~0 | | | $v_6(b_1)$ | 228 | 26 | | | $v_7(b_2)$ | 1835 | ~0 | | | $v_8(b_2)$ | 603 | 19 | | | $v_9(b_2)$ | 342 | 30 | | $^{3}B_{1}$ | $v_1(a_1)$ | 1675 | 37 | | Fanlike $(C_{2\nu})$ | $v_2(a_1)$ | 1089 | 6 | | | $v_3(a_1)$ | 620 | 13 | | | $v_4(a_1)$ | 459 | 31 | | | $v_5(a_2)$ | 539 | ~0 | | | $v_6(b_1)$ | 268 | 38 | | | $v_7(b_2)$ | 1516 | 2 | | | $v_8(b_2)$ | 622 | 1 | | | $v_9(b_2)$ | 368 | 24 | | 5П | $v_1(\sigma)$ | 2093 | 377 | | Linear | $v_2(\sigma)$ | 1815 | 166 | | | $v_3(\sigma)$ | 1012 | 11 | | | $v_4(\sigma)$ | 338 | 9 | | | $v_5(\pi)^a$ | 525/510 | 1/2 | | | $v_6(\pi)^a$ | 247/223 | 18/44 | | | $v_7(\pi)^a$ | 87/86 | ~0/4 | ^aBoth Renner-Teller components are reported. Figure 7.2 FTIR spectra obtained from ablation of (a) a sintered $Cr/^{12}C$ rod for comparison with (b) ablation of a ^{12}C rod only. Note the $v_1(\sigma)=1789.5$ cm⁻¹ mode of linear CrC_3 and the 1554.3 cm⁻¹ band in (a) that does not appear in (b). evidence of Cr-contaminant species, such as CrOCO or OCrCO,⁵⁰ CrCO,⁵¹ HCrOH,⁵² or CrH₂ (Ref. 53) is observed. Hence, any absorptions appearing in the sintered Cr/C spectrum that are absent from the ¹²C spectrum, such as the 1554.3 cm⁻¹ band, are candidates for Cr_nC_m species. The observation of the $v_1(\sigma) = 1789.5$ cm⁻¹ mode of linear CrC₃, which was identified in Chapter III, in the sintered Cr/¹²C rod spectrum [Fig. 7.2(a)] proves that Cr_nC_m species are being created. band and determine its geometry, so a spectrum obtained from the ablation of a sintered Cr/C rod with 15% 13 C enrichment is shown in Fig. 7.3(a). Note that an intense vibration, corresponding to the $v_4(\sigma_u)$ =1543.4 cm $^{-1}$ mode of C₄, 108 is observed, as are its singly-, doubly-, and triply-substituted 13 C isotopomers [Fig. 7.3(a), green dots]. To the low frequency side of the 1554.3 cm $^{-1}$ band, absorptions at 1548.2 and 1531.6 cm $^{-1}$ appear to be good candidates for single 13 C isotopic shifts, which should be prominent in the spectrum at low 13 C enrichment. All three absorptions have similar broad line shapes, further suggesting that the latter two features are 13 C shifts of the main 1554.3 cm $^{-1}$ band. In the spectrum of the $v_3(\sigma_u)$ mode of C_4 [see Fig. 7.3(a)], the singly-substituted 13 C isotopomer frequencies at 1528.8 and 1527.5 cm⁻¹ correspond to 13 C substitutions at each of the two pairs of equivalent sites in the C_4 molecule and have intensities of ~13% of the main C_4 band at 1543.4 cm⁻¹; therefore, the effective 13 C enrichment is ~6-7%. The intensity ratio of the 1548.2 and 1531.6 cm⁻¹ bands with respect to the main 1554.3 cm⁻¹ band is ~11%, which suggests that these bands correspond to single 13 C substitutions at two pairs of equivalent C atoms, similar to the pattern observed in the C_4 spectrum. Assuming the molecule contains two pairs of equivalent C atoms, a C_2 - or C_3 -bearing species is eliminated as the band carrier, as is linear CrC_4 , which should have four single ^{13}C shifts. Because of the large discrepancies (± 5 -11 cm $^{-1}$) between the predicted and observed ^{13}C Figure 7.3 (a) FTIR spectrum obtained from the ablation of a sintered 15% Cr/85% C rod with a 15% nominal 13 C enrichment for comparison with a (b) DFT simulation of the spectrum of the $v_1(a_1)$ mode of $(^3B_1)$ fanlike CrC₄ with a 10% 13 C enrichment, scaled to 1554.3 cm⁻¹. shifts for all spin multiplicities considered, linear CrC₄Cr is also readily eliminated as the carrier. Neither can (5B_2) fanlike CrC₄, which is predicted to be the ground state, be the molecular carrier because its $v_7(b_2)\sim1835$ cm⁻¹ mode, predicted to be the closest in frequency to 1554.3 cm⁻¹, has negligible IR intensity (see Table 7.1). DFT calculations predict that the 3B_1 and 5B_2 electronic states are nearly isoenergetic, and that the $v_1(a_1)$ fundamental of the 3B_1 state is at ~ 1675 cm⁻¹ (Table 7.1). Although its predicted IR intensity is low, ~ 37 km/mol, it has sufficient intensity for detection as evidenced by the identification of three modes of (1A_1) fanlike TiC₃ that have similar intensity predictions, $v_5(b_2)$ with ~ 39 km/mol, $v_3(a_1)$ with ~ 64 km/mol, and $v_4(b_1)$ with ~ 12 km/mol. Comparing DFT predicted isotopic shifts with FTIR measured frequencies (Table 7.2) shows very good agreement, ± 0.8 cm⁻¹, and tentatively supports the assignment of the $v_1(a_1)$ mode of 3B_1 fanlike CrC₄ to 1554.3 cm⁻¹. A DFT simulation having 10% 13C enrichment has been scaled to 1554.3 cm⁻¹ and is compared with FTIR spectra in Fig. 7.3. The geometric parameters for 3B_1 fanlike CrC₄ and the predicted principal nuclear displacements for its $v_1(a_1)$ mode are shown in Fig. 7.4. #### 7.1.4 Conclusions Based on the good agreement between the predicted and observed single 13 C shifts, the $v_1(a_1)$ mode of $(^3B_1)$ fanlike CrC₄ is tentatively assigned to 1554.3 cm⁻¹. Experiments with higher 13 C enrichment have not produced the doubly-, triply-, and fully-substituted 13 C isotopomers, which would unambiguously confirm the assignment. If substantiated, this would be the first observation of a vibrational mode of fanlike CrC₄. # 7.2 Linear AlC₄Al A thorough discussion of studies on Al_nC_m molecules was presented in Chapter V, but a few points should be noted. Prior studies combining theoretical and experimental investigations Table 7.2: Comparison of observed vibrational fundamental and single 13 C isotopomer frequencies (cm $^{-1}$) of the $v_1(a_1)$ mode of $(^3B_1)$ fanlike CrC₄ with the predictions of B3LYP/6-311+G(3df) calculations. | Isotopomer | | Observed | DFT | Scaled | Difference | |--|------|----------|--------|--------|------------| | $Cr-C_{\alpha}-C_{\beta}-C_{\beta}-C_{\alpha}$ | | v | v | ν | Δv | | 52-12-12-12 | (A) | 1554.3 | 1674.9 | a | | | 52 -13 -12-12-12 | (B) | 1548.2 | 1668.8 | 1548.6 | -0.4 | | 52-12 -13 -12-12 | (C) | 1531.6 | 1651.3 | 1532.1 | -0.8 | | 52 -13-13- 12-12 | (D) | | 1647.0 | 1528.4 | | | 52 -13 -12 -13 -12 | (E) | | 1642.6 | 1524.3 | | | 52 -13 -12-12 -13 | (F) | | 1661.7 | 1542.1 | | | 52-12 -13-13 -12 | (G) | | 1623.4 | 1506.5 | | | 52-13-13-13 | (A') | | 1616.9 | 1500.5 | | | 52-12 -13-13 |
(B') | | 1637.3 | 1519.4 | | | 52-13-12-13-13 | (C') | | 1609.0 | 1493.1 | | ^aResults of the calculation scaled by a factor of 1554.3/1674.9=0.92800. Figure 7.4 (a) DFT B3LYP/6-311+G(3df) predictions of bond lengths (Å) for (3B_1) fanlike CrC₄. The α and β denote pairs of equivalent C atoms. The predicted principal nuclear displacements of its $v_1(a_1)$ mode are shown in (b). of Al_nC_m (n=1,2; m=2,3)^{35,74,112} clusters have reported vibrational frequency predictions and assignments for many of the IR-active modes. (2A_1) AlC₂ is reported to be (C_{2v}) T-shaped⁷⁴ and its most intense vibrational mode, $v_3(b_1)$, is predicted at ~442 cm⁻¹.³⁵ The $v_3(\sigma_u)$ =605.1 cm⁻¹ mode of linear AlC₂Al, predicted to be the highest frequency IR-active mode, has been identified.³⁵ Identifications of the only two modes of AlC₃Al that have significant IR intensities, $v_3(\sigma_u)$ =1624.0 and $v_4(\sigma_u)$ =528.3 cm⁻¹, and of the most intense mode of AlC₃, $v_2(\sigma)$ =1210.9 cm⁻¹, were also presented in Chapter V.¹¹² There have been no prior investigations on either AlC_4 or Al_2C_4 ; hence, the calculations presented in the following sections are the first for these species. Although the identification of AlC_4Al is very tentative, if verified, it would be the first observation of this molecule. #### 7.2.1 Theoretical Calculations Analysis of the FTIR spectra, presented in the following section, indicates an Al_nC_4 species is being observed; therefore, DFT/B3LYP⁴⁷ calculations with the 6-311+G(3*df*) basis set have been done on both AlC₄ and AlC₄Al using the GAUSSIAN 03 program suite.⁴⁵ Predictions of the vibrational fundamentals and IR intensities of linear ($^2\Sigma$) AlC₄ and linear ($^1\Sigma_g^+$) AlC₄Al are listed in Table 7.3. #### 7.2.2 Results and Discussion In addition to the bands identified in Chapter V as the $v_2(\sigma)$ mode of linear AlC₃, the $v_3(\sigma_u)$ and $v_4(\sigma_u)$ modes of linear AlC₃Al,¹¹² and the $v_3(\sigma_u)$ mode of AlC₂Al,³⁵ a strong absorption at 1987.3 cm⁻¹ is seen in spectra obtained from the dual ablation of Al and ¹²C rods that is not present during the ablation of a ¹²C rod alone (Fig. 7.5). Since ¹³C isotopic shifts are crucial to species identification and structure determination, a dual ablation Al/C experiment was performed in which a C rod was prepared with 15% ¹³C enrichment [Figs. 7.6(a) and (b)], Table 7.3: DFT B3LYP/6-311+G(3*df*) predicted vibrational frequencies (cm⁻¹) and band intensities (km/mol) for $(^1\Sigma_g^+)$ linear AlC₄Al and $(^2\Sigma)$ linear AlC₄. | $(^{1}\Sigma_{g}^{+})$ Linear AlC ₄ Al | | | $(^2Σ)$ Linear AlC ₄ | | | |---|-------------------------------|-----------------------------|---------------------------------|-------------------------------|-----------------------------| | Vibrational mode | Frequency (cm ⁻¹) | Infrared intensity (km/mol) | Vibrational
mode | Frequency (cm ⁻¹) | Infrared intensity (km/mol) | | $v_1(\sigma_g)$ | 2214 | 0 | $v_1(\sigma)$ | 2141 | 2030 | | $v_2(\sigma_g)$ | 1056 | 0 | $v_2(\sigma)$ | 1921 | 2 | | $v_3(\sigma_g)$ | 316 | 0 | $v_3(\sigma)$ | 1131 | 30 | | $v_4(\sigma_u)$ | 2070 | 677 | $v_4(\sigma)$ | 549 | 34 | | $v_5(\sigma_u)$ | 492 | 712 | $v_5(\pi)$ | 709 | 87 | | $v_6(\pi_g)$ | 585 | 0 | $v_6(\pi)$ | 280 | 33 | | $v_7(\pi_g)$ | 92 | 0 | $v_7(\pi)$ | 118 | 2 | | $v_8(\pi_u)$ | 281 | ~0 | | | | | $v_9(\pi_u)$ | 41 | ~0 | | | | Figure 7.5 FTIR spectra obtained after (a) dual ablation of Al and ¹²C rods and (b) ablation of a ¹²C rod only, for comparison. Note the 1987.3 cm⁻¹ band in the Al–C spectrum that is not in the pure ¹²C spectrum. Note also the identifications of AlC₂Al, AlC₃, and AlC₃Al in the dual ablation spectrum. Figure 7.6 FTIR spectra obtained after dual ablation of an Al and a C rod with 15% nominal 13 C enrichment annealed at (a) 32 K and (b) 29 K compared with a (c) DFT simulation of the spectrum of the $v_4(\sigma_u)$ mode of linear AlC₄Al with a 10% 13 C enrichment, scaled to 1987.3 cm⁻¹. however, when the intensities of the single 13 C shifts in C_n species such as C_4 and C_5 are compared with the intensities of their main 12 C_n bands, the effective enrichment is $\sim 10\%$. Analysis of the 1987.3 cm⁻¹ band is complicated because it overlaps with the frequency of the single 13 C substitution in the central atom of the $v_3(\sigma_u)$ =2038.9 cm⁻¹ mode of C₃. Possible 13 C shifts for the 1987.3 cm⁻¹ band were identified in the Fig. 7.6(a) and (b) spectra by first eliminating bands belonging to known species such as 1969.0, 1976.3 and 1988.7 cm⁻¹ features, which are weak absorptions of C₂O, 121 HCCAl, 35,99 and Al(CO)₂, 96,98 respectively, and the 1974.5 cm⁻¹ frequency is a doubly-substituted 13 C isotopomer of C₃. The 1965.2 cm⁻¹ band appears to be a ¹³C shift, but before its intensity can be compared to the main absorption at 1987.3 cm⁻¹, the contribution from the 12-13-12 isotopomer of C₃, which can be estimated by dividing the band intensity of the ¹³C substitution on the equivalent C sites (at 2026.4 cm⁻¹) by two, must be subtracted from the band envelope. The intensity ratio of the 1965.2 cm⁻¹ feature to the corrected 1987.3 cm⁻¹ band intensity is ~44%, indicating that the carrier could have four equivalent C atoms as the observed ¹³C enrichment is ~10%. The high frequency of the absorption suggests a C-C stretch in a linear species, but four equivalent C atoms are impossible in a linear chain. Although it is possible for two or more ¹³C shifts to overlap if a ¹³C substitution at more than one unique C site of a molecule does not appreciably change the vibrational frequency, it is very unlikely that a molecule with four inequivalent C atoms, such a linear AlC₄, would have all four ¹³C shifts predicted to overlap at the same frequency. Comparing the observed frequency with DFT predictions for linear AlC₄ and AlC₄Al (see Table 7.3) shows that the $v_1(\sigma) \sim 2141 \text{ cm}^{-1}$ mode of linear AlC₄ and the $v_4(\sigma_u) \sim 2070 \text{ cm}^{-1}$ mode of linear AlC₄Al are closest to the 1987.3 cm⁻¹ band. As expected, isotopic shift calculations for the $v_1(\sigma)$ mode of linear AlC₄ predict that it has four single ¹³C shifts of approximately equal intensity, which is not consistent with the isotopic shift pattern shown in Figs. 7.6(a) and (b). Although the molecular symmetry of AlC₄Al indicates that there are two pairs of equivalent C atoms and thus two single 13 C isotopic shifts should be observed, DFT calculations for its $v_4(\sigma_u)$ mode predict that both of these frequencies will overlap. A DFT simulation of this mode with 10% 13 C enrichment has been scaled to 1987.3 cm⁻¹ and compared with FTIR spectra in Fig. 7.6. Table 7.4 compares the measured and predicted single 13 C shifts, and the results suggest that the 1987.3 cm⁻¹ absorption may belong to the $v_4(\sigma_u)$ mode of linear AlC₄Al. Geometric parameters for AlC₄Al and the predicted principal nuclear displacements for its $v_4(\sigma_u)$ mode are shown Fig 7.7. It should be noted that since the FTIR spectra in Fig. 7.6 behave as if there were only 10% 13 C enrichment, the doubly-, triply-, and fully-substituted 13 C isotopomers would not have sufficient intensities for observation. Subsequent experiments with higher 13 C enrichment have not produced spectra with sufficient signal-to-noise ratios for these isotopomers to be observable. If, however, experiments with high 13 C enrichment (~90%) could produce the mirror spectrum, *i.e.* the full 13 C species and single 12 C shifts, then an unambiguous identification might be possible. Interestingly, DFT predictions for the single 12 C shifts from the fully-substituted 13 C isotopomer absorption do not show an overlap, but two distinct shifts that should be observable (see Table 7.4). Additionally, observation of the $v_5(\sigma_u)$ mode, which is the only other IR-active mode of this molecule that has sufficient IR intensity for observation and is predicted at ~492 cm⁻¹ (Table 7.3), may also aid in assigning the $v_4(\sigma_u)$ mode to 1987.3 cm⁻¹. #### 7.2.3 Conclusions The 1987.3 cm⁻¹ band appears to be a candidate for the $v_4(\sigma_u)$ mode of $(^1\Sigma_g^+)$ linear AlC₄Al based on the good agreement between DFT predictions and FTIR spectra. DFT calculations, which are the first for AlC₄Al, show that single 13 C substitutions on the two pairs of equivalent C atoms in its $v_4(\sigma_u)$ mode overlap to produce one shift, which has been substantiated Table 7.4: Comparison of observed vibrational fundamental and single ¹³C shift frequencies (cm⁻¹) of the $v_4(\sigma_u)$ mode of $(^1\Sigma_g^{\ +})$ linear AlC₄Al with the predictions of B3LYP/6-311+G(3*df*) calculations. | Isotopomer | | Observed | DFT | Scaled | Difference | |-------------------------------------|------|-------------------------|--------|--------|------------| | Al-C-C-C-Al | | v | v | v | Δv | | 27-12-12-12-27 | (A) | 1987.3 | 2070.1 | a | ••• | | 27 -13 -12-12-12-27 | (B) | 1965.2 | 2047.1 | 1965.1 | 0.1 | | 27-12 -13 -12-12-27 | (C) | Overlapped ^b | 2047.1 | 1965.1 | 0.1 | | 27 -13-13 -12-12-27 | (D) | | 2018.3 | 1937.5 | | | 27 -13 -12 -13 -12-27 | (E) | | 2030.0 | 1948.7 | | | 27 -13 -12-12 -13 -27 | (F) | | 2027.3 | 1946.1 | | | 27-12 -13-13 -12-27 | (G) | | 2032.3 | 1950.9 | | | 27 -13-13-13-2 7 | (A') | | 1988.7 | 1909.1 | | | 27-12 -13-13-13- 27 | (B') | | 2008.4 | 1928.0 | | | 27 -13 -12 -13 -13-27 | (C') | | 2004.2 | 1923.9 | | ^aResults of the calculation scaled by a factor of 1987.3/2070.1=0.95995. ^bOverlapped with 1965.2 cm⁻¹. Figure 7.7 (a) DFT B3LYP/6-311+G(3df) predictions for the bond lengths of linear ($^{1}\Sigma_{g}^{+}$) AlC₄Al are given in Angstroms (Å). The predicted principal nuclear displacements of the atoms for its $v_{4}(\sigma_{u})$ mode are shown in (b). by
FTIR spectra. Frequency measurements of other ¹³C isotopomers are necessary to confirm this assignment. This would be the first optical detection of this species if the assignment is verified. # 7.3 Unidentified V_nC_m Candidates Mass spectrometric data exists on some V_nC_m metcars, *e.g.* V_8C_{12} (Refs. 4, 122) and V_4C_9 , 123 but smaller species, VC_n (n = 2,3) 20,22 and V_2C_n (n = 2-4), have been studied using PES or DFT. PE spectra of MC_2^- clusters (M = Sc, V - Co) 22 have shown that VC_2 is ($C_{2\nu}$) cyclic with a V - C stretch at 550 ± 40 cm $^{-1}$, which has been confirmed by subsequent investigations on VC_2 , VC_2^- , and VC_2^+ , 124 and on V_2C_n (n = 2-4) clusters. 3 VC_3 is also reportedly ($C_{2\nu}$) fanlike, based on a combined PES and DFT investigation of MC_3^- (M = Sc, V - Ni) clusters. 20 The most recent investigation¹²⁵ on VC_n (n=1-8) clusters reported DFT B3LYP/6-311+G(d) calculations on linear, cyclic ($C_{2\nu}$), and fanlike ($C_{2\nu}$) isomers with spin multiplicities 2, 4, and 6. Fanlike structures have been predicted to be lower in energy than the linear or cyclic isomers for n≤6, but cyclic isomers were preferred for n>6. Except for VC, which has been predicted to have a doublet ground state, quartet states have been predicted to be the lowest in energy for linear and cyclic isomers. Fanlike isomers were also predicted to have quartet ground states, well-separated energetically from other electronic states, for all n except 3 and 5, for which doublet ground electronic states were predicted. Previously published vibrational frequencies 126 for linear (n=1-8), fanlike (n=2-8), and cyclic (n=6-8) VCn species are given in Tables 7.5, 7.6, and 7.7, respectively. Potential $V_n C_m$ candidates presented in this work were created by the ablation of either a single rod composed of 20% V and 80% 12 C powders at a laser power of ~2.0 W or the dual evaporation of a V rod (~2.7 W) and a 12 C rod (~0.7 or ~1.5 W). New absorptions have been observed in three different frequency regions, 2000-2050, 1450-1500, and 900-950 cm⁻¹. Table 7.5: B3LYP/6-311+G(d) calculations of vibrational frequencies (cm⁻¹) for linear VC_n (n=1-8) clusters (from Ref. 126). | Isomer | State | Vibrational Frequencies (cm ⁻¹) | |--------|--------------------|--| | VC | $^2\Delta$ | 946 | | | $^4\Delta$ | 894 | | | $^6\Sigma$ | 690 | | VC2 | $^2\Delta$ | 221i(2)/590/1803 | | | $^4\Sigma$ | 73i(2)/570/1832 | | | $^4\Phi$ | 25/140/531/1802 | | | $^6\Delta$ | 142(2)/443/1945 | | VC3 | $^{2}\Delta$ | 139(2)/413(2)/473/1293/1887 | | | $^4\Phi$ | 130/137/362/377/427/1264/1849 | | | $^6\Sigma$ | 126(2)/373(2)/450/1294/1969 | | VC4 | $^{2}\Delta$ | 75(2)/232(2)/393/568(2)/1067/1784/2123 | | | $^4\Sigma$ | 71(2)/232(2)/411/554(2)/1072/1835/2127 | | | $^{4}\Phi$ | 89/92/237/258/344/528/535/1022/1795/2090 | | | 6Ф | 84/88/197/259/330/432/517/982/1830/2093 | | VC5 | $^{2}\Delta$ | 79(2)/217(2)/380/392(2)/569(2)/896/1476/1938/2038 | | | ⁴ Ф | 72/73/191/200/308/358/386/506/651/848/1486/1890/1980 | | | $^{6}\Sigma$ | 70(2)/192(2)/361/365(2)/578(2)/882/1518/1967/2079 | | VC6 | $^{2}\Delta$ | 53(2)/145(2)/270(2)/321/521(2)/769/775(2)/1295/1820/2063/2165 | | | $^{4}\Sigma$ | 50(2)/139(2)/264(2)/338/515(2)/742(2)/783/1304/1853/2077/2174 | | | $^{4}\Phi$ | 56/56/151/151/271/275/287/487/495/710/732/736/1264/1857/1999/2144 | | | | 55/55/143/154/259/278/285/429/488/685/698/716/1250/1882/2062/2137 | | VC7 | $^{2}\Delta$ | 48(2)/136(2)/246(2)/324/388(2)/547(2)/695/831(2)/1144/1591/1863/2045/2116 | | | ⁴ Ф | 46/46/124/127/226/233/269/364/382/496/587/646/800/881/1123/1610/1778/2011/2086 | | | $^{6}\Sigma$ | 45(2)/121(2)/227(2)/311/371(2)/540(2)/681/828(2)/1151/1619/1919/2069/2125 | | VC8 | $^{2}\Delta$ | 37(2)/97(2)/187(2)/279/290(2)/486(2)/606/627(2)/1025/1094(2)/1436/1832/1992/2124/2188 | | | $\frac{4}{\Sigma}$ | 35(2)/92(2)/181(2)/281(2)/293/484(2)/613(2)/623/1031(2)/1033/1437/1867/1999/2137/2197 | | | ⁴ Ф | 37/38/102/102/188/195/255/291/293/456/471/580/597/606/994/1000/1015/1406/1856/1963/2085/2171 | | | Φ^{6} | 37/37/100/101/181/195/255/288/292/418/467/568/584/586/968/974/990/1386/1898/2041/2087/2175 | Table 7.6: B3LYP/6-311+G(d) calculations of vibrational frequencies (cm⁻¹) for fanlike VC_n (n=2-8) clusters (from Ref. 126). | Isomer | State | Vibrational Frequencies (cm ⁻¹) | |-------------------|-----------------|---| | $\overline{VC_2}$ | ² A" | 264/659/1424 | | , 02 | ${}^{4}B_{1}$ | 378/578/1688 | | | ${}^{6}\!A_{1}$ | 275/397/1789 | | VC_3 | $^2\!A_1$ | 438/572/592/832/1304/1538/ | | 3 | ${}^{4}B_{2}$ | 341/346/515/760/1289/1591 | | | ${}^{6}\!A_{1}$ | 323/400/443/578/1249/1570 | | VC_4 | $^{2}B_{1}$ | 253/414/448/515/599/622/1088/1624/1761 | | | ${}^{4}B_{1}$ | 272/372/402/487/515/590/1055/1738/1869 | | | ${}^{6}B_{1}$ | 98/175/221/375/410/537/995/1656/1990 | | VC_5 | $^{2}A'$ | 151/365/383/389/422/524/598/686/1005/1358/1679/1703 | | | $^4A'$ | 142/248/371/421/449/471/588/642/999/1382/1633/1709 | | | $^{6}B_{2}$ | 246/321/356/358/373/430/460/571/964/1395/1593/1714 | | VC_6 | $^{2}A'$ | 115/220/259/339/415/416/459/538/589/609/987/1204/1645/1704/1820 | | | ${}^{4}\!A_{2}$ | 59/241/257/281/403/414/449/456/555/608/901/1191/1801/1880/2018 | | | ${}^{6}B_{1}$ | 95/130/135/216/332/368/380/392/481/510/896/1222/1632/1786/1902 | | VC_7 | ^{2}A | 53/75/248/303/325/345/379/380/422/542/577/624/913/1158/1517/1663/1801/1861 | | | ${}^{4}B_{2}$ | 60/159/263/304/323/348/363/365/434/539/565/621/913/1132/1533/1673/1801/1829 | | | $^6A'$ | 113/193/205/265/321/346/365/414/484/496/548/632/861/1089/1337/1715/1820/1892 | | VC_8 | ${}^{2}A"$ | 114/133/177/265/334/345/402/406/417/433/466/475/591/641/865/1035/1266/1674/1835/1839/1971 | | | ^{4}B | 100/100/203/216/242/248/260/325/352/402/403/456/542/545/820/1049/1334/1873/1927/2021/2064 | | | ${}^{6}B_{1}$ | 107/121/127/128/236/258/299/405/433/435/458/506/574/632/835/1025/1241/1598/1830/1843/2012 | Table 7.7: B3LYP/6-311+G(d) calculations of vibrational frequencies (cm⁻¹) for cyclic VC_n (n=6-8) clusters (from Ref. 126). | Isomer | State | Vibrational Frequencies (cm ⁻¹) | |-------------------|-----------------|--| | $\overline{VC_6}$ | $^{2}A_{2}$ | 50/159/228/285/307/425/432/437/505/1008/1029/1207/1931/1977/2037 | | | ${}^{4}A"$ | 129/148/251/301/349/390/416/455/473/590/1016/1219/1799/1888/1948 | | | ${}^{6}\!A_{1}$ | 154/167/217/229/424/441/503/520/551/642/925/1083/1600/1833/1842 | | VC ₇ | $^{2}B_{1}$ | 141/213/225/234/434/441/483/489/508/510/593/629/1021/1183/1458/1584/1865/1882 | | | ${}^{2}\!A_{1}$ | 129/209/223/236/421/452/469/492/503/522/586/610/1020/1180/1467/1580/1864/1883 | | | 4B_2 | 148/164/188/227/354/408/428/481/508/521/595/611/991/1147/1440/1658/1883/1899 | | | ${}^{6}\!A_{1}$ | 112/142/145/194/316/363/368/435/489/495/553/544/900/1075/1516/1547/1851/1881 | | VC ₈ | $^{2}B_{1}$ | 68/136/142/161/198/228/296/377/379/437/476/507/571/577/843/997/1316/1912/1914/2007/2106 | | | ${}^{4}A"$ | 39/101/120/147/230/255/288/379/380/450/461/498/546/551/835/1003/1316/1930/1975/2041/2122 | | | $^{6}\!A_{2}$ | 34/102/112/148/222/238/245/425/451/476/487/505/585/596/847/1004/1286/1536/1837/1849/2023 | Evaporation of a single $V/^{12}C$ rod has produced different potential V_nC_m candidates than the dual evaporation of V and ^{12}C rods, as will be discussed in the following sections. In V/C experiments, the matrix samples were often annealed, *i.e.* warmed to a specific temperature in the range of 20-30 K for several minutes and then cooled to \sim 10 K, after which spectra were recorded. Annealing facilitates diffusion of smaller molecules through the Ar matrix, allowing them to combine to form larger molecules. Additionally, absorptions resulting from secondary trapping sites collapse into the band corresponding to the minimum-energy trapping site, which sharpens spectra (*e.g.* TiC₃ in Ref. 55). # 7.3.1 The 2000-2050 cm⁻¹ Region Three bands at 2032.9, 2029.6, and 2019.2 cm⁻¹ were produced by the ablation of a single rod composed of 20% V and 80% 12 C ablated at a laser power of ~2.0 W (Fig. 7.8). Only weak absorptions of contaminant species such as H_2V^{127} and H_2OV , 128 respectively, at 1508.3 and 1710.6 cm⁻¹ are observed in V/C spectra. No other absorptions that could be attributed to O or H atoms bonding to V_n or V_nC_m clusters have been found including O_2V , O_2V_2 , O_3V_2 , and O_4V , 129 COV, CO_2V , and C_2O_2V , 130 suggesting that any unidentified bands in the spectra likely result from pure V_nC_m species. Experiments done with a V/C rod in which the C had 15% ¹³C enrichment have not produced ¹³C shifts, making molecular identifications and geometry determinations impossible, but several conclusions can be drawn from the spectra. First, the high frequencies are indicative of C–C stretching modes in linear chains so linear VC_n or VC_nV chains are the most probable carriers. Second, the 2032.9 cm⁻¹ band grows in during annealing and thus cannot result from the same molecule or molecules that produce the bands at 2029.6 and 2019.2 cm⁻¹, which are present throughout the experiment. Moreover, this band likely results from a longer C_n-bearing chain, such as C₆, C₇, or C₉, that is created as smaller molecules diffuse through the Ar matrix Figure 7.8 FTIR spectra of the 2000-2050 cm⁻¹ region recorded after laser ablation of a single rod pressed from 20% V and 80% ¹²C powders annealed at (a) 24 K, (b) 20 K, and (c) prior to annealing at 10 K for comparison with (d) an FTIR spectrum obtained from ablation of a ¹²C rod. and combine into larger species. Finally, since the bands at 2029.6 and 2019.2 cm⁻¹ sharpen slightly but do not notably
grow during annealing, they are probably smaller C_n -bearing species, such as C_3 , or C_4 , for which the band intensities do not significantly increase during annealing. If these high frequency bands are C–C stretches of linear VC_n species, then based solely on the DFT predictions in Table 7.5, the highest frequency modes for the ${}^{4}\Sigma$ and ${}^{4}\Phi$ states of linear VC_n (n=4,6,8), the ${}^{6}\Sigma$ state of linear VC₅, and the ${}^{4}\Phi$ and ${}^{6}\Sigma$ states of linear VC₇ are all possible candidates for these band identities, which clearly illustrates the necessity of 13 C isotopic shifts in this work. # 7.3.2 The 1450-1500 cm⁻¹ Region Bands at 1475.4, 1478.5, and 1479.5 cm⁻¹ were created by dual laser ablation of V (~2.5-2.7 W) and ¹²C (~0.7 W) rods (Fig. 7.9), and therefore can not be related to the three bands seen in the 2000-2100 cm⁻¹ region because they were produced using different techniques and are observed independently of the higher frequency bands. The bands at 1475.4 and 1479.5 cm⁻¹ only appear after annealing [Fig. 7.9(a)], but the 1478.5 cm⁻¹ is present during the ablation of V and C rods, prior to annealing [Fig. 7.9(b)]. Because these three bands were produced using the low laser power technique, ³⁷ which predominantly creates C_3 , they are likely small $V_n C_m$ clusters. It is interesting to note that these three bands are in the same frequency region where the $v_5(b_2)$ modes of fanlike $(C_{2\nu})$ TiC₃ (Ref. 55) and ScC₃ (Ref. 71) have been identified. A vibrational mode of fanlike VC₃ is therefore a possible assignment for one of these bands. has The ${}^{2}A_{1}$ and ${}^{4}B_{2}$ states of fanlike VC₃ are predicted to have similar vibrational frequencies 125 (Table 7.6), and the ${}^{2}A_{1}$ state is predicted to be the ground state by only ~ 5 kcal/mol. Without ¹³C isotopic shifts, it is impossible to determine if fanlike VC₃ is a carrier of one of these bands, and if so, which electronic state is the ground state. Thus far, experiments with 15% ¹³C enrichment have been unsuccessful in producing ¹³C shifts. Figure 7.9 FTIR spectra of the 1450-1500 cm⁻¹ region recorded after dual laser ablation of a V rod and a ¹²C rod (a) annealed at 33 K and (b) prior to annealing at 10 K for comparison with (c) a spectrum obtained from ablation of a ¹²C rod. # 7.3.3 The 900-950 cm⁻¹ Region The three bands that are observed in the 900-950 cm⁻¹ region at 923.2, 919.5, and 917.3 cm⁻¹ (Fig. 7.10) were produced in experiments using a single rod composed of 20% V and 80% ¹²C that was ablated at ~2.0 W, and also in experiments using the dual ablation and low laser power techniques.³⁷ Since the bands in the 900-950 cm⁻¹ region of the spectrum did not behave similarly to the bands in either the 1450-1500 or 2000-2100 cm⁻¹ regions of the spectrum, the molecular carriers cannot be the same as those for the bands observed at higher frequencies. Again, no 13 C shifts have been observed, but several conclusions can still be drawn from knowing the experimental conditions used to create these bands and from observing their behavior during annealing. Since the three bands are produced by dual ablation of V and 12 C rods using the low laser power technique³⁷ and the frequencies are ~ 900 cm⁻¹, the molecular carriers are likely small V_nC_m species with non-linear geometries. These bands are probably not modes of fanlike VC₃, which does not have a vibrational fundamental predicted near 900-1000 cm⁻¹ (see Table 7.6). Finally, the 1917.3 cm⁻¹ band slowly anneals out of the spectrum (see Fig. 7.10) and is therefore likely a satellite band of either the 919.5 or 923.2 cm⁻¹ features. Figure 7.10 FTIR spectra of the 900-950 cm⁻¹ region recorded after laser ablation of a single rod pressed from 20% V and 80% ¹²C powders annealed at (a) 24 K, (b) 20 K, and (c) prior to annealing at 10 K for comparison with (d) an FTIR spectrum obtained from ablation of a ¹²C rod. #### **CHAPTER VIII** #### **CONCLUSIONS AND FUTURE WORK** #### 8.1 Conclusions The first FTIR investigations of transition metal–carbon clusters have been reported in Chapters III-VII this dissertation. M_nC_3 (M = Cr, Co, Al, Cu)^{46,91,112,120} clusters have been created by condensing the ablated products of the dual evaporation of metal and carbon clusters in solid Ar on a gold mirror kept at ~10 K. Vibrational frequencies and ¹³C isotopic shifts measured in FTIR spectra are in good agreement with the predictions of DFT B3LYP/6-311+G(3*df*) calculations, which has enabled the identification of five novel molecules, unambiguously established their geometries, and permitted assignments of at least one vibrational fundamental for each species. ### 8.1.1 Linear CrC₃ This investigation on CrC_3 , which was produced by trapping the products from the dual evaporation of Cr and C rods in Ar at ~10 K, has resulted in the first assignment of a vibrational fundamental for the linear isomer. A prior PES study²⁵ had reported evidence of both linear and $(C_{2\nu})$ fanlike isomers, and the first measurement of a vibrational mode for the $C_{2\nu}$ structure. No evidence of the fanlike isomer was observed in the present study. The excellent agreement between ¹³C isotopic shift measurements coupled with DFT predictions has established that the ground state structure of CrC_3 is linear with a ⁵ Π electronic state, and its $\nu_1(\sigma)$ carbon stretching fundamental has been identified at 1789.5 cm⁻¹. These results have been published: S. A. Bates, C. M. L. Rittby, and W. R. M. Graham Fourier transform infrared isotopic study of linear CrC_3 : Identification of the $v_1(\sigma)$ mode, J. Chem. Phys. **125**, 074506 (2006). 46 ### 8.1.2 Linear CoC_3 The first detection of the vibrational spectrum of the CoC_3 cluster has been reported here accompanied by the first DFT investigation of its two lowest-lying isomers. Earlier PE spectra 20 had broad, unresolved vibrational structure that made it impossible to determine the geometry of CoC_3 . In the present matrix study of the evaporated products of the dual laser ablation of Co and C rods a band at 1918.2 cm⁻¹ and the signature isotopic shift pattern for a non-centrosymmetric linear molecule with three C atoms has been observed. The excellent agreement between the FTIR measured 13 C shifts and the results of DFT BPW91/ and B3LYP/6-311+G(3*df*) calculations confirms the assignment of the 1918.2 cm⁻¹ absorption to the $v_1(\sigma)$ vibrational fundamental of linear CoC_3 . These results indicate that the ${}^2\Delta$ state of the linear isomer is the universal ground state (as predicted by DFT/B3LYP calculations), rather than the 2B_1 state of the fanlike isomer (as predicted by DFT/BPW91 calculations), lying only ~4 kcal/mol lower in energy. The linear structure found for CoC₃ in the present investigation contrasts with the recent report of the observation of (1A_1) fanlike TiC₃ which is, however, well separated energetically from competing linear and kite-shaped structures. The current findings are similar to those presented in Chapter III for the ${}^5\Pi$ linear CrC₃ species for which close-lying fanlike and linear structures are also predicted. This study on CoC₃ is both the first theoretical investigation on this molecule, and the first optical detection of the linear isomer and measurement of a vibrational fundamental. These results have been published as: S. A. Bates, J. A. Rhodes, C. M. L. Rittby, and W. R. M. Graham, Fourier transform infrared observation of the $v_1(\sigma)$ mode of linear CoC_3 trapped in solid Ar, J. Chem. Phys. **127**, 064506 (2007). 91 # 8.1.3 Linear AlC₃ and AlC₃Al This is the first experimental or theoretical characterization of the infrared vibrational spectrum of the AlC₃Al molecule. Condensing the products from dual evaporation of Al and C rods in a ~10 K Ar matrix has produced the 1624.0 and 528.3 cm⁻¹ bands, which have been identified as the $v_3(\sigma_u)$ C–C and $v_4(\sigma_u)$ Al–C stretching fundamentals, respectively, of linear AlC₃Al in its $^3\Sigma_g^+$ ground state, based on the good agreement between DFT predictions and the observed 13 C isotopic shift patterns. These two vibrational fundamentals are predicted to be the only IR-active modes of this species that have significant intensity. Although theoretical investigations^{26,87–89} on AlC₃ have indicated that the ${}^2\Pi$ linear, 2A_1 kite, and 2B_2 fanlike isomers are close in energy,²⁶ there had been no prior experimental observation of this species. In the present work, ${}^2\Pi$ linear AlC₃ has been observed for the first time, establishing this isomer as the ground state, and its $v_2(\sigma)$ =1210.9 cm⁻¹ mode has been identified based on the good agreement between DFT calculations and the observed 13 C isotopic spectrum. No evidence of either the fanlike or kite isomers has been observed. The results reported here are parallel to investigations on (${}^5\Pi$) CrC₃ (Ref. 46) and (${}^2\Delta$) CoC₃ (Ref. 91), presented in Chapters III and IV of this work, respectively, for which close-lying fanlike and linear structures have been predicted but only the linear isomers detected. These results are in preparation for submission to J. Chem. Phys. as: S. A. Bates, C. M. L. Rittby, and W. R. M. Graham, *FTIR observation and DFT study of the AlC₃ and AlC₃Al linear chains trapped in solid Ar*, J. Chem. Phys., *in preparation* (2008). 112 ### 8.1.4 Linear CuC₃ There are no prior theoretical investigations on CuC_3 or experimental investigations on any Cu_nC_m cluster; therefore, this work is the first experimental and theoretical study of CuC_3 , resulting not only in the first assignment of a vibrational fundamental for CuC_3 , but also for any Cu_nC_m cluster. The CuC_3 molecule was created by the dual laser ablation of Cu and C rods and trapping the evaporated products in solid Ar at ~10 K, which produced the band at 1830.0 cm⁻¹ and the
signature ^{13}C isotopic shift pattern of a non-centrosymmetric linear molecule with three inequivalent carbon atoms. DFT calculations have predicted that a $(^2A')$ trans-bent geometry is the universal ground state, ~0.7 kcal/mol lower in energy than the $^2\Pi$ linear isomer; however, the predicted ^{13}C isotopic shift pattern is not in agreement with the observed spectra. The predicted ^{13}C shifts for the $(^2\Pi)$ linear isomer of CuC₃ is in very good agreement with FTIR spectra; however, this isomer is predicted to have one imaginary frequency at ~168i cm⁻¹, suggesting that the linear geometry is a transition state and not the true ground state at the DFT B3LYP/6-311+G(3df) level of theory. A similar situation occurred for NiC₃Ni, as reported by Kinzer *et al.*, 92 where the molecular geometry has been found to be slightly floppy. It should be noted that the vibrational spectrum of CuC₃ behaves as if the molecule were linear; thus the molecule can be considered as such and its $v_1(\sigma)$ mode is assigned to 1830.0 cm⁻¹. This is the first assignment of a vibrational fundamental for any Cu_nC_m molecule. These results are in preparation for submission to J. Chem. Phys. as: S. A. Bates, C. M. L. Rittby, and W. R. M. Graham, *The Vibrational Spectrum of CuC₃: An FTIR and DFT Investigation*, J. Chem. Phys., *in preparation* (2008). ¹²⁰ # 8.1.5 Fanlike (C_{2v}) CrC_4 An absorption at 1554.3 cm⁻¹ has been produced by trapping the evaporated products of the laser ablation of a sintered Cr/C rod in Ar at ~10 K, and is tentatively identified as the $v_1(a_1)$ vibrational mode of fanlike CrC₄ in its 3B_1 electronic state, which if substantiated, would be the first observation and assignment of a vibrational fundamental for this molecule. A prior PE investigation²⁵ that included DFT BPW91/6-311+G* calculations predicted that the ${}^{3}B_{1}$ and ${}^{5}B_{2}$ electronic states of fanlike CrC₄ were nearly isoenergetic, with the ${}^{5}B_{2}$ state being slightly more stable. The isotopic shift pattern observed in FTIR spectra in the present study indicates that a molecular carrier with two pairs of equivalent carbon atoms is responsible, such as fanlike CrC₄. DFT calculations on the ${}^{5}B_{2}$ state, however, predict that its $v_{7}(b_{2})\sim1835$ cm⁻¹ mode, predicted to be the closest in frequency to 1554.3 cm⁻¹, has negligible IR intensity. The predictions of DFT calculations for the single 13 C shifts of the $v_{1}(a_{1})$ mode of the ${}^{3}B_{1}$ state are in good agreement with the observed spectrum; therefore, this vibrational fundamental is tentatively assigned to 1554.3 cm⁻¹. Experiments with higher 13 C enrichment have not produced the doubly-, triply-, and fully-substituted 13 C isotopomers, which would unambiguously confirm the assignment; therefore, the identification must be considered tentative. # 8.1.6 Linear AlC₄Al The 1987.3 cm⁻¹ band appears to be a candidate for the $v_4(\sigma_u)$ mode of $(^1\Sigma_g^+)$ linear AlC₄Al based on the good agreement between DFT predictions and FTIR spectra. This is the first theoretical investigation on the AlC₄Al molecule and this would also be the first detection of its vibrational spectrum if the very tentative assignment is verified. The 1987.3 cm⁻¹ absorption was created by the dual ablation of Al and C rods and condensing the evaporated products in an \sim 10 K Ar matrix. DFT calculations show that single 13 C substitutions on the two pairs of equivalent C atoms in its $v_4(\sigma_u)$ mode overlap to produce one shift, which has been substantiated by FTIR spectra. Frequency measurements of other ¹³C isotopomers are necessary to confirm this assignment. # 8.1.7 V_nC_m Candidates None of the V_nC_m candidate bands in the 2000-2100, 1450-1500, or 900-950 cm⁻¹ regions of the spectrum appear to be correlated with any of the other observed bands and therefore will not have the same molecular carrier. The bands at high frequencies, 2032.9, 2029.6, and 2019.2 cm⁻¹, were created by the ablation of a single V/C rod and are likely C–C stretching modes of linear VC_n or VC_nV species. The 1475.4, 1478.5, and 1479.5 cm⁻¹ bands were created using the dual ablation and low laser power³⁷ techniques, similar to the conditions in which the $v_5(b_2)$ modes of fanlike (C_{2v}) TiC₃ (Ref. 55) and ScC₃,⁷¹ respectively, have been identified at 1478.2 and 1478.0 cm⁻¹; therefore, the analogous vibration of fanlike VC₃ appears to be a good candidate for the identity of one of these absorptions. The low-frequency absorptions at 923.2, 919.5, and 917.3 cm⁻¹ were created in experiments in which V and C rods were simultaneously ablated and during evaporation of a single V/C rod. The bands at 923.2 and 919.5 cm⁻¹ probably also result from small, non-linear V_nC_m species, while the band at 917.3 cm⁻¹ is likely a satellite band of one of the other features. #### **8.2** Future Work The primary focus of future studies is to create other novel M_nC_m clusters, which can include continuing the unfinished work on the absorptions and tentative identifications presented Chapter VII, performing experiments using different metals, or creating larger C_n species to which metal atoms can attach. Additionally, observation of low frequency, low intensity M–C stretches and bending modes is desired and a technique that may aid in that endeavor is presented in Section 8.2.2. Finally, an improvement to the current rod fabrication technique is discussed so that rods with >50% ¹³C enrichment can be produced. # 8.2.1 Continuing Work on CrC₄, AlC₄Al, and V_nC_m Species Tentative identifications for the $v_1(a_1)$ =1554.3 cm⁻¹ mode of 3B_1 fanlike CrC₄ and for the $v_4(\sigma_u)$ =1987.3 cm⁻¹ mode of ${}^1\Sigma_g^+$ linear AlC₄Al have been presented in Chapter VII, Sections 7.1 and 7.2, respectively (see also Chapter VIII, Sections 8.1.5 and 8.1.6, respectively). These assignments are tentative because only singly-substituted 13 C isotopomer frequencies have been measured. Experiments with ~50% 13 C enrichment could be done to observe all of the isotopomers or ~ 90% 13 C enrichment may enable the observation of the mirror spectrum, *i.e.* the fully-substituted 13 C isotopomer band and its single 12 C-substituted shifts. Additionally, a number of absorptions appear in vanadium-carbon spectra, which have not been identified, because 13 C shifts have not been observed (see Chapter VII, Section 7.3 and Chapter VIII, Section 8.1.7). Since the chromium-carbon absorption at 1554.3 cm⁻¹ and several of the potential V_nC_m bands were created by laser ablation of a single metal/carbon rod, future experiments may benefit from the proposed sintering process in Section 8.2.3. ### 8.2.2 Metal-Carbon Clusters As mentioned in Chapter I of this dissertation, relatively few M_nC_m cluster studies have been done and more investigations, specifically on molecules larger than diatomics, are needed. Although a variety of metals are currently being studied in the TCU Molecular Physics Lab, the present investigations have primarily focused on first-row transition metals and Al. Moreover, concrete molecular identifications have so far been restricted to M_nC_3 species. The next logical steps are to initiate investigations on second- and third-row transition metal—carbon clusters and also to try to create larger M_nC_m clusters. When experiments on second- and third-row transition—metal carbon clusters are done, it seems likely that the dual ablation, low laser power, and soft rod techniques used in the creation of M_nC_3 species, where M = Ti, ⁵⁵ Sc, ⁷¹ Ni, ⁹² Cr, ⁴⁶ Co, ⁹¹ Al, ¹¹² and Cu, ¹²⁰ could also be used to create other small M_nC_3 molecules. Creation of larger M_nC_m clusters, specifically longer C_n chains with a metal atom attached to one or both ends could be achieved by modifying the experimental conditions, detailed in Chapter II, that were shown to affect the size of the clusters produced. In experiments done as part of this work, a low laser power (<1.0 W) and a loose beam focus (~3.0 mm diameter) was used on the C rods, which has produced the v_3 mode of C_3 as the dominant absorption in FTIR spectra. In future studies, a tighter beam focus, \leq 2.0 mm diameter, or a laser power of 1.0–1.5 W could be used on the C rod, which would likely produce longer C_n chains like C_5 , C_6 , C_7 , and C_9 . The spectrum in Fig. 8.1 was obtained by using a laser power of ~1.0 W and a medium beam focus (~2.0 mm diameter) in which the absorptions of linear C_n species such as C_5 at 2164.3, C_6 at 1952.5, C_7 at 1894.3 and 2127.8, C_9 at 1601.0, 1998.1, and 2078.1, C_{11} at 1946.1 and 1856.7, and C_{12} at 1818.0 cm⁻¹ are prominent features. Intense absorptions of the cyclic C_n clusters, c- C_6 at 1694.9 and c- C_8 at 1844.2 cm⁻¹ are also observed. Note that the $v_6(\sigma_u)$ =1998.1 cm⁻¹ mode of C_9 is the most intense absorption. If the laser power and laser focus on the carbon rod could be modified to limit C_3 production so that predominantly longer C_n chains like C_6 or C_9 are observed in the spectrum, then it seem likely that a dual ablation experiment with metal and carbon rods would produce MC_n or MC_nM (n>3) species in an analogous way to the MC_3 and MC_3M species production. ## 8.2.3 Sintering Metal-Carbon Rods One technique that has been successful in production of Ge_nC_m bands is sintering both Ge Figure 8.1 Spectrum obtained from 12 C ablation using a higher laser power, ~ 1.0 W, and tighter laser beam focus, ~ 2.0 mm, which produces intense absorptions for a number of of larger C_n molecules. and C into a single rod.¹³¹ In this technique, Ge and C powders are pressed into a rod and heated in a furnace for 2-3 days at a temperature that is approximately equal to the melting point of Ge. This technique has been especially useful in the observation of several low frequency Ge–C stretching and
bending fundamentals that also have weak intensities, presumably because Ge_nC_m clusters are created during the sintering process and thus result in the formation of a sufficiently large number of a specific Ge_nC_m molecule so that even weak vibrational fundamentals can be observed. Using a similar process in which metal–carbon rods are heated at a temperature approximately equal to the melting point of the specific metal used in the rod, sintered rods could be fabricated for experiments and may aid in the observation and identification of low intensity metal–carbon stretching and bending fundamentals. # 8.2.4 Rod Fabrication with Higher ¹³C Enrichments The biggest obstacle in carbon rod fabrication has been to create rods with high (>50%) ¹³C enrichments. Although a ¹²C/¹³C sintering process that can create rods with high ¹³C enrichments (≤95%) has been detailed, ³⁴ it requires baking the C rods for ~20-30 days, which is not always feasible. A new technique, in which the ¹²C/¹³C powder mixture is pressed into a "soft" rod and not baked, was presented in Chapter II. Its major drawback has been that C rods with >50% ¹³C enrichment cannot be created, which is probably caused by the use of a solid die when the rods are pressed. The higher the ¹³C enrichment, the more delicate the rod; consequently, the rod breaks as it is pushed out of the solid die. A possible solution to this problem is to create a split die that can be opened, allowing the delicate, high ¹³C enrichment rod to be removed without the use of excessive pressure and stress. This type of die has been successfully used in conjunction with a press housed on the top floor of the TCU Machine Shop, however, the weight and size of the die make it unwieldy. A schematic for the split die has been drawn (Fig. 8.2) and this die is currently under construction in the TCU Machine Shop. Figure 8.2 Proposed schematic for the (a) top and (b) front views of the split die. Note the bolts on the front are used to squeeze the carbide bushing together. Because of the small gap between the carbide bushing and the die casing, the bushing will easily slide out from the casing when the bolts are unscrewed. (c) An illustration of how the carbide bushing would be opened to remove a C rod fabricated with high ¹³C enrichment without putting excessive stress on the rod. ### REFERENCES - ¹ J. Cernicharo, J. Goicoechea, and Y. Benilan, Astrophys. J. **580**, L157 (2002). - ² S. Wei, B. C. Guo, J. Purnell, S. Buzza, and A. W. Castleman, Jr., J. Phys. Chem. **96**, 4166 (1992). - ³ K. Tono, A. Terasaki, T. Ohta, and T. Kondow, J. Chem. Phys. **117**, 7010 (2002). - ⁴ B. C. Guo and A. W. Castleman, Jr., in <u>Advances in Metal and Semiconductor Clusters</u>, ed. M. A. Duncan (Jai Press, London, 1994), Vol. 2, 137. - ⁵ Cologne Database for Molecular Spectroscopy (http://www.ph1.uni-koeln.de/vorhersagen/). Last updated 07/2007; Wootten's Database, NRAO (http://www.cv.nrao.edu/~awootten/allmols.html). Last updated 11/2005. - ⁶ M. J. Travers, M. C. McCarthy, P. Kalmus, C. A. Gottlieb, and P. Thaddeus, Astrophys. J. **469**, L65 (1996); M. B. Bell, P. A. Feldman, M. J. Travers, M. C. McCarthy, C. A. Gottlieb, and P. Thaddeus, Astrophys. J. **483**, L61 (1997). - ⁷ Y. Kasai, Y. Sumiyoshi, Y. Endo, and K. Kawaguchi, Astrophys. J. **477**, L65 (1997); M. Grutter, M. Wyss, and J. P. Maier, J. Chem. Phys. **110**, 1492 (1999). - ⁸ P. F. Bernath, K. H. Hinkle, and J. J. Keady, Science **244**, 562 (1989). - ⁹ L. M. Ziurys, Proc. Nat. Acad. Sci. **103**, 12274 (2006). - ¹⁰ E. Yamazaki, T. Okabayashi, and M. Tanimoto, Astrophys. J. Lett. **551**, L199 (2001). - ¹¹ M. Guélin, S. Mullen, J. Cernicharo, A. J. Apponi, M. C. McCarthy, C. A. Gottlieb, and P. Thaddeus, Astron. & Astrophys. 363, L9 (2000), and references therein. - ¹² K. H. Hinkle, J. J. Keady, and P. F. Bernath, Science **241**, 1319 (1988). - ¹³ About Spitzer. Retrieved April 25, 2005 from the Spitzer Science Center website, part of NASA's IR Processing and Analysis Center: http://www.spitzer.caltech.edu/about/index.shtml - ¹⁴ B. C. Guo, K. P. Kerns, and A. W. Castleman, Jr., Science **255**, 1411 (1992), and references therein. - ¹⁵ B. C. Guo, K. P. Kerns, and A. W. Castleman, Jr., Science **256**, 515 (1992), and references therein. - ¹⁶ I. J. Dance, J. Am. Chem. Soc. **118**, 6309 (1996); I. J. Dance, *ibid.* **118**, 2699 (1996). - ¹⁷ M. M. Rohmer, M Benard, and J. M. Poblet, Chem. Rev. **100**, 495 (2000); H. Hou, J. T. Muckerman, P. Liu, and J. A. Rodriguez, J. Phys. Chem. A **107**, 9344 (2003). - ¹⁸ M. E. Jacox, J. Phys. Chem. Ref. Data **32**, (2003). - ¹⁹ X. -B. Wang, C. -F. Ding, and L. -S Wang, J. Phys. Chem. A **101**, 7699 (1997). - ²⁰ L. -S. Wang and X. Li, J. Chem. Phys. **112**, 3602 (2000). - ²¹ H. -J. Zhai, S. -R. Liu, X. Li, and L. -S. Wang, J. Chem. Phys. **115**, 5170 (2001). - ²² X. Li and L. -S. Wang, J. Chem. Phys. **111**, 8389 (1999). - ²³ *Matrix Isolation Infrared Spectroscopy*. from the NIST Physics Laboratory Optical Division website: http://physics.nist.gov/Divisions/Div844/facilities/matrix/matrix.html; M. E. Jacox, Chem. Soc. Rev. **31**, 108 (2002). - ²⁴ P. A. Withey, L. N. Shen, and W. R. M. Graham, J. Chem. Phys. **95**, 820 (1991). - ²⁵ H.-J. Zhai, L.-S. Wang, P. Jena, G. L. Gustev, and C. W. Bauschlicher, Jr., J. Chem. Phys. **120**, 8996 (2004). - ²⁶ C. Barrientos, P. Redondo, and A. Largo, Chem. Phys. Lett. **320**, 481 (2000). - ²⁷ J. D. Presilla-Márquez, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. **104**, 2818 (1996). - ²⁸ J. D. Presilla-Márquez, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. **106**, 8367 (1997). - ²⁹ X. D. Ding, S. L. Wang, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. **110**, 11214 (1999). - ³⁰ X. D. Ding, S. L. Wang, C. M. L. Rittby, and W. R. M. Graham, J. Phys. Chem. **104**, 3712 (2000). - ³¹ D. L. Robbins, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. **114**, 3570 (2001). - ³² D. L. Robbins, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. **120**, 4664 (2004). - ³³ D. L. Robbins, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. **117**, 3811 (2002). - ³⁴ R. Cárdenas, *Dissertation*, (2007). - ³⁵ G. V. Chertihin, L. Andrews, and P. R. Taylor, J. Am. Chem. Soc. **116**, 3513 (1994). - ³⁶ J. Drowart, R. P. Burns, G. DeMaria, and M. G. Inghram, J. Chem. Phys. **31**, 1131 (1959). - ³⁷ R. E. Kinzer, Jr., *Predissertation* (2005). - ³⁸ L. N. Shen, T. J. Doyle and W. R. M. Graham, J. Phys. Chem. **93**, 1597 (1990). - ³⁹ A. D. Becke, Phys. Rev. A **38**, 3098 (1988); J. P. Perdew and Y. Wang, Phys. Rev. B **45**, 13244 (1992). - ⁴⁰ J. D. Presilla-Márquez, W. R. M. Graham, and R. A. Shepherd, J. Chem. Phys. **93**, 5424 (1990). - ⁴¹ P. A. Withey and W. R. M. Graham, J. Chem. Phys. **96**, 4068 (1992); J. D. Presilla-Márquez and W.R.M. Graham, J. Chem. Phys. **95** 5612 (1991); C. M. L. Rittby, *ibid*. **95**, 5609 (1991); J. D. Presilla-Márquez, S. C. Gay, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. **102**, 6354 (1995). - ⁴² J. D. Presilla-Márquez and W. R. M. Graham, J. Chem. Phys. **96**, 6509 (1992); C. M. L. Rittby, *ibid*. **96**, 6768 (1992). - ⁴³ J. D. Presilla-Márquez and W. R. M. Graham, J. Chem. Phys. **100**, 181 (1994); C. M. L. Rittby, *ibid*. **100**, 175 (1994). - ⁴⁴ X. D. Ding, S. L. Wang, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. **112**, 5113, (2000), and references therein. - ⁴⁵ Gaussian 03, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003. - ⁴⁶ S. A. Bates, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. **125**, 074506 (2006). - ⁴⁷ J. B. Foresman and A. Frisch, *Exploring Chemistry with Electronic Structure Methods*, (Gaussian, Inc., Pittsburgh 1993); A. Szabo and N. S. Ostlund, *Modern Quantum Chemistry*, (McGraw-Hill, New York, 1982). - ⁴⁸ J. Szczepanski, S. Ekern, C. Chapo, M. Vala, Chem. Phys. **211**, 359 (1996). - ⁴⁹ M. E. Jacox, NIST Vibrational and Electronic Energy Levels Database (http://webbook.nist.gov/chemistry). - ⁵⁰ P. F. Souter and L. Andrews, J. Am. Chem. Soc. **119**, 7350 (1997). - ⁵¹ S. B. H. Bach, C. A. Taylor, R. J. Van Zee, M. T. Vala, and W. Weltner Jr., J. Am. Chem. Soc. **108**, 7104 (1986); L. Andrews, M. Zhou, G. L. Gustev, and X. Wang, J. Phys. Chem. A **107**, 561 (2003). - ⁵² J. W. Kauffman, R. H. Hauge, and J. L. Margrave, J. Phys. Chem. **89**, 3541 (1985). - ⁵³ Z. L. Xiao, R. H. Hauge, and J. L. Margrave, J. Phys. Chem. **96**, 636 (1992); X. Wang and L. Andrews, J. Phys. Chem. A **107**, 570 (2003). - ⁵⁴ J. Szczepanski, C. Wehlburg, M. Vala, J. Phys. Chem. A **101**, 7039 (1997). - ⁵⁵ R. E. Kinzer, Jr., C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys.
125, 074513 (2006). - ⁵⁶ A. V. Arbuznikov and M. Hendrickx, Chem. Phys. Lett. **320**, 575 (2000). - ⁵⁷ Y. -B. Yuan, K. -M. Deng, Y. -Z. Liu, and C. -M. Tang, Chin. Phys. Lett. **23**, 1761 (2006). - ⁵⁸ E. Gonzalez, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. **125**, 044504 (2006) and references therein. - ⁵⁹ C. M. L. Rittby, unpublished work (2007). - ⁶⁰ J. Szczepanski, S. Eckern, M. Vala, J. Phys. Chem. A **101**, 1841 (1997). - ⁶¹ B. Tremblay, M. E. Alikhani, L. Manceron, J. Phys. Chem. A **105**, 11388 (2001). - ⁶² L. A. Hanlan, H. Huber, E. P. Kundig, B. R. McGarvey, G. A. Ozin, J. Am. Chem. Soc. **97**, 7054 (1975). - ⁶³ B. Tremblay, L. Manceron, G. L. Gustev, L. Andrews, H. Partridge, III, J. Chem. Phys. 117, 8479 (2002); M. Zhou, L. Andrews, J. Phys. Chem. A 102, 10025 (1998). - ⁶⁴ W. E. Billups, S. -C. Chang, R. H. Hauge, J. L. Margrave, J. Am. Chem. Soc. **117**, 1387 (1995), and references therein. - ⁶⁵ M. Zhou, B. Liang, and L. Andrews, J. Phys. Chem. A **103**, 3013 (1999). - ⁶⁶ G. V. Chertihin, A. Citra, L. Andrews, C. W. Baushlicher, Jr., J. Phys. Chem. A **101**, 8793 (1997). - ⁶⁷ G. Maier, H. P. Reisenauer, U. Schafer, H. Balli, Angew. Chem. **100**, 590 (1988). - ⁶⁸ D. E. Milligan and M. E. Jacox, J. Chem. Phys. **51**, 277 (1969). - ⁶⁹ S. A. Bates, unpublished work (2007). - ⁷⁰ R. H. Kranze, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. **105**, 5313 (1996). - ⁷¹ R.E. Kinzer, Jr., C.M.L. Rittby, and W.R.M. Graham, J. Chem. Phys., *in preparation*. - ⁷² N. A. Cannon, A. I. Boldyrev, X. Li, and L. –S. Wang, J. Chem. Phys. **113**, 2671 (2000), and references therein. - ⁷³ C. W. Bauschlicher, Jr., S. R. Langhoff, and L. G. M. Pettersson, J. Chem. Phys. **89**, 5747 (1988); G. L. Gustev, P. Jena, and R. J. Bartlett, J. Chem. Phys. **110**, 2928 (1999). - ⁷⁴ L. B. Knight, Jr., S. T. Cobranchi, J. O. Herlong, and C. A. Arrington, J. Chem Phys. **92**, 5856 (1990). - ⁷⁵ C. R. Brazier, J. Chem. Phys. **98**, 2790 (1993); A. Thoma, N. Caspary, B. E. Wurfel, and V. E. Bondybey, J. Chem. Phys. **98**, 8458 (1993). - ⁷⁶ D. Tzeli and A. Mavridis, J. Phys. Chem. A **105**, 1175 (2001), and references therein; D. Tzeli and A. Mavridis, *ibid*. **105**, 7672 (2001). - ⁷⁷ X. Zheng, Z. Wang, and A. Tang, J. Phys. Chem. A **103**, 9275 (1999). - ⁷⁸ A. Largo, P. Redondo, and C. Barrientos, J. Am. Chem. Soc. **126**, 14611 (2004). - ⁷⁹ A. I. Boldyrev, J. Simons, X. Li, and L. –S. Wang, J. Am. Chem. Soc. **121**, 10193 (1999). - ⁸⁰ X. Li, L. -S. Wang, N. A. Cannon, and A. I. Boldyrev, J. Chem. Phys. **116**, 1330 (2002). - 81 A. I. Boldyrev, J. Simons, X. Li, W. Chen, and L. -S. Wang, J. Chem. Phys. 110, 8980 (1999). - ⁸² X. Li, L. -S. Wang, A. I. Boldyrev, and J. Simons, J. Am. Chem. Soc. **121**, 6033 (1999). - ⁸³ A. I. Boldyrev, J. Simons, X. Li, and L. –S. Wang, J. Chem. Phys. **111**, 4993 (1999). - ⁸⁴ Q. Sun, Q. Wang, X. G. Gong, V. Kumar, and Y. Kawazoe, Eur. Phys. J. D **18**, 77 (2002), and references therein. - ⁸⁵ X. Li and L. –S. Wang, Phys. Rev. B **65**, 153404 (2002), and references therein. - ⁸⁶ D. E. Bergeron, A. W. Castleman, Jr., T. Morisato, and S. N. Khanna, Science **304**, 84 (2004), and references therein. - ⁸⁷ A. Largo, P. Redondo, and C. Barrientos, J. Phys. Chem. A **106**, 4217 (2002). - ⁸⁸ G. Li and Z. Tang, J. Phys. Chem. A **107**, 5317 (2003). - ⁸⁹ P. Redondo, C. Barrientos, and A. Largo, Int. J. Qm. Chem. **96**, 615 (2004). - 90 P. Redondo, A. Largo, F. García, and C. Barrientos, Int. J. Qm. Chem. 84, 660 (2001). - ⁹¹ S. A. Bates, J. A. Rhodes, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. **127**, 064506 (2007). - 92 R. E. Kinzer, Jr., C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. 128, 164312 (2008). - ⁹³ L. Andrews, T. R. Burkholder, and J. T. Yustein, J. Phys. Chem. **96**, 10182 (1972), and references therein; D. A. Lynch, Jr., M. J. Zehe, and K.D. Carlson, J. Phys. Chem. **78**, 2361 (1976). - ⁹⁴ G. V. Chertihin and L. Andrews, J. Phys. Chem. **97**, 10295 (1993). - ⁹⁵ P. Pullumbi, Y. Bouteiller, L. Manceron, and C. Mijoule, Chem. Phys. **185**, 25 (1994). - ⁹⁶ C. Xu, L. Manceron, and J. P. Perchard, J. Chem. Soc. Faraday Trans. **89**, 1291 (1993); A. Feltrin, M. Guido, and S. Nunziante Cesaro, Vib. Spectrosc. **8**, 175 (1995). - ⁹⁷ G. V. Chertihin, I. L. Rohzanskii, L. V. Serebrennikov, and V. F. Shevel'kov, Zh. Fiz. Khim. **62**, 2256 (1988). - 98 L. Zhang, J. Dong, M. Zhou, and Q. Qin, J. Chem. Phys. **113**, 10169 (2000). - ⁹⁹ T. R. Burkholder and L. Andrews, Inorg. Chem. **32**, 2491 (1993). - ¹⁰⁰ R. H. Hauge, J. W. Kauffman, and J. L. Margrave, J. Am. Chem. Soc. **102**, 6005 (1980). - ¹⁰¹ Q. Kong, M. Chen, J. Dong, Z. Li, K. Fan, and M. Zhou, J. Phys. Chem. A **106**, 11709 (2002). - ¹⁰² J. C. Stephens, E. E. Bolton, H. F. Shaefer, III, and L. Andrews, J. Chem. Phys. **107**, 119 (1997). - ¹⁰³ I. L. Rozhanskii, G. V. Chertihin, L. V. Serebrennikov, and V. F. Shevel'kov, Sh. Fiz. Khim. **62**, 2351 (1988). - ¹⁰⁴ I. L. Rozhanskii, L. V. Serebrennikov, and V. F. Shevel'kov, Vestn. Mosk. Univ. Khim. **43**, 560 (1988). - ¹⁰⁵ L. V. Serebrennikov, S. B. Osin, and A. A. Mal'tsev, J. Mol. Struct. **81**, 25 (1982). - ¹⁰⁶ J. Szczepanski, R. Hodyss, and M. Vala, J. Phys. Chem. A **102**, 8300 (1998). - ¹⁰⁷ R. H. Kranze, P. A. Withey, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. **103**, 6841 (1995). - ¹⁰⁸ L. N. Shen and W. R. M. Graham, J. Chem. Phys. **91**, 5115 (1989). - ¹⁰⁹ V. M. Rayón, P. Redondo, C. Barrientos, and A. Largo, Chem. Eur. J. **12**, 6963 (2006), and references therein. - H. J. Hwang, O.–K. Kwon, and J. W. Kang, Solid State Comm. 129, 687 (2004); W. Y. Choi, J. W. Kang, and H. J. Hwang, Phys. Rev. B 68, 193405 (2003). - ¹¹¹ V. M. Rayón, P. Redondo, C. Barrientos, and A. Largo, J. Phys. Chem. A **111**, 6345 (2007). - ¹¹² S. A. Bates, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys., to be submitted (2008). - ¹¹³ S. L. Wang, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. **107**, 6032 (1997). - ¹¹⁴ R. H. Hauge, Z. H. Kafafi, and J. L. Margrave, *Physics and Chemistry of Small Clusters*, edited by P. Jena, B. K. Rao, and S. N. Khanna, (Plenum 1987), 787; X. Wang, L. Andrews, L. Manceron, and C. Marsden, J. Phys. Chem. A **107**, 8492 (2003); L. Andrews and X. Wang, J. Am. Chem. Soc. **125**, 11751 (2003). - ¹¹⁵ S. –C. Chang, Z. H. Kafafi, R. H. Hauge, W. E. Billups, and J. L. Margrave, J. Am. Chem. Soc. **109**, 4508 (1987). - ¹¹⁶ X. Wang and L. Andrews, Inorg. Chem. **44**, 9076 (2005). - ¹¹⁷ G. V. Chertihin, L. Andrews, and C. W. Bauschlicher, Jr., J. Phys. Chem. A **101**, 4026 (1997), and references therein; L. –S. Wang, H. Wu, S. R. Desai, and L. Lou, Phys. Rev. B **53**, 8028 (1996); H. Wu, S. R. Desai, and L. –S. Wang, J. Phys. Chem. A **101**, 2103 (1997). - ¹¹⁸ M. Zhou and L. Andrews, J. Chem. Phys. **111**, 4548 (1999), and references therein. - ¹¹⁹ D. Moran, A. C. Simonetti, F. E. Leach, III, W. D. Allen, P. v. R. Schleyer, and H. F. Schaeffer, III, J. Am. Chem. Soc. **128**, 9342 (2006). - ¹²⁰ S. A. Bates, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys., in preparation (2008). - ¹²¹ M. E. Jacox, D. E. Milligan, N. G. Moll, and W. E. Thompson, J. Chem. Phys. **43**, 3754 (1965); R. L. DeKock and W. Weltner, Jr., J. Am. Chem. Soc. **93**, 7106 1971). - ¹²² S. E. Kooi, B. D. Leskiw, and A. W. Castleman, Jr., Nano Letters, 1, 113 (2001). - ¹²³ R. Selvan, L. Gowrishankar, and T. Pradeep, Proc. Indian Acad. Sci. (Chem. Sci.), **113**, 681, (2001). - ¹²⁴ D. Majumdar, S. Roszak, and K. Balasubramanian, J. Chem. Phys., **118**, 130 (2003). - ¹²⁵ P. Redondo, C. Barrientos, and A. Largo, J. Chem. Theor. Comp. 2, 885 (2006). - ¹²⁶ Supporting information for Ref. 125, which can be obtained at http://pubs.acs.org. - ¹²⁷ Z. L. Xiao, R. H. Hauge, and J. L. Margrave, J. Phys. Chem. **95**, 2696 (1991). - ¹²⁸ L. Zhang, J. Dong, and M. Zhou, Chem. Phys. Lett. **335**, 334 (2001). - ¹²⁹ G. V. Chertihin, W. D. Bare, and L. Andrews, J. Phys. Chem. A **101**, 5090 (1997). - ¹³⁰ M. Zhou and L. Andrews, J. Phys. Chem. A **103**, 2066 (1999). - ¹³¹ E. Gonzalez, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys., *submitted*. #### VITA Personal Sarah Anne Bates Background Born on 30 June 1981, York, PA Eldest daughter of William A. and M. Ann Bates Education Diploma (summa cum laude), Red Lion Area Sr. High, Red Lion, PA, 1999. > B.S. (cum laude), Physics & Astronomy; B.A. (cum laude), Philosopy; Japanese and mathematics minors, Texas Christian University, Ft. Worth, TX, 2003. Ph.D., Physics, Texas Christian University, Ft. Worth, TX, 2008. Research Assistant, Baylor University, Research Experience for Undergraduates (REU), June 2001-August 2001 > Physics Tutor, Texas Christian University, January 2004- December 2005 Teaching Assistant, Texas Christian University, January 2001-present Research Assistant, TCU Molecular Physics Laboratory, Texas Christian University, June 2003-present Memberships American Physical Society Texas Space Grant Consortium Fellowship recipient (2003-2006) Barnett Scholar (2003-2004) American Physical Society Graduate Student Presentation Award (2006) Student Research Symposium Graduate Presentation Award (2007) Research Stipend from the Welch Foundation (2003-2008) **Publications** 1. S. A. Bates, C. M. L. Ritby, and W. R. M. Graham Fourier transform infrared isotopic study of linear CrC_3 : Identification of the $v_1(\sigma)$ mode, J. Chem. Phys. 125, 074506 (2006). > 2. S. A. Bates, J. A. Rhodes, C. M. L. Rittby, and W. R. M. Graham, Fourier transform infrared observation of the $v_l(\sigma)$ mode of linear CoC_3 trapped in solid Ar, J. Chem. Phys. 127, 064506 (2007). 3. S. A. Bates, C. M. L. Rittby, and W. R. M. Graham, FTIR observation and DFT study of the AlC_3 and AlC_3Al linear chains trapped in solid Ar, J. Chem. Phys., in preparation (2008). 4. S. A. Bates, C. M. L. Rittby, and W. R. M. Graham, *The Vibrational* Spectrum of CuC₃: An FTIR
and DFT Investigation, J. Chem. Phys., in preparation (2008). Experience Awards #### **ABSTRACT** # FOURIER TRANSFORM INFRARED ISOTOPIC STUDIES ON NOVEL METAL-CARBON CLUSTERS TRAPPED IN Ar MATRIX ENVIRONMENTS by Sarah Anne Bates, Ph.D. 2008 Department of Physics and Astronomy Texas Christian University #### Dissertation Advisor: Dr. W. R. M. Graham, Professor of Physics and Astronomy, Director of the Graduate Program The characterization of the vibrational spectra and structures of small metal–carbon (M_nC_m) clusters is important to the detection of astrophysical species and may elucidate the bonding and growth mechanisms of metallocarbohedrenes, or metcars. Additionally, transition metal–carbon clusters have applications in modern materials science as catalysts for nanomaterial formation. A new experimental apparatus for the preparation of M_nC_m clusters has been designed and constructed, incorporating a new closed cycle refrigeration system, a chamber for the deposition of samples, associated vacuum system, and a fully automated mechanism to simultaneously translate and rotate carbon and metal rods during laser ablation. A new technique for fabricating carbon rods has been developed to expedite carbon rod production and to facilitate the formation of the M_nC_m clusters studied. Fourier transform infrared (FTIR) investigations have been done for the first time on transition metal—carbon clusters. The molecular clusters were formed by trapping the products from dual laser ablation of metal and carbon rods in solid Ar at ~10 K. Comparing FTIR measurements of vibrational fundamentals and ¹³C isotopic shifts with the predictions of density functional theory (DFT) calculations has enabled the identification of five novel metal—carbon molecules, establishing their ground state geometries and permitting the assignment of vibrational fundamentals, including the $v_1(\sigma)$ modes of (${}^5\Pi$) linear CrC₃, (${}^2\Delta$) linear CoC₃, and (${}^2\Pi$) linear CuC₃ at 1789.5, 1918.2, and 1830.0 cm⁻¹, respectively, the $v_3(\sigma_u)$ =1624.0 and $v_4(\sigma_u)$ =528.3 cm⁻¹ modes of (${}^1\Sigma_g^+$) linear AlC₃Al, and the $v_2(\sigma)$ =1210.9 cm⁻¹ mode of linear AlC₃. Evidence for the tentative identification of the $v_1(a_1)$ =1554.3 cm⁻¹ mode of (3B_1) fanlike CrC₄ and the $v_4(\sigma_u)$ =1987.3 cm⁻¹ mode of (${}^1\Sigma_g^+$) linear AlC₄Al is also presented. All FTIR measurements of vibrational frequencies and 13 C shifts are in very good agreement with DFT predictions, resulting in the first identification of vibrational fundamentals and the characterization of molecular geometries for these species specifically and for transition metal–carbon clusters in general. A catalog of potential V_n C_m absorptions has also been developed to aid in future vanadium-carbon studies.