Show simple item record

dc.contributor.advisorFriedman, Greg
dc.contributor.authorMatthews, Kyle M.en_US
dc.date.accessioned2016-05-12T21:06:55Z
dc.date.available2016-05-12T21:06:55Z
dc.date.created2016en_US
dc.date.issued2016en_US
dc.identifiercat-002764577
dc.identifier.urihttps://repository.tcu.edu/handle/116099117/10941
dc.description.abstractThe work of Friedman and McClure shows that intersection homology satisfies a version of universal Poincar? duality for orientable pseudomanifolds. We extend their results to include regular covers defined solely over the regular strata. Our approach allows us to also prove a universal duality result for possibly non-orientable pseudomanifolds. We also show that for a special class of coefficient systems, which includes fields twisted by the orientation character, there is a non-universal Poincar? duality via cap products for intersection homology with twisted coefficients.--Abstract.
dc.format.mediumFormat: Onlineen_US
dc.language.isoengen_US
dc.publisher[Fort Worth, Tex.] : Texas Christian University,en_US
dc.relation.ispartofTexas Christian University dissertationen_US
dc.relation.ispartofUMI thesis.en_US
dc.relation.ispartofTexas Christian University dissertation.en_US
dc.relation.requiresMode of access: World Wide Web.en_US
dc.relation.requiresSystem requirements: Adobe Acrobat reader.en_US
dc.subject.lcshDuality theory (Mathematics)en_US
dc.subject.lcshPoincar? series.en_US
dc.subject.lcshHomology theory.en_US
dc.subject.lcshManifolds (Mathematics)en_US
dc.titleUniversal Poincar? duality for the intersection homology of branched and partial coverings of a pseudomanifolden_US
dc.typeTexten_US
etd.degree.departmentDepartment of Mathematics
etd.degree.levelDoctoral
local.collegeCollege of Science and Engineering
local.departmentMathematics
local.academicunitDepartment of Mathematics
dc.type.genreDissertation
local.subjectareaMathematics
etd.degree.nameDoctor of Philosophy
etd.degree.grantorTexas Christian University


Files in this item

Thumbnail
This item appears in the following Collection(s)

Show simple item record