dc.contributor.advisor | Minter, David E. | |
dc.contributor.author | Bian, Zhiguo | en_US |
dc.date.accessioned | 2014-07-22T18:47:55Z | |
dc.date.available | 2014-07-22T18:47:55Z | |
dc.date.created | 2010 | en_US |
dc.date.issued | 2010 | en_US |
dc.identifier | etd-04262010-122911 | en_US |
dc.identifier | umi-10124 | en_US |
dc.identifier | cat-001531611 | en_US |
dc.identifier.uri | https://repository.tcu.edu/handle/116099117/4209 | |
dc.description.abstract | The crinine-type alkaloids, which have the 5,10b-ethanophenanthridine skeleton as the core structure, represent an important sub-class of the family of Amaryllidaceae alkaloids. Considering the obvious structural relationship between the crinine-type alkaloids and the isoquinoline nucleus, a synthetic strategy involving the construction of the crinane skeleton from isoquinoline would be a logical approach. In order to realize this goal, a novel methodology to prepare 4,4-disubstituted 1,4-dihydroisoquinolines through boron-activated enamine chemistry has been developed in our lab. This method provides not only a quaternary carbon center at C-4 but also an imine group that can be further functionalized. A systemic investigation of the reductive alkylation of isoquinoline using boron-activated enamine chemistry was performed in order to examine the scope of this methodology for preparing 4,4-disubstituted isoquinoline derivatives. Various functional groups including simple alkyls, allyl, protected alcohols, protected aldehydes, and esters were successfully introduced at C-4 of the 1,4-dihydroisoquinoline product. Additionally, several spiro compounds and imines with two different substituents at C-4 were also synthesized. Based on this method, (?)-crinine was efficiently prepared in 9 steps in 14.4% overall yield for the first time from 6,7-methylenedioxyisoquinoline using an AB-->D-->C sequence. This method was then applied to build the skeletons of delagoenine and delagoensine - two very unusual alkaloids possessing a hemiaminal function in the D-ring. | |
dc.format.medium | Format: Online | en_US |
dc.language.iso | eng | en_US |
dc.publisher | [Fort Worth, Tex.] : Texas Christian University, | en_US |
dc.relation.ispartof | Texas Christian University dissertation | en_US |
dc.relation.ispartof | UMI thesis. | en_US |
dc.relation.ispartof | Texas Christian University dissertation. | en_US |
dc.relation.requires | Mode of access: World Wide Web. | en_US |
dc.relation.requires | System requirements: Adobe Acrobat reader. | en_US |
dc.subject.lcsh | Alkaloids. | en_US |
dc.subject.lcsh | Isoquinoline. | en_US |
dc.subject.lcsh | Organic compounds Synthesis. | en_US |
dc.title | Synthetic approaches to the skeleton of crinine-type alkaloids from isoquinoline and the total synthesis of (?)-crinine | en_US |
dc.type | Text | en_US |
etd.degree.department | Department of Chemistry | |
etd.degree.level | Doctoral | |
local.college | College of Science and Engineering | |
local.department | Chemistry and Biochemistry | |
local.academicunit | Department of Chemistry and Biochemistry | |
dc.type.genre | Dissertation | |
local.subjectarea | Chemistry and Biochemistry | |
etd.degree.name | Doctor of Philosophy | |
etd.degree.grantor | Texas Christian University | |