Show simple item record

dc.creatorFrieler, Madison
dc.creatorPho, Christine
dc.creatorLee, Bong Han
dc.creatorDobrovolny, Hana M.
dc.creatorAddaraju, Giridhar R.
dc.creatorNaumov Anton V.
dc.date.accessioned2021-03-05T15:20:07Z
dc.date.available2021-03-05T15:20:07Z
dc.date.issued2021-01-08
dc.identifier.urihttps://doi.org/10.3390/nano11010140
dc.identifier.urihttps://repository.tcu.edu/handle/116099117/43823
dc.identifier.urihttps://www.mdpi.com/2079-4991/11/1/140/pdf
dc.description.abstractWith 18 million new cases diagnosed each year worldwide, cancer strongly impacts both science and society. Current models of cancer cell growth and therapeutic efficacy in vitro are time-dependent and often do not consider the Emax value (the maximum reduction in the growth rate), leading to inconsistencies in the obtained IC50 (concentration of the drug at half maximum effect). In this work, we introduce a new dual experimental/modeling approach to model HeLa and MCF-7 cancer cell growth and assess the efficacy of doxorubicin chemotherapeutics, whether alone or delivered by novel nitrogen-doped graphene quantum dots (N-GQDs). These biocompatible/biodegradable nanoparticles were used for the first time in this work for the delivery and fluorescence tracking of doxorubicin, ultimately decreasing its IC50 by over 1.5 and allowing for the use of up to 10 times lower doses of the drug to achieve the same therapeutic effect. Based on the experimental in vitro studies with nanomaterial-delivered chemotherapy, we also developed a method of cancer cell growth modeling that (1) includes an Emax value, which is often not characterized, and (2), most importantly, is measurement time-independent. This will allow for the more consistent assessment of the efficiency of anti-cancer drugs and nanomaterial-delivered formulations, as well as efficacy improvements of nanomaterial delivery.en_US
dc.language.isoenen_US
dc.publisherMDPI AG
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceNanomaterials
dc.subjectcanceren_US
dc.subjectnanoparticlesen_US
dc.subjectIC50en_US
dc.subjectgraphene quantum dotsen_US
dc.subjectdrug deliveryen_US
dc.subjectfluorescenceen_US
dc.subjectimagingen_US
dc.subjectdoxorubicinen_US
dc.subjectmathematical modelingen_US
dc.titleEffects of Doxorubicin Delivery by Nitrogen-Doped Graphene Quantum Dots on Cancer Cell Growth: Experimental Study and Mathematical Modelingen_US
dc.typeArticleen_US
dc.rights.holder2021 Frieler et al
dc.rights.licenseCC BY 4.0
local.collegeCollege of Science and Engineering
local.departmentBiology
local.departmentPhysics & Astronomy
local.personsFrieler, Addaraju (BIOL); Pho, Lee Dobrovolny, Naumov (PHYS)


Files in this item

Thumbnail
This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/