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Chapter 1

Introduction

Isaac Newton, in 1685, introduced the law of universal gravitation by solving the two-

body problem. He showed theoretically the validity of Kepler’s laws of planetary motion.

This was an enormous contribution to science, and scientists at the time worked hard

to extend the new theory to the problem of three bodies. Later, they discovered the

three-body problem has not an explicit solution, which means, it is impossible to obtain

analytical formulas for the motion of the bodies.

Later, in the 1800s, Jules Henri Poincaré, a French mathematician, theoretical physi-

cist, and philosopher of science, gave to science another big contribution. He introduced

an abstract geometric formulation to approach the three-body problem in a qualitative

manner instead of the traditional quantitative approach. In other words, a global anal-

ysis of the time evolution of the system replaces the explicit formulas for the motion,

sometimes impossible to obtain. Poincaré was the first scientist to introduce the notion

of chaos into science.

Chaos allows the understanding of systems that before were considered impossible.

However, chaos, as a theory, was developed a long time after the Poincaré approach,

after the invention of computers and thanks to the pioneer work of Lorenz[23] in 1963

and many others such as Ruelle and Takens[7], May[24, 25], Feigenbaum[17, 18], and

Mandelbrot[27] in the 1970s.

Chaos is a special case of a more substantial theory named Dynamical Systems. The

next paragraphs contain a brief introduction and crude formulation of this theory. Any

inquisitive reader can find a nice and simple development of dynamical systems in the
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reference[37].

Dynamical systems is a mathematical formalization used to approach any system that

evolves with time; it allows us to extract important information about systems, that due

to the complex nature of its interactions is very difficult, or in some cases impossible, to

describe by using some other approaches. Under some conditions, dynamical systems

can exhibit a chaotic behavior and its analysis, if not easy, is very viable.

So, in general, it is possible to define a system using n finite dynamical elements such

as position, velocities, etc represented by time dependent functions called vectors ; the

state of the evolution of the system is set via n equations of motion of each individual

state vector in this way:

ẋ ≡ dx
dt

= F (x, t)

F being a type of velocity1 containing a characteristic set of control parameters that are

properties of the physical system like angles, diffusion rates, masses, etc. The goal is to

determine the time evolution for different initial states.

The manner to analyze the time evolution of the system is by observing orbits gener-

ated in the n-dimensional phase space, more precisely, by looking at fixed points, and

periodic points that can be attractors where the system converges in time. More sim-

ply out, with different initial conditions, we generate different geometries in the phase

space and such geometries contain valuable qualitative information of the system about

structural stability.

I want to stress dynamical systems are not looking for exact solutions to equations

because usually it is impossible or very difficult. On the other hand, it looks for answers

to questions like: will the system tend to stability with the time? if it so, what are the

possible states? what happen in time if we modify initial condition? All this can be done

with the analysis of the geometry of the phase space.

The simplest example is a particle in a box; the particle can be seen as a billiard

ball moving without friction and bouncing among the boundaries with elastic collisions.

This model provides an intuitive understanding to real systems generally too difficult

to visualize. Let me be more restrictive and set the box, in general D-dimensional, to

2-dimensional; we get the regular rectangular billiard game with a ball going back and

forward among the bands. Here, the phase space will correspond to four dimensions,

1function called phase velocity
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n=4, (2 space coordinates plus 2 momenta coordinates), and as any one knows, it is

not visibly a space greater that three dimensions. The way to proceed is to extract a

slide of phase space called surface of section, introduced by Poincaré. In this way, we

get a bi-dimensional projection and an easier way to analyze structural geometry of the

four dimensional phase space. This section contains a set of points evolving with time,

representing the state of the system. If we discover in the surface of section a continuous

line or a set of points periodically distributed, we can simply say the system is not chaotic

and it goes to a point (or an orbit), the system is stable. On the other hand, if the

distribution of points in the surface of section is random we can say the system is chaotic,

it stays inside the boundaries but without tending to a point or orbit. In the example,

energy and absolute value of the momentum is conserved and this leads us to have a

totally integrable system, then no chaos will be observed. In order to observe a chaotic

behavior of a system, we have to lose at least one conserved quantities or, in other words,

we have to have a non-integrable system.

Another property for a dynamical system to be classified as a chaotic is the extreme

sensitivity to the initial conditions; Lyapunov exponents measure this property. This is,

the rate of separation, d, between the initial distance d0 of two infinitesimally close orbits

in the phase space diverge, on average, according to

d ≈ d0e
λt

where λ is the Lyapunov exponent (positive).

Today, a rising research area in science that relates to chaos and quantum mechanics

has captured the attention of many scientists. Therefore, one question arises. Is there a

quantum chaos theory? The answer to this question is a categorical no; even the name

“Quantum Chaos” is a source of controversy because a rigorous criteria to define it is still

unclear, unlike its classical counterpart, which has a precise definition and well under-

stood properties. Berry[5], a pioneer in the area, assures there is not quantum chaos;

instead, there is a semi-classical approach of systems of which their classical analog expe-

rience chaotic behavior. He proposed the name of “Quantum Chaology” for that approach.

In order to clarify the topic for the reader, the next paragraphs contain some ideas and

conjectures about Quantum Chaology. The main property of a classical chaotic systems

is the extreme sensitivity to initial conditions. This notion does not apply for quantum

3



systems since concepts such as phase space, orbits, and, therefore, Lyapunov exponents

lose their sense. One attempt to incorporate this idea into quantum mechanics is to

think about two initially close wave functions as the two initial conditions; however, the

linear Schrödinger equation preserves the unitary evolution of the probability density and

destroys the possibility to find a quantum extreme sensitive dependence.

In the approach to find quantum extreme sensitivity dependence, scientists relate

the Lyapunov exponents to two different quantum parameters. The first one is a small

change in the Hamiltonian[31, 9], and the second one to the statistical analysis of the

energy spectrum[4, 3, 28]. In both cases, the scientists relate a quantum system with its

classical chaotic analog. That is, when the classical system has a chaotic behavior, the

quantum system occurs:

• The evolution of the overlap perturbed wave function is appreciable for the first case.

Otherwise, it is very small.

• The spectrum of energy corresponds to an ensemble of random matrices for the sec-

ond case. Otherwise, it corresponds to an ensemble of uncorrelated levels (Poisson

ensemble).

The number of examples where these attempts are applied are very few. Therefore, a

definition of a quantum extreme sensitivity dependence is still unclear and distant.

The seminal model for understanding both classical and quantum chaos is the billiard

model. Depending on different considerations, such as shape and topology, a billiard

model can present either stable or chaotic behavior.

The most celebrated versions of classical billiards in two dimensions, in which chaos

has been observed, are the following:

• Sinai Billiard[21]: A rectangular shaped billiard model with a repulsive circular core

in the center.

• Bunimovich Stadium[14]. Two parallel lines joined by two semi-circles similar to an

athletic track, i.e. an oval.

• Polygonal Billiards[40]. The name tells everything about the shape of the model.

In all of these examples, the shape of the boundaries plays a crucial role.

4



In recent years, scientists have detected chaotic behavior at the nano scale[36, 16, 19]

and, once again, billiards have helped to model micro systems where quantum theory gov-

erns the system[20]. An electron inside a sphere is a three-dimensional quantum billiard

used to model a very complicated system of a monomolecular transistor[13]. Nonlinearity

is introduced by distorting the shape of the boundary. Experiments carried out on this

system exhibit chaos correctly predicted by the theoretical model[33]. The study of quan-

tum chaos has had an important impact in technology, and more quantum devices[32]

such as nanotubes, quantum dots, etc. are being analyzed using billiards models.

A novel model of billiard is the one introduced in 1986 by Lehtihet and Miller[22]

known as the “Wedge Billiard.” The model consists of a symmetrically inclined wedge

of angle 2θ with respect to the direction of a constant gravitational field g in which the

particle is confined. Two main characteristics can be pointed out about this model: the

new geometry and the inclusion of an external field.

Lehtihet and Miller originally developed the model to understand the ergodic properties

of the one-dimensional self gravitating system of three parallel sheets with uniform mass

density encountered as the simplest gravitational dynamical system in astrophysics. They

showed that the three planar sheet system is dynamically isomorphic to the Wedge Bil-

liard model with θ = 30o. They found impressive properties when the parameter θ is

changed summarized by three important facts:

1. θ < 45o Periodic points coexisting with chaotic regions in the phase space character-

istic of near-integrable systems established by the KAM theorem.

2. θ = 45o The geometry of the system created by this particular angle gives rise to the

separation into a Cartesian coordinate system in which each component of the mo-

menta is conserved independently. In other words, the system is exactly integrable

and no chaos will be observed.

3. θ > 45o In this range, all the periodic trajectories became unstable. The phase space

is completely chaotic.

Because of their simplicity, ease of visualization, and close connection to the problem of

projectile motion studied in nearly every introductory physics class, the Wedge Billiard

model is an excellent one for exploring chaos. It has been featured in numerous theoret-

ical and computational papers on both classical and quantum chaos. Matci Wojtkowski,
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a well known mathematician at the University of Arizona specializing in ergodic theory,

in a paper titled “Fat Wedges,” rigorously proved that the system was chaotic for θ > 45o.

Although the Wedge billiard is an excellent theoretical model for describing discon-

tinuous, conservative, dynamical systems, it is difficult to study in the laboratory where

friction is difficult to eliminate. Not until 2001 did Valery Milner (V. Milner et. al.[38]),

working in Mark Raizen’s laboratory at the University of Texas, introduce an experiment

referencing the Wedge Billiard model geometry and confirming the properties mentioned

above. This first experiment on billiards was named “Optical Billiards.”

The authors performed the experiment using a dilute gas of ultracold atoms. The

boundaries of the wedge were created with laser beams that were tuned so that cesium

atoms in the optical trap were repelled by regions of high intensity. The laser beams

traced out the wedge geometry with the important difference that a hole was introduced

in the wedge vertex which allowed the escape of atoms due to the presence of gravity.

Valery Milner and his group quantified experimental results by plotting the survival

probability M(t) of atoms in the optical trap versus the half-angle θ at a specific time. They

obtained excellent agreement with theoretical predictions which establish an oscillatory

behavior; larger survival probability for those half-angles showing stable structures at

θ = 22.5o and 30o and small ones for chaotic structures at θ = 26o , 34oand above 45o.

It is worth mentioning that this experiment is more closely related to classical rather

than “quantum” chaos. While very low by normal standards, the temperature, T = 10−5K,

they employed is not low enough to easily exhibit any quantum effects. Consequently, a

classical theoretical model was adequate to obtain a good point of comparison. Recently

a version of the Wedge Billiard has been studied at lower temperatures in Nir Davidson’s

laboratory at the Weizman Institute[29]. In their recent publications and presentations,

Davidson’s group claims they are entering the regime where quantum mechanics is nec-

essary to understand the observations.A key element in the experiments is that an escape

route is provided at the billiard vertex. The influence of chaos is explored by measuring

the lifetime of atoms in the trap with an open boundary. In this work we have called this

scenario the“The Escape Problem (EP) ”.

The motivation for this dissertation work was rooted in the idea of laying the founda-

tion of a different treatment for optical billiards, named from now on EP, based on the

quantum version of Liouville’s equation also known as the Wigner Function. The quan-

tum mechanical problem is much more difficult. Since the system is not integrable, the
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Schrödinger equation cannot be solved analytically. Our eventual goal is to determine the

quantum mechanical version of the mass function for two-dimensional, non-integrable

billiard models and, in particular, the Wedge Billiard model. This task will require the

construction of a temperature and time-dependent density matrix. At low temperature,

in the strong quantum limit, this idea can be carried out by solving the initial value

problem for escape, starting with the ground state, one state at a time. With the aim of

achieving this purpose, it is resorted to the idea called “Knudsen Gas [30, 10]”, widely

used by physicists in the area of condensed matter, statistical mechanics, etc,[12, 35] to

set up the system for a quantum EP.

Since, for non-integrable systems, analytical methods are not available, a viable nu-

merical method for solving the Schrödinger equation for the escape problem is required.

Thanks to the recent work of Arnold[2, 26, 8], a solution of the Schrödinger equation

can now be accomplished by introducing the concept of Transparent Boundary Condition

(TBC) or Absorbing Boundary Condition (ABC)[34, 11], as it is also known. TBC or ABC

differs from the typical boundary with Dirichlet conditions, where the function is zero at

the boundary, in the fact that it allows the function to pass through the boundary with

no reflection.

To directly attack the optical billiard would be difficult since it is a two-dimensional

system, equivalent to four dimensions in the phase space. That is why, alternatively, the

establishment of the basis for a future quantum treatment will be the goal of this work.

It is very important to clarify that this dissertation is restricted to the investigation of

one-dimensional models and will not manifest chaos. However, this first step is vital in

pursuing the future two-dimensional quantum treatment.

In the following, first we will explore two simple, one-dimensional examples of the EP

from a classical perspective and, then we will finish with the resolution of their quantum

mechanical analogues using a numerical method developed and entirely checked with an

exact, analytic theoretical solution.

Based on the aforementioned, the content of this work will be presented in several

chapters. Chapter 2 is dedicated to classical examples. It is divided into different sub-

sections that treat individual examples, such as a particle in a box and a constant field

system, for a different set of initial distribution functions. In all of these examples a Mass

Function M (t) will be found that represents the matter that has not escaped from the trap

at a given time.
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The next chapter (Chapter 3) concerns the initial value problem of non-relativistic

quantum mechanics. This chapter will be a jump into a quantum perspective with one

subsection dedicated to Laplace’s Method that, together with the aid of a Green’s func-

tion, will be used to solve the “Quantum Escape Problem (QEP)” that is, to solve a one-

dimensional Schrödinger equation for a particle in an infinite well with Right Transparent

Boundary Condition (RTBC). The Laplace transform in time will be used to transform the

time dependent Schrödinger equation into a linear, inhomogeneous, partial differential

equation. It will be solved exactly for a delta function source, resulting in a Green’s func-

tion that meets all of the boundary conditions. Once the Green’s function is obtained, the

time dependent wave function for any set of initial conditions can be constructed.

As explained above, a numerical analysis is mandatory when, in the future, more

complicated systems are addressed that are simply impossible to examine with ana-

lytic methods. An algorithm will be meticulously presented to numerically solve the

one-dimensional Schrödinger with Discrete Transparent Boundaries Conditions (DTBC)[8]

based on the implicit Crank-Nicholson method, which is widely used for diffusion type

equations.

A new form of representing the matter that has not escaped from the trap at a given

time is The Quantum Mass Function M (t, T ) . It is presented in the last section of this

chapter and is the analog of the classical M (t).

In Chapter 4, QEP is investigated introducing a Linear Potential (Gravitational) in

order to treat a more realistic situation. A new code will be presented (LTBC) as the

solution of the quantum version of a particle inside of a one dimensional box experiencing

a gravitational field.

Chapter 5 is dedicated to the analysis and comparison two of different perspectives

of the Escape Problem, classical and quantum. It is shown that, under some conditions,

both perspectives are equivalent.

The last chapter contains a summary, conclusion, and plans for further research will

be carefully outlined and discussed.
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Chapter 2

Escape Problem: Classical

Perspective.

The EP is the theoretical approach that attempts to model the physics inside of the Opti-

cal Billiard. The system representing the EP is a group of particles restricted inside of a

region demarcated by boundaries where, abruptly, one of the boundaries becomes trans-

parent, allowing particles to escape. The whole idea of the approach is to set up an initial

value problem with conditions suddenly modified and, therefore, the system will evolve

according to new conditions.

We might add that all considerations for billiards still prevail here, such as elastic

collisions with the boundaries, no friction in the system, etc.

The Phase Space Density Function f (x, v, t) provides all the physical information. That

is, it is possible to define a normalized probability density in such a way that

f (x, v, t) dxdv (2.1)

is proportional to the mean number of particles inside of infinitesimal volume dxdv . Any

information about a property of the system, represented by an operator θ (x, v), can be on

average extracted as follows:

< θ (t) >=
ˆ ˆ

θ (x, v) f (x, v, t) dxdv (2.2)
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Then, the system has three different conditions:

• At t < 0, equilibrium governs the system with closed boundaries. A condition of

equilibrium is established via the initial distribution function.

• At t = 0, one boundary is open allowing particles to escape the region.

• At t > 0, the region will have fewer particles. Eventually, at larger t, all particles have

gone and the region will be empty.

The quantity of mass inside the region as a function of time provides the information

needed to understand the EP. This property is the Mass Function. The goal is to analyze

theoretically the evolution of the EP. The way to do it is by quantifying the mass left in

the region as a function of time. This is the main physical property of the EP called

Mass Function M (t); equation 2.2 is the starting point to accomplish the task mentioned

previously. Some coming examples will clarify this idea.

2.1 Non Interacting Gas of Particles inside One Dimen-

sional Box.

The simplest example is the best way to start. This example is a system consisting of

a "gas of particles” limited to stay inside a one dimensional box of length L . This box

is located in the region 0 < x < L, and the gas of particles is assumed to be initially

distributed according to a stationary function g that, in general, is a function of position

and velocity g = g (x, v).

This chapter studies two systems. In the first one, the confined gas of particles is

free from an external field for a set of different distribution functions. The second one

is the confined gas of particles under a constant gravitational field initially distributed

according to a canonical ensemble for two cases.

For the first system, since it is free form external forces, the total energy is exclusively

kinetic energy, giving rise to an initial distribution function g (v). At t < 0, the phase space

is seen in figure 2.1.

The Left boundary is closed at all time, which means the following:

• When a particle with negative velocity, region v < 0, hits the boundary, it jumps into

the region v > 0.
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Figure 2.1: Representation of one dimensional box in the phase space.

• There is no incoming flux of particles from the left.

For t = 0, the Right boundary is opened. The particles can now escape the box when they

reach that boundary; only outgoing flux is present in the system and it starts the escape

process.

In order to understand the escape process, let us focus on a particular time t > 0. The

figure 2.2 is the portrait of the phase space.

A particle with negative velocity1 vm has reached the left boundary. There are no

particles below negative vm, and there are no particles to the right of the straight line

x< = L+ vt .

From figure Figure 2.2 on page 12, there is a set of points where the particles remain

at x< = L+ vt in the region v < 0; these points make a straight line defining a region.

In region v > 0 , there are no particles above velocity 2vm, nor to the left of the straight

line x> = −L + vt . Those two straight lines define what is called Full Region. Full Region

in terms of velocity is x−L
t < v < x+L

t .

Step Functions are used to restrict Phase Space Density Function f (x, v, t) to stay in

1Notice that the point called vm is approaching to v = 0 for phase space portraits with greater time.
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Figure 2.2: Full Region is defined in the Phase Space according to two straight lines.

the Full Region x−L
t < v < x+L

t . So, mathematically2, f is represented by

• At t < 0

f (x, v, t < 0) =
1
L
g (|v|) Θ [x] Θ [L− x] (2.3)

• At t ≥ 0

f (x, v, t) =
1
L
g (|v|) Θ [x] Θ [L− x] Θ [vt− (x+ L)] Θ [(x+ L)− vt] (2.4)

Two different cases of Initial Distribution Functions g (|v|) are going to be studied in the

next subsections.
2the derivation are made with a normalization constant
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2.1.0.1 Select Distribution

For the first case, the non interacting gas of particles has an initial exponential distribution

function:

g (|v|) =
1
2
αe−α|v| (2.5)

As mentioned, the goal is to find the function M (t), which quantifies the escape pro-

cess. Integrating equation 2.4 over x and v will give us the desired M (t). that is,

M (t) = MT

ˆ ˆ
f (x, v, t) dxdv (2.6)

where MT represent the total initial mass. The way to proceed is as follows:

• First, the Space Density Function ρ (x, t) is given by

ρ (x, t) =
ˆ ∞
−∞

f (x, v, t) dv (2.7)

• Second, from 2.7

M (t) =
ˆ L

0

ρ (x, t) dx (2.8)

The first two step functions in equation 2.4 just set the limits of the region,

1
L

ˆ L

0

dx

ˆ ∞
−∞

g (|v|) Θ [vt− (x+ L)] Θ [(x+ L)− vt] dv (2.9)

The remaining two step functions limit the general distribution function to stay in the

Full Region. That is, integrating in terms of the velocity:

1
L

ˆ L

0

dx

ˆ (L+x
t )

−(L−xt )
g (|v|) dv (2.10)

Now, with the expression for g (|v|) ,

ˆ (L+x
t )

−(L−xt )
g (|v|) dv =

1
L

1
2
α

[ˆ 0

−(L−xt )
e+αvdv +

ˆ (L+x
t )

0

e−αvdv

]
(2.11)
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Figure 2.3: Mass Function for the select distribution function with L = 1 and α = 1.

So, the space density function is

ρ (x, t) =
1
L

1
2

(
1− e−α(L−xt )

)
+

1
L

1
2

(
1− e−α(L+x

t )
)

(2.12)

Next, integrate over x to find M (t) ,

M (t) =
1
L

ˆ L

0

[
1
2

(
1− e−α(L−xt )

)
+

1
2

(
1− e−α(L+x

t )
)]
dx (2.13)

The resulting Mass Function after the integration is the following:

M (t) = 1− t

2Lα

[
1− e−α 2L

t

]
(2.14)

The plot in figure 2.3 shows the times dependence of M (t) . The region becomes less

and less populated and M (t) asymptotically goes to zero.

2.1.0.2 Gaussian Distribution

For the second case, the gas of particles is distributed according to the Gaussian velocity

distribution3 function:

g (v) =
1√
2π
e−

v2

2σ2 (2.15)

3This correspond to Maxwell-Boltzmann form of equilibrium
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In the same manner as in 2.1.0.1 , finding ρ (x, t) is the first step to obtaining M (t) . In

order to do so, the following considerations are necessary:

• For simplicity, dimensionless units are used, where σ = 1 . The resulting M (t) will

be part of a family of functions depending on the value of σ.

• Due to the symmetry of the Gaussian Distribution, it easy to see:

ˆ 0

−(L−xt )
dv · · · =

ˆ (L−xt )

0

dv · · · (2.16)

Then, The Space Density Function is:

ρ (x, t) =
1
L

ˆ (L−xt )

0

g (|v|) dv +
1
L

ˆ (L+x
t )

0

g (|v|) dv (2.17)

To make the integration, let us define the following:

I =
ˆ (L+b

t )

0

1√
2π
e−

v2
2 dv (2.18)

making the change of variable y = v√
2

equation 2.18 becomes:

I =
1
2

ˆ 1√
2 (L+b

t )

0

2√
π
e−y

2
dy (2.19)

So, comparing with the Error Function

erf (x) =
2√
π

ˆ x

0

e−t2dt (2.20)

it is clear:

I =
1
2
erf

(
L+ b√

2t

)
(2.21)

For values of −x and x for b , ρ (x, t) has the following expression:

ρ (x, t) =
1
L

1
2

[
erf

(
L− x√

2t

)
+ erf

(
L+ x√

2t

)]
(2.22)

Now, as done before,

M (t) =
1
L

1
2

ˆ L

0

[
erf

(
L− x√

2t

)
+ erf

(
L+ x√

2t

)]
dx (2.23)
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Figure 2.4: Mass Function for the Gaussian distribution

This leads to a Mass Function for the Gaussian distribution

M (t) =
1
2

[(
−1 + e−

2L2

t2

)√ 2
π

t

L
+ 2erf

(√
2L
t

)]
(2.24)

The plot in figure 2.4 shows the asymptotic dependence of M(t) .

2.2 Non Interacting Gas of Particles under Gravitational

Field.

For this second system, due to the presence of the gravitational field mgx, its initial

distribution function will depend on the position as well as the velocity g (x, v). At t < 0,

the non interacting gas of particles remains inside the initial region.

2.2.1 Canonical Ensemble.

The initial distribution function which represents this system in equilibrium4 is chosen

to be the Canonical Ensemble.

g(x, v) = ce−β( 1
2mv

2+mgx) (2.25)

4Due to the conditions, it will be the thermal equilibrium
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Figure 2.5: Phase space at t < 0 for a particle with velocity v and constant total energy

where, m is the mass, β = 1
KT , T the absolute temperature, and mgx the potential

energy. The following subsections investigate two cases.

2.2.1.1 Semi-infinite Case.

For the first case, the size of the one dimensional box is semi-infinite (0 < x < ∞). It is

seen in the representation of the phase space shown in figure 2.5. The constant in this

case, from normalization, is c = βmg
√

βm
2π .

The motion of a particle with velocity |v| will describe a parabolic path in the phase

space. When the particle has positive velocity, it eventually loses all its kinetic energy

due to gravity and falls down towards the left boundary with increasing negative velocity

until it reaches the left boundary in region v < 0 and enters region v > 0 .

At t = 0, the left boundary (at x = 0) is open and the particles start the process of

emptying the restricted region as follows.

The motion of a particle obey the equation:

d2x

dt2
= −g (2.26)

or equivalently,
dv

dt
= −g (2.27)
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Figure 2.6: Full Region in the phase space. tm > 0

From equation 2.27 :

v0 = v + gt (2.28)

Now, integrating twice 2.26 and using 2.28 we find a linear relation between the posi-

tion and velocity of a particle at the given time t :

x (t) = vt+
1
2
gt2. (2.29)

In terms of velocity, equation 2.29 is:

v (t) =
x

t
− 1

2
gt (2.30)

In the same manner explained in the previous section, equation 2.30 at t > 0 limits the

existence of particle to the right of that straight line and it is called Full Region. Figure

2.6 on page 18 shows, in the phase space diagram, an empty region above the straight

line where there are no more particles and the full region below where, at that time, the

particles with enough velocity are still in the region.

The parabolas in figure Figure 2.6 on page 18 represent particles with different kinetic

energies. Smaller parabolas, with less kinetic energy, represent escaped particles at that

time. In contrast, bigger parabolas, with greater kinetic energy, represent particles still

in the Full Region at that particular time t > 0.

18



Again, Step Functions keep the phase space density function f (x, v, t) in the Full Region

x
t −

1
2gt > v until, at particular large t, all particles escape from the region.

Mathematically, the system has different conditions for two time ranges:

• t < 0

f (x, v) = g (x, v) Θ [x] (2.31)

• t ≥ 0

f (x, v, t) = g (x, v) Θ [x] Θ
[(

x

t
− 1

2
gt

)
− v
]

(2.32)

In order to get M (t), the following considerations are taking in account:

• Again, for simplicity, dimensionless unit are used β = m = g = 1 ( New units of time

and distance).

• With the same logic used for ρ (x, t) , a newer function Velocity Distribution G (v, t)

will be found first . That is, instead of integrating over v first, it is going to to be

done over x with M (t) =
´
G (v, t) dv.

• The Step Function in equation 2.32 in terms of x is:

Θ [x− a] (2.33)

with a = vt+ 1
2gt

2

Then, function G (v, t) is5:

G (v, t) =
1√
2π
e−

v2
2

ˆ ∞
0

e−xΘ [x− a] dx (2.34)

Making the integral:

G (v, t) =
1√
2π

[
e−

1
2 (v+t)2Θ [a] + e−

1
2v

2
Θ [−a]

]
(2.35)

With

I1 =
ˆ ∞
−∞

e−
1
2 (v+t)2Θ [a] dv (2.36)

5Notice Step Function Θ [x] were used without mention
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and

I2 =
ˆ ∞
−∞

e−
1
2v

2
Θ [−a] dv (2.37)

The Mass Function M (t) will have the form of:

M (t) =
1√
2π

(I1 + I2) (2.38)

To solve for I1, since6 Θ [a] = Θ
[
v′ + 1

2 t
]
, then,

v′ +
1
2
t > 0 (2.39)

v′ > −1
2
t (2.40)

with v′ −→ v + t equation 2.36 becomes:

I1 =
ˆ ∞
−∞

e−
1
2v

2
Θ
[
v − 1

2
t

]
dv (2.41)

or

I1 =
ˆ ∞

1
2 t

e−
1
2v

2
dv (2.42)

From the definition of Complementary Error Function:

erfc (x) =
2√
π

ˆ ∞
x

e−t
2
dt (2.43)

It easy to see that:

I1 =
1
2
erfc

(
1

2
√

2
t

)
(2.44)

Now, to solve I2 , since Θ [−a] = Θ
[(
− 1

2 t
)
− v
]

, evaluating the Step Function, using 2.16

, and considering the following property:

ˆ ∞
a

· · · =
ˆ ∞

0

· · · −
ˆ a

0

· · · (2.45)

at the end, the expression for I2 is:

I2 =
1
2

(
1 + erf

(
− 1

2
√

2
t

))
(2.46)

6v′ is used just to make the derivation clearer
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Figure 2.7: Mass Function for a semi -infinity gravitational field system

Using the properties of the Error Function:

• erf (−x) = −erf (x)

• erfc (x) = 1− erf (x)

the equation for Mass Function 2.38 is finally:

M (t) = erfc

(
t

2
√

2

)
(2.47)

a Complementary Error Function, as was expected from the nature of the initial distribution

function. It is potted in figure Figure 2.7 on page 21.

2.2.1.2 Finite Case.

For this second case, the size of the one dimensional box is finite and equal to L located

at the region0 < x < L . The normalization constant is c =
√
a b

(1−e−bL)
√
π

with:

a =
βm

2

b = βmg

The phase space is shown in figure 2.8, the particle describes a parabola or a truncated

parabola with an initial velocity at the left boundary equal in magnitude to the final
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Figure 2.8: Phase space for any time t . Only inside the box 0 < x < L it is relevant.

velocity at the right boundary. From the figure, three velocities are important and present

at any time. One is the velocity vL =
√

2gL and the particular time is defined as tL = 2
√

2L
g

. The vm, is the velocity of a particle which at any time 0 < t < tL has completed the whole

parabola, reached left boundary and escaped and it is calculate to be vm = 1
2gt . The last

one is the velocity vp. It is the velocity of a particle which has reached the right boundary

at L , jumped into the negative velocity region, and finally found the left boundary and

escaped and is found to be vp = 2L
t + gt

4 .

Since there is a discontinuity due to the right boundary, the evolution of the system

has three different cases separated by lapses of time. For each of these lapses, the Mass

Function M (t) is calculated. So, in order to find the Mass Function for any case mentioned

above, the Full Region is split into regions with a total Mass Function equal to

M (t) = MA (t) +MB (t) +MC (t) . (2.48)
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Figure 2.9: Phase space for the lapse of time 0 < t <
√

L
g called Case A.

The Mass function for any region is:

Mregion = c

ˆ xf

x0

ˆ vf

v0

dxdv e−av
2+bx

where the limits of integration will depend on the particular case.

Numerical integration is mandatory due to the complex form of the functions making,

analytic calculations impossible in most of the cases.

Case A

The first case to analyze has a 0 < t <
√

L
g . Here, figure 2.9 shows another velocity in the

phase space called v1. A particle with initial velocity v1 is at the right boundary (x = L)

with a velocity v1B at this particular time t. Both velocities are defined as v1 = L
t + 1

2gt
2

and v1B = v1 − gt.

Therefore, the time is controlled by the condition v1B − vm > 0. So, the time which this

condition is valid is when t <
√

L
g . The straight line v = x

t −
1
2gt

7 specifies the position

of a particle when its velocity is less than v1 and is the top limit of the Full Region8. The

position of the particles in the phase space with velocities greater than v1 corresponds

7that is was found for the semi-infinity case as well.
8Region defined in last section
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to the lower part of the phase space. Those particles have reached the right boundary,

jumped into the negative velocity region, and are on the way to reach the left boundary

and escape. All these particles create a complicated path which is the bottom limit of the

Full Region; it is marked with a dashed curve in the figure.

Region I

For the region I, in order to specify the velocity and position, since it is complicated due to

the discontinuity, the intention is to make a transformation such the velocity and position

depend on the respective initial values, that is:

v = −vB − g (t− tB) (2.49)

x = L− vB (t− tB)− 1
2
g (t− tB)2 (2.50)

The subscript B refers to either velocity or time at the right boundary related to the

initial velocity by the following set the equations:

vB (v0) =
√
v2

0 − 2gL (2.51)

tB(v0) =
v0 −

√
v2

0 − 2gL
g

(2.52)

Therefore, the final expression for the velocity and position is:

v = −
√
v2

0 − 2gL− g

(
t− v0 −

√
v2

0 − 2gL
g

)
(2.53)

x = L−
√
v2

0 − 2gL

(
t− v0 −

√
v2

0 − 2gL
g

)
− 1

2
g

(
t− v0 −

√
v2

0 − 2gL
g

)2

(2.54)

and,

MI = c

ˆ −v1B
−vp

dv e−av
2
ˆ −x(v0)

0

dx e−bx

= c

ˆ −v1B
−vp

dv e−av
2
(

1
b

[
1− e−bx(v0)

])
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with the transformation for the velocity dv =
∣∣∣ dvdv0 ∣∣∣ dv0, the Mass function for region I is:

MI =
c

b

ˆ vp

v1

dv0

∣∣∣∣ dvdv0

∣∣∣∣ e−av2(v0)
[
1− e−bx(v0)

]
. (2.55)

with ∣∣∣∣ dvdv0

∣∣∣∣ =

∣∣∣∣∣1− 2v0√
v2

0 − 2gL

∣∣∣∣∣ . (2.56)

Region II

In this region, it is just a simple a integral over a rectangle. So, the expression of the

Mass Function is:

MII = c

ˆ −vm
−v1B

dv e−av
2
ˆ −L

0

dx e−bx

=
c

b

ˆ −vm
−v1B

dv e−av
2 ([

1− e−bL
])

(2.57)

Region III

This region is the upper-triangle shown in the figure 2.9 where the hypotenuse is the

straight line xline = vt+ 1
2gt

2 then, the Mass Function is:

MIII = c

ˆ v1B

−vm
dv e−av

2
ˆ −L
xline

dx e−bx

MIII =
c

b

ˆ v1B

−vm
dv e−av

2 ([
e−bxline − e−bL

])

Case B

This second case has the lapse of time
√

L
g < t 6 tL

2 valid for the condition vm − v1B > 0

. Here, the Full Region is split into three regions as done in Case A, with a newer region

called Region 0, instead of Region II. Region 0, is just a numerical necessity with no

physical meaning for the system, its contribution is easy get rid of by simply subtracting

it to the Mass Function as follows:

MB (t) = MI +MIII −M0.
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Figure 2.10: Phase space for case B, lapse of time
√

L
g < t < tL

2

Region I

For this case, Region I has the same form as the previous Case A. Obviously, the magni-

tudes of the velocities such as vm, vp, etc, are totally different so the same the limits of

integration are not the same as the case A.

MI =
c

b

ˆ vp

v1

dv0

∣∣∣∣ dvdv0

∣∣∣∣ e−av2(v0)
[
1− e−bx(v0)

]
(2.58)

Region III

This region has the same mathematical form as the previous case. The difference is the

lower limit of integration for the integral of the velocity, instead of −vm now it is −v1B .

MIII =
c

b

ˆ v1B

−v1B
dv e−av

2 ([
e−bxline − e−bL

])
(2.59)

Region 0

This region, corresponds to the upper-left triangle in the figure. So,

M0 = c

ˆ −v1B
−vm

dv e−av
2
ˆ xline

0

dx e−bx
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Figure 2.11: Phase space for case lapse of time tL
2 < t < tL

=
c

b

ˆ −v1B
−vm

dv e−av
2 ([

1− e−bxline
])

(2.60)

Case C

This third case corresponds to the lapse of time tL
2 < t < tL . All the particles are located

in the lower part of the phase space as in the figure 2.11. A new velocity, which define

the Full Region, called critical velocity vC appears in the phase space with an expression

vC = vL − gt. The Mass Function for this case is:

MC (t) = MI −M0

Region I

As before, the limits of integration are different and only the mathematical form prevails.

The Mass Function for this region has the expression

MI =
c

b

ˆ vp

vL

dv0

∣∣∣∣ dvdv0

∣∣∣∣ e−av2(v0)
[
1− e−bx(v0)

]
(2.61)

.
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Region 0

The expression obtained for this case is:

M0 =
c

b

ˆ −vC
−vm

dv e−av
2 ([

1− e−bxline
])

(2.62)

A numerical code compute the final expression of total Mass Function 2.48 for a par-

ticular set of parameters. The intention is to be more realistic in the calculation. That is

why a situation more similar to the experiment found in the work of V. Milner [38] is set.

The parameters which define the system are:

• A dilute gas of cesium atoms, m = 2.20695× 10−25Kg .

• Absolute temperature of 10−5K.

• Size of the one dimensional box of L = 1× 10−4meters .

The figure 2.12 shows the time dependence of total Mass Function. The little bumps

nearby n = 50 represents a point of transition form case B to case C. At that point, t = tL
2 ,

after several attempts to fix this bump in the code, we concluded that it has not a physical

meaning but, the complexity of the function creates a numerical issue. Some following

derivations will clarify this explanation.

In order to do it, we will take a particle at the right boundary at t = tL
2 , with a velocity

vB = 0, and located at x = L in the phase space in the figure 2.11. The reason is that, a

particle with this particular set of value, represents just the time of the transition from

case B to case C.

First of all, we have to make sure all the definitions used are correct. But, before

proceeding, the following notations will be very useful. With the definitions of vL =
√

2gL,

and tL, the following values are found:

The total time tL is:

tL = 2

√
2L
g

= 2

√
2Lg
g2

= 2

√
v2
L

g2
= 2

vL
g

(2.63)
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Therefore,
tL
2

=
vL
g
. (2.64)

The critical velocity vC has to be zero because it represents the beginning of the case

C. Then,

vC = vL − g
tL
2

= vL − g
vL
2g

= 0

Form the definition of time at the right boundary 2.52, with v0 = vL, its value has to

be tL
2 as we can see next,

tB =
vL −

√
v2
L − 2gL
g

=
vL −

√
v2
L − v2

L

g

=
vL
g

=
tL
2
.

From the definition of velocity at the right boundary 2.51, it is expected to be zero as

it shown in the following derivation,

vB =
√
v2

0 − 2gL

=
√
v2
L − v2

L = 0

A particle at the right boundary has to have an initial velocity v1 equal to vL. So,

v1 =
L
tL
2

+
1
2
g
tL
2

=
L
vL
g

+
1
2
g
vL
g

=
gL

vL
+

1
2
vL

=
v2
L

2vL
+

1
2
vL

=
1
2
vL +

1
2
vL = vL.
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The equations used by the code are correct. When time

t → tL
2

(2.65)

the initial velocity

v0 → vL (2.66)

therefore,

∣∣∣∣ dvdv0

∣∣∣∣ → ∞ (2.67)

since,

∣∣∣∣∣1− 2v0√
v2

0 − 2gL

∣∣∣∣∣ →
∣∣∣∣∣1− 2vL√

v2
L − v2

L

∣∣∣∣∣
→ ∞ (2.68)

Therefore, numerically, when the time in the code has a value close to tL
2 , there is

a numerical problem due to the singularity but, the smoothness of Mass Function is

recovering a bit later when the time is higher than tL
2 .

In the classical perspective, the escaping problem is represented by transparent bound-

aries condition with step functions to restrict the general distribution function into a de-

sirable region. The Mass Function M (t) contains the quantitative analysis of particles for

the EP.
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Figure 2.12: Mass Function for a particle inside of a box of size L = 1× 10−4meters.
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Chapter 3

Escape Problem: Quantum

Perspective.

The quantum Escape problem maintains the same basic idea as its classical analog of a

group of particles confined into a region of size L where, abruptly, one of the boundaries

becomes transparent allowing particles to escape. The group of particles is a dilute gas

rarefied enough to consider it as a “Knudsen Gas” [30, 10] where its density is so small

that only the interactions with the boundaries are relevant.

From the perspective of quantum mechanics, the EP is a Quantum Initial Value Problem

(QIVP). That is, the intention is to solve the Schrödinger equation from a given initial

condition. The EP is similar to a diffusion type problem, it has the same structure as

propagation problems in which a partial differential equation is solved with the aid of

a known initial value. The difference, then, lies in the complex nature of the quantum

theory in which a pure imaginary term appears in the Schrödinger equation.

In this chapter, the goal is to develop a numerical analysis essential for this research.

The procedure is to start with an analytic approach for the basic example of a free particle

inside a box. Then, we use a numerical approach to develop a code by using finite differ-

ence method. A particular sine function is used as initial function with the intention to

compare both approaches. The most important and challenging task in order to accom-

plish the goal in this chapter is to implement the novel concept of Transparent Boundary

Conditions (TBCs) inside the numerical code. Mathematicians developed this concept to

solve numerically the problem of infinite domain of a function; we use it here to simulate
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an open boundary.

3.1 Analytic Approach for a Free Particle

This section develops the theory governing the QIVP for a free particle (no external poten-

tial) in one dimension. The equation to solve is

∂Ψ (x, t)
∂t

= i
~

2m
∂2Ψ (x, t)
∂x2

(3.1)

with the initial condition:

Ψ (x, t) |t=0 = ΨI (x, 0) (3.2)

Laplace’s Method is one of the many appropriate techniques to solve differential equa-

tions. Since the Laplace’s transform is zero for t < 0 , this method perfectly fits the

conditions of a QIVP. The first task in Lapace’s Method is to define the Laplace transform

of the wave function and its time derivative. For this particular example the definition of

the Laplace Transform is:

φ (x, s) =
ˆ ∞

0

e−stΨ (x, t) dt

or,

φ (x, s) = L{Ψ (x, t)} (3.3)

by integrating by parts,

L
{
dΨ (x, t)

dt

}
= sφ (x, s)−ΨI (x, 0) (3.4)

In using equations 3.3 and 3.4, the Schrödinger equation 3.1 , after some algebraic re-

arrangements, becomes:

∂2φ (x, s)
∂x2

+ iαsφ (x, s) = iαΨI (x, 0) (3.5)
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with

α =
2m
~

(3.6)

Now, the Green’s Functions can be used to solve the inhomogeneous differential equa-

tions 3.5.

It is important to say that this section is not dedicated to the theory of solving differen-

tial equations. However, some details in the procedure make derivations understandable

and easy to follow by the reader. An interesting discussion of Green’s Functions is found in

[1]. The following notation and definitions are necessary before using Green’s Functions.

The Laplace’s transform of the Green’s function:

L{G (x, x′, t)} = g (x, x′, s) (3.7)

where G (x, x′, t) is the solution in the non-transform space.

The Green’s function for equation 3.5 is:

d2g (x, x′, s)
dx2

+ iαsg (x, x′, s) = δ (x− x′) (3.8)

and the solution of the equation which satisfies all boundary conditions (3.8) φ (x, s) is

given by

φ (x, s) = iα

ˆ ∞
0

dx′g (x, x′, s) ΨI (x′, 0) (3.9)

The complete time dependent solution of the initial value problem Ψ (x, t) is obtained by

inverting the Laplace transform:

Ψ (x, t) = iα

ˆ ∞
0

dx′G (x, x′, t) ΨI (x′, 0) (3.10)

It remains to construct the Green’s function g (x, x′, s) for our particular problem and,

subsequently, G (x, x′, t) and then, substitute it into equation 3.10.

In order to construct the Green’s Function g (x, x′, s) , beginning from equation 3.8 at

x 6= x′ and assuming ReP > 0 , the postulated solution is:

g = e±Px (3.11)

Thus,
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P 2 + iα = 0 (3.12)

and

P =
√
αs

2
(1− i) . (3.13)

For x < x′

g1 = BePx + Ce−Px (3.14)

x = 0 g1 (0) = 0 (3.15)

B + C = 0 C = −B (3.16)

g1 = B
(
ePx − e−Px

)
(3.17)

And for x > x′

g2 = Ae−Px (3.18)

The following two conditions give A and B:

• For continuity at x = x′

g1 = g2 (3.19)

B
(
ePx

′
− e−Px

′
)

= Ae−Px
′

(3.20)

B
(
e2Px′ − 1

)
= A (3.21)

• For discontinuity of the derivative of g

dg2

dx
|x′ −

dg1

dx
|x′ = 1 (3.22)

These two conditions lead to the equations:

−APe−Px
′
−BP

(
ePx

′ − e−Px′
)

= 1 (3.23)

−Ae−Px
′

B
(
ePx

′ − e−Px′
)

=
1
P

(3.24)
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and, after some algebraic manipulation, one obtains:

−2BePx
′

=
1
P

(3.25)

B = − 1
2P

e−Px
′

(3.26)

Now, by taking the value of B form equation 3.26 and inserting it into equation 3.21 ,

the value for A will be:

A =
1

2P

(
ePx

′
− e−Px

′
)

(3.27)

The equation 3.17 and the equation 3.18 can be rewritten to get:

for x < x′ (3.28)

g1 = − 1
2P

e−Px
′ (
ePx − e−Px

)
(3.29)

for x > x′ (3.30)

g2 = − 1
2P

(
ePx

′
− e−Px

′
)
e−Px (3.31)

Alternatively,

g1 = g1a + g1b (3.32)

g1a = − 1
2P

e−P(x′−x) (3.33)

g1b =
1

2P
e−P(x+x′) (3.34)

and,

g2 = g2a + g2b (3.35)

g2a = − 1
2P

e−P(x−x′) (3.36)

g2b =
1

2P
e−P(x+x′) (3.37)

In general, the inversion of Laplace’s transforms of any of the g functions has to be

done via contour integration in the complex s plane. However, there are Mathematical

Tables [6] with many worked out examples. This section shows only one of the g func-

tions, g1a ,as an example 1 of using the tables. The following expressions can be found

1The rest of functions ( g1b, g2a, g2b ) are easy to see due to their similarity.
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Mathematical Tables

f (s) F (t)

1√
s
e−k
√
s 1√

πt
e−

k2
4t

for k > 0. Then, using 3.6 and 3.13 it is easy to see that

g1a =
e−(1−i)

√
ms
~ (x′−x)

2 (1− i)
√

ms
~

(3.38)

and its corresponding inverse Laplace’s transform

G1b =
e−

1
4t [mh (1−i)2(x′+x)]

2 (1− i)
√
πtm~

. (3.39)

Similarly, it is easy to obtain

G2a = −e
− 1

4t [mh (1−i)2(x′−x)]

2 (1− i)
√
πtm~

(3.40)

G2b =
e−

1
4t [mh (1−i)2(x′+x)]

2 (1− i)
√
πtm~

. (3.41)

Just as a reminder, subscript 1a and 1b refers to the case where x < x′ and subscript

2a and 2b to the case where x > x′ . Defining the following constants

C ≡ 1

2(1−i)
√

mπ
~

(3.42)

a ≡ m
2~ (3.43)

the total Green’s function is found to be:

G (x.x′, t) =
C√
t

[(
−e

ia
t (x′−x)2

+ e
ia
t (x′+x)2)

Θ [x′ − x] +
(
−e

ia
t (x−x′)2

+ e
ia
t (x′+x)2)

Θ [x− x′]
]

(3.44)

which can be simplified as follows:

G (x.x′, t) =
C√
t

[
−e

ia
t (x′−x)2

+ e
ia
t (x′+x)2]

. (3.45)
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Once the Green’s function is constructed by the above procedure, in order to get the

wave function it is necessary to substitute equation 3.45 into the equation 3.10 resulting

in the complete solution:

Ψ (x, t) = i
αC√
t

ˆ ∞
0

dx′
(
−e

ia
t (x′−x)2

+ e
ia
t (x′+x)2)

ΨI (x′, 0) (3.46)

It is very illustrative to perform an easy example such as it is done in the next section.

3.1.1 Sine Function Example.

The evolution of a free particle in the region 0 < x < L will be predicted by the ground

state wave function of an Infinite Well Potential of length L. Therefore, the initial value or

initial condition inside of the box is

ΨI (x, 0) = sin (kx) (3.47)

with k = π
L . Of course, outside of the box the value of the initial wave function vanishes.

The exact, time dependent wave function on the semi infinite domain is obtained by

replacing the value of the initial condition in the equation 3.46 as follows:

Ψ (x, t) = i
αC√
t

ˆ L

0

dx′
(
−e

ia
t (x′−x)2

+ e
ia
t (x′+x)2)

sin (kx′) (3.48)

After performing the integration using Mathematica, the explicit form of the wave function

is:

Ψ (x, t) = 1√
2
[
((

1
4 −

i
4

)
(−1)

1
4 e−

iπ(πt+2aLx)
2aL2

)
(3.49)

(Erfi
[

( 1
2 + i

2 )(−πt+aL(L−x))
√
aL
√
t

]
−e 2iπx

L Erfi

[(
1
2 + i

2

)
(πt+ aL (L− x))
√
aL
√
t

]

−e 2iπx
L Erfi

[
( 1

2 + i
2 )(−πt+aL(L+x))
√
aL
√
t

]
+Erfi

[(
1
2 + i

2

)
(πt+ aL (L+ x))
√
aL
√
t

]
)]

where Erfi is the error function with imaginary argument. In the next set of graphs, the

real and imaginary parts of the wave function are plotted for a set of different values of

the time. The set begins with two small values and ends with a relatively longer time
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value compared with the value, in dimensionless units, of the time period for the first

ground state, T = 2π
ω = 5.092, with a value of ω = 1.233. For simplicity dimensionless units

are used where m = ~ = 1 and the length of the region will be L = 2.

In conclusion, it is possible to obtain analytically the Wave Function which describes

the system of a free particle within a particular region. Mathematically, it is a Quantum

Initial Value Problem in which the Schrödinger equation is solved with the aid of Laplace’s

Method and the Green’s Function. The set of graphs shown above reveal the evolution of

the real part of the wave function Ψ (x, t) at different times.

In the next section, the same example of QIVP will be treated using a numerical ap-

proach. We will show that both treatments coincide with an almost identical wave func-

tion. The way to demonstrate that is by comparing both wave functions obtained with the

different approaches for the same values of time.

3.2 The Necessity of a Numerical Approach.

The procedure in the last section shows only the analytic derivation of the wave function

for the one dimensional QIVP. The derivation of any form of the Mass Function is not yet

considered. We could see that any realistic system has only a numerical solution. That is

why, although an analytic procedure to find a expression for the Mass Function is reliable

for the special case in one dimension, a two dimensional case of the EP is practically

impossible and only numerically accessible. Therefore, a numerical code is indispensable

in order to obtain the Mass Function which is the property of the system we are interested

on.

3.2.1 Numerical Method.

As mentioned earlier in beginning of Chapter 3, QIVP can be considered as a propagation

problem. These are initial-value problems governed by a parabolic Partial Differential

Equation (PDE) first order in the time.

A familiar representative of a parabolic PDE in one dimension is the Diffusion Equa-

tion,

ft = α fxx. (3.50)

Subscripts t and xx represent the first time derivative and second position derivative of
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the function f . The factor α in the equation is called the diffusivity defined by the system

under investigation.

The Schrödinger equation2 using the same notation as in equation 3.50 becomes.

iΨt = −1
2

Ψxx (3.51)

Except for the imaginary number i , the equation 3.51 is identical to 3.50. Therefore, it is

mathematically correct to proceed to solve 3.51 with the complex extension of the same

tools used in the numerical method for the Diffusion Equation.

The Crank-Nicolson method and LU Factorization are the numerical algorithms used to

solve the Schrödinger equation as a diffusion type equation. To make that equation equiv-

alent to the escape problem in Chapter 3, it is necessary to resort to the mathematical

concepts of Transparent Boundaries Conditions (TBCs). That is, the natural domain of

the wave equation solution is infinite. An infinite domain is computationally impossible.

Therefore, the imposition of artificial boundaries is necessary. It is important to recog-

nize that the artificial boundary conditions for the escape problem have to be transparent.

This means that the wave function solution has to pass through the boundaries without

any reflection, and it has to coincide with the exact wave function solution defined on

the infinite domain. The next section shows the main concepts and mathematical tools

required to understand the numerical approach to solving the EP.

3.2.1.1 Mathematical Background.

Numerical methods solve the PDE by changing the calculus problem into an algebraic

one that is computationally accessible. To accomplish this, we use the Finite Difference

Method (FDM ). The procedure for FDM consists of partitioning the solution domain into

finite difference grids, and then replacing the PDE derivatives with finite difference ap-

proximations (FDAs). FDAs can be substituted into the PDE to obtain a finite difference

equation (FDE). The FDE can be solved algebraically, resulting in a good approximation

to the solution of the original PDE.

There are two kinds of FDM, Explicit and Implicit. Here, in this chapter, an Implicit

Method called The Crank-Nicolson Method manipulates the FDAs. One big advantage

Implicit Methods have over the Explicit Method is that they are unconditionally stable

2Using atomic units
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Figure 3.1: Finite difference grids of the Solution Domain D (x, t).

because FDAs are evaluated in the solution at the time level n+ 1 (see below).

3.2.1.2 The Crank-Nicolson Method.

This subsection is based on the excellent treatment in [15]. In FDM, the discretized

domain of the solution is constructed using the following finite difference grids

xi = (i− 1)4x (3.52)

tn = n4t (4t constant) (3.53)

as in Figure Figure 3.1 on page 41

As shown in the figure, the domain D (x, t) is from 0 to L on the x−axis and the solution

is marching in a positive time direction on the y − axis .

The next task is to replace the derivatives of the PDE with FDAs. Before we proceed,

we introduce the following notation in the context of FDM:

• Grid point (i, t) → (xi, tn).

• Function f (xi, tn) → fni .

• First time derivative ∂fni
∂t → ft|ni .
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• Second space derivative ∂2fni
∂t2 → fxx|ni .

Therefore, ft and fxx express an approximations of the complete solution. The standard

way to locally approximate a function is with the well known Taylor’s Expansion. The

Taylor expanded function fi+1 using xi as the base point for x is:

fi+1 =
∞∑
n=1

1
n!
f

(n)
i (xi+1 − xi)n (3.54)

Now, expanding the functions, fi+1 and fi−1 ,

fni+1 = fni + fx|ni4x +
1
2!
fxx|ni4x2 + · · · (3.55)

fni−1 = fni − fx|ni4x +
1
2!
fxx|ni4x2 − · · · (3.56)

Taking into consideration 3.55 and 3.56 ,

fni+1 + fni−1 = 2fni + fxx|ni4x2 + · · · . (3.57)

Therefore, the 2nd Order Central Space approximation of the second derivative is:

fxx|ni =
fni+1 − 2fni + fni−1

4x2
(3.58)

For the first time derivative ft , the base point The Crank-Nicolson Method uses is n+ 1
2

. That particular base point makes the method not only different form others3 but also,

makes an improvement in the accuracy of the expansion.

By using Taylor’s Series 3.54, it is easy to obtain,

fn+1
i = f

n+ 1
2

i + ft|
n+ 1

2
i

(
4t
2

)
+

1
2
ftt|

n+ 1
2

i

(
4t
2

)2

+ · · · (3.59)

fni = f
n+ 1

2
i − ft|

n+ 1
2

i

(
4t
2

)
+

1
2
ftt|

n+ 1
2

i

(
4t
2

)2

− · · · (3.60)

In the same way done before in combining two Taylor expanded functions, the equa-

tions 3.59 and 3.60 can be also combined to get

fn+1
i − fni = 2 ft|

n+ 1
2

i

(
4t
2

)
(3.61)

3The Backward-Time Center-Space Method (BTCS) in which the base point for the expansion of ft is at first
order n is an example of a different method.
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Figure 3.2: Stencil used in the Crank-Nicolson Method.

and finally obtain the 2nd Order Central Time approximation of the first derivative:

ft|
n+ 1

2
i =

fn+1
i − fni
4t

. (3.62)

The Crank-Nicolson Method uses the following finite difference stencil shown in Figure

3.2. The central idea is to convert an explicit method to an implicit one by averaging

the derivatives at two consecutive time elements. Therefore, the second derivative at grid

point
(
i, n+ 1

2

)
is approximated by the following equation:

fxx|
n+ 1

2
i =

1
2
(
fxx|n+1

i + fxx|ni
)

(3.63)

By employing 3.58 and 3.62 in 3.63, it is not difficult to obtain the algebraic relation-

ship for the one-dimensional approximation of the diffusion equation 3.50 :

fn+1
i − fni
4t

=
α

2

[
fn+1
i+1 − 2fn+1

i + fn+1
i−1

4x2
+
fni+1 − 2fni + fni−1

4x2

]
(3.64)

Then, the Crank-Nicolson difference equation is:

−dfn+1
i−1 + 2 (1 + d) fn+1

i − dfn+1
i+1 = dfni−1 + 2 (1− d) fni − dfni+1 (3.65)

where d = α ∆t
∆x2 .

The algebraic relationship 3.65 develops a tri-diagonal system of a set of imax − 1

simultaneous linear equations, where imax is the maximum number of grid points. The
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tri-diagonal system has to be solved iteratively by a numerical code.

Âfn+1 = ~b (3.66)

From the figure 3.1 the set of linear equations applies only at the interior points i =

1, 2, 3, . . . , imax − 1 . In the typical situation, where the value of the function is specified

on the boundaries, the points at i = 0 and i = L are Dirichlet boundary conditions (the

value of the function at the boundaries is given)

i = 1 fn+1
1 = f (0, t) (3.67)

i = L fn+1
imax = f (L, t) (3.68)

These boundaries are not transparent for the diffusion problem. The next part of the

section shows only the last relationship of the set of linear algebraic equations in 3.66.

These particular algebraic relationships are very important since their structure is the

only changing part to obtain the TBC when implementing a code to solve the Schrödinger

equation 3.51.

So, at i = imax− 1

−dfn+1
imax−2 + 2 (1 + d) fn+1

imax−1 − df
n+1
imax = dfnimax−2 + 2 (1− d) fnimax−1 − dfnimax (3.69)

−dfn+1
imax−2 + 2 (1 + d) fn+1

imax−1 = dfnimax−2 + 2 (1− d) fnimax−1 − dfnimax + df (L, t)

−dfn+1
imax−2 + 2 (1 + d) fn+1

imax−1 = bimax−1 (3.70)

In conclusion, a linear algebraic relationship relates the known present time level n

and the future time level n + 1 by a numerically stable and easy to implement computa-

tional algorithm.

3.2.1.3 LU Factorization.

The tri-diagonal system of linear algebraic equations for the diffusion equation is usually

solved by a method called Thomas Algorithm . However, since the numerical solution of

the Schrödinger equation requires complex valued arithmetic, the method used will be

LU Factorization. This is an extension of the Gauss Elimination in which the matrix of

the system of linear algebraic equations is factorized by lower L̂ and upper Û triangular
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matrices. The LU Factorization method is very well established among numerical methods

and some algebraic calculations in next part provides, without a deep discussion, some

idea of its operation.

For the general linear system:

Â~x = ~b (3.71)

with Â = L̂Û

L̂Û~x = ~b (3.72)

Multiplying above equation by L̂−1 from the left gives

Û~x = L̂−1~b (3.73)

Now, defining

~b′ = L̂−1~b (3.74)

then

L̂−1~b′ = b (3.75)

Û~x = ~b′ (3.76)

In this way, equation 3.75 is solved by using forward substitution and equation 3.76

is solved by using back substitution. Standard libraries numerically perform forward and

back substitutions, it is not necessary to explain more than just this basic idea.

3.3 Transparent Boundaries Conditions (TBCs).

The code presented in this work was based on the design of Discrete TBCs (DTBCs) derived

by the work of Arnold[2, 26] with the inclusion of modifications that adapt DTBCs to the

particular example of the escape problem investigated in this chapter. A brief summary

with the necessary information is presented next.

The original problem as conceived by Arnold and derived in the dissertation of his

student, Earhardt[8], concerns the transport of a quantum particle that enters one side

of a finite domain and exits from the opposite side.

TBCs are derived for the one dimensional Schrödinger equation for a IVP and xεR and
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Figure 3.3: The infinite domain problem is transformed into three sub problems.

t > 0

i~Ψt = − ~2

2
Ψxx + V (x, t) Ψ (3.77)

Ψ (x, 0) = ΨI (x) (3.78)

TBCs impose boundaries at x = 0 and x = L with the assumptions:

• ΨI (x) is computationally defined inside of the finite domain 0 < x < L.

• The potential V is constant outside of the finite domain.

V (x, t) = 0 x 6 0 (3.79)

V (x, t) = VL x > L (3.80)

With this construction, the original infinite domain problem is changed into three sub

problems as in Figure 3.3 on page 46 coupled by the continuity conditions of Ψ and Ψt at

the boundaries.

The interior problem is:

i~Ψt = −~
2

2
Ψxx + V (x, t) Ψ (3.81)
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Ψ (x, 0) = ΨI (x) (3.82)

Ψx (x, t) = (T0Ψ) (x, t) (3.83)

Ψx (L, t) = (TLΨ) (x, t) (3.84)

The Dirichlet-to-Neumman maps T0 and TL at the boundaries are obtained by solving

the two exterior problems. Since the potential is constant outside, T0 and TL can be

obtained by using Laplace’s Method.

The right exterior problem, x > L , t > 0 is:

i~νt = −~
2

2
νxx + VLν (3.85)

ν (x, 0) = 0 (3.86)

ν (L, t) = Φ (t) , t > 0, Φ (0) = 0, (3.87)

ν (∞, t) = 0 (3.88)

(TLΦ) (t) = νL (L, t) (3.89)

An equivalent expression is obtained for the left exterior problem. Laplace’s Method

procedure here is similar to the one used in Chapter 3. The Laplace transform is

f (s) = L{ν (x, t)} =
ˆ ∞

0

e−stdt. (3.90)

The derivative is

L
{
dν

dx

}
= sL{ν (x, t)} − v (x, 0) . (3.91)

Therefore, the equation 3.85 becomes

i~sf (s) = −~
2

2
fxx (s) + VLνf (s) . (3.92)

After some algebraic manipulations, we obtain the following

fxx (s) + i
2
~

[
s− 1

i

VL
~

]
f (s) (3.93)

with the boundary condition

f (L, s) = L{Φ (s)} = Φ̂ (s) (3.94)
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The equation 3.93 can be written as

d2f (x, s)
dx2

+ κ2f (x, s) (3.95)

where κ = 2i
~
(
s+ iVL~

)
. The proposed solution is

f (x, s) = AePx (3.96)

with P = +
√
− 2i

~
(
s+ iVL~

)
. The + solution is preferred since it has to decrease at x → ∞.

Then, the solution is

f (x, s) = Ae
+

√
− 2i

~

(
s+i

VL
~

)
x
. (3.97)

In order to find A, the solution in the boundary is

f (L, s) = Ae
+

√
− 2i

~

(
s+i

VL
~

)
L

= Φ̂ (s). (3.98)

Therefore,

A = e
+

√
− 2i

~

(
s+i

VL
~

)
L

Φ̂ (s). (3.99)

The final expression for the solution becomes

f (s, x) = e
+

√
− 2i

~

(
s+i

VL
~

)
(x−L)

Φ̂ (s). (3.100)

The derivative at the boundary is

fx (L, s) = −
√

2
~
e−i

π
4

√
−2i
~

(
s+ i

VL
~

)
Φ̂ (s). (3.101)

For continuity

Ψx (L, t) = L−1 {fx (L, s)} . (3.102)

Therefore, with an inverse Laplace transform to fx (L, s) , finally the Right TBC is

Ψx (L, t) = −
√

2
~π
e−i

π
4 e−i

VL
~ t d

dt

ˆ t

0

Ψ (L, τ)√
t− τ

e+i
VL
~ tdτ. (3.103)
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A similar procedure (with VL = 0) yields the Left TBC

Ψx (0, t) =

√
2
~π
e−i

π
4
d

dt

ˆ t

0

Ψ (0, τ)√
t− τ

dτ. (3.104)

The way we prove that equation 3.103 is correct is by applying a Laplace transform to

3.102. That is,

L{Ψx (L, t)} = −
√

2
~π
e−i

π
4

ˆ ∞
0

dt e−st
[
e−i

VL
~ t d

dt

ˆ t

0

Ψ (L, τ)√
t− τ

e+i
VL
~ tdτ

]
(3.105)

where ˆ t

0

Ψ (L, τ)√
t− τ

e+i
VL
~ tdτ =

ˆ ∞
0

dτ
Θ [t− τ ]√
t− τ

Ψ (L, τ) e+i
VL
~ τ . (3.106)

The equation 3.105 becomes

L{Ψx (L, t)} = −
√

2
~π
e−i

π
4

ˆ ∞
0

dτ Ψ (L, τ) e+i
VL
~ τ

ˆ ∞
0

dt
d

dt

Θ [t− τ ]√
t− τ

e−ste−i
VL
~ t. (3.107)

The right hand term

ˆ ∞
0

dt
d

dt

Θ [t− τ ]√
t− τ

e−ste−i
VL
~ t, (3.108)

is calculated by integrating by parts twice. Finally, with some regrouping of terms, equa-

tion 3.105 is now

L{Ψx (L, t)} = −
√

2
~
e−i

π
4

√
−2i
~

(
s+ i

VL
~

)ˆ ∞
0

dτ e−st Ψ (L, τ) (3.109)

where, ˆ ∞
0

dτ e−st Ψ (L, τ) = Φ̂ (s). (3.110)

Therefore, the equation 3.102 is fulfilled and, the equation 3.103 which contains the

expression for the Right TBC, is justified.

In contrast with Dirichlet conditions, they are not stagnant in time and it is required

by the numerical method to store past history at all time levels at the boundaries. In the

right hand side of equations 3.103 and 3.104 the convolution terms appear as a fractional(
1
2

)
time derivative.

The construction of the discrete TBCs and their numerical implementation is the sub-
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ject of the dissertation by Ehrhardt [8]. In his work he uses a different strategy which

considers the discretization of the PDE on the whole space, and then derives the TBCs us-

ing the Crank-Nicolson scheme at a discrete level. With this approach, he overcomes the

stability problem and the problem of reduce accuracy mentioned and explained carefully

in his dissertation. Rigorous and complete derivations involving any of the expressions

can be found in Chapter 1 and 2 of the dissertation by Ehrhardt [8].

By using Z-transform[8] and considering the same scheme of exterior problems (with

constant potential) and interior problem, the discrete TBCs for the one dimensional

Schrödinger equation for n > 1 are:

• Left at j = 0

Ψn
1 − ln0 Ψn

L =
n−1∑
k=1

l
(n−k)
0 Ψk

0 −Ψn−1
1 (3.111)

• Right at j = J

Ψn
J−1 − lnJΨn

J =
n−1∑
k=1

l
(n−k)
J Ψk

J −Ψn−1
J−1 (3.112)

with,

lnj =
(

1− iR
2

+
σj
2

)
δ0
n +

(
1 + iR2 + σj

2

)
δ1
n +αje−inϕj

Pn (µj)− Pn−2 (µj)
2n− 1

and

R =
4
~

(4x)2

4t
, ϕj = arctan 2R(σj+2)

R2−4σj−σ2
j
, µj =

R2 + 4σj + σ2
j√(

R2 + σ2
j

) (
R2 + [σj + 4]2

) ,
σj = 2 (4x)2

Vj , αj = i
2

4

√(
R2 + σ2

j

) (
R2 + [σj + 4]2

)
ei
ϕj
2 , j = 0, J ; n > 0.

Pn denote Legendre Polynomials with the impositions P−1 ≡ P−2 ≡ 0 , δ the Kronecker

Delta symbol.

The derivations of discrete TBCs presented in this section, together with the numerical

method mentioned in subsections 3.2.1, 3.2.1.1, and 3.2.1.2 are the tools required to
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implement a code to solve the quantum EP.

3.4 Right Transparent Boundary Condition (RTBC) Code.

This section employs a change of notation to match notation used by [2, 26, 8]. However,

it is only a notation and has no affect at all on the calculations.It is important to point

out that for QIVP example in this chapter, the left boundary is not transparent. It has to

be treated by numerical method as a regular closed boundary.

Here, the future time level is at n , the past time level at n − 1 and the algebraic

relationship for one dimension approximation of the Schrödinger equation is:

i

(
Ψn
i −Ψn−1

i

4t

)
= −1

4

(
Ψn
i+1 − 2Ψn

i + Ψn
i−1

4x2
+

Ψn−1
i+1 − 2Ψn−1

i + Ψn−1
i−1

4x2

)
(3.113)

and the Crank-Nicolson difference equation is:

−Ψn
i+1 + CΨn

i −Ψn
i−1 = Ψn−1

i+1 − C ∗Ψ + Ψn−1
i−1 (3.114)

with C = (2− iρ) , C∗ = (2 + iρ) , and ρ = 44x2

4t .

In principle, it turns out that it is not a problem to implement a numerical code since it

is basically the same algebraic procedure as the one used for the diffusion equation. How-

ever, it is more difficult to handle complex terms immersed in the difference equations,

and even harder to implement them in a program and, especially, into the C programming

language.

The program presented here, called RTBC, was written in C. That language cannot

handle complex numbers by itself like FORTRAN or software such as Mat lab, Mathemat-

ica, Maple,etc. The RB TC code was written using numerical routines from GNU Scientific

Library (GAL)4. These libraries deal with all complex variable calculations and make them

more natural to handle. The source codes of the program RTBC is shown in Appendix A.

The tri-diagonal system of simultaneous linear equations for the RB TC program in-

cludes not only the interior points, but also an extra equation. That is, the system of

simultaneous linear equations is now the set of imax equations,

ÂΨn = ~b, (3.115)

4It is a free software under the GNU General Public License.
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where,

• imax− 1 equations came from the interior scheme.

• One equation comes form the Right Transparent Boundaries Condition (at i = imax ).

The left Boundary at i = 0 is still a Dirichlet Boundary Condition and it is set to zero to

force the function to stay in the domain. In order to compare with the diffusion equation

treatment and have a clearer visualization, the Right boundary condition is derived as

follows:

• At i = imax− 1

−Ψn
imax + CΨn

imax−1 −Ψn
imax−2 = Ψn−1

imax − C
′Ψn−1
imax−1 + Ψn−1

imax−2 (3.116)

−Ψn
imax + CΨn

imax−1 −Ψn
imax−2 = bn−1 (imax− 1) (3.117)

where

i = L Ψn
imax = Ψ (L, t) , (3.118)

the Right Transparent Boundary Condition, is now part of the system of equations.

• The Discrete Transparent Boundary Condition 3.112 is:

Ψn+1
imax−1 − l

(0)
imaxΨn+1

imax =
n−1∑
k=1

l
(n−k)
imax Ψk

imax −Ψn
imax−1 (3.119)

Ψn+1
imax−1 − l

(0)
imaxΨn+1

imax = bn−1 (imax) . (3.120)

bn−1 (imax)5 will change at every time level n and it is required to store all of the past

history at that boundary by the selected numerical method. For the purpose of illustrating

the procedure the first n = 4 equations are:

n = 1

Ψ1
imax−1 − l

(0)
imaxΨ1

imax = −Ψ0
imax−1 = b0 (imax)

n = 2
5In order to implement in the program equation 3.120 is expressed as: −Ψn+1

imax−1 + l
(0)
imaxΨn+1

imax =

−bn−1 (imax)
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Ψ2
imax−1 − l

(0)
imaxΨ2

imax = l1imaxΨ1
imax −Ψ1

imax−1 = b1 (imax)

n = 3

Ψ3
imax−1 − l

(0)
imaxΨ3

imax = l2imaxΨ1
imax + l1imaxΨ2

imax −Ψ2
imax−1 = b2 (imax)

n = 4

Ψ4
imax−1 − l

(0)
imaxΨ4

imax = l3imaxΨ1
imax + l2imaxΨ2

imax + l1imaxΨ3
imax −Ψ3

imax−1 = b3 (imax) .
...

...
...

• In matrix form, the tri-diagonal system of simultaneous linear equations for RB TC

program is:



C −1 0 0 0 · · ·

−1 C −1 0 0 · · ·

0 −1 C −1 0 · · ·
...

...
. . .

. . .
. . .

...

0 0 · · · −1 C −1

0 0 0 · · · −1 l
(0)
imax





Ψn
2

Ψn
3

Ψn
4

...

Ψn
imax−1

Ψn
imax


=



b (2)

b (3)

b (4)
...

b (imax− 1)

b (imax)


(3.121)

A verbal “flow chart” with the basic structure of the RTBC program is given below.

The program performs the following steps:

• Set Up :

imax = 101 Total number of grid points in x.

nmax = 150 Total number of time grid points.

deltat = 0.01 Value of uniform spacing of time grid points.

Functions LU and Interior are declared.

• Step One. Functions to allocate vector and matrices in the memory of the computer

are set.

• Step Two. Initial value function ΨI (x, 0) = sin (k x) is discretized.

• Step Three. The coefficients lnimax are calculated.

• Step Four. A time loop is initiated with the following sub-steps:
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-The code stores the last element of the function at time level Ψn−1
imax.

6

- The code creates vector bn−1 (i). The function interior preforms the complex

operation: Ψn−1
imax−C ∗Ψn−1

imax−1 + Ψn−1
imax−2 for any interior point. The last element

bn−1 (imax) is set separately. It contains the past history of the boundary (see

equation 3.120).

• Step Five. The code calls function LU. Inside of the function LU, the matrix Â is

created by the code and GSL libraries performs the LU Factorization and solves the

linear system ÂΨn = ~b . Step Five is inside of a loop until the total numbers of time

grids point is reach.

• Step Six. This step lies inside of Step Five. It stores the real/complex part of the

solution wave vector functions Ψn every 10 time grid points ( t = n4t ) inside of a

file called psi. Also, every n time level iterations, the solution wave vector function

is swapped by the code and prepares it for the next iteration7. That is, the found

time solution Ψn will be the known time level solution at time step Ψn+1 for the next

iteration.

The next section compares results obtained with the program RTBC with the equivalent

example QIVP.

3.4.0.4 Numerical Sine Function Example.

The code has the same initial condition as the previous theoretical example in subsection3.1.1.

That is, with

ΨI (x, 0) = sin (kx)

as an initial function.

The way to compare this numerical method with the analytic one is by comparing the

plots obtained for the wave function solution. In the next section it is shown that both

methods give in approximation the same result.

6For the first iteration n = 1 , it will be the last element of the discretized initial value function sin (k x).
7By using GSL library called gls_blas_zswap(new, old).
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3.5 Analytic Versus Numerical Approaches.

Both approaches have to give the “same” result. That is, the wave function solution has to

be approximately the same since the numerical approach gives the result with a certain

degree of approximation.

The code stores the solution wave vector into a file called psi. By using Microsoft

Office Excel Software, all the solution points of the wave vector inside the domain D(x, t)

are plotted and compared with the QIVP example in chapter 3.

The first set of plots compare the real part of the wave function at the same time steps

t = 0.1 , t = 0.2 , and t = 1.4 as shown in figure 3.4.

The second set of plots compare the imaginary part of the wave function at the same

time steps t = 0.01 , t = 0.1 , and t = 1.4 as it is shown in the figure 3.5 on page 57 .

The comparison between the plots for each method shows an excellent agreement as

we expected. This confirms the adequate implementation of the numerical method for a

QIVP. Therefore, the basis is established for a more complex application of the program

RTBC.
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Figure 3.4: Top Figure: Real part of the wave function obtained in Chapter 3. Bottom
Figure: Wave function obtained by the numerical method.
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Figure 3.5: Top Figure: Imaginary part of the wave function obtained in Chapter 3. Bottom
Figure: Wave function obtained by the numerical method.
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Chapter 4

Quantum Escape Problem with

Linear Potential.

The previous chapters, beginning with the classical treatment of the EP in Chapter Two

and ending with numerical approach of the QIVP in Chapter Three, provides a base that

mimics a system closer to the Optical Billiards.

The QIVP with a liner potential is the one-dimensional version of Optical Billiards. It

consists of the same condition as the QIVP for free a particle studied in the previous

chapter, but, now, the particle experiences an external field due to the earth’s gravity.

The Left Boundary is open at time t > 0 instead of the Right Boundary as it was the case

in Chapter 3. Figure 4.1 shows a representation of the physical system.

The Schrödinger equation to solve is:

i~
∂

∂t
Ψ (x, t) =

[
− ~2

2m
∂2

∂x2 +mgx
]

Ψ (x, t) , (4.1)

and the initial condition

ΨI (x, 0) = Φ (x)

is selected to be the solution of a time-independent Schrödinger equation

EnΦn (x) =
[
− ~2

2m
d2

dx2 +mgx
]

Φn (x) (4.2)
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Figure 4.1: Physical representation of the particle inside a box of size L experiencing a
gravitational potential.
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4.1 Mathematical Background.

In order to make calculations computationally easier, this section uses a convenient

change of coordinates of position and time. This change of coordinates contains the ex-

perimental values discussed in section 2.2.1.2 of Chapter 2 and transforms the original

frame into a dimensionless frame called “primed system,” according to the following:

x′ = 3

√
m2g

~2
x

t′ =
~ 1

3

m
1
3 g

2
3
t

and, for the initial condition, the dimensionless energy is transformed to

E′ =
1

h
2
3m

1
3 g

2
3
E.

In order, for this system to generate the Mass Function, it is necessary to solve 4.2 to

obtain a different set of initial conditions (or set of eigenfunctions) with their respective

energy eigenvalues.

The solution to 4.2 is the Airy Function [39]. The next subsections will discuss both

the mathematical issues of the solution and a procedure to find the energy eigenvalues.

4.1.1 The Airy Function.

A common second order lineal differential equation usually found in optics, quantum

mechanics and electromagnetism is the Airy[39] equation(or the Stokes equation)

d2y

dx2
− xy = 0

with two independent solutions known as the Airy Functions

y (x) = AAi (x) +BBi (x) ,

and plotted in the Figure 4.2.

The next sections show the relationship between the Airy functions and the QIVP

mentioned in previous chapters.
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Figure 4.2: Airy function for real values of x .

4.1.2 Initial Functions (Eigenfunctions).

The equation 4.2 in the primed system is

[
d2

dx′2
− 2 (x′ − E′n)

]
Φn (x′) = 0 (4.3)

with boundary conditions at x′ = 0 and x′ = L′, therefore:

Φn (0) = Φn (L′) = 0

where L′ is the size of the box in the primed system.

The set of solutions are the eigenfunctions (initial condition) of 4.1. The numerical

method used to solve 4.1 is mentioned a later section of this chapter.

With

U = c (x′ − E′n)

φn (−cE′n) = 0

φn (cL′ − cE′n) = 0

where c = 3
√

2 , then

[
d2

dU2
− U

]
φn (U) = 0 (4.4)
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has the Airy Functions as solutions.

Therefore, the general solution to 4.3 is

Φn (x′) = AnAi (cx′ − cE′n) +BnBi (cx′ − cE′n) . (4.5)

The way to obtain the eigenvalues, E′n, is by finding roots, via Mathematica, of the new

function

Hn (E′n) = Ai (−cE′n)Bi (cL′ − cE′n)−Bi (−cE′n)Ai (cL′ − cE′n) .

From boundary conditions, constants An and Bn are related by

An = −Bi (−cE′n)
Ai (−cE′n)

Bn, (4.6)

set by solving

ˆ L′

0

dx′Φn (x′)2 = 1. (4.7)

4.1.3 QIVP.

The QIVP is the process of finding the solution to the Schrödinger equation 4.1 in the

primed system,

i
∂

∂t
Ψ (x′, t′) =

[
−1

2
∂2

∂x′2
+ x′

]
Ψ (x′, t′) , (4.8)

with a set of initial conditions given by 4.5 along with normalization constants and eigen-

values of energy obtained in 4.1.2. The only remaining procedure is to apply the numer-

ical procedure derived in Chapter 3 with some systematic changes due to the potential

term included in the Schrödinger equation.

4.2 Numerical Approach.

The most important challenging task falls on procedure to implement DTBCs inside the

code to find the wave function which solve the QIVP. The rest is computationally easier.

All ideas, methods, mathematical back ground, etc used in Chapter 3 are also applicable
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here and since the structure is similar used to that employed to solve a QIVP for a free

particle; the reader can refer to the previous chapter for details and to the appendix B for

the code.

The one dimensional approximation of the Schrödinger equation with a potential,

which, in general, depends on position and time is

i

(
Ψn
i −Ψn−1

i

4t

)
=

−1
4

(
Ψn
i+1 − 2Ψn

i + Ψn
i−1

4x2
+

Ψn−1
i+1 − 2Ψn−1

i + Ψn−1
i−1

4x2

)
+

1
2
V
n− 1

2
j

(
Ψn
i −Ψn−1

i

)
. (4.9)

with

V
n− 1

2
j = V

(
xj , tn −

1
2

)
.

Since the potential for the this case is time-independent and with the following defini-

tions

ρ =
44x2

4t
β = 24x2

Cj = (2− iρ+ βVj)

C∗j = (2 + iρ+ βVj)

The Crank-Nicolson difference equation has a similar mathematical expression as in

Chapter 3. Computationally, there is no difference. However, in the code, there are two

mainly differences:

• The value of Cj and C∗j differ from a previous definition in chapter three, where

these values were constants. Now, due to the presence of the potential, the values

are changing according to the value of the potential Vj . There is no complication in

terms of the code since they can be easily changed.

• The Right Boundary is kept closed at all times (Dirichlet Boundary Condition) and

the Left Boundary will be open at t > 0 ( LTBC ).
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4.3 The Quantum Mass Function M (t, T ) .

As it was mentioned in the introduction section, it is necessary to construct the time and

temperature dependent Quantum Mass Function . In order to do that, first, the Mass

Function for ν -excited states has the following expression:

Mν (t) =
ˆ L

0

dx |Ψν (x, t)|2 (4.10)

ν = 1, 2, . . . , n (4.11)

Then, since the system is considered to be as a “Knudsen Gas”[30, 10], time and

temperature dependence of the Quantum Mass Function is constructed via one-particle

statistics of a canonical ensemble. Therefore, the expression for the a state by state

Quantum Mass Function staring from the ground state is

M (t, T ) =
∑n
ν=1 e

−βEνMν (t)∑n
ν=1 e

−βEν
(4.12)

β =
1

KBT
(4.13)

where KBis the Boltzmann constant.

In summary, solving the QIVP for different initial conditions (eigenfunctions) provides

the time dependent wave function needed to numerically construct the quantum mass

function. Therefore, we are able to extract important physical properties of the system

such as the quantity of mass inside the region called the Quantum Mass Function which

is the survival probability, the time dependence of the kinetic energy, potential energy,

and the total energy as well. Since it is assumed that the particle density in the system is

so small, interactions can be ignored and multiplying the survival probability by the total

number of particles give us a quantitative value of mass inside the region.

4.4 Left Transparent Boundary Condition (LTBC) code.

Originally, the RTBC is a code designed only to obtain the solution of the Schrödinger

equation by solving a system of simultaneous linear equations as in chapter 3. On the

contrary, the LTBC code not only solves a system of simultaneous linear equations but

also sets the necessary initial functions (at the beginning) and computes the Mass Func-
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tion (at the end). Parameters such as length of the box, temperature, mass, etc. are

declared by the code as global variables. The parameters will define a particular, it will

be mentioned in Chapter 5.

Thus, the LTBC has three main parts:

• A. The code set up proper eigenfunctions as initial functions to solve QIVP.

• B. The code performs necessary computational calculation to obtain the wave func-

tion solution.

• C. The code computes the Mass Function.

4.4.1 Part A

GNU Scientific Library (GSL) contains eigenfunctions for numerical routines mentioned in

3. The code contains the proper numerical procedure to get eigenvalues and their nor-

malization constants. The procedure consists of calculating eigenvalues via Mathematica

and storing them into a file. The normalization constants are then obtained by a function

which applies equations 4.7 and 4.6. See the appendix B for details. The set of figures

4.3, 4.4, and 4.5 shows the plots obtained numerically for the first three eigenstates.
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Figure 4.3: The initial function for ground state ν = 0.

Figure 4.4: The initial function for the first excited state ν = 1.
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Figure 4.5: The initial function for the second excited state ν = 2.
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4.4.2 Part B.

The intention is to solve a system of simultaneous linear equations with the Discrete

LTBC developed for a set of time steps as

n = 1

Ψ1
1 − l

(0)
0 Ψ1

0 = −Ψ0
1 = b0 (1)

n = 2

Ψ2
1 − l

(0)
0 Ψ2

0 = l10Ψ1
0 −Ψ1

1 = b1 (1)

n = 3

Ψ3
1 − l

(0)
0 Ψ3

0 = l20Ψ1
0 + l10Ψ2

0 −Ψ2
1 = b2 (1)

n = 4

Ψ4
1 − l

(0)
0 Ψ4

0 = l30Ψ1
0 + l20Ψ2

0 + l10Ψ3
0 −Ψ3

1 = b3 (1) .
...

...
...

bn (1) sets the first value of the vector in the tri-diagonal system of simultaneous linear

equations for the LBTC code. Notice that the numerical procedure presented in Chapter

3 for the RTBC code is similar. Before, the discrete transparent boundary condition for

RTBC is contained in the last element.

So, the tri-diagonal system of simultaneous linear equations for the QIVP with linear

potential is
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l
(0)
0 −1 0 0 0 · · ·

−1 C1 −1 0 0 · · ·

0 −1 C2 −1 0 · · ·
...

...
. . .

. . .
. . .

...

0 0 · · · −1 C(imax) −1

0 0 0 · · · −1 C(imax+1)





Ψn
1

Ψn
2

Ψn
3

...

Ψn
imax

Ψn
imax+1
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b (2)

b (3)
...

b (imax)

b (imax+ 1)


. (4.14)

The code, at all time steps, stores the resulting wave function into an array in order

to proceed to calculate the Mass Function. The set of figures shows the real and complex

part of the wave function at different time values for the three first eigenstates ν = 0, 1, 2.

For the time value close to zero and for any eigenstate, there are two main features to

notice in the graphs

• The real part of the wave function has to be similar to the initial wave function.

• The imaginary part of the wave function has to be close to zero since the initial wave

function is purely real.
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Figure 4.6: The numerically real part of the wave function at different time values for
ν = 0.
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Figure 4.7: The numerically imaginary part of the wave function at different time values
for ν = 0
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Figure 4.8: The numerically real part of the wave function at different time values for
ν = 1.

72



Figure 4.9: The numerically imaginary part of the wave function at different time values
for ν = 1.
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Figure 4.10: The numerically real part of the wave function at different time values for
ν = 2.
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Figure 4.11: The numerically imaginary part of the wave function at different time values
for ν = 2.
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4.4.3 Part C.

The equation 4.10 gives the time dependent Mass Function M (t) . The code stores it into a

two dimensional array1 for every eigenstate ν. The temperature and time dependent Mass

Function M (t, T ) is obtained according to equation 4.12. The code stores it into an array

with the contribution of every eigenstate. Subsequently, Microsoft Office Excel Software

opens this array and sets the proper plots for analysis. In the following figures the plots

give the qualitative quantum behavior of the system. Programming details are shown in

appendix B.

1One dimension corresponding to eigenstate and the other to the time step level.
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Figure 4.12: Time dependent Mass Function M (t) for the ground state ν = 0.

Figure 4.13: Time dependent Mass Function M (t) for the first exited state ν = 1.
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Figure 4.14: Time dependent Mass Function M (t) for the second exited state ν = 1.

Figure 4.15: The temperature and time dependent Mass FunctionM (t, T ) for a value of
temperature of T = 10× 10−8K.
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Chapter 5

Analysis and Results.

A discussion about the physical implications of the system created by the set of param-

eters introduced in Chapter Two is very important. The answers to some questions will

clarify the physics inside of the EP. Is the size of the box used by the code reliable? It is

large enough to be considered a semi-infinite box? Are the parameters set for the system

a perturbation of the case of a free particle? Is the temperature such that a classical

approach is applicable?

For the purpose of numerical analysis, parameters reveal important information. By

fixing internal parameters such as mass m and gravitational acceleration g, the code

models a system of cesium atoms under a linear potential. The external parameters,

such as the size of the box L, and the absolute temperature T establish the size of the box

and determine if the analysis can be accomplished by a classical or quantum treatment.

We suitably sets a specific value for each parameter to fulfill the criterion for a quantum

system.

In the primed system, according to the transformation equations mentioned in section

3.2.1.1, the size of the box L′ is 1750, and the thermal energy, β′ = K ′BT, is 2.23314. This

corresponds to the values arising in the optical billard experiment. Here, for computa-

tional purposes discussed in the next section, the scaled size of the box L′ is set to the

preferable value of 5 instead of the original value of 1750.
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5.1 Box size criterion.

A value of L′ = 1750 makes array sizes in the code numerically impractical. The reason

is that L′ has a direct impact in the finite difference space grids xi = (i− 1)4x via grid

size 4x = L′

(imax−1) . The size of the grids, 4x, controls the numerical coefficients value

such as ρ, β, lnj , σj , etc. inside the linear system. The choice of 4x has two important

requirements:

• The size of the grid has to be fine enough to resolve the numerical solution.

• Concerning the linear matrix system, one must be aware that proper 4x creates the

coefficients values of the interior system (ρ, β, etc) and the coefficients from boundary

system (lnj , σj , etc) to have more or less the same magnitude; otherwise, the condition

number of the matrix will grow, which will lead to some rounding errors1.

It is important to mention that any other value of L′ different form 1750 does not represent

the physical dimmesions used in the experiment performed in Mark Raizen’s laboratory

at the University of Texas.

5.1.1 Semi-infinite case.

The Figure 5.1 shows the representation of the potential for the case of a semi-infinite

box.

For this case, the solution is a linear combination of the airy functions

Φn (x′) = AnAi (cx′ − cE′n) +BnBi (cx′ − cE′n) (5.1)

and has the boundary condition that at x =∞ the function Φn (x′) = 0. The two solutions

obey the following behavior:

• Ai → 0 as x→∞

• Bi →∞ as x→∞

Therefore, Bn = 0, and the solution is

Φn (x′) = AnAi (cx′ − cE′n) (5.2)

1Explanations are in Chapter 3.
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Figure 5.1: Plot of the potential for the case of semi-infinite box.

where c = 3
√

2 2. The value of An depends on the n different eigenstates according to

ˆ L′

0

dx′Φn (x′)2 = 1. (5.3)

5.1.2 Finite cases.

The Figure 5.2 shows an illustration of the potential for the finite case. In this case, the

complete solution is

Φn (x′) = AnAi (cx′ − cE′n) +BnBi (cx′ − cE′n) (5.4)

with the same value for c = 3
√

2 and the same condition 5.3 to find constants3 An and Bn.

The equation

Hn (E′n) = Ai (−cE′n)Bi (cL′ − cE′n)−Bi (−cE′n)Ai (cL′ − cE′n)

derived in Chapter Four gives the roots for different L′ values.

For the case L′ = 5, figure 5.3 shows first roots of function Hn (E′n) . and figure 5.4

shows the first roots of the function Hn (E′n) for the case L′ = 1750.

2See chapter 4.
3See Chapter 4 to recall relation between both of them.

81



Figure 5.2: Plot of the potential for the finite case.

Figure 5.3: The plot of the function Hn (E′n)for L′ = 5.The roots give the eigenvalues of
energy.
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Figure 5.4: The plot of the function Hn (E′n)for L′ = 1750.The roots give the eigenvalues of
energy.

L′ E′0 E′1 E′2 E′3 E′4 E′5
5 1.85576 3.2469 4.44651 5.80211 7.53408 9.67661

1750 1.85576 3.24461 4.38167 5.38661 6.30526 7.16128
∞ 1.85576 3.24461 4.38167 5.38662 6.30526 7.16128

Table 5.1: Energy eigenvalues for different values of L.

Table 5.1 shows the comparison of the first energy eigenvalues for the semi-infinite

case and the two finite cases.

Notice that for the cases L′ =∞ and L′ = 1750, obtained by different methods, the en-

ergy eigenvalues are practically the same. The reason is that the location of L′ makes the

boundary irrelevant. On the other hand, for L′ = 5, while the lowest energy eigenvalues

are approximately the same, noticeable discrepancies develop for n > 2.

Graphically, the plots 5.3 and 5.4 suggest the semi-infinite system is a good approach

to the finite case. The next two conditions give a mathematical analysis to support the

statement. It bears mentioning that conditions are dimensionless.

The first condition is

mgL

∆E1
� 1. (5.5)

with ∆E1 = E1−E0. This condition tells us that the potential energy due to the size of L is

greater than the spacing between the ground and the first excited state, so that, the right

boundary is irrelevant to the wave functions of the lowest states.
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The second condition is

mgL

KBT
� 1 (5.6)

The potential energy due to the size of L is much greater than the thermal energy, and it

is bigger than the spacing between the ground and the first excited state ∆E1. Since the

location of L is practically at infinity, the particles stay trapped.

For the particular set of internal and external parameters mentioned in the beginning

of this chapter, condition 5.5 is fulfilled and has the following value:

1258.18 � 1

and condition 5.6 has a value of:

783.79 � 1

To summarize, even if it is completely justifiable to treat the system as a semi-infinite

box, it is computationally difficult. In addition, to set a finite size is important in order to

include any contributions from the boundaries for others possible cases in the future.

5.2 Dimensionless parameter criterion.

The dimensionless ratio
mgL

E1
(5.7)

compares the potential energy with the infinite well potential ground state energy. If the

ratio is less than one, then the size of the box potential is much smaller than the ground

state energy, or, in other words, the potential is insignificant such that the system is a

perturbation (approximation) of the case of a free particle.

The ratio value is 5.43308× 108 so,

mgL

E1
≮ 1

meaning the system is not simply a perturbation of the free particle case and the numer-
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ical procedure developed in Chapter 4 is not only justified but also necessary to analyze

this case of a linear potential.

5.3 Temperature criterion.

Another important criterion refers to the temperature. Since the system is a quantum

version of optical billiard in one dimension, the temperature must be low enough such

that a classical description of the system is not adequate for a reasonable analysis.

When the temperature is high enough, the thermal energy is much bigger than the

energy spectral spacing, 4E1 � KBT, so the spectral spacing is irrelevant and a classical

description, with a continuous spectrum is a good approach in the analysis of the system.

The above mentioned relationship is now

4E1

KBT
� 1 (5.8)

With T = 10−7K, the above relation 5.8 is

1.60526 ≮ 1,

therefore, the system cannot be treated from a classical approach.

On the other hand, when the temperature is low enough, say T = 10−7K, the en-

ergy spectrum spacing becomes relevant, 4E1 & KBT, and about the same order as the

thermal energy. So, a quantum description is necessary when

4E1

KBT
& 1. (5.9)

Therefore, we have

1.60526 & 1

for equation 5.9, meaning that a quantum description is mandatory for the system gen-

erated by the parameters. Another important conclusion arising from this criterion is

that only the lower states have a significant contribution on the quantum mass function

M (t, T ) ; the reason is that the Boltzmann factor e−βE will reduce the contributions from
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higher states. The Boltzmann factor is reduced by the ratio .0015 when a value of n = 4 is

used. Therefore, this criterion assures we are in the strong quantum regime.

5.4 The Classical Description criterion.

A state of high temperature satisfies the criterion 5.8. Therefore, if the quantum system

is changed by increasing the external parameter of the temperature, one expects that a

classical description is appropriate for the analysis.

A temperature of T = 10−5K, used to perform the optical billiard experiment in Mark

Raizen’s laboratory at the University of Texas, is sufficiently high to set the experiment

more closely related with classical rather than quantum chaos. It is confirmed by criterion

5.8 with this values

0.00622954 � 1.

The classical description is suitable for the one dimensional version of the optical

billiard with the above value of temperature and, the criterion justifies as well the classical

treatment done by Raizen’s group. Therefore, the finite case of EP with the canonical

example for the classical perspective examined in Chapter 2 can, in approximation, be

the classical limit of the quantum EP when the temperature has the value of T = 10−5K.

The criteria mentioned in this chapter, as well as their respective derivations, offer

reliability in the parameters used by the code. In addition, the discussion developed

here provides a wider physical vision of the EP necessary to understand the quantitative

analysis provided by the Mass Function.
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Chapter 6

Summary, Conclusions, and

Future Work.

The purpose of this dissertation was to derive the one-dimensional quantum mechan-

ical version of the survival probability carried out at very low temperature with optical

billiards. We gave the name Mass Function to this property of the system. In order to ac-

complish this goal, it was necessary to solve numerically a quantum initial value problem

(QIVP). The final result of this dissertation was a code that correctly gives the numerical

value of the mass function.

The procedure begins with the establishment of the one-dimensional “Escape Problem

(EP),” which emulates the model of the optical billiards. As mentioned, the EP consists

of a non interacting gas of particles escaping from a delimited region. The mass function

provides the analytical time evolution of the system by quantifying the mass remaining

in the region.

The search for the code starts in chapter two with the analysis of different examples

from a classical perspective. The purpose of this analysis was to have a better under-

standing of an escape process for a situation in which particles are initially inside of a

box. The plots of the mass function for different examples show the classical behavior of

the escape process.

The goal in chapter three was to develop an essential numerical analysis of the escape

process from a quantum perspective. First, an analytic approach gave us a reliable result

for a free particle inside of a box. Subsequently, a numerical approach provided a result
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for the same example. Both approaches show approximately equal results demonstrating

reliability not only in the result obtained but also in the novel numerical method used to

obtain a code. Because of the complexity of adapting the techniques in solving numer-

ically a QIVP to modify the standard Crank Nicolson algorithm to include the non-local,

time dependent boundary conditions, chapter 3 focused only on obtaining the solution

wave function.

Chapter 4 contains the central part of the dissertation research. The version of the

code, initially developed, is extended to include a numerical method to obtain the mass

function with the addition of a gravitational linear potential to the QIVP. The contribu-

tion of the time dependent mass function M (t) from each eigenstate is determined. The

Gibbs distribution is employed to compute the complete, temperature dependent, result.

In theory, the time-temperature dependent function M (t, T ) has contributions from all

the eigenstates. It is the one-dimensional quantum mechanical version of the survival

probability of the optical billiard model.

In chapter 5, a discussion of the external parameter L gives the reader a better idea

about the implications in the numerical method used. A section with a meticulous dis-

cussion of the system that creates the EP, according to the internal parameters (mass m,

gravitational linear potential g) and external parameters (size L, absolute temperature T ),

concludes that, indeed, the results plotted in the graphs correspond to the strong quan-

tum regime. Some criteria mentioned in this chapter which compare parameters with

energy units, lend mathematical support to this idea.

The final conclusion is that the development of a numerical code allows us to create,

according to the setting of parameters, different versions of the EP. The mass function

gives the quantitative analysis of particles inside of such systems. Therefore, we devel-

oped a method to measure the number of particles remaining in the region. This property

of the system can be used to explore chaos in higher dimensional systems.

Still, future work is necessary to accomplish the eventual goal mentioned earlier in

the introductory part of this work; that is, we need to extend the numerical method to

obtain the survival probability for the two-dimensional, non-integrable billiard model of

the optical billiards. This process would involve doubling the size of every array and

matrix inside the code. Although this is not trivial, there are a number of factors that

will prove valuable. First, a numerical code was recently worked out by Mark Matney

(former TCU undergraduate) for computing the eigenfunctions and eigenvalues of the
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wedge billiard. Second, the TBC approach for the Schrodinger equation has been applied

to a two dimensional system with a simple geometry. While it would also be desirable

to develop an approach to computing the Wigner function for these systems, as far as I

know, to date the extension of TBC approach for computing the Wigner function has only

been applied to a very simple example with a continuous potential.

I am confident that the accomplishment of this goal can be done in the near future.

However, because of the time this new research requires, it has to be done after the

conclusion of my degree if the circumstances allow the continuous collaboration with

professors at TCU.
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Appendix A

Numerical Code RTBC.

/∗ Programa : Resolver la Ecuacion de Schrodinger con Rigth−TBC ∗/

#include<stdio .h>

#include<stdl ib .h>

#include<math.h>

#include <gsl/gsl_sf_legendre .h>

#include <gsl/gs l_ l ina lg .h>

#include <gsl/gsl_complex .h>

#include <gsl/gsl_complex_math .h>

#include<gsl/gsl_matrix_complex_double .h>

#include<gsl/gsl_cblas .h>

# define imax 101

# define nmax 150

# define deltat 0.01 /∗ delatat = t/nmax ∗/

# define PI 3.1415926

# define cuarta .25

# define L 2

void LU ( double ro , gsl_complex cero , gsl_complex l_0 , gsl_vector_complex ∗b, gsl_vector_complex ∗new ) ;

gsl_complex inter ior ( int i ,double ro , gsl_vector_complex ∗old , gsl_complex punto ) ;

int

main ( void )

{

FILE ∗psi ;

/∗ −−−−> STEP ONE <−−− ∗/

/∗ Vectores utilazados para crear los coef i c ientes l ∗/
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gsl_vector_complex ∗xJ = gsl_vector_complex_alloc (nmax) ;

gsl_vector_complex ∗ l = gsl_vector_complex_alloc (nmax) ;

/∗ Matriz y vectores que se usan el metodo LU ∗/

gsl_matrix_complex ∗A ;

gsl_vector_complex ∗b = gsl_vector_complex_alloc ( imax ) ;

gsl_vector_complex ∗new = gsl_vector_complex_alloc ( imax ) ;

/∗ Vector para la funcion old in time ∗/

gsl_vector_complex ∗old = gsl_vector_complex_alloc ( imax ) ;

/∗ −−−−> STEP TWO <−−− ∗/

/∗ La funcion i n i c i a l Sen ( kx ) sera e l primer vetor old ∗/

double K;

K=PI/L ;

double deltax ;

deltax=L/(imax−1.0);

int i ;

for ( i =0; i <imax−1; i ++)

{

double equis , seno ;

equis= i ∗deltax ;

seno=sin (K∗equis ) ;

gsl_complex seno_c ;

GSL_SET_COMPLEX(&seno_c , seno ,0 . 0 ) ;

gsl_vector_complex_set ( old , i , seno_c ) ;

}

gsl_complex cero ;

GSL_SET_COMPLEX(&cero , 0.0 ,0.0) ;

gsl_vector_complex_set ( old , imax−1, cero ) ;

/∗ −−−−> STEP THREE <−−− ∗/

/∗=============== SE PONEN LOS CEFICEINTES l ^n_J ========== ∗/

double P [nmax] ;

/∗ cosa para los polinomio de Legendere ∗/

int n;

double p;

/∗ se definen constantes ∗/

double r , r2 , r4 ;

double ro , ro2 ;

double phi ,miu;

ro=(4.0∗deltax∗deltax )/ deltat ;
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pr int f ( " rho=%f\n" , ro ) ;

ro2=pow( ro , 2 ) ;

r=ro2 ∗ ( ro2+16);

r2=sqrt ( r ) ;

r4=pow( r , cuarta ) ;

phi=atan(4.0/ ro ) ;

miu=ro2/r2 ;

/∗ Se genera e l vector P (n ) ∗/

/∗ los primeros 2 elementos (n=0 ,1) se calculan directamente ∗/

double p0= gsl_sf_legendre_Pl (0 ,miu ) ;

P[0]=−p0;

double p1= gsl_sf_legendre_Pl (1 ,miu ) ;

P[1]=p1;

for (n=2;n<nmax;n++)

{

double pn = gsl_sf_legendre_Pl (n,miu ) ;

double pn2= gsl_sf_legendre_Pl ( ( n−2),miu ) ;

P [n]= (pn−pn2)/ ( (2∗n)−1);

}

/∗ los primeros elementos (n=0 ,1) se calculan diractamente ∗/

double re0 , re1 ;

double im0, im1;

re0=1−(r4/2.0)∗ sin ( ( phi /2.0) )∗P [ 0 ] ;

im0=−1+(r4/2.0)∗cos ( ( phi /2.0) )∗P [ 0 ] ;

re1=1−(r4/2.0)∗ sin ( ( phi/−2.0))∗P [ 1 ] ;

im1=1+(r4/2.0)∗cos ( ( phi/−2.0))∗P [ 1 ] ;

gsl_complex l_0 ;

GSL_SET_COMPLEX(&l_0 , re0 , im0 ) ;

pr int f ( " Coeficiente l_0\n" ) ;

pr int f ( " %g + %gi\n" ,

GSL_REAL( l_0 ) , GSL_IMAG( l_0 ) ) ;

gsl_vector_complex_set ( l , 0 , l_0 ) ;

gsl_complex l_1 ;

GSL_SET_COMPLEX(&l_1 , re1 , im1 ) ;

gsl_vector_complex_set ( l , 1 , l_1 ) ;

double re , im;

for (n=2;n<nmax;n++)

{

re=(−r4/2.0)∗ sin ( phi∗(0.5−n) ) ∗P [n ] ;

im=( r4/2.0)∗cos ( phi∗(0.5−n) ) ∗P [n ] ;

gsl_complex l_n ;
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GSL_SET_COMPLEX(&l_n , re , im ) ;

gsl_vector_complex_set ( l , n, l_n ) ;

}

/∗ −−−−> STEP FOUR <−−− ∗/

/∗================ ANILLO DEL TIEMPO ================= ∗/

psi=fopen ( " psi . txt " , "w" ) ;

for (n=1;n<nmax;n++)

{

/∗ se guarda el ultimo elemento del e l vector solucion ∗/

gsl_complex xJ_ele

= gsl_vector_complex_get ( old , imax−1);

gsl_vector_complex_set ( xJ , n, xJ_ele ) ;

/∗ se pone los elementos del vector b ( i ) ∗/

gsl_vector_complex_set ( b , 0 , cero ) ;

/∗ los puntos in te r i o res i =1 ,2 ,3 , . . . , imax−1 ( empieza de cero ) ∗/

gsl_complex punto ;

for ( i =1; i <imax−1; i ++)

gsl_vector_complex_set ( b , i , in ter ior ( i , ro , old , punto ) ) ;

i f (n == 1)

gsl_vector_complex_set (b , imax−1, cero ) ;

else

{

gsl_complex sum;

GSL_SET_COMPLEX(&sum, 0.0 ,0.0) ;

gsl_complex pro ;

int k;

for ( k=1;k<n;k++)

{

gsl_complex l _e l e

= gsl_vector_complex_get ( l ,n−k ) ;

gsl_complex xJ_ele

= gsl_vector_complex_get ( xJ , k+1);

pro = gsl_complex_mul ( l_e le , xJ_ele ) ;

sum = gsl_complex_add (sum, pro ) ;

}

/∗ se hace la diferencia ∗/

gsl_complex old_ele

= gsl_vector_complex_get ( old , imax−2);

gsl_complex b_J ;

b_J = gsl_complex_sub ( old_ele , sum) ;

/∗ se pone e l ultimo elemento del vector b ∗/
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gsl_vector_complex_set (b , imax−1, b_J ) ;

}

/∗ −−−−> STEP FIVE <−−− ∗/

/∗ Se llama a la subrutina que resuelve e l sistema ∗/

LU ( ro , cero , l_0 ,b ,new ) ;

/∗ −−−−> STEP SIX <−−− ∗/

/∗ Se graf ica cada 10 puntos ∗/

i f (n%10==0)

{

double t ;

t=n∗deltat ;

fp r in t f ( psi , " t=%g\n" , t ) ;

for ( i =0; i <imax ; i ++)

{

gsl_complex re

= gsl_vector_complex_get (new, i ) ;

f p r in t f ( psi , "%g\n" ,GSL_REAL( re ) ) ;

}

}

gsl_blas_zswap (new, old ) ;

}

fc lose ( psi ) ;

return ( 0 ) ;

}

void

LU ( double ro , gsl_complex cero , gsl_complex l_0 , gsl_vector_complex ∗b, gsl_vector_complex ∗new

)

{

int s ;

gsl_permutation ∗p=gsl_permutation_alloc ( imax ) ;

gsl_matrix_complex ∗A = gsl_matrix_complex_alloc ( imax , imax ) ;

/∗ Se genera la matrix A( i , j ) ∗/

int i , j ;

gsl_complex uno;

gsl_complex diag ;

gsl_complex sdiag ;

GSL_SET_COMPLEX(&uno, 1.0 ,0.0) ;

GSL_SET_COMPLEX(&diag , 2.0,−ro ) ;

GSL_SET_COMPLEX(&sdiag , −1.0 ,0.0);

/∗ se genera la matriz A con ceros∗/
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for ( i =0; i <imax ; i ++)

{

for ( j =0; j <imax ; j ++)

{

gsl_matrix_complex_set (A, i , j , cero ) ;

}

}

/∗ se genera e l A(0 ,0)=1.0+ 0.0 i ∗/

gsl_matrix_complex_set (A, 0 , 0 , uno ) ;

/∗ se pone la diagonal pr inc ipal ∗/

for ( i =1; i <imax−1; i ++)

gsl_matrix_complex_set (A, i , i , diag ) ;

/∗ se pone la super diagonal ∗/

for ( i =1; i <imax−1; i ++)

gsl_matrix_complex_set (A, i , i +1, sdiag ) ;

/∗ se pone la sub diagonal ∗/

for ( i =2; i <imax ; i ++)

gsl_matrix_complex_set (A, i , i−1, sdiag ) ;

/∗ se pone e l ultimo elemento ∗/

gsl_matrix_complex_set (A, imax−1, imax−1, l_0 ) ;

/∗ Se aplica e l metodo ∗/

/∗ function to crate L U Matrixes ∗/

gsl_linalg_complex_LU_decomp (A,p,&s ) ;

/∗ function to solve Ax=b ∗/

gsl_linalg_complex_LU_solve (A,p ,b ,new ) ;

}

gsl_complex inter ior

( int i , double ro , gsl_vector_complex ∗a , gsl_complex punto )

{

gsl_complex sum;

gsl_complex mul;

gsl_complex c2 ;

GSL_SET_COMPLEX(&c2 , 2.0 , ro ) ;

gsl_complex a_mas

= gsl_vector_complex_get ( a , i +1) ;

gsl_complex a_menos

= gsl_vector_complex_get ( a , i −1);

sum = gsl_complex_add (a_mas, a_menos ) ;

gsl_complex a_ele

= gsl_vector_complex_get ( a , i ) ;

mul = gsl_complex_mul ( c2 , a_ele ) ;
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punto = gsl_complex_sub (sum, mul ) ;

return ( punto ) ;

}
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Appendix B

Numerical Code LTBC.

/∗ Programa : Solucion de la ecuacion de Schodinger con potencial l i nea l y LTBC ∗/

#include<stdio .h>

#include<stdl ib .h>

#include<math.h>

#include <gsl/gsl_sf_legendre .h>

#include <gsl/gs l_ l ina lg .h>

#include<gsl/gsl_complex .h>

#include <gsl/gsl_complex_math .h>

#include<gsl/gsl_matrix_complex_double .h>

#include<gsl/gsl_cblas .h>

#include <gsl/gs l_s f_a i ry .h>

# define imax 101

# define nmax 150

# define deltat 0.01 /∗ delatat = t/nmax ∗/

# define niu_max 3

# define PI 3.1415926

# define cuarta .25

# define L 5 # define T 10e−6 # define KB 1.38065e−23

# define escala 6.18252e−31

void LU ( double ro ,double beta , gsl_complex cero ,

gsl_complex l_0 , gsl_vector_complex ∗b, gsl_vector_complex ∗new ) ;

gsl_complex inter ior ( int i ,double ro ,double beta , gsl_vector_complex ∗old , gsl_complex punto ) ;

double integracion ( double deltax , double b_abs2 [ ] , double integral ) ;

double normalizacion ( double deltax ,double e , double c ,double r_ele , double I ) ;

int main( void )
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{

FILE ∗airy ;

FILE ∗airy_re ;

FILE ∗airy_im ;

FILE ∗Mass_t ;

FILE ∗Mass_t_T ;

/∗ ========== SE CREA EL ESPACIO PARA LAS MATRICES Y VECTORES ============== ∗/

/∗ Vectores utilazados para crear los coef i c ientes l ∗/

gsl_vector_complex ∗x0 = gsl_vector_complex_alloc (nmax) ;

gsl_vector_complex ∗ l = gsl_vector_complex_alloc (nmax) ;

/∗ Matriz y vectores que se usan el metodo LU ∗/

gsl_matrix_complex ∗A ;

gsl_vector_complex ∗b = gsl_vector_complex_alloc ( imax ) ;

gsl_vector_complex ∗new = gsl_vector_complex_alloc ( imax ) ;

/∗ Vector para la funcion old in time ∗/

gsl_vector_complex ∗old = gsl_vector_complex_alloc ( imax ) ;

/∗ === Vector donde se guardan los valores de e l cuadrado del absoluto de la funcion solucion === ∗/

double psi_abs_2 [ imax ] ;

/∗ === Vectorees donde se gaurdan la parte real e imaginaria de las funciones in i c i a l es === ∗/

double a_re [niu_max ] [ imax ] ;

double a_im [niu_max ] [ imax ] ;

/∗ vector donde se guardan los eigenvalores de energia ∗/

double E[]={1.85576 ,3.2469 ,4.44651};

/∗ vector ( array ) de los elementos de la funcion de part ic ion ∗/

double Z_ele [niu_max ] ;

/∗ vector donde se guarda el valor de la mass function ∗/

double mass_vec [niu_max ] [nmax] ;

double Mass[nmax] ;

/∗ constantes necesarias ∗/

double deltax ; double y ;

double equis ;

double ro , beta ;

double c ;

int i ;

int niu ;

/∗ array de la constante de noramalizacion c2 ( c1=−rc2 ) ∗/

double c2 [niu_max ] ;

/∗ array de r ∗/

double r [niu_max ] ;

/∗================================ CONSTANTES ============================== ∗/
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deltax=L/(imax−1.0);

ro=(4.0∗deltax∗deltax )/ deltat ;

beta=2.0∗deltax∗deltax ;

c=1.25992;

/∗================= SE PONEN LOS CEFICEINTES l ^n_J ========================== ∗/

double P [nmax] ;

int n;

double p;

/∗ se definen constantes ∗/

double rr , r2 , r4 ;

double ro2 ;

double phi ,miu;

double VJ;

double sigma , sigma2 ;

double phi_up , phi_down ;

ro=(4.0∗deltax∗deltax )/ deltat ;

ro2=pow( ro , 2 ) ;

VJ=L∗1.0;

sigma=2.0∗deltax∗deltax∗VJ;

sigma2=pow( sigma , 2 ) ;

phi_up=2.0∗ro ∗ ( sigma+2);

phi_down=ro2−4∗sigma−sigma2 ;

phi=atan ( phi_up/phi_down ) ;

double miu_up,miu_down;

double sigma_plus4 , sigma_plus42 ;

miu_up=ro2+4.0∗sigma+sigma2 ;

sigma_plus4=sigma+4.0;

sigma_plus42=pow( sigma_plus4 , 2 ) ;

rr =( ro2+sigma2 ) ∗ ( ro2+sigma_plus42 ) ;

r2=sqrt ( rr ) ;

miu=miu_up/r2 ;

r4=pow( rr , cuarta ) ;

/∗ Se genera e l vector P (n ) ∗/

/∗ los primeros 2 elementos (n=0 ,1) se calculan directamente ∗/

double p0= gsl_sf_legendre_Pl (0 ,miu ) ;

P[0]=−p0;

double p1= gsl_sf_legendre_Pl (1 ,miu ) ;

P[1]=p1;

for (n=2;n<nmax;n++)

{

double pn = gsl_sf_legendre_Pl (n,miu ) ;
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double pn2= gsl_sf_legendre_Pl ( ( n−2),miu ) ;

P [n]= (pn−pn2)/ ( (2∗n)−1);

}

/∗ los primeros elementos de l ( n=0 ,1) se calculan diractamente ∗/

double re0 , re1 ;

double im0, im1;

re0=(1+0.5∗sigma)−( r4/2.0)∗ sin ( ( phi /2.0) )∗P [ 0 ] ;

im0=(−0.5∗ro )+ ( r4/2.0)∗cos ( ( phi /2.0) )∗P [ 0 ] ;

re1=(1+0.5∗sigma)−( r4/2.0)∗ sin ( ( phi/−2.0))∗P [ 1 ] ;

im1=(0.5∗ ro )+ ( r4/2.0)∗cos ( ( phi/−2.0))∗P [ 1 ] ;

gsl_complex l_0 ;

GSL_SET_COMPLEX(&l_0 , re0 , im0 ) ;

gsl_vector_complex_set ( l , 0 , l_0 ) ;

gsl_complex l_1 ;

GSL_SET_COMPLEX(&l_1 , re1 , im1 ) ;

gsl_vector_complex_set ( l , 1 , l_1 ) ;

double re , im;

for (n=2;n<nmax;n++)

{

re=(−r4/2.0)∗ sin ( phi∗(0.5−n) ) ∗P [n ] ;

im=( r4/2.0)∗cos ( phi∗(0.5−n) ) ∗P [n ] ;

gsl_complex e_n ;

GSL_SET_COMPLEX(&e_n , re , im ) ;

gsl_vector_complex_set ( l , n, e_n ) ;

}

/∗ ======= ANILLO PRINCIPAL : Se crean las niu funciones in i c i a l es ====== ∗/

airy=fopen ( " airy_fun . txt " , "w" ) ;

airy_re=fopen ( " airy_fun_re . txt " , "w" ) ;

airy_im=fopen ( " airy_fun_im . txt " , "w" ) ;

/∗ constes de escalamiento ∗/

double KBp;

KBp=KB∗T/escala ;

for ( niu=0;niu<niu_max; niu++)

{

f p r in t f ( airy_re , "niu=%d\n" ,niu ) ;

f p r in t f ( airy_im , "niu=%d\n" ,niu ) ;

/∗ se calcula e l elemento del array r ( e )= AiryAi (−e )/ AiryBi (−e ) ∗/

double arg ;

double e ;

double r_e le ;

e=E[ niu ] ;
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arg=c ∗ (L−e ) ;

r_e le=gsl_sf_airy_Bi ( arg ,GSL_PREC_DOUBLE)/ ( gs l_s f_a iry_Ai ( arg ,GSL_PREC_DOUBLE) ) ;

r [ niu ]= r_ele ;

/∗ se llama la subrutina para calcular los elementos de c2 ∗/

double I ;

c2 [ niu ]= normalizacion ( deltax , e , c , r_ele , I ) ;

/∗ se saca e l niu elemento de la funcion de part ic ion ∗/

Z_ele [ niu ]=exp(−E[ niu ]/KBp) ;

/∗ se crea las funciones in i c i a l es ∗/

double adentro ;

double equis ;

double ai , bi ;

for ( i =0; i <imax−1; i ++)

{

equis= i ∗deltax ;

adentro=c ∗ ( equis−e ) ;

ai=gs l_s f_a iry_Ai ( adentro ,GSL_PREC_DOUBLE) ;

bi=gsl_sf_airy_Bi ( adentro ,GSL_PREC_DOUBLE) ;

/∗ aqui va e l valor de la funcion y ( x ) discretizada ∗/

y= − r_e le∗c2 [ niu ]∗ ai + c2 [ niu ]∗ bi ;

gsl_complex y_c ;

GSL_SET_COMPLEX(&y_c , y , 0 . 0 ) ;

gsl_vector_complex_set ( old , i , y_c ) ;

}

/∗ ahora se pone e l ultimo elemento ∗/

gsl_complex cero ;

GSL_SET_COMPLEX(&cero , 0.0 ,0.0) ;

gsl_vector_complex_set ( old , imax−1, cero ) ;

/∗ se graf ica la funcion y ( x ) ∗/

f p r in t f ( airy , "niu=%d\n" ,niu ) ;

for ( i =0; i <imax ; i ++)

{

gsl_complex re= gsl_vector_complex_get ( old , i ) ;

f p r in t f ( airy , "%g\n" ,GSL_REAL( re ) ) ;

}

/∗=========================== ANILLO DEL TIEMPO =========================== ∗/

for (n=1;n<nmax;n++)

{

/∗ se guarda el primer elemento del e l vector solucion ∗/

gsl_complex x0_ele= gsl_vector_complex_get ( old , 0 ) ;
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gsl_vector_complex_set ( x0 , n, x0_ele ) ;

/∗ se pone los elementos del vector b ( i ) ∗/

gsl_vector_complex_set ( b , imax−1, cero ) ;

/∗ los puntos in te r i o res i =1 ,2 ,3 , . . . , imax−1 ( empieza de cero ) ∗/

gsl_complex punto ;

for ( i =1; i <imax−1; i ++)

gsl_vector_complex_set ( b , i , in ter ior ( i , ro , beta , old , punto ) ) ;

i f (n == 1)

gsl_vector_complex_set (b , 0 , cero ) ;

else

{

gsl_complex sum;

GSL_SET_COMPLEX(&sum, 0.0 ,0.0) ;

gsl_complex pro ;

int k;

for ( k=1;k<n;k++)

{

gsl_complex l _e l e

= gsl_vector_complex_get ( l ,n−k ) ;

gsl_complex x0_ele

= gsl_vector_complex_get ( x0 , k+1);

pro = gsl_complex_mul ( l_e le , x0_ele ) ;

sum = gsl_complex_add (sum, pro ) ;

}

/∗ se hace la diferencia ∗/

gsl_complex old_ele= gsl_vector_complex_get ( old , 1 ) ;

gsl_complex b_0 ;

b_0 = gsl_complex_sub ( old_ele , sum) ;

/∗ se pone e l primer elemento del vector b ∗/

gsl_vector_complex_set (b , 0 , b_0 ) ;

}

/∗ Se llama a la subrutina que resuelve e l sistema ∗/

LU ( ro , beta , cero , l_0 ,b ,new ) ;

/∗ Se graf ica cada 10 puntos ∗/

i f (n%1==0)

{

double t ;

t=n∗deltat ;

fp r in t f ( airy_re , " t=%g\n" , t ) ;
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f p r in t f ( airy_im , " t=%g\n" , t ) ;

for ( i =0; i <imax ; i ++)

{

/∗ se obtiene e l elemento del vector new ∗/

gsl_complex valor= gsl_vector_complex_get (new, i ) ;

/∗se saca y se pone en un array la partereal ∗/

a_re [ niu ] [ i ]=GSL_REAL( valor ) ;

f p r in t f ( airy_re , "%f\n" , a_re [ niu ] [ i ] ) ;

/∗ se saca y se pone en un array la parte imaginaria ∗/

a_im [ niu ] [ i ]=GSL_IMAG( valor ) ;

f p r in t f ( airy_im , "%f\n" ,a_im [ niu ] [ i ] ) ;

/∗ cosas para crear la Mass Function ∗/

psi_abs_2 [ i ]= gsl_complex_abs2 ( valor ) ;

}

/∗ se guarda la Mass Function en una array ∗/

double integral ;

mass_vec [ niu ] [ n]= integracion ( deltax , psi_abs_2 , integral ) ;

}

gsl_blas_zswap (new, old ) ;

} /∗ se c ier ra e l an i l l o del tiempo ∗/

} /∗ se c ier ra e l an i l l o pr inc ipal ( niu ) ∗/

/∗ Se pone las Mass Function en un F i l e ∗/

Mass_t=fopen ( "Mass_t . txt " , "w" ) ;

for ( niu=0;niu<niu_max; niu++)

{

f p r in t f ( Mass_t , "niu=%d\n" ,niu ) ;

for (n=1;n<nmax;n++)

fp r in t f ( Mass_t , "%g\n" ,mass_vec [ niu ] [ n ] ) ; }

/∗ Aqui i ra lo que se necesite para M( t , T ) ∗/

Mass_t_T=fopen ( "Mass_t_T . txt " , "w" ) ;

/∗ sacar la funcion de part ic ion ∗/

double Z;

Z=0.0;

for ( niu=1;niu<niu_max; niu++)

Z+=Z_ele [ niu ] ;

/∗ Mass Function ( t , T ) ∗/

for (n=1;n<nmax;n++)

{
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double m;

m=0.0;

for ( niu=1;niu<niu_max; niu++)

{

m+=( Z_ele [ niu ] ) ∗ ( mass_vec [ niu ] [ n ] ) ;

}

Mass[n]=m/Z;

}

/∗ Se pone la Mass Function en un F i l e ∗/

for (n=1;n<nmax;n++)

{

f p r in t f ( Mass_t_T , "%f\n" ,Mass[n ] ) ;

}

fc lose ( airy ) ;

fc lose ( airy_re ) ;

fc lose ( airy_im ) ;

fc lose ( Mass_t ) ;

fc lose ( Mass_t_T ) ;

return ( 0 ) ;

}

double normalizacion ( double deltax ,double e , double c ,double r_ele , double I ) {

double I_uno [ imax ] ;

double I_dos [ imax ] ;

double I _ t res [ imax ] ;

double I1 , I2 , I3 ;

double adentro ;

double equis ;

int i ;

/∗ se genera los arrays ∗/

for ( i =0; i <imax−1; i ++)

{

equis= i ∗deltax ;

adentro=c ∗ ( equis−e ) ;

double ai , bi ;

ai=gs l_s f_a iry_Ai ( adentro ,GSL_PREC_DOUBLE) ;

bi=gsl_sf_airy_Bi ( adentro ,GSL_PREC_DOUBLE) ;

/∗ array uno ∗/

I_uno [ i ]= ai∗ai ;

/∗ array dos ∗/

I_dos [ i ]= bi∗bi ;
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/∗ array tres ∗/

I _ t res [ i ]= ai∗bi ;

}

/∗ se llama a la subrutina para integrar ∗/

double integral ;

I1=integracion ( deltax , I_uno , integral ) ;

I2=integracion ( deltax , I_dos , integral ) ;

I3=integracion ( deltax , I_tres , integral ) ;

/∗ se calcula I=rI1+I2−2rI3 ∗/

double integrales ;

integrales=r_ele∗ r_e le∗ I1 + I2 −2.0∗r_e le∗ I3 ;

/∗ e l valor de lo que se regresa ∗/

I=sqrt (1/ integrales ) ;

return ( I ) ;

}

double integracion ( double deltax , double b_abs2 [ ] , double integral )

{

int i ;

double sum2,sum4;

sum2=0.0;

sum4=0.0;

/∗ suma impar ∗/

for ( i =1; i <imax−1; i = i +2)

sum4+=b_abs2 [ i ] ;

/∗ suma par ∗/

for ( i =2; i <imax−1; i = i +2)

sum2+=b_abs2 [ i ] ;

integral =(b_abs2[0]+4.0∗sum4+2.0∗sum2+b_abs2 [ imax−1])∗ ( deltax )/3.0;

return ( integral ) ;

}

gsl_complex inter ior ( int i , double ro ,double beta , gsl_vector_complex ∗a , gsl_complex punto )

{

gsl_complex sum;

gsl_complex mul;

gsl_complex c2 ;

GSL_SET_COMPLEX(&c2 , 2.0+(beta∗ i ) , ro ) ;

gsl_complex a_mas= gsl_vector_complex_get ( a , i +1) ;

gsl_complex a_menos= gsl_vector_complex_get ( a , i −1);

sum = gsl_complex_add (a_mas, a_menos ) ;

gsl_complex a_ele= gsl_vector_complex_get ( a , i ) ;
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mul = gsl_complex_mul ( c2 , a_ele ) ;

punto = gsl_complex_sub (sum, mul ) ;

return ( punto ) ;

}

void LU ( double ro ,double beta , gsl_complex cero , gsl_complex l_0 ,

gsl_vector_complex ∗b, gsl_vector_complex ∗new )

{

int s ; gsl_permutation ∗p=gsl_permutation_alloc ( imax ) ;

gsl_matrix_complex ∗A = gsl_matrix_complex_alloc ( imax , imax ) ;

/∗ Se genera la matrix A( i , j ) ∗/

int i , j ;

gsl_complex uno;

gsl_complex sdiag ;

GSL_SET_COMPLEX(&uno, 1.0 ,0.0) ;

GSL_SET_COMPLEX(&sdiag , −1.0 ,0.0);

/∗ se genera la matriz A con ceros∗/

for ( i =0; i <imax ; i ++)

{

for ( j =0; j <imax ; j ++)

{

gsl_matrix_complex_set (A, i , j , cero ) ;

}

}

/∗ se genera e l A( J , J)=1.0+ 0.0 i ∗/

gsl_matrix_complex_set (A, imax−1, imax−1, uno ) ;

/∗ se pone la diagonal pr inc ipal ∗/

for ( i =1; i <imax−1; i ++)

{

gsl_complex diag_i ;

GSL_SET_COMPLEX(&diag_i , 2.0+(beta∗ i ) ,−ro ) ;

gsl_matrix_complex_set (A, i , i , diag_i ) ;

}

/∗ se pone la super diagonal ∗/

for ( i =0; i <imax−1; i ++)

gsl_matrix_complex_set (A, i , i +1, sdiag ) ;

/∗ se pone la sub diagonal ∗/

for ( i =1; i <imax−1; i ++)

gsl_matrix_complex_set (A, i , i−1, sdiag ) ;

/∗ se pone e l primer elemento ∗/

gsl_matrix_complex_set (A, 0 , 0 , l_0 ) ;

/∗ Se aplica e l metodo ∗/

109



/∗ function to crate L U Matrixes ∗/

gsl_linalg_complex_LU_decomp (A,p,&s ) ;

/∗ function to solve Ax=b ∗/

gsl_linalg_complex_LU_solve (A,p ,b ,new ) ;

}
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ESCAPE IN THE STRONG QUANTUM REGIME
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Physicists have used billiards to understand and explore both classical and quantum

chaos. Recently, in 2001, a group at the University of Texas introduced an experimental

set up for modeling the wedge billiard geometry called optical billiard in two dimensions.

For the temperature range that was explored, this experiment is more closely related

with classical rather than quantum chaos. The motivation for the present work was born

from the idea of laying the foundations of a quantum treatment for optical billiards. We

call it “The Escape Problem”, and approach it by applying the concept of a Transparent

Boundary Condition (TBC). Since a four-dimensional phase space is computationally very

difficult to investigate, here we will explore a pair of one-dimensional examples. First, as a

benchmark, we will consider the classical regime by analyzing a "gas of particles” limited

to stay inside a one dimensional box of length L. The focus of our effort is the solution

of the corresponding Quantum Initial Value Problem (QIVP). We employ a recently devel-

oped numerical method and test it for a simple situation with an exact, analytic solution.

The numerical method introduces a novel way to solve a diffusion type equation by im-

plementing discrete transparent boundaries conditions (DTBCs) recently developed by

mathematicians. The method is then extended to include a linear, external potential.
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