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INTRODUCTION	
  

Mercury is an environmental contaminant that causes adverse behavioral, reproductive, and 

neurological effects in wildlife (Weiner et al., 2003).  Anthropogenic emissions resulting from human 

activities, such as coal combustion, waste incineration, chlor-alkali facilities, and other industrial and 

mining processes, account for two-thirds of annual mercury emissions into the atmosphere (Harris et 

al., 2003).  Mercury resides in atmospheric circulation, sometimes traveling long distances before 

being deposited onto the Earth’s surface in an inorganic form (Jackson, 1997).  Inorganic mercury is 

non-toxic but in aquatic ecosystems sulfate-reducing bacteria convert inorganic mercury to highly 

toxic methylmercury (Ullrich et al., 2001).  Methylmercury is the most toxic and accumulative form 

of mercury (Morel et al., 1998).  Organisms at the base of the food web, such as phytoplankton and 

periphyton, concentrate methylmercury directly from the water (Miles et al., 2001), whereas 

consumers are exposed to methylmercury primarily through diet (Hall et al., 1997; Tsui and Wang, 

2004).  

Most studies on mercury in aquatic consumers focus on fish because fish consumption is an 

important route of mercury exposure to wildlife and humans (Weiner et al., 2003).  Few studies have 

examined mercury contamination of macroinvertebrates, which are important in the trophic transfer 

of mercury to fish and wildlife (Ackerman et al., 2010).  Many aquatic macroinvertebrates occur as a 

larval stage in the water, where they can be consumed by fish and waterfowl (Marklund et al., 2002), 

before metamorphosing into aerial adults, where they can be consumed by terrestrial insectivores 

(Gray, 1989; Nakano et al., 2001). 

Macroinvertebrate species composition and biomass in ponds is strongly influenced by the 

presence of fish (Wellborn et al., 1996).  Ponds without fish typically have macroinvertebrate 

communities with high biomass (Nyström et al., 2001) that is composed of large macroinvertebrate 

taxa, many of which are predatory.  Macroinvertebrate communities in ponds with fish have a smaller 

biomass (Nyström et al., 2001) and contain species with adaptations to avoid fish predation like 
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small-body size, inactivity and burrowing (Wellborn et al., 1996). These differences in 

macroinvertebrate biomass and species composition in ponds with and without fish could impact 

mercury contamination of the macroinvertebrate community.  The purpose of this study was to 

compare the biomass, mercury concentration, and mercury burden (an estimate of the quantity of 

mercury within the community determined using concentration and biomass) of macroinvertebrate 

communities in ponds with and without fish.  We also assessed mercury concentrations of fish and 

compared them to mercury concentrations of macroinvertebrates. 

METHODS 

Study Site 

The study was conducted at the Lyndon B. Johnson (LBJ) National Grassland, Wise County, 

in north-central Texas (Fig. 1).  The 8,000-ha grassland contains 62 non-contiguous management 

units.  Primary management priorities for the grassland are maintaining quality grass cover for 

livestock grazing, increasing abundance of wildlife, and preventing soil erosion (J. Crooks, pers. 

comm.).  As part of the plan to prevent soil erosion, the United States Department of Agriculture 

constructed many small dams, mostly in the mid-to-late 1970s.  The dams created hundreds of small 

ponds, most of which are less than 2,000 m2 in surface area and go dry periodically.  A previous 

study at the LBJ Grassland identified mercury in the tissues of macroinvertebrates from grassland 

ponds without fish (Blackwell and Drenner, 2009).  There are no known point-sources of mercury at 

the LBJ Grassland.  The region receives 8-10 µg/m2 annually of wet mercury deposition  (NADP, 

2008).  
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Sampling 

I sampled ten grassland ponds, five ponds with fish (n= 5) and five ponds without fish (n= 5).  

Study ponds were chosen from a larger pool of ponds that had been previously sampled to determine 

fish presence/absence.  The only selection criterion was that no more than one representative of each 

pond type (with/without fish) could be located within a single management unit.  This approach 

insured the ponds were distributed across the LBJ Grassland.  Because macroinvertebrate 

communities vary seasonally in grassland ponds (Williams, 1996; Verberk et al., 2008), ponds were 

sampled during two seasons, spring (April - May) and summer (July - August) 2009.   

I used dip nets (mesh size = 250-µm and 3 mm) and a 2.4m seine (mesh size = 5mm) to 

collect macroinvertebrates and fish (when present).  Each pond was seined during both sampling 

periods to confirm the presence or absence of fish.  I sampled all habitat types, including the 

vegetation, top layers of sediment, and the water column with dip nets.  In addition, I sampled the 

vegetation and water column with a seine.  I recorded total sampling time, regardless of sampling 

method, and determined catch per unit effort (mg min-1) for each taxa.  All macroinvertebrates 

Fig. 1 – Map of Lyndon B. Johnson (LBJ) National Grassland, Wise County, Texas. Shaded areas 
are LBJ Grassland management units and white areas are privately-owned land. Black and white 
stars indicate the location of ponds in this study with and without fish, respectively.  
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collected were placed in plastic bags filled with spring water for at least 2-5 hours.  A representative 

subsample of each fish species (typically five per length class) were euthanized immediately after 

collection in buffered MS-222 and stored in labeled bags on ice.  Macroinvertebrates and fish were 

transported to a lab where they were frozen prior to further processing. 

 

Lab Processing 

Macroinvertebrates were identified to lowest taxanomic resolution, usually genus, using 

dichotomous keys of Merritt et al. (1996).  Macroinvertebrate taxa that did not account for at least 1% 

of the total number individuals in ponds with or without fish, for either spring or summer samples 

were not included in this study.  Macroinvertebrates were rinsed with deionized water prior to oven-

drying at 60°C for at least 72 hours.  Macroinvertebrates from each pond were pooled by taxa and the 

dry weight of each taxa was determined to the nearest milligram.  Macroinvertebrates were ground 

into a fine powder using a ball-mill grinder prior to analysis. 

 

Fish Processing 

Fish were indentified to species using Thomas et al. (2007) and recorded the length of 

individual fish to the nearest millimeter.  A fillet of epaxial muscle was dissected from individual fish 

and samples of skinless tissue were collected from the center of each fillet using a scalpel and 

forceps.  All dissection equipment was rinsed with 95% ethanol and deionized water between 

samples.  Individual samples were oven-dried at 60°C for at least 72 hours.  Dried fish tissue samples 

were ground into a fine powder using a ball-mill grinder prior to mercury analysis.  Composite 

samples were created for fish taxa of each pond based on length so that the smallest fish in each 

composite was at least 75% the length of the largest fish.   
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Mercury Analysis 

I determined total concentrations of mercury in composite samples of macroinvertebrates and 

fish using a Milestone Direct Mercury Analyzer (DMA 80, Milestone, Inc. Monroe, Connecticut), 

which uses thermal decomposition, gold amalgamation, and atomic-absorption spectroscopy (United 

States Environmental Protection Agency, 1998).  A calibration curve was generated using two 

reference materials from the National Research Council of Canada Institute for National 

Measurement Standards: MESS-3 (marine sediment, certified value = 91 ± 9 Ng/g total mercury [dry 

weight]) and DORM-2 (dogfish muscle, certified value = 4,640 ± 260 Ng/g total mercury [dry 

weight]).  Quality assurance included reference and duplicate samples. Reference samples (MESS-3, 

DORM-2 or DOLT-3) were analyzed every 10 samples and the mean percent recovery was 102% 

(range = 96–109%; n = 53).  Duplicate samples were analyzed every 20 samples and the mean 

relative percent difference was 2.48% (range = 0.004–10.91%; n =27).  Total mercury was used as a 

proxy for methylmercury because 95–99% of total mercury in fish tissue is methylmercury (Bloom, 

1992) and 65-95% of total mercury in omnivorous and predatory macroinvertebrates is 

methylmercury (Tremblay et al., 1996). 

 

Data Analysis 

I categorized all macroinvertebrate taxa as emergent, semi-emergent, and non-emergent using 

Merritt et al. (1996).  The emergent category represents macroinvertebrate taxa adapted to emerge 

from aquatic habitats, after metamorphosing, as aerial adults.  The semi-emergent category represents 

macroinvertebrate taxa adapted to emerge from the water to fly or crawl to move between aquatic 

habitats.  The non-emergent category represents macroinvertebrate taxa adapted to spend their entire 

lifecycle in aquatic habitats. 

 I recorded the time-spent sampling each pond as a measure of effort (E).  For taxa (t) of each 

pond, I used the method described by Cremona et al. (2008) to calculate biomass: 
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(1) BMt = Wt / Ep 

where BMt is the biomass of each taxon within a pond in mg/min; Wt is mg DW of each taxon of 

macroinvertebrates within a pond; and Ep is the sampling effort of a pond in min.  Then, the biomass 

of each taxon (BMt1, BMt2,…, BMtn) within a given pond (p) were added as follows: 

(2) BMp1 = BMt1p1 + BMt2p1 + … + BMtnp1 

where BMp1 is the macroinvertebrate community biomass within a pond in mg/min.  

 For taxa (t) of each pond, I calculated Hg burden with the following equation: 

(3) Hg Burdent = [Hg]t x Wt 

where Hg Burdent is in ng/min; [Hg] is in ng/g DW; and Wt is in mg DW for each taxon of 

macroinvertebrates within a pond.  Then, the Hg burdens of each taxon (Hg Burdent1, Hg Burdent2, 

…, Hg Burdentn) within a given pond (p) were added as follows: 

(4) Hg Burdenp1 = Hg Burdenp1t1 + Hg Burdenp1t2 + … + Hg Burdenp1tn 

where Hg Burdenp1 is the macroinvertebrate community Hg burden within a pond in ng/min. 

All data analyses were calculated using SPSS 15.0 (Field, 2005; SPSS, Inc., 2006).  A two-

way ANOVA was used to determine significant effects of season and fish presence on mean mercury 

concentration, total macroinvertebrate biomass and total mercury burden of macroinvertebrate 

communities in ponds with and without fish.  These data met the assumptions of normality, 

confirmed by Anderson-Darling’s test of normality, and equal variances, confirmed by Levene’s test 

for equal variance.  Interactions between fish presence and season were tested for all models but the 

interaction terms were not significant in any model.  Therefore I removed the interaction term and 

tested for main effects of fish presence and season. Statistical significance was determined at p ≤ 0.05 

unless otherwise noted.   
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RESULTS 

I collected 25 macroinvertebrate taxa in the ponds, including Anax junius, Arigomphus spp., 

Belastoma spp., Buenoa spp., Callibaetis spp., Coptotomus spp., Cybister spp., Dineutus spp., 

Enallagma spp., Erpobdella spp., Gomphus spp., Helisoma spp., Hesperocorixa spp., Hexagenia 

spp., Libellula spp., Notonecta spp., Pantala spp., Physidae, Placobdella parasitica, Plathemis Lydia, 

Ranatra spp., Sphaeriidae, Streptocephalus seali, Tramea spp., and Tropisternus spp. Species 

composition differed between pond types.  In the spring nine macroinvertebrate taxa were unique to 

ponds without fish, five taxa of macroinvertebrate were unique to ponds with fish, and five taxa were 

shared between both pond types (Fig. 2).  Many of the taxa found only in fishless ponds during the 

spring were found in both pond types (with/without fish) during the summer (Fig 3).   

Macroinvertebrate community biomass in ponds without fish was approximately four times 

greater than in ponds with fish (F = 14.1, P-value = 0.002, Fig. 4a) and was approximately two times 

greater in the summer than in the spring (F = 4.6, P-value = 0.046).  Fish presence explained more 

than twice the variation in macroinvertebrate community biomass than season (partial η2 = 0.45 and 

0.21, respectively).  The mean mercury concentration of macroinvertebrate communities in ponds 

without fish was approximately two times greater than ponds with fish (F = 4.89, P-value = 0.041, 

Fig. 4b) but did not differ between seasons.  Macroinvertebrate community mercury burden in ponds 

without fish was approximately five times greater than ponds with fish (F = 9.34, P-value = 0.007, 

Fig. 4c) and was approximately three times greater in summer than spring (F = 5.76, P-value = 

0.028).  Fish presence explained more of the variation in pond macroinvertebrate community mercury 

burden than season (partial η2 = 0.36 and 0.25, respectively).   

Ponds contained between one and ten species of fish including Ameiurus melas (black 

bullhead), A. natalis (yellow bullhead), Gambusia affinis (western mosquitofish), Ictalurus punctatus 

(channel catfish), Lepomis cyanellus (green sunfsh), L. macrochirus (bluegill), L. megalotis (longear 

sunfish), L. microlophus (redear sunfish), Lythrurus fumeus (ribbon shiner), Micropterus salmoides 
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(largemouth bass), Notemigonus crysoleucas (golden shiner), Pomoxis annularis (white crappie), and 

P. nigromaculatus (black crappie).  I determined mercury concentrations of fish tissues to assess 

whether mercury was bioaccumulating in these organisms. The concentration of mercury in fish 

tissue ranged from 371 to 1528 ng/g DW and on average was nine times greater than the mercury 

concentration of the macroinvertebrate community found in ponds with fish (Fig. 5).   
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Fig. 2 – a) Mean biomass of macroinvertebrate taxa in ponds with fish and ponds without fish 
from spring. b) Mean mercury concentration of macroinvertebrate taxa in ponds with fish and 
ponds without fish from spring. c) Mean mercury burden of macroinvertebrate taxa in ponds 
with fish and ponds without fish from spring. Error bars represent standard error. 
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  Fig. 3 – a) Mean biomass of macroinvertebrate taxa in ponds with fish and ponds without fish 
from summer. b) Mean mercury concentration of macroinvertebrate taxa in ponds with fish 
and ponds without fish from summer. c) Mean mercury burden of macroinvertebrate taxa in 
ponds with fish and ponds without fish from summer. Error bars represent standard error. 
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Fig. 4 – a) Mean biomass of macroinvertebrate community in ponds with fish and ponds 
without fish from spring and summer. b) Mean mercury concentration of macroinvertebrate 
community in ponds with fish and ponds without fish from spring and summer. c) Mean 
mercury burden of macroinvertebrate community in ponds with fish and ponds without fish 
from spring and summer.  Error bars represent standard error.  
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DISCUSSION 

The biomass of macroinvertebrates was greatest in ponds without fish.  Many of the 

macroinvertebrate taxa unique to ponds without fish were large-bodied (Anax junius, Tramea spp., 

and Enallagma spp.), free-swimming (Streptocephalus seali, Hesperocorixa spp., Notonecta spp., 

Buenoa spp., and Callibaetis spp.), and climbing (Physidae) (Merritt et al., 1996), which are 

characteristics that would make them vulnerable to fish predation (Pope, 2009).  In spring, many of 

the macroinvertebrate taxa unique to ponds with fish were burrowing macroinvertebrates (Gomphus 

spp., Arigomphus spp., and Hexagenia spp.), or diving macroinvertebrates (Dineutus spp.) (Merritt et 

al., 1996), characteristics which allow these organisms to avoid fish predation (Wellborn et al., 1996) 

(Fig. 2a). Many of the taxa found only in fishless ponds during the spring were found in both pond 

types (with/without fish) during the summer (Fig. 3a).  Increasing macrophyte densities in the 

summer (personal observation) was hypothesized to provide a refuge for macroinvertebrates that are 

otherwise vulnerable to fish predation (Diehl and Kornijów, 1998; Hornung and Foote, 2006).   

Fig. 5– Mean mercury concentration of fish taxa sampled in spring and summer. Error bars 
represent standard error. 
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In general, macroinvertebrate taxa that were found in both ponds types had similar mercury 

concentrations in spring and summer (Fig 2b and Fig 3b, respectively).  These findings suggest that 

the amounts of mercury available for uptake by the food chain in the two pond types were equivalent.  

However, mercury concentrations in macroinvertebrate taxa found only in ponds without fish were 

generally higher than taxa found only in ponds with fish.  The reason for this pattern is not clear but I 

hypothesize differences in feeding ecology of macroinvertebrate taxa may have been a contributing 

factor.  Although macroinvertebrates found only in ponds without fish in the spring were found in 

both pond types in the summer, mercury concentration was still greater in the macroinvertebrate 

community in ponds without fish.   

The observed difference in mercury burden results from a higher biomass of most 

macroinvertebrate taxa in ponds without fish, combined with elevated mercury concentrations in 

macroinvertebrate taxa unique to ponds without fish in spring (Fig. 2c) and summer (Fig. 3c). 

Although I did not collect data on fish biomass and cannot determine mercury burden in the fish 

community, elevated concentrations of mercury in fish suggests that the majority of the mercury in 

ponds with fish was accumulating in fish tissue, rather than in macroinvertebrates. 

Larval aquatic macroinvertebrates are important food source to aquatic and terrestrial 

consumers.  Waterfowl, like ducks, consume macroinvertebrates in aquatic habitats (Ackerman et al., 

2010).  While terrestrial consumers, such as songbirds and spiders, could be exposed to mercury by 

macroinvertebrates that undergo metamorphosis and emerge as aerial adults or develop wings for 

aquatic habitat relocation (Cristol et al., 2008).  Some of the macroinvertebrate mercury 

concentrations exceeded the threshold (100 ng/g wet weight; ca. 400-500ng/g dry weight) for items in 

diets of sensitive species of birds (Eisler, 1987).  Because of the large difference in mercury burden 

between pond types, ponds without fish may represent a significant source of mercury to aquatic and 

terrestrial consumers.  In this study thirteen species, representing 84% of the macroinvertebrate 

community mercury burden, in ponds without fish were adapted to emerge from aquatic habitats as 

aerial adults or are semi-emergent organisms.   
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Small ponds, like the ones examined in this study, may be more at risk for containing 

organisms with elevated mercury concentrations than has been appreciated.  Small ponds (loosely 

defined to have surface areas smaller than approx. 104 m2) are found in ecosystems around the globe 

and approximately 2.6 million small ponds are found in the conterminous United States (Smith et al., 

2002).  In regards to mercury contamination, small ponds are unstudied relative to their abundance.  

Because mercury-contaminated macroinvertebrates have negative health effects on aquatic and 

terrestrial consumers, future studies should focus on small ponds as sources of mercury contamination 

to terrestrial ecosystems, especially in the Great Plains region, where these habitats are extensive 

(Smith et al., 2002). 
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ABSTRACT	
  

 
MERCURY CONTAMINATION OF MACROINVERTEBRATES FROM 
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GRASSLAND, TEXAS 

 
by  Byron Lee Henderson, M.S., 2010 
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Thesis Advisor: Matthew M. Chumchal, Assistant Professor of Biology 

 

The purpose of this study was to examine mercury in macroinvertebrate communities from grassland 

ponds with and without fish communities. We sampled macroinvertebrates from five ponds with fish 

and five ponds without fish, at the LBJ National Grassland in North Texas. In ponds without fish, the 

biomass of macroinvertebrates was significantly higher than in ponds with fish. The average mercury 

concentration of macroinvertebrates from ponds without fish was significantly higher than the 

average mercury concentration in ponds with fish. Because ponds without fish contained a higher 

biomass of macroinvertebrates and unique taxa with higher concentrations of mercury, the total 

amount of mercury in the macroinvertebrate community in ponds without fish was significantly 

higher than in the ponds with fish. In ponds with fish, the average mercury concentration of the fish 

community was 13 times greater than mercury concentration of the macroinvertebrates community. 

These data suggest that when fish are present, mercury accumulates in fish rather than in the 

macroinvertebrate community, which has implications for the movement of mercury into terrestrial 

ecosystems when macroinvertebrates emerge as aerial adults. 

     


