Show simple item record

dc.contributor.advisorZerda, T. Waldek
dc.contributor.authorXu, Weien_US
dc.identifierMicrofilm Diss. 716.en_US
dc.description.abstractStructure and properties of carbon black particles were investigated using atomic force microscopy, gas adsorption, Raman spectroscopy, and X-ray diffraction. Supplementary information was obtained using TEM and neutron scattering. The AFM imaging of carbon black aggregates provided qualitative visual information on their morphology, complementary to that obtained by 3-D modeling based on TEM images. Our studies showed that carbon black aggregates were relatively flat. The surface of all untreated carbon black particles was found to be rough and its fractal dimension was 2.2. Heating reduced the roughness and fractal dimension for all samples heat treated at above 1300 K to 2.0. Once the samples were heat treated rapid cooling did not affect the surface roughness. However, rapid cooling reduced crystallite sizes, and different Raman spectra were obtained for carbon blacks of various history of heat treatment. By analyzing the Raman spectra we determined the crystallite sizes and identified amorphous carbon. The concentration of amorphous carbon depends on hydrogen content. Once hydrogen was liberated at increased temperature, the concentration of amorphous carbon was reduced and crystallites started to grow. Properties of carbon blacks at high pressure were also studied. Hydrostatic pressure did not affect the size of the crystallites in carbon black particles. The pressure induced shift in Raman frequency of the graphitic component was a result of increased intermolecular forces and not smaller crystallites. Two methods of determining the fractal dimension, the FHH model and the yardstick technique based on the BET theory were used in the literature. Our study proved that the FHH model is sensitive to numerous assumptions and leads to wrong conclusions. On the other hand the yardstick method gave correct results, which agreed with the AFM results.
dc.format.extent97 leaves : illustrationsen_US
dc.format.mediumFormat: Printen_US
dc.relation.ispartofTexas Christian University dissertationen_US
dc.titleStructure and properties of carbon black particlesen_US
dc.typeTexten_US of Physics
local.collegeCollege of Science and Engineering
local.departmentPhysics and Astronomy
local.academicunitDepartment of Physics
local.subjectareaPhysics and Astronomy
dc.identifier.callnumberMain Stacks: AS38 .X8 (Regular Loan)
dc.identifier.callnumberSpecial Collections: AS38 .X8 (Non-Circulating) of Philosophy Christian University

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record