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INTRODUCTION 

Decreasing the United States’ dependence on foreign energy and allowing more 

domestic drilling has become a highly debated issue in the oil and gas industry. 

Technological advancements in the last twenty years have led to the development of 

unconventional shale plays, which hold tremendous potential in the United States. In 

unconventional plays, a single formation may serve as the source, reservoir, and seal unlike 

most conventional plays where essential elements of the petroleum system are different rock 

units (Jarvie et al., 2004).  

The Barnett Shale play was the first discovered unconventional shale play. Improved 

understanding of the stratigraphy and reservoir properties of the Barnett Shale in the Fort 

Worth basin (FWB), Texas, will allow the contained reserves to be exploited more 

completely and economically (Breyer et al., 2011). Lessons learned from unconventional 

shale-gas plays like the Barnett Shale may provide further insight to new or undiscovered 

shale plays. To this end, I am proposing a detailed stratigraphic framework and attempt to 

regionally assess the Barnett Shale reservoir as a shale-gas play in the northern and central 

portions of the FWB.  

Fort Worth Basin 

The FWB in north-central Texas covers an area of about 38,850 km2 (~15,000 mi2) 

(Montgomery et al., 2005) (Figure 1).  A relatively shallow trough, it is one of several 

foreland basins formed during the Paleozoic Ouachita orogeny, a continent-continent 

collision of Euramerica and Gondwana, which led to the formation of Pangea (Walper, 

1982; Thompson, 1988). The axis of this north-south elongated depression is roughly 
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parallel to the Ouachita thrust front, which forms the eastern boundary of the basin. The 

Muenster and Red River arches form the northern edge of the FWB, and the Llano uplift, a 

domal structure that exposes Precambrian and Paleozoic rocks, bounds the basin’s southern 

margin (Montgomery et al., 2005). The western extent of the basin shallows over the Bend 

arch, which formed as a hinge line due to subsidence of the FWB in the early stages of the 

Ouachita orogeny (Pollastro et al., 2003). The study area of the FWB is located in the most 

actively developed regions of the Barnett Shale play. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Map showing 
structures, geographic extent 
of the Fort Worth basin, and 
key formations near the core 
Barnett Shale Newark East 
field and southern core 
extension. Modified from 
Montgomery et al. (2005) and 
Pollastro et al. (2007).  
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Geologic History of the Fort Worth Basin 

Cambrian-Devonian 

The FWB formed as the southern edge of the North American craton changed from a 

passive margin in the Early Paleozoic (Cambrian) to an active margin in the Late Paleozoic 

(Pennsylvanian) (Pollastro et al., 2007). Precambrian granite and diorite underlie the 

sedimentary section (Flippen, 1982). Cambrian rocks in the FWB are comprised of 

sandstone and shale (Flippen, 1982). During the Early Ordovician, a widespread carbonate 

platform existed over much of southern Euramerica, or present-day Texas (Turner, 1957; 

Burgess, 1976). The stable, shallow-marine carbonate platform is referred to as the 

Ellenburger Group in the FWB and in the Permian basin of west Texas. During the Middle 

Ordovician, a drop in sea level resulted in an erosional unconformity with prolonged 

subaerial exposure of the Ellenburger Group (Sloss, 1976; Kerans, 1988; Pollastro et al., 

2003). Two separate formations were deposited over the Ellenburger Group, the Simpson 

Limestone and Viola Limestone (Upper Ordovician). Due to another drop in sea level during 

the Ordovician, the crystalline limestone and dolomitic carbonates of the Simpson and Viola 

Formations only exist in the northeastern part of the basin (Montgomery et al., 2005) (Figure 

2). After Simpson and Viola deposition, a major erosional event removed all Silurian and 

Devonian rocks that may have been present in the FWB from the geologic record (Henry, 

1982). Subaerial exposure of these carbonates led to karsting of the Ordovician 

unconformity surface (Sloss, 1976; Kerans, 1988; Pollastro et al., 2003) (Figure 2), 

predominately in the western area of the FWB where the Simpson and Viola Formations are 

absent.  
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Mississippian 

During the Mississippian, tectonic loading of Gondwana on the Euramerican 

carbonate platform resulted in the formation of a foreland basin on the southern edge of 

Euramerica (Gutschick and Sandberg, 1983). Global plate reconstructions by Blakey (2005) 

suggest that the FWB was the site of a narrow, inland seaway bound to the west by a 

carbonate shelf and to the south and east by the Caballos-Arkansas island chain 

(Montgomery et al., 2005) (Figure 3). Poor circulation within the restricted seaway produced 

an anoxic environment (Montgomery et al., 2005). The foreland basin, flooded by the 

seaway, created new accommodation space where deep-water clastics were deposited in a 

sediment-starved, anoxic environment over a 25 million year period (Loucks and Ruppel, 

2007). The sediment deposited in the FWB would eventually comprise the black, organic-

rich Barnett Shale overlying the 

pre-Barnett erosional 

unconformity. Carbonates were 

also deposited along the western 

margin of the FWB during the early 

Mississippian and constitute the 

Chappel limestone, which consists 

of crinoidal limestone and local 

pinnacle reefs up to 91 m (~300 ft) 

in height (Browning, 1982; 

Ehlmann, 1982). 

Figure 3. Paleogeographic reconstruction during the Early 
Carboniferous (Mississippian). Modified from Blakey (2005).  
During this time, the Rheic Ocean was closing as a result of 
converging plate margins, and sediment that comprised the Barnett 
shale was deposited. The Fort Worth basin is outlined in red. 
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An adjusted sea-level curve constructed for the Mississippian by Ross and Ross 

(1987) allowed Loucks and Ruppel (2007) to suggest a water depth of 120-210 meters 

(~400-700 ft) for deposition to be below lowstand storm-wave base. This estimate concurs 

with Byers (1977), who concluded that water depths must exceed 140 meters (~450 ft) in 

basinal, anoxic environments where evidence of shelly fauna and bioturbation is minimal 

and sediment is laminated. 

The Forestburg limestone (Mississippian) is an argillaceous lime mudstone (Loucks 

and Ruppel, 2007) that divides the Barnett Shale into informal upper and lower shale 

members in the northern region of the FWB. The Forestburg pinches out southward and 

westward, and where absent the upper and lower Barnett Shale members can no longer be 

readily differentiated. Compositionally, the Forestburg limestone contains much less silica 

and TOC than the Barnett Shale, and its origin is still yet to be fully understood. Loucks and 

Ruppel (2007) suggest that the abundance of carbonate influx into the FWB during 

Forestburg depositional time may reflect a change in: 1) source area, 2) eustatic sea level, or 

3) seawater chemistry.  

Pennsylvanian 

The first formation deposited over the Barnett Shale was the Marble Falls Limestone 

(Figure 4), which includes a lower interval of interbedded limestone and gray-black shale 

and an upper limestone interval (Montgomery et al., 2005). Sea level regression during the 

Early Pennsylvanian resulted in subaerial exposure of the Marble Falls Formation (Namy, 

1974), creating a low-relief erosional unconformity. Throughout the rest of the 

Pennsylvanian the FWB continued to subside (Pollastro et al., 2003), and clastic sediments 
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shed from the surrounding, rapidly eroding thrusted highlands filled the basin. The clastics, 

consisting of mostly sand and pebbles derived from the east, comprise the Bend, Strawn, 

Canyon, and Cisco Groups in the FWB (Walper, 1982) and mark the culmination of the 

Ouachita orogeny. Besides contributing sediment to the FWB, the Ouachita orogeny also 

produced the Muenster and Red River arches (Figure 1). These structures are faulted 

basement uplifts generated during the Ouachita orogeny from reactivation of faults related to 

the Southern Oklahoma aulacogen (Walper, 1977; 1982).  

 

 

 

          

 

 

 

 

 

Cretaceous 

Pennsylvanian strata are truncated by another erosional unconformity that rests 

below a thin layer of Cretaceous rocks on the eastern side of the FWB (Flawn et al., 1961; 

Henry, 1982; Lahti and Huber, 1982). Whether Permian, Triassic, and/or Jurassic strata were 

SW 

Figure 4. Stratigraphic changes from the southwest towards the northeast regions of 
the basin. From Monroe and Breyer (2011). 

NE 
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present in the FWB is not known, but Henry (1982) and Walper (1982) suggest that much of 

the Pennsylvanian and possibly Permian rocks were eroded prior to the Cretaceous. 

Cretaceous rocks comprise the last stratigraphic units deposited in the FWB. 

Reservoir Characteristics 

The Barnett Shale is dominated by type II oil-prone marine-algal kerogens (Pollastro 

et al., 2003) sourced from autochthonous organic material deposited within an anoxic, 

reducing environment (Tissot and Welte, 1984). Organic matter decomposition constitutes 

the majority of the known porosity in the Barnett Shale (Jarvie et al., 2007). The organic 

material comprising the complex pore network is pyrobitumen, carbon-rich residue resulting 

from organic degradation and conversion to hydrocarbons through thermal exposure 

(Loucks et al., 2010). Low permeability and porosity in the matrix surrounding the organic 

material minimize hydrocarbon expulsion from the shale (Jarvie et al., 2003). These 

circumstances present a closed system during hydrocarbon generation, which helps explain 

why this shale reservoir is over-pressured (Jarvie et al., 2007).  

The Barnett Shale is very rich in original organic matter content (Jarvie et al., 2007) 

and serves as the primary source of petroleum for both conventional and unconventional 

reservoirs in the FWB (Jarvie et al., 2003; Montgomery et al., 2005). TOC measurements 

from a less thermally-mature region of Barnett Shale typically yield a higher TOC (wt. %) 

than those taken from thermally mature, hydrocarbon-bearing regions because less of the 

organic carbon has been converted to hydrocarbons (Jarvie et al., 2004). The minimum 

amount of organic material considered a “good risk” baseline for a potential shale reservoir 

is 2 wt. % TOC (or ~ 4 vol. % TOC) (Jarvie et al., 2004).  
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Most of the high radioactivity measured from gamma ray logs run through the 

organic-rich Barnett Shale is due to high uranium content (Breyer et al., 2011). The 

remainder of the gamma ray response is due to the presence of thorium and potassium 

(Breyer et al., 2011). Organic material deposited in an anoxic environment is reducing due 

to absence of oxygen and acts as a sorbent for uranium (Lüning and Kolonic, 2003). The 

amount of uranium precipitated is largely influenced by sedimentation rate (Lüning and 

Kolonic, 2003). Essentially, longer exposure between organic matter and sea water before 

burial allows for greater precipitation (Lüning and Kolonic, 2003). During Barnett Shale 

deposition, preservation of organic matter and slow sedimentation rates permitted substantial 

uranium precipitation, and, consequently, high gamma ray responses (Lewis et al., 2004). 

Montgomery et al. (2005) estimate the Barnett Shale to contain 742 bcm (~26.2 tcf) 

of technically recoverable gas in the FWB. Effective recovery of hydrocarbons is directly 

dependent on significant gas storage in the reservoir and the absence of faults and/or karst 

features penetrating the Barnett Shale (Jarvie et al., 2007). Barnett wells drilled in 

structurally complex areas are typically poor producers (Bowker, 2007).   

Fort Worth Basin Drilling History 

The Mississippian Barnett Shale is one the largest known unconventional shale plays 

in the world, producing more than 158 mcm (5.6 tcf) of gas (Berman, 2009) since the play’s 

discovery in 1981 by Mitchell Energy Company (Martineau, 2007). By 1998, industry 

perseverance along with technological advances like hydraulic fracturing and horizontal 

drilling developed the Barnett Shale into an economically successful play (Martineau, 2007) 

(Figure 5). These drilling and completion techniques were quickly applied to various shale 
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plays across the United States, rendering them economic successes and making the Barnett 

Shale the key play that initiated the search for additional unconventional oil and gas plays 

worldwide.  

 

 

METHODOLOGY 

Approximately 200 geophysical logs are used to create chronostratigraphic 

correlations across the study area, which defines the gross reservoir (see below) and leads to 

the proposed stratigraphic framework detailed in this study. Basin-wide chronostratigraphic 

correlations are based on events (i.e. marine flooding surfaces) that are essentially coeval, 

rather than lithostratigraphic relationships that typically cross time-lines. Once the gross 

reservoir is defined, stratigraphic relationships throughout the Mississippian-Pennsylvanian 

section are recognized from geophysical logs. Isopach maps of the gross reservoir and 

Figure 5. Representation of the increased Barnett Shale production since the play’s 
discovery in the early 1980s. From Powell et al. (2011).  
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Barnett Shale are created in order to illustrate regional changes in thickness. Based on these 

chronostratigraphic relationships, a stratigraphic framework/reservoir model for the Barnett 

Shale is proposed. 

Interpreted chronostratigraphic relationships and core analyses are also used to 

identify facies belts throughout the gross reservoir on a general scale throughout the FWB 

due to the geographic size of the study area (~15,000 km2). The reservoir model is then 

studied more comprehensively, and various characteristics of the gross reservoir are 

analyzed. Geophysical logs and X-ray diffraction (XRD) analyses spanning the study area 

are used to define mineralogic and lithologic trends in the gross reservoir. Rotary sidewall 

cores from ten wells are also used to identify mineralogic variability throughout the 

reservoir. Time slice maps are shown to illustrate facies changes across the FWB during 

deposition of the strata comprising the gross reservoir. The facies belts exhibit the 

interpreted depositional trends in the FWB during the Mississippian and Early 

Pennsylvanian. 

Geochemical analyses identifying TOC from four cored wells are used to show 

trends in organic matter of the Barnett Shale reservoir. Organic matter content is compared 

to spectral gamma ray log responses in an attempt to find correlations between the two and 

evaluate the gross reservoir based on organic richness. The gross reservoir can be assessed 

via log analysis, and the amount of public log data collected in the FWB could prove very 

advantageous as a quick, inexpensive assessment of acreage in the Barnett Shale play. 
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RESULTS 

Chronostratigraphic Relationships 

 Log analyses were used to define the gross reservoir, which consists of the Barnett 

Shale and Marble Falls Formation (or stratigraphic equivalent) and is bound by two 

unconformities. The Morrowan section is included with the Barnett Shale as part of the 

gross reservoir for two reasons: 1) to help construct the stratigraphic framework and 2) to 

evaluate shaley intervals for possible contribution to the Barnett Shale reservoir. Type logs 

and formation tops of the gross reservoir are provided in Figures 6 and 7. The two type logs 

of the gross reservoir differ in thickness, and some formations are only present in the 

northern part of the basin. The Marble Falls and Forestburg carbonates present towards the 

northern extent of the FWB are absent to the south. The formation tops identify correlative 

log responses used to construct the stratigraphic framework of the gross reservoir and to 

establish an internally consistent reservoir model for the Barnett Shale play. 

Chronostratigraphic regional cross sections spanning the FWB were constructed to 

identify changes in gross reservoir thickness across the study area (Figures 8 and 9). The 

gross reservoir thins from north to south and thickens from west to east across the FWB. 

Identified marine flooding surfaces, further explained and illustrated below in the reservoir 

model, reveal the relationship between chronostratigraphic trends and depositional 

environments.  

 



13 
 

 

Figure 6. Type log of the gross reservoir illustrating shoaling-upward sequence in the northern FWB.  
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Figure 7. Type log of the gross reservoir illustrating mostly organic rich shale in the southern region of the FWB.  
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Facies Analysis 

 Classification of facies in this study is general due to the size of the study area and 

scale of the research. The facies analysis relies mainly on correlations between gamma ray 

logs, identified flooding surfaces, and implementation of Walther’s law. XRD data from ten 

wells and geochemical analyses identifying TOC from four wells were used to supplement 

classifications of depositional environments from log analyses and help construct a reservoir 

model. Description of mineralogic variability between facies is explained in further detail 

below. 

Facies Belts 

 Geophysical logs across the Barnett Shale and Morrowan stratigraphic section, XRD 

data, and TOC analyses suggest the presence of three different facies belts associated with 

the gross reservoir interval in the FWB: 1) shelf margin carbonates, 2) slope carbonates, and 

3) basinal organic-rich shale (Figure 10). The basinal organic-rich shale facies includes the 

condensed shale (not identified as a separate facies). The XRD and geochemical data taken 

from 47 rotary sidewall cores are averaged across each facies to illustrate changes in 

mineralogic composition and organic content throughout the gross reservoir. Total gas 

measured from each core is plotted to illustrate changes in gas content relative to 

stratigraphic interval, TOC, and depth. Transitions from third order sequences (Slatt and 

Abousleiman, 2011) (orange arrows) are annotated to illustrate episodic shoaling-upward 

sequences following flooding events throughout deposition of the gross reservoir interval. 
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The shelf margin carbonates facies only exists where the Marble Falls Formation is 

present in the FWB. Low gamma ray response, high carbonate content, and low TOC 

defines this facies. According to core data, this facies contains the least amount of quartz 

and feldspar, clay, and TOC of the three identified. Carbonate, phosphate, and pyrite content 

are highest (nearly all is carbonate). The shelf margin carbonate facies in the Lower Marble 

Falls is bound by the slope carbonates facies. Shelf margin carbonates associated with the 

Upper Marble Falls interval are bound by slope carbonates at the base and an erosional 

unconformity at the top. The only well that contains core data in the Marble Falls Formation 

is located in north-central Tarrant County.  

The slope carbonate facies is present at the end of transgression-regression cycles 

when bound by the basinal, organic-rich shale facies or at the beginning of a transgression-

regression cycle when underlain by shelf margin carbonates. Gamma ray response is less 

than 100 API units. Average quartz and feldspar, clay content, and TOC are greater than the 

shelf margin carbonates and less than in the basinal, organic-rich shale facies. Together, 

carbonate, phosphate, and pyrite composition in the slope carbonates is typically less than 

that of the shelf margin carbonates and greater than the basinal, organic-rich shale facies.  

The organic-rich shale facies is identified at the beginning of transgressive-

regressive cycles. The facies is bound by slope carbonates, and gamma ray response is 

typically greater than 150 API units. The basinal organic shale facies typically contains the 

greatest amount of quartz and feldspar, clay, and TOC and the least amount of carbonate, 

phosphate, and pyrite. Gas content is also typically highest in the organic-rich shale. 
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Mineralogic Variability 

 While the Barnett Shale is a continuous reservoir 

that can be mapped across the entire FWB, XRD analyses 

of core samples taken from the most productive regions of 

the play (Figure 11) suggest widespread mineralogic 

variability and complexity in the shale. Ternary diagrams 

display XRD data from ten Barnett Shale wells, five of 

which also contain cores from the Morrowan section 

(Figures 12-22). Quartz and feldspar comprise one ternary 

end member, clays encompass the second, and carbonate, 

phosphate, and pyrite incorporate the third. The ternary diagrams of this study indicate a 

high degree of mineralogic heterogeneity across the FWB but also suggest regional 

mineralogic similarities and trends. 

The mineralogic composition of wells sampled along the Ouachita thrust front (wells 

6, 7, 8, 9, and 10) reveals that the quartz/feldspar and clay content are particularly high in 

both the slope carbonates and basinal organic shale facies. Cores extracted from slope 

carbonates and basinal organic-rich shale facies are compositionally very similar in the 

Marble Falls equivalent and Barnett Shale. Clay content is the dominant composition in 

three of the five wells (wells 6, 7, and 9). Of these five wells, none of the cores contained 

greater than 30% of the third end member, carbonate, phosphate, and pyrite.  

Westward of the five wells sampled along the Ouachita thrust belt, the average clay 

content decreases, while silica and carbonate mineralogy both increase. The slope 

carbonates facies is more prevalent in the Barnett Shale in wells 1-5. Mineralogic 

Figure 11. Location map identifying 
cored wells with XRD data. 
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heterogeneities between slope carbonates and basinal organic-rich shale are also more 

apparent. With exception to the three wells with high clay content along the Ouachita thrust 

front, silica (quartz and feldspar) is the dominate mineralogy observed facies comprising the 

Barnett Shale. Average silica concentrations from cores extracted from the Barnett Shale are 

highest in western Johnson County (well 3), south-central Tarrant County (well 4), and 

north-central Tarrant County (well 5).  

Carbonate, phosphate, and pyrite content is the least dominate group in the Barnett 

Shale according to XRD data. However the concentration of this group in the gross 

reservoir, which is mostly attributed to carbonate content, does increase from 

south/southeast to north/northwest in the FWB. Unfortunately, XRD analyses from the 

northern extent of the FWB (Wise and Denton counties) were not available for this study. 

The north-south cross section of the gross reservoir in Figure 8 illustrates how carbonate 

content in the gross reservoir increases north towards the Muenster arch. A ternary diagram 

of all 241 core points from the 10 wells is shown in Figure 22. The general compositional 

trend from carbonate to silica to clay dominance running northwest to southeast is shown in 

red.  
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Figures 12. & 13. Mineralogic ternary diagrams of the Barnett Shale from two wells in 
Parker County.
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Figures 14. & 15. Ternary diagrams showing mineralogic composition of the gross 
reservoir from wells in western Johnson and south-central Tarrant counties.
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Ternary Diagram:
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Figures 16. & 17. Ternary diagrams showing mineralogic composition of the gross reservoir 
from north-central and southeastern Tarrant County.
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Figures 18. & 19. Mineralogic ternary diagrams of the gross reservoir from wells in 
northwestern and southwestern Ellis County. 
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Ternary Diagram:
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Figures 20. & 21. Ternary diagrams showing mineralogic composition of the gross reservoir 
from wells in northern Hill County.
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Reservoir Model 

 The proposed reservoir model of the Mississippian-Morrowan section extends from 

central Denton County to southwestern Ellis County (Figure 23). This model is generalized 

due to the scale of the cross section (approximately 120 km). The diagram depicts a 

maximum flooding surface (mfs) as the top of a transgressive systems tract (TST) where an 

erosional unconformity in the platform carbonate sequence (base of TST) is overlain by high 

gamma ray shale on the cross section. This flooding surface not only represents the datum 

for each cross section, but also the first Mississippian deposits of sediment and organic 

material that comprise the basal Barnett Shale overlying older Paleozoic strata (Ellenburger 

or Viola-Simpson Formations).  

A second order highstand systems tract (HST) representing Mississippian to Early 

Pennsylvanian deposition (excluding the basal Barnett Shale) overlies the TST. Third order 

sequences are present within the second order HST. The sequences are defined by high 

gamma ray shale overlain by “decreasing-upward” gamma ray. General sequences are 

marked by the mfs in the reservoir model. The Morrowan section above the Barnett Shale 

marks the top of the HST where sea level fell, resulting in another erosional unconformity. 

The episodes depositing the organic shale strata above the mfs are interpreted as minor 

transgressions during larger-order progradation.  

According to the reservoir model, the basinal, organic-rich shales facies are more 

prominent towards the southern fringe of the FWB. In the northern region of the FWB the 

slope carbonates are overlain by shelf margin carbonates, the Upper and Lower Marble 

Falls. The shelf margin facies thin southward from Denton County until grading into slope 

carbonate deposits overlying organic-rich shale.  
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Facies time-slice maps illustrate interpreted facies across the FWB during the Early 

Mississippian, Middle Mississippian, and Early Pennsylvanian (Figures 24, 25, and 26). The 

largest accumulation of organic-rich sediment blanketed the entire FWB during the first 

major transgression in the Early Mississippian. It is important to note that the basal Barnett 

Shale (illustrated by this major transgression) is the only interval that can be consistently 

correlated throughout the entire study area. Facies time-slice maps during the Middle 

Mississippian and Early Pennsylvanian indicate depositional and erosional extents of the 

Forestburg limestone and Marble Falls Formation, respectively. The three maps correspond 

to the reservoir model shown in Figure 23. 
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Reservoir Thickness 

 In the case of the FWB, the thickness of the gross reservoir generally increases with 

depth of the carbonates underlying the Barnett Shale (Ellenburger Group or Viola-Simpson 

Formations) (Figure 27). The Barnett Shale is deepest along the eastern and northeastern 

sides of the FWB proximal to the Ouachita fold-thrust belt and Muenster arch. 
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Thicknesses of the Barnett Shale and the gross reservoir follow similar trends as both 

are thickest in northern Johnson, Tarrant, Wise, and Denton counties where the Ellenburger 

Group is deepest (Figures 28 and 29). As the depth to the Paleozoic carbonates decreases 

towards the northwestern, western, and southern regions of the FWB, the thicknesses of 

these two intervals decrease.  
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          Assessing unconventional reservoirs using only gross lithofacies isopach maps is 

inadequate. Although mapping reservoir thickness is important, additional data add insight 

to comprehension of a complex reservoir like the Barnett Shale. Recognition of the reservoir 

potential across the FWB requires more data including but not limited to mineralogic 
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variability, organic matter content, and geochemical characteristics. Addition of such data 

supports chronostratigraphic correlations and contributes to the overall evaluation of a shale 

play. 

Net Reservoir Thickness 

Thick, organic-rich intervals of the gross reservoir contribute to hydrocarbon 

generation and storage. Identifying the net thickness of the reservoir with respect to these 

organic-rich intervals is essential to regionally quantify the gross reservoir across the FWB. 

Gamma ray logs and geochemical analyses from cores extracted from the gross reservoir can 

be used to aid in this identification.  Most of the gamma ray activity is due to uranium 

content (Breyer et al., 2011), and a positive relationship between the two should exist if the 

two are linked. Uranium content in shale plays like the Barnett also suggests preserved 

organic material, from which hydrocarbons may be 

derived (assuming thermal maturation).  

Using data obtained from standard gamma ray 

and spectral gamma ray logs from nine Barnett Shale 

pilot holes drilled in Parker, Tarrant, Ellis, Johnson, and 

Hill counties (Figure 30), a strong correlation exists 

between uranium content and gamma ray response. 

Cross plots of uranium (ppm) vs. gamma ray yield (API 

units) from the nine wells illustrate this positive 

relationship (Figure 31). R squared values range from 

0.80 - 0.93.  

Figure 30. Map identifying wells used to 
compare gamma ray and uranium across 
the gross reservoir. 
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Four of the nine wells (2, 3, 5, and 7) above contained core data from which TOC 

was derived using geochemical analyses. A strong relationship between uranium and TOC 

does not exist in these wells (Figures 32-35). Cross plots between uranium and TOC % vol. 

data appears to scatter without a strong correlation; however, the data are relatively 

consistent in one important sense. Most core samples that contain 3-5 parts per million 

(ppm) uranium in the cores are also greater than ~ 4 vol. % (or ~2 wt. %) TOC, which is the 
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Figure 31F-I. Positive correlation between gamma ray response and uranium concentration from wells in 
the southern region of the study area: F) southeastern Johnson County, G) southwestern Ellis County,  
H) southwestern Johnson County, and I) and northern Hill County. 
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baseline organic material considered a “good risk” in potential shale reservoirs (Jarvie et al., 

2004). Any data points below 4 vol. % TOC are not considered source rocks in this study. 

Note that this lower limit for economic hydrocarbon generation does not apply to shales that 

source conventional reservoirs. This only pertains to unconventional plays where the target 

reservoir is the shale source rock itself.  

Wells 2 and 7 include cores from the Marble Falls and Marble Falls stratigraphic 

equivalent. While all cores extracted from the Marble Falls in well 2 are not considered 

source rocks due to low TOC, eleven of the thirteen cores taken from the Marble Falls 

stratigraphic equivalent in well 7 are considered “good risk” due to their TOC. For this 

reason, the Morrowan section (Marble Falls Formation or stratigraphic equivalent) in the 

FWB was added to the Barnett as part of the identified gross reservoir.  
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Another positive relationship between uranium content and gamma ray response is 

noted. At approximately 100 API units, the uranium content in the four wells from Tarrant 

and Ellis counties generally plots above 3-5 ppm. Therefore, gamma ray responses > 100 

API units relates to ≥ 4 vol. % TOC. This relationship was used to calculate net reservoir 

thickness from gamma ray logs run across the gross reservoir in order to isolate the organic-

rich shale intervals. 

The greatest net gamma ray thickness using a > 100 API unit cutoff throughout the 

entire gross reservoir is in southeastern Tarrant County (Figure 36). The majority of Tarrant 

County contains wells with over 100 net meters (350 feet) of gamma ray greater than 100 

API units, which by this line of reasoning suggests that this region contains the highest 

amount of shale with greater than 4 vol. % TOC. Northern Johnson, northeastern Ellis, and 
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southwestern Denton counties also contain thick intervals of high net gamma ray shale. 

When applying this gamma ray threshold, the net thickness of the gross reservoir decreases 

radially from southeastern Tarrant County to the northern, western, and southern regions of 

the FWB. 
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 The isopach of net gamma ray >100 API units for Barnett Shale (Figure 37) 

demonstrates a similar trend to the gross reservoir isopach of gamma ray >100 API units. 

Tarrant, northwestern Johnson, and southwestern Denton counties contain the greatest 

thickness of high gamma ray shale, and, consequently, greatest concentration of TOC. As in 

the gross reservoir, the TOC-rich intervals in the Barnett Shale also thin from the Denton, 

Tarrant, and Johnson counties to the northern, western, and southern extents of the FWB.  
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Figure 37. Isopach map illustrating net thickness of gamma ray greater 
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 While the gross reservoir is thickest to the north along the Muenster arch, applying 

the >100 API unit gamma ray threshold in this area reveals that the reservoir contains the 

same net thickness of organic-rich shale as in northern Johnson County where the gross 

reservoir thickness is 20% as great. The formula below was used to calculate overall organic 

richness in the gross reservoir on a per-county basis. Once the organic richness was 

calculated for each well, an average organic richness for each county was computed (Figure 

38). 

Organic Richness =       
  

                                (Eq.1)  

 

 Organic richness increases across the basin from northwest to southeast where the 

organic composition appears to be highest along the Ouachita fold-thrust belt. 

Coincidentally, the southern and eastern extents of the FWB also contain the highest clay 

content recorded in XRD analyses of the gross reservoir. XRD analyses and geophysical log 

data confirm a more carbonate-rich reservoir towards the north/northwestern extent of the 

FWB and a more clay-rich reservoir towards the east/southeast along the Ouachita fold-

thrust belt. Thinning of the gross reservoir and karsting of the pre-Barnett carbonates are 

both prevalent along the west, southwest, and southern extents (Figure 39).  
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DISCUSSION 

Chronostratigraphic correlations between gamma ray logs run through the gross 

reservoir interval are used to define a sequence stratigraphic framework for Mississippian to 

Early Pennsylvanian strata deposited in the FWB based on marine flooding surfaces 

representing events in geologic time. This relationship implies that the northern and western 

margins of the FWB ringed by carbonate platforms are age-equivalent to the organic-rich 

basinal facies that are the Barnett Shale.  

Facies belts spanning the entire study area are defined using relationships between 

strata in the cross sections, carbonate facies models, Walther’s Law, and previous work 

dedicated to depositional environments of strata in the FWB. Due to the scale of the study 

the facies belts identified in the gross reservoir are general. However, the relationships 

between facies belts reflect the depositional environments and history of Mississippian to 

Early Pennsylvanian strata in the FWB. Three facies belts are identified in the gross 

reservoir interval: 1) shelf margin carbonates, 2) slope carbonates, and 3) basinal, organic-

rich shales.  

The shelf margin facies belt represents the Upper and Lower Marble Falls Formation 

in the gross reservoir. Gamma ray logs and XRD data indicate that the Upper and Lower 

intervals of the Marble Falls Formation are predominately limestone and carbonate rich. The 

Marble Falls Formation was deposited in a high energy, well-oxygenated shallow water 

environment and contains evidence of bioturbation (Farrar, 2007). TOC is low in the shelf 

margin facies and is most likely attributed to degradation from organisms and deposition in 

oxygenated waters. Further defining this facies, Keir (1979) describes shelf facies associated 

with the Marble Falls Formation near the Llano Uplift. Based on previous studies, gamma 
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ray logs, and XRD data, the Marble Falls Formation is classified as a shelf margin facies in 

the FWB. 

The basinal, organic rich shale facies is prevalent in the Barnett Shale. This facies 

yields a high gamma ray response (>150 API units) from geophysical logs due to high 

uranium content and is typically rich in TOC based on geochemical analyses in this study. 

High uranium and TOC are indicative of an anaerobic environment of deposition, which is 

typical of shales deposited in restricted basins. The basinal organic-rich shale facies 

represents marine transgression. 

The slope carbonates facies belt was defined using carbonate facies models and 

Walther’s Law. Carbonate facies models illustrate that deposition between shelf margin 

carbonates and basinal shales down-dip from carbonate shelves are slope carbonates 

(Handford and Loucks, 1993). Implementing Walther’s Law, a vertical sequence of facies 

should represent the series of depositional environments lying adjacent to one another. 

Therefore, deposition above and below shelf margin facies and basinal, organic-rich shale 

facies should be slope carbonates assuming there is not a gap in the sedimentary record. The 

slope carbonates facies typically contains more carbonate than the basinal, organic-rich 

shale facies and less carbonate than that shelf margin carbonates facies.  

The proposed reservoir model is consistent with sequence stratigraphic framework 

studies performed by Slatt and Abousleiman (2011) on other North American shale plays 

and Emery (2009). The base of the transgressive systems tract (TST) onlaps over an 

erosional surface (Ellenburger Group) and is comprised of a condensed shale section 

represented by high gamma ray response in the basal Barnett Shale. The top of the TST 

corresponds to the maximum flooding surface and represents the datum in 
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chronostratigraphic cross sections used to construct the reservoir model. Third order 

sequences are represented by high gamma ray responses (>150 API units) overlain by 

decreasing-upward gamma ray signatures (Slatt and Abousleiman, 2011). These gamma ray 

patterns represent marine flooding surfaces followed by regression.  

The incursions of deeper-water sediments that divide the slope carbonates facies are 

keyed by transgressions (flooding surfaces) in third order sequences during second order 

highstand.  The most organic-rich sediment is found in two places: 1) the transgressive 

systems tract that comprises the basal Barnett Shale and 2) down-dip (basinward) of the 

shelf margin carbonates to the north and west where anaerobic conditions preserved organic 

material. In general, the organic-rich sediments are distributed at the base of the upward-

shoaling mega-sequence identified as the gross reservoir. Intervals of organic-rich sediments 

diminish upwards due to overall progradation during highstand, resulting in an asymmetrical 

distribution (decreasing upward) of TOC and gas in place (GIP) across the entire gross 

reservoir.  

 The gross reservoir is thickest in the northern region of the FWB against the 

Muenster arch, but most of the stratigraphic section is predominately carbonate. Cross 

sections indicate that stacked, organic-rich intervals, which are present in the southern 

regions of the basin (Hill, Tarrant, Parker, Johnson, Hood, and western Ellis counties), 

continue to become separated northward by progressively thickening carbonate sequences.  

An increase in accommodation space was present during the Mississippian towards 

the northern extent of the FWB; however, organic-richness of the Barnett Shale tends to 

decrease northward while carbonate content increases significantly. The northern extent of 

the basin is interpreted to represent shelf margin and slope carbonate facies within the 
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proposed depositional model. Prograding carbonate tongues extend southward from the 

north basin margin indicating that basinal, anoxic conditions were not as prevalent towards 

the northern extent of the FWB as they were to the south where much of the organic material 

accumulated in the basinal facies. 

A decrease in accommodation space coincident with a facies change alludes to the 

decrease in organic-richness in the Barnett Shale towards the Bend arch at the western 

extent of the FWB. Towards the Bend arch, the Barnett section thins and shallows 

structurally, and interfingers or transitions via facies change with local pinnacle reefs of the 

Chappel carbonate platform. Little evidence exists for thick, organic-rich deposits along this 

western flank of the FWB during the Mississippian. 

In the Barnett Shale, high TOC corresponds to high gas content and porosity. While 

there is not a direct relationship between gamma ray response and TOC, uranium content 

appears to link the two when a gamma ray threshold is implemented. This threshold of 100 

API units relates to greater than or equal to ~4 vol. % (or ~2 wt. %) TOC in the Barnett 

Shale based on TOC, gamma ray, and spectral gamma ray data from pilot-hole wells. The 4 

vol. % TOC is important since this was determined the lower limit for economic 

hydrocarbon generation in shale-gas plays (Jarvie, 2004). Applying the gamma ray threshold 

assists in detecting changes in net thickness of the organic-rich gross reservoir across the 

FWB. 

The organic richness of the gross reservoir increases southward from Denton and 

Wise counties, most likely due to deeper water, more organic-rich, less carbonate-rich 

deposition and sedimentation. According to this study, organic composition in the gross 

reservoir is highest along the present-day axis of the FWB in front of the Ouachita fold-
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thrust belt. This organic-richness distribution reveals the increased basinward presence of 

the organic shale facies described in the reservoir model. Thick, organic-rich Barnett Shale 

sections provide higher organic porosity and gas saturation in the reservoir. High gamma ray 

response is directly related to high organic content. Therefore, gamma ray can be used as a 

tool to help assess reservoir quality (as a function of organic richness) in the Barnett Shale. 

Recognition of this association is key. This technique will eliminate the less or non-

productive intervals of the established gross reservoir like the slope carbonates facies belts 

present in the northern region of the FWB. Instead, this method focuses on the organic-rich 

intervals of the gross reservoir responsible for hydrocarbon generation and storage, mainly 

the basinal, organic shales facies belt.  

 Geophysical log data and XRD analyses indicate that mineralogic composition of the 

gross reservoir is highly variable throughout the FWB. Silica, carbonate, and clay content 

each dominate regionally. The identified facies belts, mineralogic content of the facies belts, 

and geophysical logs demonstrate a general mineralogic trend in the gross reservoir from the 

northwest to southeast corners of the study area. According to geophysical logs and XRD 

data, carbonate content dominates the gross reservoir in Denton and Wise counties and 

decreases southward. Silica content increases throughout Tarrant and northern Johnson 

counties but decreases to the south towards Hill County and eastward toward the Ouachita 

fold-thrust belt where clay content increases in composition of the gross reservoir. This 

trend in mineralogic composition of wells cored along the Ouachita fold-thrust belt may be 

related to deep, basinal deposition, where the predominate source was most likely distal, 

possibly from hemipelagic plumes or deep marine “snow” containing mostly clay minerals.  
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The northwest to southeast trend appears consistent with current depositional models 

where finer-grained sediment is deposited further basinward (Handford and Loucks, 1993). 

Increased silica content towards the center of the basin could have resulted from deceased 

organisms with silica components (radiolarians, diatoms, sponge spicules) being transported 

down the slope into the basin via debris flows or through suspension settling (Bowker, 

2003).  

Preserved organic matter and fine-grained sediment deposited in basins are 

indicative of anoxic conditions and are typically deposited down-dip of carbonate shelves or 

platforms where pervasive degradation from benthic organisms or oxidation is greatly 

diminished. While depositing organic shales up-dip onto shelf margin carbonates is possible, 

the increase in carbonate composition in the gross reservoir towards the northern extents of 

the FWB suggests less organically-rich sediment deposition. 

CONCLUSIONS 

Chronostratigraphic cross sections constructed from approximately 200 pilot hole 

define the stratigraphic framework of the gross reservoir. Cross section correlations indicate 

that sediment comprising the gross reservoir in the FWB was deposited during marine 

transgression followed by second order highstand aggradation and progradation. Gamma ray 

patterns, XRD data, and TOC analyses from core data identify three  facies belts present in 

the proposed reservoir model: 1) shelf margin carbonates, 2) slope carbonates, and 3) 

basinal, organic-rich shale. While each of the facies belts are important during construction 

of the reservoir model, identifying the basinal, organic-rich shales are most integral for 

regional assessment of the Barnett Shale reservoir.  
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Thick organic-rich intervals of the Barnett Shale are key for hydrocarbon generation 

and storage. Gamma ray responses > 100 API units indicate organic-rich shale containing ≥ 

~ 4 % vol. TOC. According to the reservoir model, the thickest accumulations of organic-

rich shale in the gross reservoir are present in Tarrant, northern Johnson, and northwestern 

Ellis counties. Isopach maps of the net reservoir indicate that thickness of organic-rich 

intervals associated with the gross reservoir decrease radially from southeastern Tarrant 

County.  
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ABSTRACT 
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  Sediment comprising the gross reservoir (Barnett base-Morrowan top) was first 

deposited over Paleozoic strata during marine transgression, followed by highstand 

aggradation and progradation. Chronostratigraphic cross sections illustrate relationships 

between flooding events and facies belts in the gross reservoir. The reservoir model supports 

mineralogic trends identified in the gross reservoir that grade from carbonate to silica to clay-

rich in a northwest/southeast orientation across the Fort Worth basin. Facies analyses identify 

organic richness associated with the gross reservoir increases south/southeast away from the 

Newark East field. Gamma ray response in the Barnett Shale > 100 API units indicates ≥ 

~4% vol. TOC, the basal limit accepted for commercial production in unconventional shale 

reservoirs. High TOC indicates greater porosity and hydrocarbons present in the Barnett 

Shale. Based on organic richness, mineralogic composition, and geochemical considerations, 

southeastern Tarrant, northern Johnson, and northwestern Ellis counties contain the best 

reservoir qualities for gas generation and accumulation. 
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