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CHAPTER I. INTRODUCTION 

Quantum chemistry is a field where quantum theory is applied to the interactions of 

electrons and nuclei in order to understand the formation and behavior of molecular 

systems.1,2 In particular, quantum chemical models have been developed in order to solve 

the electronic many-body problem, which is central for a basic understanding of the 

formation of molecular bonds and chemistry. Of particular interest for the field of 

molecular spectroscopy is the ability of quantum chemical models to produce accurate 

electronic, vibrational, and rotational transition frequencies to be compared with 

experimental results.3 The gradual evolution in the accuracy of the theoretical methods 

along with the rapid decrease in cost of large computer calculations/simulations have led to 

an increasingly synergistic approach in the study of molecular structure. 

Of particular interest to the TCU Molecular Physics Laboratory is the ability to 

accurately predict equilibrium structures and vibrational spectra. To achieve this in a 

computationally feasible way one commonly invokes the Born-Oppenheimer 

approximation,4,5 which consists of the approximate separation of the electronic and 

nuclear motions in a molecular system. The total Hamiltonian for the electronic and nuclear 

motion in the space fixed frame can be written 

( ) ( ) ( )2

1

1
, ; ;

2

N
eN e nuc eH H T H

m α
α α=

= − ∇ + ≡ +∑r R r R r R    (1.1) 

where R  denotes all of the nuclear coordinates and r  all of the electronic coordinates. 

H e r;R( ) is the total electronic Hamiltonian 

H e r;R( )= H 0 r;R( )+ H rel r;R( )      (1.2) 

with H 0 r;R( ) being the non-relativistic Born-Oppenheimer Hamiltonian 
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H 0 r;R( )= −
1

2
∇i

2

i=1

M

∑ −
Zα

Rα − riα ,i
∑ +

1

2

1

ri − rj

+
1

2i≠ j

M

∑
Zα Zβ

Rα − Rβα ≠ β
∑   (1.3) 

and H rel r;R( ) encompassing the relativistic contributions (see Ref. 5 and 6). The semi-

colon used in the coordinate arguments indicates that the nuclear coordinate is treated as a 

parameter as opposed to as a dynamical variable in the expression. 

The total wave function ΨL
eN r,R( ) can be expanded in a complete set of electronic 

states commonly chosen to be the eigenstates of the electronic Hamiltonian, i.e. 

 ΨL
eN r,R( )= Ψ I

0 r,R( )FI
L R( )

I
∑       (1.4) 

with 

H 0 r;R( )Ψ I
0 r;R( )= EI

0 R( )Ψ I
0 r;R( )     (1.5) 

Inserting the ansatz for the wave function above into the Schrödinger equation and taking 

the dot product with the electronic basis states leads to a set of coupled differential 

equations for the nuclear motion. In the Born-Oppenheimer approximation the interstate 

couplings are ignored (see Ref. 7) and the nuclear motion is treated independently for each 

electronic state 

 T nuc + EI
0 R( )( )FI R( )= EFI R( )      (1.6) 

The electronic energy, which depends on the nuclear coordinates, thus provides a multi-

dimensional potential energy surface (PES)8 on which the nuclei move. The topology of 

this surface determines the equilibrium structures of the system through its local and global 

energy minima and forms the basis for the vibrational motion about such equilibria. 
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For simplicity we will denote the particular potential energy surface under 

consideration by 

V R( )= EI
0 R( )        (1.7) 

To begin analyzing the vibrational motion we first Taylor expand this potential about an 

equilibrium nuclear configuration, noting that the first derivatives are zero at such a point 

    

V R( )=
1

2

∂2V

∂x
i
∂x

j

⎛

⎝
⎜

⎞

⎠
⎟
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∑
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⎛

⎝
⎜
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⎟
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∑ x

i
x

j
x

k
+K   (1.8) 

where ix  are the nuclear Cartesian coordinates and the indices ,i j  run over all the 

coordinates of the N nuclei from 1 to 3N, following the convention 

1 1 1 2 2 2, , , , , , , , ,N N Nx y z x y z x y zK .  

For small (low energy) oscillations one typically employs the harmonic 

approximation, which consists of truncating the series after the quadratic terms9  

   

V R( )=
1

2

∂2V

∂x
i
∂x

j

⎛

⎝
⎜

⎞

⎠
⎟

i, j
∑

eq

x
i
x

j
       (1.9) 

In the framework of the harmonic approximation, fundamental vibrational 

frequencies of molecules iω  are obtained by diagonalizing the force constant matrix xF , 

whose elements are simply the second derivatives of the potential 

ω2 = UM−1/2FxM
−1/2U†

Fx[ ]ij
=

∂2V

∂xi∂xj

   ;    M[ ]ij
= miδ ij    ;    ω[ ]ij

= ω iδ ij

    (1.10) 

where im  are the nuclear masses. The matrix U  in turn defines the normal mode 

coordinates via 
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Q

ir
= u(ir)

js
q

js
=

s=1

3

∑
j=1

N

∑ u(ir)
js

m
j
x

js
s=1

3

∑
j=1

N

∑       (1.11) 

and the harmonic vibrational Hamiltonian can be expressed as a sum of harmonic 

oscillators Hamiltonians 

 
2 23 3 3

2
0 2

1 1 1 1 1 1

1

2 2

N N N

js js js
j s j s j sjs

H k Q H
Q

∂
∂= = = = = =

= − + =∑∑ ∑∑ ∑∑h
    (1.12) 

The sequence of approximations outlined above give rise to a highly tractable set of 

equations by which we may find approximate equilibrium structures as well as approximate 

transition energies. 

In the TCU Molecular Physics Laboratory we regularly perform theoretical 

calculations based on the approximations above in order to aid in the identification of new 

molecular species.10,11 Although the approximate theoretical vibrational frequency can be 

useful in such identifications, far more greater predictive power can be obtained by 

employing the method of isotopic substitution in order to provide a more unique “finger 

print” for a particular system. 

 In the harmonic approximation it is particularly simple to obtain the exact shift in 

the vibrational frequency resulting from a change in the isotopic masses of a molecule 

since they are readily obtained from a re-diagonalization of the mass-weighted force 

constant matrix.12,13  Isotopic spectra can thus be readily generated for given isotopic mixes 

in order to model the result of a specific experiment. In reverse, the isotopic signature 

obtained in an experiment can also be used in order to deduce geometrical and 

constitutional properties of the source molecule. 

 In addition to being of use in identifying new molecular species, the isotopic effect 

can be used to probe a potential in order to provide additional information about the 
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theoretically obtained potential energy surface. In general, theoretical calculations offer 

good predictions of isotopic spectra; however, the two approximations that define the 

harmonic approximation affect the calculation of fundamental vibrational frequencies and 

isotopic shifts. The inaccuracies related to the calculation of the force constant matrix give 

rise to errors of the harmonic frequencies and the neglect of the higher order terms of the 

Taylor’s series expansion of the nuclear potential introduces errors related to the 

anharmonicity of the actual nuclear potential. These factors give rise to deviations that are 

reflected in the comparison between theoretical and experimental isotopic spectra, and 

understanding the details of these deviations can provide clues about the significance of 

improving specific parts of the theory. 

As a result of the above inaccuracies, the vibrational fundamental frequencies 

calculated in the harmonic approximation are typically higher in frequency than the 

corresponding experimental measurements. More sophisticated and computationally 

expensive quantum chemistry methods can provide successively improved values for 

harmonic frequencies but become increasingly intractable for larger molecules. In addition, 

anharmonic corrections can be included either through the calculation of an extended 

potential energy surface on which the nuclear motion can be obtained by various 

techniques (see Ref. 14 and 15) or by the use of perturbation theory using the higher order 

derivatives of the Taylor expansion of the potential.16,17,18 In essence there is a harmonic 

limit which would be based on the exact knowledge of the leading term of the Taylor 

expansion as well as an anharmonic limit which would include the additional terms 

exactly. For small systems current methods are close to reaching both these limits but for 

larger systems one still has to deal with approximate results. 
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In practice when studying a particular vibrational transition, the theoretically 

obtained frequency values are scaled by a uniform scaling factor so as to make the 

frequency one of the isotopomer frequencies in coincidence with the experimental value. 

Since we in the TCU FTIR laboratory predominantly study carbon cluster this typically 

means scaling the theoretical value to the isotopomer with all 12C isotopes. 

For such a scaling procedure to be accurate two conditions must be fulfilled: i) that 

the harmonic approximation is valid and ii) that the error in the force constant can be 

corrected by scaling each matrix element by the same constant, α 2 . Under these conditions 

we have that the scaled frequencies are obtained from  

2 2 1/ 2 2 1/ 2 †
scaled xα α− −= UM F M U2ω = ω       (1.13) 

Both of these conditions can be more or less accurate depending on the system. In practice 

one finds that i) different theoretical harmonic frequencies scale by different scaling factors 

and that ii) anharmonic effects are mass dependent and that all isotopomers therefore do 

not scale in the exact same way. 

In our group, the application of perturbation theory in the study of isotopically 

shifted frequencies has offered a better understanding of the behavior of the molecular 

vibrational frequencies upon isotopic substitutions. By treating isotopic substitutions as 

mass perturbations, analytical finite order expressions for first and second order 

contributions to isotopic shifts have allowed us to more fully understand and predict when 

the traditional method of calculating isotopic frequencies breaks down. In fact, even though 

isotopic shifts can be calculated exactly in the harmonic approximation, we find that the 

shifted frequencies for molecules having near-lying vibrational fundamentals may be 

highly sensitive to the details of the harmonic force constant matrix. 
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By analyzing the isotopic shifts to second order in perturbation theory, symmetry-

allowed interactions or couplings between vibrational modes of a molecule may for 

example arise as a result of an isotopic substitution (see ref. 19). A typical second order 

expression in Rayleigh-Schrödinger perturbation theory (RSPT) 

2

(2)
0 0

i
p n

n
p n i n p

W
E

E E

ϕ ϕ

≠
=

−∑∑        (1.14) 

where 0
nE  is the unperturbed energy of a state nϕ  and W  represents a perturbation shows 

that a large shift in energy, and therefore in transition frequency, can result if the matrix 

element in the numerator is non-zero and the denominator becomes small. Thus, something 

that in a first approximation would seem to be a property of a particular vibrational mode, 

i.e. how it responds to a change in mass, becomes something that depends on more global 

properties of the potential energy surface. Similarly, by analyzing the anharmonic response 

of the system to a change in mass one can gain insights into how important such effects are 

for the system. In addition, when anharmonic theoretical calculations are feasible and 

anharmonic information can be extracted from experiment, such information can be used to 

aid in the identification of new molecular species. 

In the TCU Molecular Physics Laboratory FTIR experiments together with 

concomitant theoretical modeling of molecular structures and spectra has been a highly 

successful approach in identifying new molecular species.20,21,22,23,24,25 In particular, the 

method of isotopic substitution has proved to be a key approach in such identifications. Of 

particular interest in this work are the isotopic spectra of pure carbon clusters, both 

linear26,27,28,29,30,31 and cyclic.32,33 Such clusters have been the topic of intense study due to 
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their relevance in the broader picture of carbon chemistry,34,35,36 including the formation of 

fullerenes.37,38 

The number of vibrational fundamentals increases for a linear molecule with 

N atoms as 3N − 5  (see Ref. 31). Out of these, N − 1 are stretching modes and the 

remaining 2N − 4  are bending modes ( N − 2  if one consider that they are doubly 

degenerate). The infrared transition probability for the excitation of a stretching 

fundamental is typically several orders of magnitude larger than for bending modes making 

stretching modes much more accessible to spectroscopic analysis. By considering a linear 

vibrating mass model system one can also show that such systems exhibit a maximum 

fundamental frequency.39 Together with the fact that the number of fundamentals increases 

with the number of atoms, the density of vibrational fundamentals increases with chain 

length. As a result, the probability of longer carbon chains having several fundamentals 

close in frequency increases. Lately, this has proven to be a challenge to the application of 

the method of isotopic substitution to longer carbon chains.40 As discussed above, such 

situations lead to uncertainties in the predicted isotopic spectral pattern due to the 

possibility of interactions between several vibrational fundamentals. Cárdenas recently 

presented assignments to a number of new linear carbon chains based on work in the TCU 

Molecular Physics Laboratory (see Ref. 40). Many of these assignments and identifications 

were tentative due to the fact that the theoretical predictions could be shown to have large 

uncertainties, augmented by the fact that the experimental spectra included contributions 

from a large number of clusters with overlapping isotopic spectra.  

In addition to the issues of the level of accuracy of the calculated harmonic isotopic 

spectrum one also has to consider the relevance of anharmonic corrections. In practice such 
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corrections have typically been ignored and expected to be more or less made irrelevant 

when studying isotopic spectra by the scaling procedure described above. However, 

anharmonic effects are readily observable in our spectra and in cases with complicated and 

overlapping spectra, taking anharmonicity into account may show to be important. 

 In brief, the main goal of the present work has been to investigate two main 

theoretical issues related to the calculation of isotopic shift spectra: 

• Sensitivity of simulated isotopic spectra due to the interactions of vibrational 

fundamentals   

• Sensitivity of simulated isotopic spectra due to the anharmonicity of the interaction 

potential. 

From the investigation of these issues, two theoretical methods were developed as 

an attempt to aid in the interpretation of experimental isotopic spectra of homonuclear 

molecules. 

Thus, the present work has been structured as follows: Chapter II presents the 

theoretical framework of how this work was developed. Chapter III addresses the 

sensitivity of simulated isotopic spectra that is produced by the interactions of vibrational 

fundamentals. This chapter also introduces an approach for the interpretation of isotopic 

spectra, called the isotopic deperturbation method, which was designed to aid dealing with 

the aforementioned sensitivity. The applicability of this method is demonstrated on the 

isotopic spectra of linear Cn (n= 3, 12). Chapter IV addresses the effects of anharmonicity 

on isotopic spectra of homonuclear molecules. Also, this chapter introduces a method to 

estimate the anharmonicity of vibrational fundamentals from isotopic shift measurements, 

which arose from our attempt to understand the effects of anharmonicity on isotopic shifts. 
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The applicability of this method is illustrated on experimental isotopic shift measurements 

of carbon clusters. Finally, Chapter V presents the conclusions and future work of this 

investigation. 

CHAPTER II. THEORETICAL FRAMEWORK 

As noted earlier, the Born-Oppenheimer Approximation and the Harmonic 

Approximation are typically employed in the description of the nuclear motion in a 

molecule in order to make the problem more tractable. 

The Born-Oppenheimer approximation2,4,5 consists of the separation of the 

electronic and nuclear motions as a consequence of the small mass ratio between electrons 

and nuclei. In this approximation the electrons’ motion is assumed to take place in a field 

with fixed nuclei since the nuclei’s motion is considerably slower than the electrons’ 

motion.2 This assumption allows one to calculate the variations of the energy in a 

molecular system for different fixed-nuclei-configurations, generating the Potential Energy 

Surface (PES) on which the nuclear motion takes place (see Ref. 8). 

While considering motion near potential minima we furthermore approximate the 

PES to the first (non-zero) term in its Taylor expansion, giving rise to the Harmonic 

Approximation. 

2.1. The Harmonic Approximation  

As mentioned, the harmonic approximation for small oscillations in nuclear 

vibrational motion consists of expanding the PES in Taylor’s series about a local minimum 

point, (i.e., about an equilibrium position of the nuclei), and truncating the expansion after 

the quadratic term.9 
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In this expansion, the potential at the local minimum is chosen for convenience to 

be zero, and the first derivatives of the potential with respect to the nuclear Cartesian 

coordinates vanish since they are evaluated about a critical point. Thus, for this 

approximation, the quadratic terms are the only remaining terms in the expansion, leading 

to a vibrational Hamiltonian 

3 3
2

0
1 1 1

1 1

2 2

N N N

i ij i j
i i ji

H f x x
m= = =

= − ∇ +∑ ∑∑       (2.1) 

The first term in Eq. (2.1) represents the sum of the kinetic energies of the N nuclei, and ijf  

in the second term represent the second derivatives of the potential with respect to the 

coordinates ix . Here the indices ,i j  run over all the coordinates of the N nuclei from 1 to 

3N, following the convention 1 1 1 2 2 2, , , , , , , , ,N N Nx y z x y z x y zK . We reiterate that relativistic 

effects as well as mass-polarization and coupling terms appearing in the separation of the 

nuclear and electronic motion7 have been neglected in this Hamiltonian. 

The relevance of truncating the expansion of the PES rests upon the introduction of 

a new set of coordinates, named normal coordinates jQ , which are formed by linear 

combinations of the nuclei Cartesian coordinates. This set of coordinates allows the 

transformation of the Hamiltonian (2.1) into a set of independent harmonic oscillator 

Hamiltonians (see Appendix A for details) 

23 3 3
2

0 2
1 1 1

1 1

2 2

N N N

j j j
j j jj

H k Q H
Q

∂
∂= = =

= − + =∑ ∑ ∑      (2.2) 

From a classical point of view the motions described by the normal coordinates jQ  

represent the normal modes of vibration of a molecule, that is, the set of fundamental 

motions whose linear superposition describes the actual vibration of the molecule. 
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2.1.1. Vibrational Frequencies and the “Exact” Calculation of Isotopic Shifts 

The introduction of normal coordinates reduces the problem of finding the 

fundamental frequencies of the normal modes of vibration to an algebraic problem 

consisting of the diagonalization of the mass-weighted Cartesian Hessian matrix (see 

Appendix A) 

1/ 2 1/ 2
x

− −M F M          (2.3) 

Here, the matrix elements of the Cartesian Hessian matrix xF  correspond to the second 

derivatives of the PES with respect to the nuclear Cartesian coordinates  

[ ]
2

x ijij
i j

V
f

x x

∂= =
∂ ∂

F         (2.4) 

and the matrix 1/ 2−M  is formed with the reciprocal of the square root of the atomic masses 

on its diagonal. 

Thus, fundamental vibrational frequencies are given by 

2 1/ 2 1/ 2 †
(0) (0) (0)x

− −= U M F M Uω        (2.5) 

where 2
(0)ω  is a diagonal matrix whose elements are the square of the vibrational 

frequencies (0)ω . (0)U  represents the matrix that diagonalizes 1/ 2 1/ 2
x

− −M F M , with its 

columns containing the vibrational modes of the molecule. For convenience, the subscript 

(0) is used to distinguish from the case that follows. 

The vibrational fundamentals of a molecule experience a frequency shift when 

isotopic substitutions in one or more atoms of the molecule occur; these frequency shifts 

are referred to as isotopic shifts. In the framework of the harmonic approximation, the 

exact calculation of isotopic shifts consists of changing the masses in the matrix elements 
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of M  that correspond to the specific substituted atoms, leading to a matrix ′M , and 

repeating a diagonalization process 

2 1/ 2 1/ 2 †
x

− −′ ′= UM F M Uω        (2.6) 

It is worth noting that the same Cartesian force-constant matrix xF  is used to 

calculate the isotopically shifted frequencies because the electronic motion in the Born-

Oppenheimer approximation is decoupled from the vibrational motion, and does not 

depend on the nuclear masses. 

2.2. Rayleigh-Schrödinger Perturbation Theory 

Perturbation theory plays a fundamental role in our investigation of the effects 

produced by isotopic substitutions, and the anharmonic nature of the PES on the vibrational 

frequencies of a molecule. 

In the framework of quantum mechanics, physical conservative systems are studied 

by means of solving the eigenvalue equation of the Hamiltonian operator.41 However, only 

a limited number of physical systems are simple enough to have an exact analytical 

solution of the eigenvalue equation. 

Perturbation theory is an approximation method that makes it possible to obtain 

approximated analytical solutions for some of the physical systems that can not be solved 

exactly. The applicability of perturbation theory is confined to physical systems whose 

Hamiltonian H  can be expressed as 

0H H W= +          (2.7) 

where the operator 0H  represents the Hamiltonian of a system whose eigenvalues 0
nE  and 

eigenvectors nϕ  are known. W  represents a small correction to the Hamiltonian, 
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containing “less significant” effects of the physical system, which were initially neglected 

in 0H . The operator 0H  is called the “unperturbed Hamiltonian” and W  is called the 

“perturbation”. For conservative systems these operators are time-independent, and the 

approximation method is thus called stationary perturbation theory. 

The perturbation W  is assumed to be proportional to a real-dimensionless 

parameter λ , which is smaller than 1 and characterizes the intensity of the perturbation 

  
ˆ

1

W Wλ
λ

=


         (2.8) 

The Hamiltonian (2.7) is thus written as 

( ) 0
ˆH H Wλ λ= +         (2.9) 

where the unperturbed Hamiltonian obeys the eigenvalue equation  

0
0 n n nH Eϕ ϕ=         (2.10) 

and ( )H λ  obeys the equation 

( ) ( ) ( ) ( )H Eλ ψ λ λ ψ λ=        (2.11) 

The approach followed by perturbation theory to find the modifications introduced 

by the perturbation is based on the expansion of the eigenvalues and eigenvectors of ( )H λ  

in powers of λ  

( ) 0 1
q

qE λ ε λε λ ε= + + + +K K       (2.12) 

( ) 0 1 q qψ λ λ λ= + + + +K K       (2.13) 

The coefficients of expansion qε  and vectors q  are found by substituting Eqs. (2.9), 

(2.12) and (2.13) in Eq. (2.11), and equating the coefficients of successive orders of λ  on 
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both sides (see Ref. 41). The use of Eq. (2.10)  and the normalization condition for ( )ψ λ  

is also required for this process. 

  In the case of a non-degenerate eigenvalue 0
nE  of the unperturbed Hamiltonian 0H , 

associated with the eigenstate nϕ , the analytical expressions for the perturbation theory 

expansions of the energy and stationary state, corrected to second order in λ  by the 

introduction of a perturbation W , are given by 

( )
2

0
0 0

p n

n n n n
p n n p

W
E E W

E E

ϕ ϕ
λ ϕ ϕ

≠

= + + +
−∑ K     (2.14) 

 

( ) ( )( )

( )

0 0 0 0 0 0

20 0

l p p np n

n n p l
p n p n l nn p l p n p

l n
n n l

l n
n l

W WW

E E E E E E

W
W

E E

ϕ ϕ ϕ ϕϕ ϕ
ψ λ ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ ϕ

≠ ≠ ≠

≠

= + +
− − −

− +
−

∑ ∑∑

∑ K

 (2.15) 

 In practice, when perturbation theory is used for studying a physical system, the 

terms shown in the energy expansion in Eq. (2.14) are typically the most significant terms. 

This approximation method is originally applied under the assumption that the perturbation 

W  is small,* therefore, a fast convergence of the series is expected. These terms are 

referred to as the 0th, 1st and 2nd-order corrections, respectively 

                                                 
* The perturbation W  is considered to be small when its matrix elements are much smaller than the 

differences between the eigenvalues of 0H . 
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(0) 0

(1)

2

(2)
0 0

n n

n n n

p n

n
p n n p

E E

E W

W
E

E E

ϕ ϕ

ϕ ϕ

≠

=

=

=
−∑

       (2.16) 

 The Eqs. (2.16) have been used in the present work to derive analytical expressions 

for the first- and second-order corrections to the harmonic vibrational frequencies of a 

molecule, when isotopic substitutions and anharmonic effects are treated as perturbations. 

2.3. Occupation Number Representation 

The derivations regarding the perturbation theory treatment of isotopic substitutions 

and anharmonic effects that are presented in this work have been developed in the 

occupation number representation.  

As mentioned in Section 2.1, the Hamiltonian describing molecular vibrations in 

the harmonic approximation corresponds to a set of independent harmonic oscillator 

Hamiltonians [see Eq. (2.2)]. The simplest and most common approach to obtaining the 

quantum spectrum of a set of harmonic oscillator Hamiltonians is by solving its eigenvalue 

equation in the occupation number representation { }n .42 In this representation the states 

of the vibrational Hamiltonian (2.2) are considered as the states of a system consisting of 

many quasi-particles (phonons), where each of these states is filled with a certain number 

of identical quasi-particles. Thus, a state rn  in the number representation contains n 

phonons with the same energy, rωh . 
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The occupation number representation arises from the introduction of two 

operators, ra  and †
ra , defined as a linear combination of the generalized coordinates ˆ

rQ  

and momenta r̂P  (with 1=h  and the mass 1m = ) 

†

ˆ ˆ
2

ˆ ˆ
2

r
r r r

r

r
r r r

r

i
a Q P

i
a Q P

ω
ω

ω
ω

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

       (2.17) 

Based on the form in which these operators act on the states rn , ra  and †
ra  are interpreted 

as operators annihilating and creating a particle in the many-phonon system with states 

rn  

† 1 1

1

r r r r

r r r r

a n n n

a n n n

= + +

= −
       (2.18) 

The operators (2.17) satisfy the commutation relations 

  

†
,

† †

,

, , 0

r s r s

r s r s

a a

a a a a

δ⎡ ⎤ =⎣ ⎦
⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

       (2.19) 

and any state rn  can be expressed in terms of the ground state of the system, this is, when 

0rn =  for all rn , by means of the following recurrence relation 

( )†1
0

!

n

r r

r

n a
n

=         (2.20) 

The vibrational Hamiltonian (2.2) is written in the occupation number 

representation by solving for the operators ˆ
rQ  and r̂P  from Eq. (2.17) 
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( )

( )

†

†

1ˆ
2

ˆ
2

r r r
r

r
r r r

Q a a

P i a a

ω

ω

= +

= −

        (2.21) 

 and making use of the commutation relations (2.19) (see Ref. 42). Thus, the vibrational 

Hamiltonian in the occupation number representation takes the form  

 †
0

1

1

2

M

r r r
r

H a aω
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑        (2.22) 

The eigenvalues of the Hamiltonian (2.22) are given by 

1

1

2

M

n r r
r

E nω
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑         (2.23)  

where 0,1, 2,3rn = K  Writing the vibrational ground state energy as ( 0rn =  for all rn ) 

0
1

1

2

M

r
r

E ω
=

= ∑          (2.24)  

the eigenvalues given by Eq. (2.23) can be written as 

0
1

M

n r r
r

E E nω
=

= +∑         (2.25)  

This expression supports what was mentioned earlier in this section; an excited vibrational 

state of a molecule is equivalent to a system of quasi-particles, with rn  quasi-particles in 

the state r and frequency rω . 

In order to develop a perturbation theory treatment of isotopic substitutions and 

anharmonic effects in the number representation, the Eqs. (2.21) are used to express the 

respective perturbations in terms of the creation and annihilation operators. The Eqs. (2.18) 

through (2.20) are applied during the evaluation of the matrix elements of these 
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perturbations, which appear in the expressions for the corrections to different orders in 

perturbation theory. 

2.4. Isotopic Substitution as a Mass Perturbation 

As mentioned earlier, isotopically shifted frequencies can be calculated exactly 

using the procedure described in Section 2.1.1. However, in addition to the exact 

calculation given by Eq. (2.6), we have found value in studying the effects of isotopic 

substitution using perturbation theory by considering an isotopic mass substitution as an 

isotopic mass perturbation. The matrix multiplication on Eq. (2.6) does not offer a simple 

view of how the normal modes contained in the matrix U  contribute to the frequency 

shifts. In contrast, the application of perturbation theory has allowed us to obtain analytical 

finite order expressions for isotopically shifted frequencies, providing a better 

understanding of the behavior of the molecular vibrational frequencies upon isotopic 

substitutions.  

For the perturbation theory treatment, the Hamiltonian describing the nuclear 

motion in the harmonic approximation plays the role of the unperturbed Hamiltonian 0H  

for a specific set of nuclear masses { }im  

23 3
2

0 2
1 1

1 1

2 2

N N

j j
j jj

H k Q
Q

∂
∂= =

= − +∑ ∑       (2.26) 

Note that the mass dependence in Eq. (2.26) is implicit in the normal mode coordinates jQ , 

which depend on the mass-weighted Cartesian coordinates (see Appendix A). 



 

    20

A substitution of the nth nuclear mass ( )nm i  of a molecule, by an isotope with 

mass ( )nm f , produces a difference in the nuclear kinetic energy that can be added in the 

form of the following perturbation to the unperturbed Hamiltonian (2.1): 

2 21 1
( )

2 ( ) 2 ( )n n n
n n

W i f
m i m f

→ = ∇ − ∇        (2.27) 

where i and f stand for initial and final mass, respectively. Multiple isotopic substitutions 

on K atoms of a molecule are described by the sum of single isotopic mass perturbations 

2 2

1 1

1 1
( )

2 ( ) 2 ( )

K K

iso n n n
n n n n

W W i f
m i m f= =

⎛ ⎞
= → = ∇ − ∇⎜ ⎟

⎝ ⎠
∑ ∑     (2.28) 

The perturbed Hamiltonian is thus written as: 

0 isoH H W= +          (2.29) 

In order to simplify later derivations, the mass perturbation [Eq. (2.28)] is written in 

the number representation, in which the wave functions are mass independent; all mass 

dependence is contained in the mass perturbation when Eq. (2.28) is expressed in terms of 

the ladder operators (see Appendix B). As mentioned earlier, the unperturbed Hamiltonian 

in the number representation has the form 

†
0

1

1

2

M

r r r
r

H a aω
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑        (2.30) 

Also, the isotopic mass perturbation in the number representation takes the form (see 

Appendix B): 

[ ]
(0) (0)

† †

1 1

( )
1 ( ) ( )( )( )

4 ( )

M K
r s n

iso n n r r s s
rs n n

m i
W K u r u s a a a a

m f

ω ω
= =

⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠
∑∑ r r

  (2.31) 
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where (0)
rω  represents the fundamental vibrational frequency associated with the normal 

mode coordinate rQ . The vectors ( )nu r
r

 are the vectors containing the mass-weighted 

Cartesian coordinates describing the motion of an individual atom in normal mode r. 

It is important to note that the mass ratio of the initial and final isotopic masses, as 

well as the vibrational fundamentals (0)
rω , play a determinant role in modulating “the 

strength” of the perturbation given by Eq. (2.31). In general, these factors will determine 

the overall convergence rate of the series in the perturbation expansion. 

 In the following sections the isotopic perturbation (2.31), will be used to calculate 

the first- and second-order corrections to an isotopic shift. 

2.4.1. First Order Treatment  

It has been stated in Section 2.2 that the first order correction to the energy 

associated with a state tϕ  in non-degenerate perturbation theory is given by 

(1)
t t tE Wϕ ϕ=         (2.32) 

Experimentally, a fundamental absorption is measured when a transition from the ground 

state to a single excited vibrational state occurs. Therefore, the first order correction to the 

frequency shift of a vibrational fundamental, (0)
tω , produced by the isotopic mass 

perturbation [Eq. (2.31)], is given by ( )1=h  

( ) [ ] [ ] [ ]1 0 0t t iso t isoK W K W Kω ϕ ϕΔ = −      (2.33) 

where tϕ  represents a single excited vibrational state. Showing the derivation in 

Appendix C, Eq. (2.33) takes the form 
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[ ]
(0)

2(1)

1

( )
1 ( )

2 ( )

K
t n

t n
n n

m i
K u t

m f

ωω
=

⎛ ⎞
Δ = − −⎜ ⎟

⎝ ⎠
∑ r

     (2.34) 

The first order correction in a perturbation theory expansion represents the most 

predominant term. Equation (2.34) shows that for a given vibrational fundamental, an 

isotopic shift is mainly determined by the square of the mass-weighted normal mode vector 

( )nu t
r

 of the substituted nucleus. Thus, the isotopic spectrum of a given vibrational mode 

of a molecule can be roughly predicted to first order by simple inspection of the nuclear 

normal displacements of that specific mode. 

As it will be discussed later, the present work is focused on the study of isotopic 

shifts associated with single isotopic substitutions. Therefore, the first order correction 

(2.34) for the particular case of a single isotopic substitution (K = 1) simplifies to 

[ ] ( )
( )

(0)
2(1) 1 ( )

2
nt

t n
n

m i
n u t

m f

ωω
⎛ ⎞

Δ = − −⎜ ⎟⎜ ⎟
⎝ ⎠

r
     (2.35) 

2.4.2. Second Order Treatment  

The second order correction to the energy in non-degenerate perturbation theory is 

given by 

2

(2)
0 0

u t
t

u t t u

W
E

E E

ϕ ϕ

≠
=

−∑        (2.36) 

For a fundamental vibrational frequency, the second order contribution to the 

frequency shift of a transition from the ground state to a single excited vibrational state, t , 

produced by the isotopic mass perturbation [Eq. (2.31)] is given by ( 1=h )  

( ) [ ] [ ] [ ]2 (2) (2)
0t tK K Kω ω ωΔ = −       (2.37) 

The analytical expression of the second order correction takes the form (see appendix D) 
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( ) [ ]

2

12

2

1

( )
1 ( ) ( )

4 ( )
4

( )
1 ( ) ( )

4 ( )
4

K
t u n

n n
nn

t
t uu t

K
t u n

n n
nn

t uu

m i
u t u u

m f
K

m i
u t u u

m f

ω ω

ω
ω ω

ω ω

ω ω

=

≠

=

⎛ ⎞
−⎜ ⎟

⎝ ⎠Δ =
−

⎛ ⎞
−⎜ ⎟

⎝ ⎠−
+

∑
∑

∑
∑

r r


r r


    (2.38) 

Again, considering the particular case of single isotopic substitutions ( 1K = ), the 

second order contribution to an isotopic shift is given by 

[ ]

( )
( ) ( ) ( )

( )
( ) ( ) ( )

2
(0) (0)

(2)
(0) (0)

2
(0) (0)

(0) (0)

1
4

4

1
4

4

nt u
n n

n

t
u t t u

nt u
n n

n

u t u

m i
u t u u

m f
n

m i
u t u u

m f

ω ω

ω
ω ω

ω ω

ω ω

≠

⎛ ⎞
−⎜ ⎟

⎝ ⎠Δ =
−

⎛ ⎞
−⎜ ⎟

⎝ ⎠−
+

∑

∑

v v


v v


   (2.39) 

In general, the calculation of an isotopically shifted frequency to second order in 

perturbation theory represents a good approximation. But, most important, the analytical 

expression of the second order correction [Eq. (2.39)] allows us to understand the 

dependence of an isotopically shifted frequency on  the frequencies and nuclear normal 

mode displacements of other vibrational modes; those vibrational modes whose nuclear 

displacements are not orthogonal to the nuclear displacement of the normal mode under 

study. 

In essence, the first and second terms in Eq. (2.39) depend on the same variables, 

however, the denominators make these terms different. The first term may take a large 

magnitude when a small denominator results for vibrational fundamentals that are close in 
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frequency. This term is therefore referred to as the resonant term, whereas the second term 

(the non-resonant term) is usually smaller as a consequence of the sum on its denominator. 

The products of the normal displacements ( ) ( )n nu t u u
r r

  in Eq. (2.39) give rise to interactions 

or couplings between vibrational modes upon isotopic substitution, involving the errors of 

the calculated vibrational fundamentals of other modes in the calculation of the second 

order corrections of isotopic shifts. The involvement of these errors in the calculations may 

introduce complications for some cases. These complications and a suggested approach to 

help dealing with them will be explained in detail in Chapter III. 

2.4.3. Self-Shift to Infinite Order  

 There are some cases where vibrational modes of a molecule remain uncoupled 

after a particular isotopic substitution. A particular mode, t, remains uncoupled when 

( ) ( )n n rtu r u t δ=r r
  for all substituted atoms n. In such a case the isotopic mass perturbation 

in Eq. (2.31) reduces to  

 

[ ]
(0)

2 † 2

1

(0) (0)
† †

1

( )
1 ( ) ( )

4 ( )

( )
1 ( ) ( )( )( )

4 ( )

K
t n

iso n t t
n n

M K
r s n

n n r r s s
rs t n n

m i
W K u t a a

m f

m i
u r u s a a a a

m f

ω

ω ω

=

≠ =

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠

⎛ ⎞
+ − − −⎜ ⎟

⎝ ⎠

∑

∑∑

r

r r


  (2.40) 

It can be shown that for the uncoupled mode, t, the harmonic isotopic frequency is now 

given to infinite order by 

1/ 2
2 (0)1 ( )

( )
1

( )

t n n t
n

n
n

n

u t

m i

m f

ω λ ω

λ

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

∑ r

      (2.41) 
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We refer to the isotopic shift given by Eq. (2.41) as the self-shift to infinite order since this 

frequency shift represents the sum of all the contributions that result from the coupling of 

the mode t with “itself”. 

Furthermore, for a homonuclear system subjected to a uniform shift of all nuclear 

masses we find that all modes are uncoupled due to the orthogonality of the normal mode 

coordinates derived from the unitary matrix U. Thus, Eq. (2.41) reduces to 

1/ 21/ 2
2 (0) (0)( )

1 ( )
( )t n t t

n

m i
u t

m f
ω λ ω ω⎛ ⎞⎛ ⎞′ = − = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ r

    (2.42) 

for all vibrational modes. 

 The Eqs. (2.40) and (2.42) will be specially useful in the “Application and 

Discussion” section in Chapter IV. 
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CHAPTER III. MODE INTERACTION 

3.1. Introduction 

As mentioned in Section 2.4.2, interactions or couplings between vibrational modes 

arise in the calculation of isotopic shifts as a consequence of isotopic substitutions. 

Specifically, the couplings between vibrational modes are caused by the products of mass-

weighted normal mode vectors ( ) ( )n nu t u u
r r

 , found in Eq. (2.39). The strength of these 

couplings is modulated by the aforementioned products and the denominators of each term 

in Eq. (2.39). In the case of molecules possessing near-lying vibrational fundamentals, the 

treatment to second order in perturbation theory of isotopically shifted frequencies face 

problems related to coupling effects. For molecules with near-lying vibrational 

fundamentals, the contribution of the second order correction to the isotopic shifts may 

become significant due to a small denominator of the first (resonant) term in Eq. (2.39). 

The isotopic shift calculation then becomes highly sensitive to the accuracy of the force 

constant matrix since the errors (originated from all of the approximations assumed) in the 

calculated vibrational fundamentals and normal mode displacements also become 

significant in the calculated second order correction.  

In addition to the theoretical complications, experimental complications also arise 

for molecules with near-lying vibrational fundamentals. Experimentally, isotopic spectra of 

molecules with near-lying vibrational fundamentals exhibit a large number of absorptions 

in a small region of the spectrum, which significantly complicates its interpretation. The 

“congestion” in the experimental spectrum, combined with the high sensitivity of the 

calculations due to the strong interaction between vibrational modes, challenges the 
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reliability of the band assignment in the comparison of experimental and theoretical 

isotopic spectra. Thus, the present work introduces an approach, that we call the isotopic 

deperturbation method, designed to aid reducing these complications. This approach allows 

a comparison between experimental and theoretical isotopic shifts in which the effects of 

the interactions between vibrational modes (coupling effects) that result from second order 

contributions are not involved. Contrastingly, the approach allows for an additional 

comparison of the coupling effects exhibited by the experimental and theoretical isotopic 

shifts, in order to determine whether or not the errors introduced by the interactions 

between vibrational modes are contributing to the discrepancies between theory and 

experiment. 

3.2. Method 

The isotopic deperturbation method has been developed to aid in the interpretation 

of isotopic spectra of non-degenerate vibrational modes of homonuclear molecules AXn, 

where X represents an element, A the mass number and n the number of atoms. 

It is worth noting that this method is applicable to isotopic shifts due to single and 

multiple isotopic substitutions, however, in the present work only isotopic shifts due to 

single substitutions have been used in the description and application of this method, for 

theoretical and experimental reasons. From the perturbation theory perspective, a multiple 

substitution produces a larger perturbation than a single substitution (see Eq. (2.28)). 

Therefore, a faster convergence of the perturbation theory expansion will occur with a 

perturbation due to single substitution, which is convenient for reducing the significance of 

the higher order terms. Experimentally, an adequate isotopic abundance ratio in the sample 

can be determined for which the probability of observing absorptions in the spectrum due 
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to multiple substitutions is lowered substantially. Thus, mainly single isotopic shifts of a 

vibrational fundamental are detected, reducing the number of absorptions in the spectrum 

and simplifying its interpretation. 

An essential condition for the application of this method is the availability of two 

complementary isotopic spectra: one with measurements of a vibrational fundamental of all 

AX species and the isotopic shifts caused by single BX isotopic substitutions; and another 

one with measurements of a vibrational fundamental of all BX species and the single AX 

isotopic shifts. 

From the point of view of molecular vibrations, AXn and BXn species are analogous 

systems. The isotopic mass perturbation AW , which is used to calculate isotopic shifts that 

are produced by single BX substitutions in an otherwise all AX species, is linearly related to 

the isotopic mass perturbation BW  that is used to calculate isotopic shifts that are produced 

by single AX substitutions in an otherwise all BX species. It can be noticed from the mass 

ratio appearing in Eq. (2.31) that the perturbations AW  and BW  are related as 

1
B AW W

γ
= −          (3.1) 

where γ  is defined in terms of the isotopic masses, Am  and Bm , of the respective isotopes 

AX and BX 

A

B

m

m
γ ≡          (3.2) 

The relation given in Eq. (3.1) will be used in the present work to introduce the 

following approach that allows one eliminating the effects of the second order 
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contributions from the theoretical and experimental isotopic shifts of the fundamental 

vibrational frequencies of the AXn
 and BXn species. 

An isotopically shifted frequency, Aω , of an all AX vibrational fundamental, (0)
Aω , 

can be written in a perturbation theory expansion as 

( )

0

i
A A

i

ω ω
∞

=
=∑          (3.3) 

Similarly, an isotopically shifted frequency, Bω , of an all BX vibrational fundamental, (0)
Bω , 

can be written as 

( )

0

i
B B

i

ω ω
∞

=
=∑          (3.4) 

In the harmonic approximation, the frequency (0)
Aω  of a given vibrational mode of an all AX 

species is related to the frequency (0)
Bω  of an all BX species by  

(0) (0)
B Aω γω=          (3.5)  

Making use of Eq. (3.1), the bracketing theorem (see Appendix E) and Eq. (3.5), the 

different orders of a shifted frequency Bω  in Eq. (3.4) can be expressed in terms of the 

orders of the shifted frequency Aω  [Eq. (3.3)] as 

( )(0) ( )
2 1

1

1
i

i
B A Ai

i

ω γω ω
γ

∞

−
=

−
= +∑        (3.6) 

 By applying the following “mirror” transformation to Eq. (3.6), a frequency mirrorω  

can be obtained for the shifted frequency in Eq. (3.6) 

( )(0) 4 31mirror A Bω ω γ γ ω= + −        (3.7)  
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so the second order correction is conveniently adjusted to be equal in magnitude and 

opposite in sign to its counterpart in Eq. (3.3) 

( ) 1

(0) 2 (1) (2) ( )
2 4

3

1
i

i
mirror A A A Ai

i

ω ω γ ω ω ω
γ

+∞

−
=

−
= + − +∑      (3.8)  

Thus, the second order terms of a pair of isotopically shifted frequencies, Aω  and mirrorω , 

can be completely eliminated by taking the average between Eq. (3.3) and Eq. (3.8) 

( ) ( ) ( ) ( ) ( )
2 2 4 6

0 1 3 4 5

1 1 1
1 1 1

1
0

2 2 2 2AVG A A A A A

γ γ γ γω ω ω ω ω ω

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛ ⎞+
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + + + + + +⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

K  

           (3.9)  

Within the harmonic approximation, Eq. (3.9) allows the entire elimination of the 

coupling effects related to the second order terms, as well as the suppression of the even 

order terms. However, a limit for the applicability of this approach arises in Eq. (3.9). The 

factors multiplying the third and higher order terms in this equation grow significantly 

as 0γ → , resulting in significant contributions of those terms to AVGω . At the same time, 

using Eq. (2.31) and the bracketing theorem one can find that the ith order correction ( )i
Aω  

depends on γ  as 

( ) ( )21
ii

Aω γ∝ −         (3.10) 

which implies that the convergence of the perturbation theory expansion in Eq. (3.9) can be 

challenged when 1γ  . Therefore, the approach introduced here to reduce the coupling 

effects from the comparison between experimental and theoretical isotopic shifts is 

applicable to cases where 
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1A

B

m

m
γ ≡ ≈          (3.11) 

A scaled non-degenerate first order (SNDFO) shifted frequency SNDFO
Aω  is obtained 

by applying the following scaling factor to an isotopically shifted frequency calculated in 

non-degenerate first order (NDFO) 

( ) ( )
2

0 11

2
SNDFO
A A A

γω ω ω⎛ ⎞+= + ⎜ ⎟
⎝ ⎠

       (3.12) 

Thus, an SNDFO shifted frequency [Eq. (3.12)] can be compared with an averaged 

isotopically shifted frequency [Eq. (3.9)]. The coupling effects resulting from second order 

contributions are not involved in this comparison, which represents the essence of the 

isotopic deperturbation method. 

3.2.1. Application of the Mirror Transformation to Experimental Isotopic Shifts  

In the harmonic approximation, the theoretical vibrational fundamentals of an all 

AX and an all BX species, (0)
Aω  and (0)

Bω , respectively, are related by Eq. (3.5). However, 

because of anharmonicity the experimental values of these vibrational fundamentals, 

( )0 ,exp
Aω  and ( )0 ,exp

Bω , are related by a slightly different scaling factor, γ ′ , defined as 

( )

( )

0 ,exp

0 ,exp
B

A

ωγ
ω

′ =          (3.13) 

When working with experimental measurements this small correction has to be taken into 

account in the perturbation BW . Therefore, the relation with the perturbation  AW  is given 

by 

B AW W
γ
γ
′

= −          (3.14) 
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Following the same procedure discussed in section 3.2, the mirror transformation in Eq. 

(3.7) is slightly modified to 

( ) ( )
4

0 41mirror A B

γω ω γ ω
γ

= + −
′

       (3.15) 

Thus, the mirrored frequency of an experimental isotopic shift exp
Bω  is given by: 

( ) ( )
4

0 ,expexp 4 exp1mirrored A B

γω ω γ ω
γ

= + −
′

      (3.16) 

After a mirrored experimental isotopic shift exp
mirroredω  is calculated by Eq. (3.16), the 

average frequency between exp
mirroredω  and its counterpart exp

Aω  is calculated in order to reduce 

the effects related to the second order terms from the experimental measurements: 

exp exp
exp

2
mirrored A

AVG

ω ωω +=         (3.17) 

The partial approach suggested by the isotopic deperturbation method consists of 

finding the average frequency of a pair of experimental isotopic shifts [using Eq. (3.17)], 

and comparing it with the corresponding SNDFO isotopic shift. The complete procedure 

for the application of this method is described next. 

3.2.2. Isotopic Deperturbation Method  

Provided that harmonic frequencies and the “standard” calculation of isotopic shifts 

are available (see Section 2.1.1), the application of the isotopic deperturbation method 

consists of the following steps: 

a) The application of the mirror transformation [Eq. (3.15)] to the calculated and 

experimental single isotopic shifts Bω  of the all BX vibrational fundamental under 

consideration. 
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b) The calculation of the average frequency [Eq. (3.17)] for each pair of experimental 

isotopic shifts exp
Aω  and exp

mirroredω . 

c) The calculation to first order in perturbation theory of the single isotopic shifts in 

question using Eq. (2.35), and scaled by Eq. (3.12), in order to be compared with 

the average of the experimental isotopic shifts calculated in step (b). 

After the application of the procedure described above, the relative positions and 

spacing among the isotopic shifts produced by a substitution on a particular molecular site 

can be interpreted by means of Eqs. (2.35) and (2.39). 

3.3. Application of Isotopic Deperturbation Method to Linear 

Carbon Chains 

The isotopic deperturbation method has been applied in the interpretation of 

infrared isotopic spectra of linear Cn (n = 3 – 12, 15, 18) (see Ref. 43). Some of these 

carbon chains ( 7n ≥ ) have near-lying vibrational fundamentals and their experimental 

isotopic spectra exhibit those problems related to the normal mode interaction.  

For each of these carbon chains two complementary isotopic spectra were available:  

one with a vibrational fundamental of the all 12C species and its single 13C isotopic shifts; 

and its counterpart with the all 13C vibrational fundamental and the single 12C isotopic 

shifts. The first set of measurements is observed in a low 13C enrichment spectrum, 

resulting from an experiment in which a 90% 12C: 10% 13C ratio is used. We refer to this 

spectrum as 90/10 spectrum. For similar reasons we refer to the later isotopic spectrum as 

10/90 spectrum. As required, the 12C and 13C isotopes satisfy the condition stated in Eq. 

(3.11) 
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Harmonic frequencies and normal mode displacements have been calculated with 

the Gaussian 0344 program suite. For all linear Cn (n = 3 – 12, 15, 18), the calculation of the 

force constant matrices were carried out at the same level of theory, DFT/B3LYP with the 

cc-pVDZ basis set, in order to keep it as a “fixed parameter” since the object of study of 

the present work is the effects of the interactions originated in the harmonic approximation. 

The results obtained after the application of the isotopic deperturbation method to 

linear Cn (n = 3 – 12, 15, 18) can be separated in three groups; the results obtained from: i) 

the already identified45 vibrational modes of linear Cn (n = 3 – 6), ii) the recently assigned40 

vibrational modes of linear Cn (n = 7 – 12), and iii) the tentative assignments of the 

vibrational modes of linear Cn (n = 15, 18). These results are presented in the following 

subsections. 

3.3.1. Linear Cn (n = 3 – 6)   

 The isotopic deperturbation method was initially tested by applying it to the 

interpretation of the isotopic spectra of the already identified vibrational modes of linear Cn 

(n = 3 – 6). Even though these carbon chains have “well separated” vibrational 

fundamentals and their isotopically shifted frequencies are not expected to experience 

complications related to strong coupling effects, the application of the method provided 

beneficial feedback for later applications on longer carbon chains. 

 The application of the method to the isotopic spectra of the asymmetric stretching 

mode of linear C3 is presented in detail as an illustration. Only this representative case will 
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be discussed in detail since a similar outcome is found, and the same conclusions can be 

drawn, when the method is applied to the other chains (n = 4 – 6). 

Linear C3 

Figure 1 shows the application of the isotopic deperturbation method to the isotopic 

spectra of the ν3(σu) mode of linear C3.  

The following conventions are used on the Figures: labels c1, c2, c3, etc. indicate 

sets of experimental and predicted isotopic shifts due to a single isotopic substitution on the 

1st, 2nd, 3rd, etc. position of a carbon chain, respectively. The exact spectrum in blue 

represents a theoretical simulation that shows the calculated 13C isotopic shifts of a 

vibrational fundamental of an all 12C species. The mirrored spectrum in red represents a 

simulation that shows the calculated 12C isotopic shifts of a vibrational fundamental of an 

all 13C species after the application of the mirror transformation given by Eq. (3.15). The 

isotopic shifts simulated in the exact and mirrored spectra correspond to an exact 

calculation using the method described in section 2.2.1. The SNDFO spectrum in green 

also simulates the 13C isotopic shifts of an all 12C vibrational fundamental, but these 

isotopic shifts are calculated to first order in perturbation theory and scaled by Eq. (3.12). 

 Experimental isotopic shifts are represented by vertical lines (see Figures), obeying 

the same color convention that is used on the simulations. The blue vertical lines represent 

experimental 13C isotopic shifts. The red vertical lines represent experimental 12C isotopic 

shifts, after applying the mirror transformation given by Eq. (3.16). The green vertical lines 

represent the average frequencies between the pairs of experimental 13C and mirrored-12C 

isotopic shifts, calculated with Eq. (3.17). 
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Figure 1. Application of the isotopic deperturbation method to the isotopic spectra of the ν3(σu) mode of 
linear C3 

 

Table 1 shows the normal displacements and harmonic frequencies of the stretching 

modes of linear C3. It is important to note that the normal mode displacements of the 

stretching modes of linear C3 are completely determined by the normalization and fixed-

center-of-mass constrains. Therefore, these normal mode displacements of linear C3 always 

take the same values, irrespective of the level of theory that is used to calculate the 

harmonic frequencies.   
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Stretching 
Mode 

Frequency (cm-1)  
Normal Mode Displacement Vector 

( ) ( )1 2 3, ,nu t u u u=r
 

ω1(σg) 1241.6519  ( )1nu
r

 (0.71, 0.00, -0.71) 

ω3(σu) 2157.8096  ( )3nu
r

 (-0.41, 0.82, -0.41) 

Table 1. Normal mode displacements and harmonic frequencies of the stretching modes of linear C3, 

calculated at the DFT/B3LYP level with the cc-pVDZ basis set. 

 

Single isotopic substitutions are possible at positions c1 and c2 for linear C3; 

substitutions on positions c1 and c3 are equivalent. A description to first order in 

perturbation theory with the aid of Eq. (2.35), given by 

[ ] ( )
( )

(0)
2(1) 1 ( )

2
nt

t n
n

m i
n u t

m f

ωω
⎛ ⎞

Δ = − −⎜ ⎟⎜ ⎟
⎝ ⎠

r
      

allows us to understand that an isotopic substitution on position c1, with the smallest 

normal displacement, produces the smallest isotopic shift [see Table 1, Eq. (2.35) and 

Figure 1]. In addition to the small normal displacement of this molecular site, there is a 

large frequency difference between the ω3(σu) and the ω1(σg) vibrational fundamentals, 

predicted to be about 916 cm-1 (see Table 1). This produces a large denominator in both 

terms of Eq. (2.39), given by 
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resulting in a small second order correction or weak coupling between these normal modes. 

The spacing and relative positions of a pair of 13C and mirrored-12C isotopic shifts is 

referred to as the coupling effects since these patterns result from the interaction or 

coupling between vibrational modes upon isotopic substitution. The small coupling effects 

are indicated in Figure 1 by the small “separation” between the harmonic 13C and mirrored-

12C isotopic shifts, showing good agreement with the respective experimental isotopic 

shifts. 

Qualitatively speaking, the SNDFO isotopic shifts for molecular sites c1 and c2 in 

Figure 1, determined with Eq. (3.12), are equal to the average frequencies between each 

pair of harmonic 13C and mirrored-12C isotopic shifts, given by Eq. (3.9). This can be 

noticed in Figure 1 because the SNDFO isotopic shifts appear in the middle of the 

frequency interval between the pairs of harmonic 13C and mirrored-12C isotopic shifts. This 

implies that third and higher orders in Eq. (3.9) are negligible and therefore the treatment to 

second order in perturbation theory is sufficient. 

The isotopic shifts due to isotopic substitution of position c2 illustrate the 

contribution of the non-resonant term in Eq. (2.39). For this substitution, there is no 

coupling between the ω3(σu) and ω1(σg) vibrations because the normal displacement of the 
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central position is zero for the symmetric stretch ω1(σg) (see Table 1). The second order 

contribution to the isotopic shift results from the second term in Eq. (2.39), the non-

resonant term, because this term sums over all normal modes; it includes the coupling of 

the ω3(σu) vibration with itself. The negative sign of the non-resonant term produces a shift 

to the low frequency side of the NDFO isotopic shift for both the 13C and 12C harmonic 

isotopic shifts. However, the shift for the harmonic 12C isotopic shift appears to be inverted 

to the higher frequency side of the NDFO isotopic shift because it has been mirrored. The 

“spacing” between the harmonic 13C and the mirrored-12C isotopic shifts can be interpreted 

as an effect of the “self-coupling” of this mode (see Figure 1). Again, experimental isotopic 

shifts exhibit good agreement with the simulations. 

Overall, three main qualitative aspects are consistent in the behavior of the 

experimental and theoretical isotopic shifts (see Figure 1), and we suggest the comparison 

of these aspects as an aid for the correct assignment of isotopic shifts in future work: 

1. The relative positions of each set of experimental isotopic shifts are 

consistent with the relative positions of the predicted isotopic shifts. 

2. The spacing among the set of experimental isotopic shifts 

corresponding to a particular substitution is approximately equal to 

the spacing exhibited by the analogous prediction. 

3. The average frequency of a set of experimental isotopic shifts is not 

always equal to the corresponding SNDFO isotopic shift, but these 

frequencies are relatively close. 
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Thus, the inspection of points (1-3) can help determining whether or not the effects 

of the interaction between vibrational modes are contributing to complicate the 

interpretation of the spectra. 

 In addition to the analysis of the isotopic spectra of linear C3 in terms of coupling 

effects, which is offered by the isotopic deperturbation method, evidence of anharmonic 

effects are found in the comparison between the harmonic and experimental isotopic shifts 

of the central position, c2, shown in blue and red in Figure 1. First of all, the normal 

displacements of the stretching modes of a tri-atomic molecule are completely determined 

from the normalization condition and the condition regarding the stationary center of mass. 

That is, the nuclear normal displacements of these modes are unique. Second, there is no 

coupling between the ω3(σu) vibration and the other vibrational modes for an isotopic 

substitution on the central position. In other words, this isotopic shift depends uniquely on 

the normal displacement of the central position. Thus, if the vibration were harmonic and if 

it is assumed that the absorption at 2038.9 cm-1 represents the harmonic vibrational 

fundamental ν3(σu), the theoretical and experimental isotopic shifts should be identical. For 

this reason, the observed difference in the comparison between the experimental and 

harmonic isotopic shifts for this substitution is purely a consequence of the anharmonic 

vibration of the molecule. 

It is important to note that the argument regarding the anharmonic effects is only 

applicable to the isotopic shifts of the central position (c2) of linear C3. However, the level 

of agreement in the comparison of the experimental and theoretical coupling effects is the 

same for all Cn (n = 3 – 6). 
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3.3.2. Linear Cn (n = 7 – 12)   

For these carbon chains, the vibrational fundamentals that have been measured in 

our lab have a common characteristic: they are predicted to have at least another vibrational 

fundamental which is close in frequency (less than 100 cm-1). As mentioned earlier, this is 

the scenario in which strong coupling effects on isotopic shifts can occur and where the 

sensitivity of simulated isotopic spectra can increase. 

The application of the method to the isotopic spectra of the ν7(σu) mode of linear 

C12 is presented as a representative case since similar results were found when the method 

was applied to the other chains (n = 7 – 11). 

Linear C12 

For convenience, the application of the isotopic deperturbation method to the ν7(σu) 

mode of linear C12 is presented in different figures (see Figure 2 – Figure 6), showing in 

most of the cases one set of isotopic shifts in each Figure. Our discussion will be focused 

on Figure 3 – Figure 6. In Figure 2, no coupling effects occur since no isotopic shifts occur 

for isotopic substitutions on the first (c1) and second (c2) molecular sites.     
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Figure 2. Application of the isotopic deperturbation method to the isotopic spectra of the ν7(σu) mode of 
linear C12: Isotopic shifts due to substitutions on the first (c1) and second (c2) molecular sites 

 

In Figure 3 – Figure 6 the predicted coupling effects are not in excellent agreement 

with their experimental counterpart. In each figure the relative positions of a set of 

simulated isotopic shifts (blue and red spectra) are consistent with the relative positions of 

the experimental isotopic shifts (blue and red bars), which means that theory is providing a 

fair approximate description of the interactions between normal modes. However, the 

spacing exhibited by the pairs of simulated 13C and mirrored-12C isotopic shifts (blue and 

red spectra) is not in agreement with the spacing exhibited by the experimental 

counterparts (blue and red bars), which indicates that the calculations of the second and 

higher order terms are not entirely accurate. 



 

    43

In this case, the fundamental frequency of the ν7(σu) mode of linear C12 is predicted 

to have two nearby vibrational fundamentals: the ν8(σu) vibrational fundamental ~ 76 cm-1 

lower in frequency, and the ν1(σg) vibrational fundamental ~ 24 cm-1 higher in frequency. 

Particularly, the ν1(σg) normal mode is a non-infrared active mode whose actual frequency 

can not be measured by means of Fourier transform infrared spectroscopy. The actual 

frequency of the ν1(σg) vibrational fundamental could be found closer or farther to the 

ν7(σu) vibrational fundamental than the predicted 24 cm-1. Since this uncertainty is involved 

in the calculation of the second and higher order contributions to the isotopic shifts, and 

this contributions are significant because ν1(σg) and ν7(σu) are nearby vibrations, the 

uncertainty also becomes significant. As a result, the predicted coupling effects are affected 

by this uncertainty and do not exhibit a good agreement with the experimental counterpart 

(see figures). 

 In addition to the uncertainty associated with the calculated second order 

contributions to the isotopic shifts, there are also errors introduced by the first order 

contributions. These errors are produced by the uncertainty of the calculated normal mode 

displacements ( )nu t
v

, which mainly determine the magnitude of the first order corrections 

[see Eq. (2.35)]. Thus, the errors arising from the calculation of the first order corrections 

are also contributing to the overall discrepancy between theoretical and experimental 

isotopic shifts.   
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Figure 3. Application of the isotopic deperturbation method to the isotopic spectra of the ν7(σu) mode of 
linear C12: Isotopic shifts due to substitution on the third (c3) molecular site 

 

Also, it can be observed in Figure 4 that the SNDFO isotopic shift for the c4 

substitution (dashed green) is not equal to the average frequency between the pair of 

theoretical 13C and mirrored-12C isotopic shifts, (the SNDFO isotopic shift is not situated in 

the middle of the frequency interval between the blue and red simulated isotopic shifts). 

From the respective equations used to calculate these frequencies 

( ) ( )
2

0 11
( 4)

2
SNDFO c

γω ω ω⎛ ⎞+= + ⎜ ⎟
⎝ ⎠

      (3.12) 

and 
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( ) ( ) ( ) ( ) ( )
2 2 4 6

0 1 3 4 5

1 1 1
1 1 1

1
( 4)

2 2 2 2AVG c
γ γ γ γω ω ω ω ω ω

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛ ⎞+
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + + + + +⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

K  

(3.9) 

it can be easily noticed that this deviation observed in Figure 4, which corresponds to the 

difference between the SNDFO isotopic shift SNDFOω  and the average frequency AVGω , is 

proportional to the third and higher order contributions to the calculated isotopic shift of 

the c4 substitution (see Eqs. (3.9) and (3.12)). Thus, the comparison between the SNDFO 

isotopic shift and the theoretical average frequency allows us to see that the third and 

higher order terms are significant in this case, and therefore contribute to the predicted 

coupling effects for this pair of isotopic shifts. 
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Figure 4. Application of the isotopic deperturbation method to the isotopic spectra of the ν7(σu) mode of 
linear C12: Isotopic shifts due to substitution on the fourth (c4) molecular site 

 

Figure 5 also shows a scenario in which the third and higher order terms are 

contributing to the isotopic shift calculation; the SNDFO isotopic shift is not equal to the 

average frequency between the simulated 13C and mirrored-12C isotopic shifts. 
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Figure 5. Application of the isotopic deperturbation method to the isotopic spectra of the ν7(σu) mode of 
linear C12: Isotopic shifts due to substitution on the fifth (c5) molecular site 

 

Finally, Figure 6 shows an example where the isotopic deperturbation method 

works rather well. The calculated SNDFO isotopic shift for the c6 substitution (green 

dashed) is approximately equal to the average frequency between the simulated 13C and 

mirrored-12C isotopic shifts. This would suggest that the third and higher order terms are 

not significant in the isotopic shift calculation for the c6 substitution (according to the Eqs. 

(3.9) and (3.12)). Thus, the coupling effects exhibited by the isotopic shifts of the c6 

substitution are mainly produced by the second order contributions. 

As defined by the isotopic deperturbation method, the comparison between the 

SNDFO isotopic shift (green dashed) and the average frequency between the experimental 

13C and mirrored-12C isotopic shifts (green bar) does not involve coupling effects from the 
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second order contributions. Therefore, the discrepancies that appear in the comparison 

between theoretical and experimental coupling effects do not appear in the comparison 

between the SNDFO isotopic shift and the average experimental frequency. Actually, a 

very good agreement between theory and experiment is evident in the later case. 

 

 

Figure 6. Application of the isotopic deperturbation method to the isotopic spectra of the ν7(σu) mode of 
linear C12: Isotopic shifts due to substitution on the sixth (c6) molecular site 
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3.3.3. Linear Cn (n = 15, 18) 

The applicability of the isotopic deperturbation method has been challenged by the 

isotopic spectra of these molecules. 

Figure 7 and Figure 8* show the isotopic spectra of the ν10(σu) mode of linear C15 

and the ν12(σu) mode of linear C18, for different 12C:13C ratios. The Figures also show the 

overlapping isotopic spectra of other carbon chains in this frequency range. 

  

 

Figure 7. Comparison between the experimental and simulated isotopic spectra of the ν10(σu) mode of 
linear C15 and the ν12(σu) mode of linear C18. Carbon ratio: 10% 12C/ 90% 13C. 

 

                                                 
* These Figures are courtesy of R. Cárdenas – TCU Molecular Physics Laboratory.  
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Figure 8. Comparison between the experimental and simulated isotopic spectra of the ν12(σu) mode of 
linear C18. Carbon ratio: 90% 12C/ 10% 13C. 

 

The complexity of this case lies in the fact that the experimental isotopic spectra 

exhibit a large number of absorptions in a short frequency range that correspond to 

different molecular sources. There are absorptions in the experimental spectra that in some 

cases can be found within 1 cm-1, which is approximately equal to the uncertainty of the 

predicted isotopic shifts. This scenario decreases the reliability of the isotopic shift 

assignment and, as consequence, only tentative assignments of isotopic shifts can be 

proposed. 
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The isotopic deperturbation method was applied to the tentative assignments of 

isotopic shifts proposed by Cárdenas.* In this process, a good agreement was found 

between the coupling effects exhibited by the experimental and simulated isotopic shifts. 

Still, this result by itself does not provide enough arguments to consider the proposed 

assignment as definitive. 

3.4. Conclusions 

 First of all, the application of the isotopic deperturbation method to the infrared 

isotopic spectra of linear Cn (n = 3 – 12, 15, 18) allowed us to confirm that the 

experimental measurements of isotopic shifts exhibit evidence of coupling effects. 

Our initial hypothesis stated that, for molecules with near-lying vibrational 

fundamentals, the calculation of isotopic shifts to second order in perturbation theory is 

highly sensitive. The second order contributions for these molecules are more significant, 

and the uncertainties of the calculated harmonic frequencies and normal mode 

displacements, which are involved in the second order calculations, also become more 

significant. 

Our results obtained with the application of the isotopic deperturbation method 

seem to support our hypothesis. On the one hand, the results obtained for the first group of 

linear molecules (Cn, n = 3 – 6) showed that these molecules, having “well separated” 

vibrational fundamentals, do not exhibit significant discrepancies between the experimental 

and predicted coupling effects. On the other hand, the application of the method to the 

second group of carbon chains Cn (n = 7 – 12) allowed us to observe the high sensitivity in 

the prediction of coupling effects, when vibrational fundamentals are close in frequency. 

                                                 
* Experimental justification of the selection of isotopic shifts can be found in Ref. 40. 
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The ν7(σu) mode of linear C12 was a clear example of this situation, in which the predicted 

and experimental coupling effects were not always in good agreement. 

Still, comparing theory and experiment in terms of coupling effects was more 

effective than the “traditional” frequency comparison of vibrational fundamentals and 

isotopic shifts. The significance of comparing experimental and theoretical isotopic spectra 

in terms of the coupling effects is the following: In the process of comparing 

simultaneously the experimental and theoretical isotopic shifts of two analogous vibrational 

systems, all 12Cn and all 13Cn species, we are actually verifying that the discrepancies 

between theory and experiment are similar for both systems. The consistency of these 

discrepancies is expected since the same approximations are taken into account for the 

isotopic shift calculation of both systems. 

Finally, the applicability of the isotopic deperturbation method was challenged by 

the isotopic spectra of linear Cn (n = 15, 18). The large number of absorptions in the 

experimental isotopic spectra of these molecules, representing potential candidates of 

isotopic shifts, exceeded the current accuracy of the predicted isotopic shifts to determine 

the assignment. Still, the interpretation of the isotopic spectra from an experimental 

perspective, in combination with the application of the isotopic deperturbation method, 

provided elements to determine the assignment of the isotopic spectra of these long chains, 

C15 and C18. 

The clear evidence of anharmonic effects that was found in the isotopic spectra of 

linear C3, after the application of the isotopic deperturbation method, initiated our interest 

in studying the effects of anharmonicity on the calculation of isotopic shifts. 
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CHAPTER IV. ANHARMONICITY 

4.1. Introduction 

Little is known about the anharmonic effects in the vibrational spectra of carbon 

clusters. Vala and coworkers46,47 have deduced anharmonic spectroscopic constants from 

the observation of overtones and combination bands of shorter linear carbon clusters. But 

these studies do not provide direct information about the unperturbed harmonic and the 

perturbed experimentally observed frequency. 

A few theoretical studies have been presented where anharmonic corrections are 

calculated, typically by including corrections due to the cubic and quartic force fields. 

Martin and Taylor et al. have presented coupled cluster calculations for linear C3
48 and 

cyclic C4
49

 and more recently Massó et al.50 presented a study of linear C5  including 

evaluation of the anharmonicity using multiconfigurational second order perturbation 

theory. 

Botschwina and coworkers have presented anharmonic frequencies for C3
51 and 

C5
52 and have more recently (see ref. 53 and references therein) performed a systematic 

study using the coupled cluster method and large basis sets of the structure and vibrational 

spectra of the carbon chains C2n+1. Together with known experimental frequencies, 

Botschwina’s studies provide the first evidence of the actual magnitude of anharmonic 

corrections to vibrational fundamentals of such clusters in a systematic way.  

To obtain estimates of the anharmonicity directly from the observed spectra and 

without data from theoretical calculations we here propose a method based on the isotopic 

effect. Results based on existing isotopic data for carbon clusters along with comparisons 
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with theoretical calculations of the anharmonicity show the viability of the method. To the 

author’s knowledge the results presented here represent the first experimentally derived 

estimates of the anharmonicity of carbon clusters. 

4.2. Theory 

The theoretical background introduced in Chapter II will be employed in order to 

develop the method introduced here. In this section we will first find how the perturbative 

anharmonic corrections for homonuclear systems scale with a uniform change in nuclear 

mass. Subsequently, an expression independent of any calculation of a harmonic force 

constant matrix, with which we can estimate the anharmonic correction of vibrational 

fundamentals from isotopic spectra, is derived. 

4.2.1. Derivation of Mass-Reduced Perturbation Expressions   

In order to proceed we need to find out how the anharmonic contributions to the 

frequency shift scale as a function of a uniform change of the mass of a homonuclear 

system. To do so we first derive mass-reduced expressions for the perturbation due to the 

various terms of the Taylor expansion of the perturbing potential. 

 We will here assume that we are studying a homonuclear system undergoing a 

uniform isotopic mass substitution. In this case, the expression (2.5) for calculating 

harmonic fundamental frequencies can be written as 

 2 1 † 1 2
xm m− −= ≡UF U %ω ω   (4.1) 

where we for future use have defined the “mass-reduced” frequency,  %ω . In what follows 

we will denote other quantities for homonuclear systems by a tilde superscript when the 

mass-dependency has been extracted. The simple relation between the two frequencies in   
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Eq. (4.1) is the key to deduce information about the anharmonicity from experiment 

without any prior knowledge of the harmonic frequency. 

 The anharmonic terms of the Taylor expansion of the potential can be expressed in 

normal mode coordinates 
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In order to conveniently calculate the mass scaling of the perturbative corrections we 

rewrite the perturbation using what we know about the mass scaling property of the 

harmonic frequency 
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To find the mass-dependence of the coefficients 
  
f

ijk ...

p( )  we first note that the normal mode 

matrix U  in Eq. (2.5) is unitary and real. For a homonuclear system it is furthermore 

independent of a uniform change of mass [see Eq. (4.1)]. We can therefore invert the 

expression that defines the normal mode coordinates iQ , which are linear combinations of 

the Cartesian coordinates jx , mass-weighted by the nuclear masses jm  

 1/ 2
i ij j ij j j

j j

Q u q u m x= =∑ ∑   (4.5) 

Thus 
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and 
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Using Eqs. (4.2), (4.4), and (4.8) we now find that the   p 'th  term of the Taylor expansion 

scales as  

  m
p / 4m− p / 2 = m− p / 4

        (4.9)  

and we can rewrite the anharmonic terms of the Taylor expansion of the potential (4.2) in 

terms of contributions, [ ]p
anhW% , which are independent of the mass parameter m  
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   (4.10) 

4.2.2. Mass Scaling of RSPT for Harmonic Oscillators   

The anharmonic correction to the frequency due to perturbation in Eq. (4.10) can be 

analyzed by use of Rayleigh-Schrödinger perturbation theory (RSPT). Here we again 

assume a homonuclear system undergoing a uniform mass perturbation.  

The bracketing theorem (see Ref. 62) gives a compact representation of the order-

by-order frequency corrections in non-degenerate RSPT to a state n . Defining 

 
W = n W n  we have that 
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where the renormalization term,  ℜ
q( ), contains the same powers of  W  and  R  as does the 

principal term. Since the harmonic energy levels of our system depend linearly on the 

harmonic frequencies we have that the resolvent for our system scales with mass as 

1/ 2

l n l nn l n l

l l l l
R m

E E E E≠ ≠

= =
− −∑ ∑ % %

      (4.12) 

Given the scaling properties of the various terms in the anharmonic perturbation given by 

Eq. (4.10), and the resolvent given in Eq. (4.12), it is straightforward to apply the 

bracketing theorem to deduce the mass scaling property of the remaining contributions to 

the anharmonicity.  

We will focus here on the cubic and quartic terms in the expansion of the potential 

and their contributions up to second order as is typical for perturbative treatment of the 

anharmonicity (see Ref. 41). Using Eqs. (4.10) - (4.12) we can easily find how these 

corrections scales with the uniform change in mass. 

In first order only the quartic term of the potential contributes and we find 

[ ]41
anhm n W n− %         (4.13) 

In second order we get contributions from both potential terms but since they involve 

couplings with different excitations we can treat them separately. For the cubic term we 

find 

[ ] [ ] [ ] [ ]3 3 3 33/ 4 3/ 4
1/ 2 1anh anh anh anh

l n l nn l n l

n m W l l m W n n W l l W n
m m

E E E E

− −
−

≠ ≠

=
− −∑ ∑

% % % %

% % % %
  (4.14) 
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where the mass-dependence in the summation on the right-hand side has been removed. 

Similarly we find that the quartic contribution to second order scales as 

[ ] [ ] [ ] [ ]4 4 4 41 1
1/ 2 3/ 2anh anh anh anh

l n l nn l n l

n m W l l m W n n W l l W n
m m

E E E E

− −
−

≠ ≠

=
− −∑ ∑

% % % %

% % % %
   (4.15) 

To second order in perturbation theory the contributions from the cubic and quartic terms 

for a particular vibrational energy level nE  can now be written as 

( ) [ ]
[ ] [ ] [ ] [ ]3 3 4 4

4(2) 1 1/ 2anh anh anh anh
n anh

l n l nn l n l

n W l l W n n W l l W n
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∑ ∑

% % % %
%

% % % %
 

           (4.16) 

To proceed we will assume that the quartic contribution to second order is sufficiently 

small to warrant us to write the approximate anharmonic correction to an energy level to 

second order as  

( ) [ ]
[ ] [ ] [ ] [ ]3 3 4 4

4(2) 1 anh anh anh anh
n anh

l n l nn l n l

n W l l W n n W l l W n
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+ +⎢ ⎥
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% % % %
%

% % % %
  

           (4.17) 

We also note that approximate scaling property in Eq. (4.17) also holds in a perturbative 

treatment of degenerate or near degenerate cases. 

In what follows we will only be interested in the ratio of the anharmonic correction 

given in Eq. (4.16) for two different values of the mass parameter 

( )
( )

1(2)
2

(2)
n

n

E m m

E m m

δ
γ

δ

−′ ′⎛ ⎞= ≡⎜ ⎟
⎝ ⎠

       (4.18) 
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The explicit value of the quantity in parenthesis in the right-hand side of Eq. (4.16) is 

therefore not of interest here although this is the quantity necessary to be able to calculate 

the perturbative anharmonic correction. 

4.2.3. Derivation of Anharmonic Isotopic Shift Expressions   

Knowing how the harmonic frequency as well as the anharmonic perturbation 

contributions scale as a function of a uniform mass change now gives us a way to derive an 

expression by which we can estimate the anharmonicity from experimental isotopic data. 

Since a transition frequency depends on the energy difference between two vibrational 

states and therefore scales the same way as the energy with respect to a uniform change in 

mass, Eq. (4.18) gives that the anharmonic correction to the frequency for our system 

fulfills 

( )
( )

2m

m

δω
γ

δω
′

=          (4.19) 

Based on our assumption that Eq. (4.17) describes the dominating anharmonic effects we 

have that the anharmonic frequency for a given mass parameter m is given by 

( ) ( ) ( )m m mν ω δω= +         (4.20) 

where ( )mν  denotes the anharmonic frequency and ( )mω  the harmonic frequency for a 

specific mass m . Using Eqs. (4.1) and (4.19) we find that for a different value of the mass 

parameter 

2( ) ( ) ( ) ( ) ( )m m m m mν ω δω γω γ δω′ ′ ′= + = +   (4.21) 

Multiplying Eq. (4.20) by γ  and subtracting Eq. (4.21) we find 

2( ) ( ) ( ) ( )m m m mγν ν γδω γ δω′− = − ≡ Δ   (4.22) 
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We identify Δ  as the difference between the frequency ( )mγν  and the anharmonic isotopic 

frequency ( )mν ′ , where ( )mγν  represents the isotopic frequency due to the mass change 

m m′→  that would result if ( )mν  is assumed to be the harmonic frequency. Solving for 

the anharmonic shift we find 

2
( )mδω

γ γ
Δ=
−

        (4.23) 

The quantity Δ  can be readily obtained from an isotopic spectrum for a homonuclear 

system provided frequencies are available for the two masses m  and ′m . Eq. (4.23) hence 

provides a way to obtain the anharmonicity of a given vibrational fundamental directly 

from experimental data without any prior knowledge of the harmonic frequency. 

4.3. Application and Discussion 

 We first present linear C3 as an example where the analysis of the anharmonic 

effect just described can be applied. The top part of Figure 9 shows the isotopic spectrum 

observed for the ν3(σu) fundamental of C3 using a 12C/13C isotopic ratio of approximately 

50%/50%. The bottom part of the same figure shows the simulated harmonic spectrum 

using density functional theory (DFT) with the B3LYP functional and the cc-pVDZ basis 

set. The calculated spectrum has been scaled so that the main full 12C absorption labeled 

(12-12-12) coincides with the experimental value.  
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Figure 9. Experimental (top) and DFT simulated (bottom) isotopic spectra for linear C3. The isotopic 
identification for each absorption is given in parenthesis next to the experimental frequency. 

 

In the case of linear C3 we have the situation that the normal mode coordinates for 

the ν1(σg) and ν3(σu) modes are completely determined by center of mass and 

orthonormality constraints. Since the central carbon atom shows no displacement due to 

symmetry in the gσ  mode we have that ( ) ( ) 0central g central uu uσ σ =v v
  for this particular 

isotopic substitution. Furthermore, ( ) ( ) 0n nu uπ σ =v v
  since these normal mode 

displacements for stretching and bending fundamentals are always orthogonal. The 

perturbation for the (12-13-12) substitution is therefore completely decoupled from the 

other vibrational modes, and taking the (12-12-12) absorption to be the harmonic 

frequency, we find that the isotopic perturbation in this case reduces to the following form, 

which was introduced in Section 2.4.3 by Eq. (2.40) 
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If there were no anharmonicity in this vibrational mode we would therefore expect the 

calculated (12-13-12) isotopic shift to be accurate. The discrepancy seen in Figure 9 

between the calculated and experimental value for the (12-13-12) absorption is therefore an 

illustration of an anharmonic effect. We note that for other single and double 13C 

substitutions in the (12-12-12) isotopomer the ν3(σu) would couple with the ν1(σg) mode but 

since the harmonic frequency is not known, the discrepancy between theory and 

experiment in this case can not immediately be attributed to anharmonicity. 

 To get an estimate of the anharmonicity of the full 12C isotopomer (12-12-12) we 

now turn to Eqs. (4.22) and (4.23). In the case of a full 13C substitution all modes are 

completely decoupled in the harmonic approximation due to the orthonormality of normal 

modes and we can apply Eq. (2.42), given by 

1/ 2

t t

m

m
ω ω′⎛ ⎞′ = ⎜ ⎟

⎝ ⎠
 

The scaled DFT simulation along with the experimentally observed value for the full 13C 

(13-13-13) absorption gives us the input necessary to calculate Δ  defined in Eq. (4.22), 

which together with knowledge of the participating nuclear masses subsequently gives us 

the estimated anharmonicity from Eq. (4.23). Referring to Figure 9 we find explicitly that 

with the mass ratio 2 12 /13.00335γ =  we have that 1958.66 1960.2 1.54Δ = − = −  cm-1 

resulting in an anharmonicity for the ν3(σu) fundamental transition of linear C3 of about -49 

cm -1. 
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This approach is applicable to any situation where the full 12C and 13C absorptions 

for a given carbon cluster are known from experiment. Such data has been accumulated by 

our group in the course of identifying new vibrational fundamentals of both linear and 

cyclic carbon clusters in matrix isolation using Fourier transform infrared spectroscopy. 

The clusters are generated by laser ablation of carbon rods, which are made with specific 

isotopic ratios in order to create infrared spectra with the isotopic “fingerprints” of a 

particular cluster.40 Here we will focus on our experimental data for linear carbon chains 

(C2n+1; n=1-6)27,29,30,40 and presented here for C3. We also include the experimentally 

derived anharmonicity for the cyclic carbon clusters C6
32,33 and C8.

54 In order to validate 

such experimentally derived results we also calculated theoretical estimates of the 

anharmonicity of the linear stretching modes of carbon chains (C2n+1 ; n=1-6) using density 

functional theory (DFT) with the B3LYP55,56,57 functionals and cc-pVDZ58 basis sets as 

implemented in the Gaussian 0344 program suite. The current Gaussian implementation of 

the perturbative calculation of anharmonic vibrational properties18 is however unable to 

handle anharmonicities involving degenerate point groups. To obtain results for the non-

degenerate stretching modes of linear chains we therefore distorted the central atom of each 

chain about 0.001 Ångström perpendicular to the symmetry axis and the calculation was 

performed in C2v symmetry. The resulting changes in the calculation of the properties 

considered here are negligible but serve to “fool” the program into performing the 

calculation. 

Table 2 shows the results for the anharmonicity derived from our experimental data 

along with B3LYP/cc-pVDZ values (for linear clusters) and theoretical results based on 

more extensive treatments for C3
48,51 and C5.

50,52 Given the uncertainties involved in the 
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calculated anharmonicities as well as the inaccuracy in the frequency measurement, 

reasonable agreement is obtained between the values derived from the isotopic 

experimental data and the theoretical predictions.  In most cases the B3LYP/cc-pVDZ 

values are lower than those derived exclusively from experiment using the present 

technique. In the case of C3 where the difference between these values is particularly large 

it is reassuring to see that the theoretical values resulting from more sophisticated 

calculations agree very well with our experimentally derived result. This serves as a nice 

benchmark of our approach since the ν3(σu) anharmonic frequency calculated in refs. 48 

and 51 is within a few cm-1 of the experimental result obtained in the gas phase. 

Ideally, the required isotopic data should be obtained in the gas phase since matrix 

effects would in principle need to be considered. For the fundamentals considered here the 

(red) shift due to the matrix ranges from a few to about 15 cm-1 (for the ν5(σu) mode of C9). 

Considering the matrix environment as an external perturbation expanded in normal mode 

coordinates one finds that matrix contributions due to quadratic terms scales as m−1/2  and 

therefore cancel to second order in Eq. (4.22). The matrix contribution due to cubic and 

quartic terms would have the same scaling properties as the internal anharmonicity and 

would therefore contribute in the calculation of δω m( ) in Eq. (4.23). 
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Table 2. Comparison of values of the anharmonicity from calculation and experiment. All values are in 
cm-1. 

 B3LYP/cc-pVDZ  Experiment e  Ref. 
 ω  δω   ν (12C) ν (13C) δω (*)   

C3    

ν3 σ u( ) 2157.8 -33  2038.9 1960.2 -49  -51a, -58b 

    
C5    

ν3 σ u( ) 2269.8 -40  2164.3 2080.5 -36  -21c, -29d 

ν4 σ u( ) 1498.9 -15  1446.6 1390.2 -14  -11c, -16d 

    
C7    

ν4 σ u( ) 2258.1 -34  2127.8 2045.8 -46   

ν5 σ u( ) 1988.3 -28  1894.3 1821.0 -36   

    
C9    

ν5 σ u( ) 2217.6 -32  2078.1 1998.1 -47   

ν6 σ u( ) 2132.6 -37  1998.0 1921.1 -46   

ν7 σ u( ) 1670.0 -18  1601.0 1538.8 -21   

        
C11        

ν7 σ u( ) 2126.3 -33  1942.6 1868.0 -49   

ν8 σ u( ) 1946.9 -30  1854.8 1783.1 -34   

ν9 σ u( ) 1404.5 -14  1357.0 1304.1 -13   

        
C13        

ν9 σ u( ) 2039.8 -33  1809.0     

        
cyc-C6        
ν4 ′e( ) 1769.6  1694.9 1630.5 -52   

        
cyc-C8        
ν12 eu( ) 1932.9  1844.2 1774.4 -51   

 
(*) Anharmonicity calculated using Eq. (4.23).The error due to the inaccuracy of about 0.1 
cm-1 in the experimental frequency values translates into an inaccuracy of about ±4  cm-1 in 
these values. 
a Ref. 48 b Ref.52 c Ref. 50 d Ref. 51 
e Experimental data from refs. 27, 29, 30, 32, 33, 40, 54; except for C11 (ref. 59), and C13 
(ref. 60). For each cluster the frequency with the highest infrared intensity is underlined. 
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Since the anharmonicity is also given by the difference between the true harmonic 

and the experimental frequencies ω − ν( ) an alternate way of obtaining this value is to 

seek to calculate the best possible approximation of the true harmonic frequency and 

compare this with experiment. Recently Botschwina53 presented such a comparison based 

on high level coupled cluster calculations including triple excitations and up to valence-

quadruple-zeta basis sets for harmonic frequencies of linear C2n+1 chains. In particular he 

presented a graph where ω − ν( ) for the modes of highest infrared intensity was plotted as 

function of n, for n=1-9. The experimental data for n=1-4 coincides with the data presented 

here (see Table 2). In addition, Botschwina included the assignments from nitrogen matrix 

experiments for linear C11 by Lapinski and Vala,59 for linear C13 obtained in the gas phase 

by Giesen et al.,60 as well as some recent assignments for linear C15, C17, and C19 by 

Strelnikov et al.61 from laser-induced oxidation experiments. In Figure 10 we present a 

similar plot where our estimates of the anharmonicity deduced from experiments are shown 

for n=1-5, as well as our B3LYP/cc-pVDZ data for n=1-6, for the most intense vibrational 

fundamentals of C2n+1. Our results in Table 2 and Figure 10 compare very well with those 

of Botschwina for n=1-4. However, our calculated anharmonicities using B3LYP/cc-pVDZ 

remain nearly constant also for linear C11 and C13 (see Figure 10), whereas Botschwina 

found an onset of a rather dramatic increase in his values for ω − ν( ) for these and longer 

chains going from around 50 - 70 cm-1 for C3 - C9, to 300 cm-1 for C19.  
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Figure 10. Experimentally derived (open circles) estimates of the anharmonicity for the most intense 
fundamentals of linear carbon chains C2n+1. Filled circles correspond to the B3LYP/cc-pVDZ results in 
this work. Triangles refer to existing theoretical predictions in the literature (see Table 2 for details). 

 

An additional illustration of the need of further investigations to resolve these issues 

is illustrated in Figure 11. Here we have plotted the experimental frequencies for C2n+1 

(n=1-4) carbon chains from our work against the B3LYP/cc-PVDZ anharmonic results 

presented in Table 2. We have also included our DFT based data with the experimental 

assignments by other investigators for linear C11 and C13. The data for  

n=1-4 is well represented by the linear fit: 

ν observed( )≈ 0.92673ν anharmonic-B3LYP/cc-pVDZ( ) + 70.3 cm-1  

Also, the data for the ν8(σu) and ν9(σu) modes of C11 fall along the same fit whereas the 

most intense bands for C11, (ν7(σu)), and C13, (ν9(σu)), do not. This mirrors Botschwina’s 
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observation of a dramatic increase in ω − ν( ) beginning for the bands identified with the 

most intense fundamentals of these clusters. 

 

Figure 11. Experimentally observed stretching fundamental frequencies for linear carbon chains C2n+1 
(n=1-4) vs. the calculated anharmonic B3LYP/cc-pVDZ frequency using the data in Table 2 (filled 

circles). The open circles represent the same data for the observed fundamentals of linear C11 and C13 
(see text for discussion). 

 

 We also note that Strelnikov et al. associates an absorption at 1695 cm-1 with the 

most intense fundamental of linear C15. This would be a reassignment of the absorption that 

we previously assigned to cyclic C6. Botschwina’s CCSD(T) results show a difference 

(ω ν− ) of 166 cm-1 for the assignment of this absorption to linear C15. From the 

experimental data presented here (see Table 2) we find the anharmonicity of this mode to 

be -52 cm-1. Since the way the value of the anharmonicity derived here is independent of 

the identity of the particular cluster, the difference between these numbers, along with the 
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isotopic data for single isotopic shifts presented in our original identification,32 lends 

support to our assignment of cyclic C6 to the 1695 cm-1 absorption. 

4.4. Conclusions 

A new method by which to obtain estimates of the anharmonicity of homonuclear 

molecules has been presented. The method is based entirely on the observation of the 

isotopic shift resulting from a uniform change of all atomic masses. In particular, 

anharmonicities for carbon clusters can be obtained by observing the isotopic shift upon 

full 13C substitution. Existing isotopic data for linear carbon chains C2n+1, n=1-5 was used 

to illustrate the applicability of the approach. Good agreement was found between the 

results obtained by the new method and published as well as new DFT calculations. The 

results further illustrate the existing discrepancy between theoretical predictions of 

vibrational fundamentals of longer carbon chains and experimental assignments and 

therefore reiterate the call for further studies for their resolution. 
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CHAPTER V. CONCLUSIONS AND FUTURE WORK 

5.1. Conclusions 

The present work investigated two theoretical issues related to the calculation of 

isotopic shifts: i) the sensitivity of simulated isotopic spectra due to the interaction of 

vibrational fundamentals and ii) the sensitivity of simulated isotopic spectra due to the 

anharmonicity of the interaction potential. These issues affect more the calculations of 

molecules with near-lying vibrational fundamentals and represent the cause of the observed 

disagreement in the comparison between isotopic shift calculations and experimental 

measurements. 

Two theoretical approaches, developed in the framework of perturbation theory, 

were introduced in the present work as a consequence of investigating the issues 

aforementioned. Both approaches, applicable to isotopic spectra of homonuclear molecules, 

were applied to measurements of vibrational fundamentals and isotopic shifts of carbon 

clusters since some of these molecules ( 7n ≥ ) have close-lying vibrational fundamentals; 

isotopic spectra of long carbon chains exhibit the problems that arise as a consequence of 

the issues investigated in the present work. 

 Overall, both theoretical approaches presented here yielded satisfactory results. 

The isotopic deperturbation method (Chapter III) led to substantial progress in terms of 

having a deeper understanding of the effects produced by the interactions of vibrational 

fundamentals, and most importantly, this technique assisted in the interpretation of 

experimental isotopic spectra despite the sensitivity of the corresponding simulations. Also, 

the results obtained with the method to estimate anharmonicity of vibrational fundamentals 
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(Chapter IV) were in good agreement with the existing predictions, as well as with our 

recent DFT calculations. Indeed, the results obtained with this method provided evidence to 

question previous assignments of vibrational fundamentals of longer carbon chains.    

Finally, it is worth noting the positive repercussion of acquiring isotopic shift 

measurements of two analogous vibrational systems (like the case of 12Cn and 13Cn chains) 

since the availability of these complementary sets of measurements contribute to the 

development of new theoretical methods. 

5.2. Future Work 

 A method to estimate the anharmonicity of vibrational fundamentals from isotopic 

shift measurements was introduced in the present work. However, it still is necessary to 

further investigate the quantitative effects of anharmonicity on isotopic shift calculations. 

Therefore, a key step for this study will be to write a code that allows us to perform 

numerical calculations of the anharmonicity of isotopic shifts and vibrational fundamentals, 

by calculating the second order correction in perturbation theory due to the cubic term of 

the Taylor’s series expansion of the potential, as well as the first- and second-order 

contributions due to the quartic term of this expansion, which is typical for a perturbative 

treatment of anharmonicity. Thus, more accurate simulations of isotopic spectra can be 

produced by taking into account anharmonic effects in the calculation of isotopic shifts. 

This may allow us to achieve a better interpretation of experimental isotopic spectra that is 

highly “congested” and, specifically, this may also allow us to accomplish the definitive 

assignment of isotopic shifts in the isotopic spectra presented in Figure 7 and Figure 8. 
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APPENDICES 

A. The Canonical Transformation of the Vibrational Hamiltonian 

The nuclear Hamiltonian in the harmonic approximation is given by: 

3 3
2

0
1 1 1 1 1

1 1

2 2

N N N

i irjs ir js
i i r j si

H f x x
m= = = = =

= − ∇ +∑ ∑∑∑∑      (A.1) 

Introducing for convenience the mass-weighted coordinates: 

ir i irq m x=          (A.2) 

Writing the expression (A.2) in matrix form: 

1/ 2=q M x .         (A.3) 

Considering that 

ir
i

ir ir ir ir

q
m

x q x q

∂∂ ∂ ∂
∂ ∂ ∂ ∂

= =        (A.4) 

the Laplacian can be written as: 

2 23 3
2

2 2
1 1

i i
r rir ir

m
x q

∂ ∂
∂ ∂= =

∇ = =∑ ∑       (A.5) 

Making use of the definition (A.2) and substituting the expression (A.5) in the Hamiltonian  

(A.1), we have: 

23 3 3

0 2
1 1 1 1 1 1

1 1 1 1

2 2

N N N

irjs ir js
i r i r j sir i j

H f q q
q m m

∂
∂= = = = = =

= − +∑∑ ∑∑∑∑    (A.6) 

The Hamiltonian is now expressed in terms of the mass-weighted coordinates. 

Introducing the normal mode coordinates, formed by 3N linear combinations of the 

mass-weighted coordinates, we have: 
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3 3
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     (A.7) 

The matrix U  with elements: 

( ) jsu ir           (A.8) 

(where the index ir denotes the row and js the column) is chosen to diagonalize the mass-

weighted Cartesian Hessian matrix 1/ 2 1/ 2
x

− −M F M  so that 

2 1/ 2 1/ 2 †
x

− −= UM F M Uω        (A.9) 

Besides, 

† =

=

U U

UU 1

%

%
         (A.10) 

since the Hessian matrix is real and symmetric. 

The kinetic energy operator can be expressed in normal mode coordinates: 

3 3

=1 =1

2 3 3 3

2
=1 =1 1 1

( )

( ) ( )

N N
js

ir
j s j sir js ir js

N N N
js

ir ir
j s j s k tir js ir js kt

Q
u js

q Q q Q

Q
u js u kt

q Q q Q Q

∂∂ ∂ ∂
∂ ∂ ∂ ∂

∂∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂= =

= =

= =

∑∑ ∑∑

∑∑ ∑∑∑∑
  (A.11) 

From the orthonormality of the vectors u, the kinetic energy operator can be written as: 

23 3 3 3

0 2
1 1 1 1 =1 =1 1 1

23

2
1 1

1 1
( ) ( )

2 2

1

2

N N N N

ir ir
i r i r j s k tir js kt

N

j s js

T u js u kt
q Q Q

Q

∂ ∂ ∂
∂ ∂ ∂

∂
∂

= = = = = =

= =

= − = −

= −

∑∑ ∑∑∑∑∑∑

∑∑  (A.12) 

Additionally, the potential energy given by: 
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3 3

0
1 1 1 1

1 1 1

2

N N

irjs ir js
i r j s i j

V f q q
m m= = = =

= ∑∑∑∑      (A.13) 

can also be expressed in normal mode coordinates. Writing the potential energy (A.13) in 

matrix form: 

† 1/ 2 1/ 2 † 1/ 2 1/ 2 †
0

1 1

2 2x xV − − − −= =q M F M q Q UM F M U Q     (A.14) 

Recalling expression (A.10), this simplifies to: 

3
† 1/ 2 1/ 2 † † 2 2

0
1 1

2

1 1 1

2 2 2

N

x js js
j s

js js

V k Q

k ω

− −

= =

= = =

=

∑∑Q UM F M U Q Q Qω
   (A.15) 

Thus, the original Hamiltonian simplifies to a sum of 3N harmonic oscillator Hamiltonians: 

23 3 3
2

0 2
1 1 1 1 1 1

1 1

2 2

N N N

js js js
j s j s j sjs

H k Q H
Q

∂
∂= = = = = =

= − + =∑∑ ∑∑ ∑∑     (A.16) 

This is the canonical representation of the nuclear motion in terms of a set of harmonic 

oscillators. It is important to note that the rotational and translational degrees of freedom 

are also embedded in the 3N harmonic oscillators. Therefore, linear molecules have 3N-5 

vibrational degrees of freedom (vibrational modes), while non-linear molecules have 3N-6 

vibrational degrees of freedom. 
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B. Perturbation in the Number Representation and Normal Ordered Operators39 

As mentioned on the isotopic mass perturbation section, the energy correction 

caused by this perturbation can be conveniently calculated when the perturbation is written 

in terms of the ladder operators. The ladder operators for each harmonic oscillator in the 

Hamiltonian (A.16) are defined as (with the mass m = 1): 

† ˆ ˆ
2

ˆ ˆ
2

r
r r r

r

r
r r r

r

i
a Q P

i
a Q P

ω
ω

ω
ω

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

       (B.1) 

The position and momentum operators in terms of the ladder operators are: 

( )

( )

†

†

1ˆ
2

ˆ
2

r r r
r

r
r r r

Q a a

P i a a

ω

ω

= +

= −

        (B.2) 

The ladder operators have the following properties: 

[ ]

†

† †

†

,

, , 0

1 1

1

0 0

r s rs

r s r s

r r r r

r r r r

r

a a

a a a a

a n n n

a n n n

a

δ⎡ ⎤ =⎣ ⎦
⎡ ⎤= =⎣ ⎦

= + +

= −

=

       (B.3) 

and the (unperturbed) Hamiltonian for a set of harmonic oscillators can be written as: 

†
0

1

1

2

M

r r r
r

H a aω
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑ .       (B.4) 

On the other hand, recalling from the isotopic mass perturbation section the 

isotopic perturbation is given by: 
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2 2

1 1

23

2
1 1

1 1
( ) ( )

2 ( ) 2 ( )

1 1 1

2 ( ) ( )

K K

n n n
n n n n

K

n un n nu

W i f W i f
m i m f

m i m f x

= =

= =

⎛ ⎞
→ = → = ∇ − ∇ =⎜ ⎟

⎝ ⎠
⎛ ⎞ ∂−⎜ ⎟ ∂⎝ ⎠

∑ ∑

∑ ∑
   (B.5) 

and the 3N normal coordinates (A.7) were defined in appendix A as: 

3 3

1 1 1 1

1/ 2

†

( ) ( )
N N

jr ks ks ks k ks
k s k s

Q u jr q u jr m x
= = = =

= =

= =

= =

∑∑ ∑∑
Q Uq UM x

q U Q UQ%

 

Here, the indices , , ...j k l  stand for the atoms of the system, running from 1 to N. The 

indices , , ...r s t  are used to represent the three spatial dimensions, running from 1 to 3. 

Therefore, the combined indices like ,ir js  run from 1 to 3N. 

Taking this into account, the first and second derivatives with respect to Cartesian 

coordinates can be written in terms of the normal coordinates: 

3 3

1 1 1 1

2 3 3

2
1 1 1 1

3 3

1 1 1 1

( )

( ) ( )

( ) ( )

N N
ks

jr j
k s k sjr ks jr ks

N N

jr j jr j
k s l tjr ks lt

N N

j jr jr
k s l t ks lt

Q
u ks m

x Q x Q

u ks m u lt m
x Q Q

m u ks u lt
Q Q

= = = =

= = = =

= = = =

∂∂ ∂ ∂= =
∂ ∂ ∂ ∂

∂ ∂ ∂= =
∂ ∂ ∂

∂ ∂
∂ ∂

∑∑ ∑∑

∑∑ ∑∑

∑∑∑∑
   (B.6)

 

Substituting the expression for the second derivative with respect to Cartesian 

coordinates in the expression (B.5), we have: 
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( )

( )

( )

1

3 3

1 1 1 1 1

3 3 3

1 1 1 1 1 1

( ) ( )

1 1 1
( ) ( )

2 ( ) ( )

1 1 1
( ) ( )

2 ( ) ( )

1
1 ( )

2 ( )

K

n
n

K N N

n nu nu
n k s l tn n ks lt

K N N

n nu nu
n u k s l t n n ks lt

n
nu n

n

W i f W i f

m i u ks u lt
m i m f Q Q

m i u ks u lt
m i m f Q Q

m i
u ks u

m f

=

= = = = =

= = = = = =

→ = → =

⎛ ⎞ ∂ ∂− =⎜ ⎟ ∂ ∂⎝ ⎠
⎛ ⎞ ∂ ∂− =⎜ ⎟ ∂ ∂⎝ ⎠
⎛ ⎞

−⎜ ⎟
⎝ ⎠

∑

∑ ∑∑∑∑

∑∑∑∑∑∑
3 3 3

1 1 1 1 1 1

( )
K N N

u
n u k s l t ks lt

lt
Q Q= = = = = =

∂ ∂
∂ ∂∑∑∑∑∑∑

 (B.7)

 

The expression above can be simplified by introducing combined indices to label 

the normal modes, as well as by introducing vector notation for the atomic normal mode 

displacements: 

( )3 3

1 1 1 1

1
( ) ( ) 1 ( ) ( )

2 ( )

K K N N
n

n n n
n n r s n r s

m i
W i f W i f u r u s

m f Q Q= = = =

⎛ ⎞ ∂ ∂→ = → = −⎜ ⎟ ∂ ∂⎝ ⎠
∑ ∑∑∑ v v

   (B.8) 

Since the momentum representation of the momentum operator is given by: 

r̂
r

P i
Q

∂= −
∂

         (B.9) 

and recalling that the momentum operator was quantized in Eq. (B.2) in terms of the ladder 

operators: 

( )

( )

†

†

1ˆ
2

ˆ
2

r r r
r

r
r r r

Q a a

P i a a

ω

ω

= +

= −
        (B.10)

 

we have, 

( )†ˆ
2

r
r r r

r

P i i a a
Q

ω∂= − = −
∂        (B.11)

 

so that: 
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( )†

2
r

r r
r

a a
Q

ω∂ = − −
∂        (B.12)

 

Inserting this in the expression for the isotopic perturbation (B.8): 

( ) ( ) ( )
( )

1

3 3
† †

1 1 1

3 3
† †

1 1 1

( ) ( )

1
1 ( ) ( )

2 ( ) 2 2

1
1 ( ) ( )( )( )

4 ( )

K

n
n

K N N
n sr

n n r r s s
n r s n

K N N
n

n n r r s s r s
n r s n

W i f W i f

m i
u r u s a a a a

m f

m i
u r u s a a a a

m f

ωω

ω ω

=

= = =

= = =

→ = → =

⎛ ⎞⎛ ⎞⎛ ⎞
− − − − − =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞
− − −⎜ ⎟

⎝ ⎠

∑

∑∑∑

∑∑∑

v v


v v


 (B.13)

 

Thus, the perturbation has been written in terms of the ladder operators. 

As it will be noticed in Appendices B and C, introducing the normal ordered 

operators NH  and [ ]NW K  will simplify the derivations of the first and second order 

corrections in non-degenerate perturbation theory to the isotopic shifts. Any string of 

ladder operators written in normal order is such that all creation operators are placed to the 

left of all annihilation operators. Thus, by normal ordering with respect to the vibrational 

ground state, the unperturbed Hamiltonian (B.4) can be written as: 

0 0NH H E= +         (B.14) 

with 

{ }† †

1 1

0
1

1

2

M M

N r r r r r r
r r

M

r
r

H a a a a

E

ω ω

ω

= =

=

= =

=

∑ ∑

∑
      (B.15) 

such that 

0 0 0NH =  

Furthermore, by writing the isotopic perturbation as: 
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[ ] † †
,

1 1

,

( ) ( )( )

( ) ( )
4

( )
1

( )

M K

n n rs r r s s
rs n

r s
n rs n n

n
n

n

W K i f V a a a a

V u r u s

m i

m f

λ

ω ω

λ

= =

→ = − −

=

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

∑∑

r r
     (B.16) 

the perturbation can be written as: 

[ ]( ) [ ] ,
1 1

M K

N n n rr
r n

W K i f W K Vλ
= =

→ = −∑∑      (B.17) 

where [ ]NW K  is the normal order perturbation: 

[ ] { } { } { } { }( )
( )

† † † †
,

1

† † †
,

1

2

M K

N n n rs r s r s r s r s
rs n

M K

n n rs r s r s r s
rs n

W K V a a a a a a a a

V a a a a a a

λ

λ

=

=

= − − + =

− +

∑∑

∑∑
  (B.18) 

The expressions (B.14) and (B.17) written in terms of normal ordered operators will 

be used in Appendices C and D in order to simplify the derivations of the first and second 

order corrections to the isotopic shifts. 
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C. Derivation of the First Order Correction to an Isotopic Shift39 

The first order correction to the energy shift for the state Ψ  in non-degenerate 

perturbation theory is given by: 

[ ] [ ]( )E K W K i fΔ = Ψ → Ψ       (C.1) 

A fundamental absorption is obtained experimentally when a transition from the 

ground state to a single excited vibrational state occurs, this is: 

†0 0t ta→ Ψ =         (C.2) 

Therefore, the first order frequency shift of the vibrational fundamental absorption due to 

an isotopic mass perturbation is given by: 

( ) [ ] [ ] [ ]1 ( ) 0 ( ) 0t t tK W K i f W K i fωΔ = Ψ → Ψ − →    (C.3) 

Using the normal ordered operator (B.17) to simplify the evaluation of the last 

equation, we have: 

[ ] [ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

1

, ,
1 1

( ) 0 ( ) 0

0 0

0 0

t t t

M K M K

t N n n rr t N n n rr
r n r n

t N t N t N t

K W K i f W K i f

W K V W K V

W K W K W K

ω

λ λ
= =

Δ = Ψ → Ψ − → =

Ψ − Ψ − − =

Ψ Ψ − = Ψ Ψ

∑∑ ∑∑   (C.4) 

Evaluating this matrix element we have: 

 
[ ] ( )† † † †

,
1

† †
, ,

1 1

0 2 0

2 0 0 2

M K

t N t n n rs t r s r s r s t
rs n

M K K

n n rs t r s t n n tt
rs n n

W K V a a a a a a a a

V a a a a V

λ

λ λ

=

= =

Ψ Ψ = − + =

− = −

∑∑

∑∑ ∑
  (C.5) 

Recalling from the group of equations (B.16), ,n rsV  and nλ  were defined as: 
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, ( ) ( )
4

( )
1

( )

r s
n rs n n

n
n

n

V u r u s

m i

m f

ω ω

λ

=

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

r r


 

Therefore, to first order in non-degenerate perturbation theory the frequency shift 

caused by an isotopic perturbation is given by: 

[ ] 2(1)

1

( )
( ) 1 ( )

2 ( )

K
t n

t n
n n

m i
K i f u t

m f

ωω
=

⎛ ⎞
Δ → = − −⎜ ⎟

⎝ ⎠
∑ r

    (C.6) 
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D. Derivation of the Second Order Correction to an Isotopic Shift39  

The second order correction to the energy in non-degenerate perturbation theory is 

given by: 

( ) [ ] [ ]( ) 2

2 W K i f
E K

E Eα βα β

α β

≠

→
=

−∑      (D.1)  

where [ ]( )W K i f→  is the isotopic mass perturbation given by Eq. (B.17). 

The second order energy shift in a transition from the ground state to a single 

excited vibrational state t  is given by: 

( ) [ ] ( ) [ ] ( ) [ ]22 2
0tE K E K E KΔ = −       (D.2) 

In order to evaluate Eq. (D.2), the second order corrections ( ) [ ]2
0E K  and ( ) [ ]2

tE K  

will be evaluated separately. 

The second order correction to the ground state energy is given by: 

( ) [ ] [ ]( )

[ ] [ ]

2
2

0
00

2

2,
1

0 00 0

0

0
0

M K

N n n rr
Nr n

W K i f
E K

E E

W K V
W K

E E E E

ββ

β ββ β

β

λ β
β

≠

=

≠ ≠

→
= =

−

−
=

− −

∑

∑∑
∑ ∑

   (D.3) 

where ,n rsV  and nλ  have been defined as: 

, ( ) ( )
4

( )
1

( )

r s
n rs n n

n
n

n

V u r u s

m i

m f

ω ω

λ

=

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

r r


 

Since only one term of the normal ordered perturbation [ ]NW K  survives, we have: 



 

    83

( ) [ ]

2

,
2 1

0
00

0
M K

n n rs r s
rs n

V a a

E K
E Eββ

λ β
=

≠
=

−

∑∑
∑      (D.4) 

In order to ensure proper normalization of the possible excited states, two 

possibilities are identified: 

† †

† †

0 ;
1

0
2

u v

u u

a a
u v

a a
β

⎧
≠⎪= ⎨

⎪
⎩

       (D.5) 

This gives us: 

( ) [ ]

2
† †

,
2 1

0
0

2
† †

,
1

0

0 0
1

2

1
0 0

2

M K

n n rs r s u v
rs n

uvu v

M K

n n rs r s u u
rs n

uuu

V a a a a

E K
E E

V a a a a

E E

λ

λ

=

≠

=

= +
−

−

∑∑
∑

∑∑
∑

    (D.6) 

The factor of 1
2  in the first term is necessary to avoid double counting the states † † 0u va a  

and † † 0v ua a . Equation (D.6) simplifies to: 

( ) [ ]

2
† †

,
2 1

0
0

0 0
1

2

M K

n n rs r s u v
rs n

uvuv

V a a a a

E K
E E

λ
==

−

∑∑
∑     (D.7) 

Evaluating the operator product we find: 
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( )

( ) ( )
( )

† † † †

† † †

† † †

† †

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

r s u v r us u s v

us r v r u s v

us rv v r r u sv v s

us rv sv r u us rv sv ru u r

us rv sv ru

a a a a a a a a

a a a a a a

a a a a a a

a a a a

δ

δ

δ δ δ

δ δ δ δ δ δ δ

δ δ δ δ

= + =

+ =

+ + + =

+ = + + =

+

   (D.8) 

Therefore, 

( ) [ ]
( )

( )

( )

2

,
2 1

0
0

2

, ,
1 1

0 0

2 2

, , ,
1 1 1

0 0

1

2

1

2

1
2

2

M K

n n rs us rv sv ru
rs n

uvuv

M K M K

n n rs us rv n n rs sv ru
rs n rs n

u vuv

K K K

n n vu n n uv n n uv
n n n

u v u vuv uv

V

E K
E E

V V

E E

V V V

E E

λ δ δ δ δ

λ δ δ λ δ δ

ω ω

λ λ λ

ω ω ω ω

=

= =

= = =

+
= =

−

+
=

− + +

+
= −

− + + +

∑∑
∑

∑∑ ∑∑
∑

∑ ∑ ∑
∑ ∑

    (D.9) 

This result represents the second order correction to the ground state energy. 

In order to evaluate the second order correction to the singly excited state ( ) [ ]2
tE K , 

we first define: 

† 0t tt aΨ = =         (D.10) 

Thus, we can write: 

( ) [ ] [ ]( ) [ ]

[ ] ( )

2

2 ,
2 1

0

2
† † †

2 ,
1

0 2

M K

N n n rr
r n

t
tt t

M K

t n n rs r s r s r s
N rs n

t tt t

t W K V
t W K i f

E K
E E E E

a V a a a a a a
t W K

E E E E

β ββ β

β ββ β

λ β
β

λ β
β

=

≠ ≠

=

≠ ≠

−
→

= = =
− −

− +
=

− −

∑∑
∑ ∑

∑∑
∑ ∑

(D.11) 
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There can be no contribution from the † †
r sa a  part of the perturbation since any state formed 

from this operator would be orthogonal to the excited state we are considering.  

Consequently,  

( ) [ ]
( )

2
†

,
2 1

2 2
†

, ,
1 1

0 2

0 0

4

M K

n n rs t r s r s
rs n

t
tt

M K M K

n n rs t r s n n rs t r s
rs n rs n

t tt t

V a a a a a

E K
E E

V a a a V a a a

E E E E

ββ

β ββ β

λ β

λ β λ β

=

≠

= =

≠ ≠

−
= =

−

+
− −

∑∑
∑

∑∑ ∑∑
∑ ∑

 (D.12)  

The terms in Eq. (D.12) also need to be evaluated separately. Starting with the second term 

we find: 

  

2 2
† † †

, ,
1 1

2 2

, ,
1 1

0 0 0

4 4

0 0

4 4

M K M K

n n rs t r s n n rs t r s u
rs n rs n

t t ut t u

M K K

n n rs tr su n n tu
rs n n

t u t ut u t u

V a a a V a a a a

E E

V V

ββ

λ β λ

ω ω

λ δ δ λ

ω ω ω ω

= =

≠ ≠

= =

≠ ≠

= =
− −

=
− −

∑∑ ∑∑
∑ ∑

∑∑ ∑
∑ ∑

 (D.13) 

The first term is more complicated. The excited state β  can now be of the form: 

† † †1
0u v ya a a

K
β =   (D.14) 

where at least one of the indices , ,u v y  has to equal t  in order to get a non-zero 

contribution. Thus, the first term of Eq. (D.12) is: 
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( )

( )
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2
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1
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2
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1
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=
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=
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≠ ≠
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∑∑
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∑∑
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Evaluating the matrix elements forming all possible contractions between the 

creation and annihilation operators in Eq. (D.15), we have: 
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Thus, the first term in Eq. (D.12) takes the form: 
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The results found in Eq. (D.13) and Eq. (D.17) provide the second order correction 
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and the second order energy shift for the particular state becomes: 
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Finally, by splitting the last term in Eq. (D.19), originating from the ground state correction  

(D.9), the second order energy shift ( ) [ ]2E KΔ  can be written as: 
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E. Bracketing Theorem  

A convenient way to generate the terms of Rayleigh-Schrödinger perturbation 

theory (RSPT) is given by the bracketing theorem.62 

With the following definitions: 

( ) ( )0 0
m n n m

W n W n

m m
R

E E≠

=

=
−∑

        (E.1) 

the corrections to the energy in RSPT are given by: 
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   (E.2)  

The general expression has the form: 

( ) ( ) ( )1kk kE W RW
−= + ℜ        (E.3)  

The first term of the Eq. (E.3) is referred to as the principal kth order term, while 

the terms included in ( )kℜ  are referred to as the renormalization terms that are obtained 

through the application of the following rules: 

1. Insert the bracketings ...  around the , ,...,W WRW WR RWL  operator strings of 

the principal term in all possible ways. 

2. Bracketings involving the rightmost and/or the leftmost interactions vanish. 
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3. The sign of each bracketed term is given by ( )1 Bn− , where Bn  is the number of 

bracketings. 

4. Bracketings within bracketings are allowed, e.g., 

22WR WR W RW RW W WR W=  

5. The total number of bracketings (including the principal terms) is 

( ) ( )2 2 !/ ! 1 !k k k− −⎡ ⎤⎣ ⎦ . 

Thus, the explicit form of the terms in Eq. (E.2) is given by: 
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Comparisons between theoretical predictions and experimental measurements of 

vibrational fundamentals and isotopic shifts represent a method for the identification of 

new molecular species. For molecules with near-lying vibrational fundamentals, 

experimental and theoretical factors complicate the interpretation of isotopic spectra where 

isotopic shift measurements are recorded. Experimentally, a large number of absorptions in 

a small region of the spectrum are observed. Theoretically, two factors affect the 

calculation of isotopic shifts in the harmonic approximation: i) the sensitivity of the 

calculations due to the interaction of vibrational fundamentals and ii) the sensitivity of the 

calculations due to the anharmonicity of the interaction potential. The study of vibrational 

spectra of long carbon chains exhibits these problems. 

The present work is an investigation of the theoretical issues that affect the 

calculations. As a consequence of this investigation, two theoretical methods were 

developed in the framework of perturbation theory in order to aid in the interpretation of 



 

   

isotopic spectra of homonuclear molecules. Both theoretical methods are presented in this 

work. The first method, called the isotopic deperturbation method, is introduced in order to 

aid dealing with the complications regarding the sensitivity of simulated spectra due to the 

interactions of vibrational fundamentals. The second method is introduced here in order to 

estimate the anharmonicity of vibrational fundamentals from isotopic shift measurements. 

The isotopic deperturbation method is applied to the infrared isotopic spectra of 

linear Cn (n = 3 – 12, 15, 18) and confirms our hypothesis regarding the high sensitivity of 

the isotopic shift calculation for molecules with near-lying vibrational fundamentals. The 

method to calculate anharmonic contributions is applied to the experimental spectra of 

linear carbon chains C2n+1 , n=1–5 as well as to cyclic C6 and C8; the results are compared 

with the calculated anharmonicity using a density functional theory (DFT) perturbative 

approach and existing calculations in the literature.  
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