Publication

New bases of monodiffric polynomials

Talati, Kiritkumar
item.page.creator
Citations
Altmetric:
Soloist
Composer
Publisher
Date
1979
Additional date(s)
Abstract
Two new bases of monodiffric polynomials are defined. These new bases have interesting properties. Both bases satisfy the definition of Zeilberger's "system of pseudo-powers" for monodiffric polynomials, and the sums Summation a_n pi_n (z) and Summation a_n pi*_n(z) converge absolutely on the upper half-plane and right half-plane, respectively, if, and only if, lim sup |a_n|^(1/n) =0 . It is shown that there is no "system of pseudo-powers", {P_n(z)}, such that Summation a_n P_n(z) converges for every lattice point z, if lim sup |a_n|^(1/n) =0. By using the discrete exponential function corresponding to the basis {pi_k(z)}, it is possible to give discrete analogues for a well-known Paley-Wiener space, the Paley-Wiener theorem, and H^2-spaces. The theory of discrete H^2-spaces analogous to the theory of classical H^2 -spaces is also developed. The final result of this paper establishes a relationship between the class of monodiffric functions and discrete analytic functions. A discrete H^2-space theory is developed for the class of discrete analytic functions on the first quadrant.
Contents
Subject
Subject(s)
Polynomials
Research Projects
Organizational Units
Journal Issue
Genre
Dissertation
Description
Format
iii, 49 leaves, bound
Department
Mathematics
DOI