This item appears in the following Collection(s)
- Doctoral Dissertations [1446]
Title | Szymanski decompositions in von Neumann algebras |
---|---|
Author | Morgan, Ronald Lewis |
Date | 1980 |
Genre | Dissertation |
Degree | Doctor of Philosophy |
Abstract | A systematic study of the families of projections used in the proof of Szymanski's Decomposition Theorem for Operator-valued Functions is used to generalize that result to non-hereditary properties, to sets of operators or operator-valued functions, and to sets of properties. It is demonstrated that Szymanski's conditions in fact form a characterization of the most commonly studied case of parts-decomposition results. The new results are combined with generalizations of Kubo's definition of algebraically semi-definite properties of operators to produce a simple and unified proof of a large class of parts decompositions for operator-valued functions. |
Link | https://repository.tcu.edu/handle/116099117/33834 |
Department | Mathematics |
Advisor | Doran, Robert S. |