dc.description.abstract | B. anthracis is a gram-positive, spore-forming bacterial pathogen and the causative agent of the deadly disease, anthrax. This pathogen produces a lethal infection due to the potency of its virulence factors in inflicting harm upon and counteracting host defenses. While anthrax toxin and capsule encoded in the B. anthracis plasmids are well-studied, there is minimal research into the over 5,000 chromosomal genes. To identify potential chromosomal virulence factors, a transposon mutant library was created to randomly disrupt genes in the B. anthracis Sterne strain?s chromosome. This library has been previously used to successfully screen for loss of virulence-associated phenotypes. In our current screen, we examined attenuation of mutants exposed to reactive oxygen species (ROS) in the form of H2O2. ROS are released by innate immune response cells and destroy invading pathogens lacking adequate defense mechanisms. While there are some known antioxidant-encoding genes in B. anthracis, like the catalase gene, we predict there are others that may influence the bacteria?s susceptibility to ROS. To search for additional genes, we screened over 1,300 transposon mutants using H2O2 and selected mutants with growth attenuation compared to wild-type B. anthracis Sterne. Mutants with increased H2O2 susceptibility were further tested to confirm in-vitro phenotypes. Ultimately, we want to screen selected mutants in the G. mellonella invertebrate infection models to prioritize mutants with both in-vitro and in-vivo phenotypes. Our goal is to discover novel virulence factors while also developing validated methods and procedures to study B. anthracis pathogenesis. | |